// SPDX-License-Identifier: GPL-2.0 /* * Common code for the NVMe target. * Copyright (c) 2015-2016 HGST, a Western Digital Company. */ #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt #include #include #include #include #include #include #define CREATE_TRACE_POINTS #include "trace.h" #include "nvmet.h" struct kmem_cache *nvmet_bvec_cache; struct workqueue_struct *buffered_io_wq; struct workqueue_struct *zbd_wq; static const struct nvmet_fabrics_ops *nvmet_transports[NVMF_TRTYPE_MAX]; static DEFINE_IDA(cntlid_ida); struct workqueue_struct *nvmet_wq; EXPORT_SYMBOL_GPL(nvmet_wq); /* * This read/write semaphore is used to synchronize access to configuration * information on a target system that will result in discovery log page * information change for at least one host. * The full list of resources to protected by this semaphore is: * * - subsystems list * - per-subsystem allowed hosts list * - allow_any_host subsystem attribute * - nvmet_genctr * - the nvmet_transports array * * When updating any of those lists/structures write lock should be obtained, * while when reading (popolating discovery log page or checking host-subsystem * link) read lock is obtained to allow concurrent reads. */ DECLARE_RWSEM(nvmet_config_sem); u32 nvmet_ana_group_enabled[NVMET_MAX_ANAGRPS + 1]; u64 nvmet_ana_chgcnt; DECLARE_RWSEM(nvmet_ana_sem); inline u16 errno_to_nvme_status(struct nvmet_req *req, int errno) { switch (errno) { case 0: return NVME_SC_SUCCESS; case -ENOSPC: req->error_loc = offsetof(struct nvme_rw_command, length); return NVME_SC_CAP_EXCEEDED | NVME_SC_DNR; case -EREMOTEIO: req->error_loc = offsetof(struct nvme_rw_command, slba); return NVME_SC_LBA_RANGE | NVME_SC_DNR; case -EOPNOTSUPP: req->error_loc = offsetof(struct nvme_common_command, opcode); switch (req->cmd->common.opcode) { case nvme_cmd_dsm: case nvme_cmd_write_zeroes: return NVME_SC_ONCS_NOT_SUPPORTED | NVME_SC_DNR; default: return NVME_SC_INVALID_OPCODE | NVME_SC_DNR; } break; case -ENODATA: req->error_loc = offsetof(struct nvme_rw_command, nsid); return NVME_SC_ACCESS_DENIED; case -EIO: fallthrough; default: req->error_loc = offsetof(struct nvme_common_command, opcode); return NVME_SC_INTERNAL | NVME_SC_DNR; } } u16 nvmet_report_invalid_opcode(struct nvmet_req *req) { pr_debug("unhandled cmd %d on qid %d\n", req->cmd->common.opcode, req->sq->qid); req->error_loc = offsetof(struct nvme_common_command, opcode); return NVME_SC_INVALID_OPCODE | NVME_SC_DNR; } static struct nvmet_subsys *nvmet_find_get_subsys(struct nvmet_port *port, const char *subsysnqn); u16 nvmet_copy_to_sgl(struct nvmet_req *req, off_t off, const void *buf, size_t len) { if (sg_pcopy_from_buffer(req->sg, req->sg_cnt, buf, len, off) != len) { req->error_loc = offsetof(struct nvme_common_command, dptr); return NVME_SC_SGL_INVALID_DATA | NVME_SC_DNR; } return 0; } u16 nvmet_copy_from_sgl(struct nvmet_req *req, off_t off, void *buf, size_t len) { if (sg_pcopy_to_buffer(req->sg, req->sg_cnt, buf, len, off) != len) { req->error_loc = offsetof(struct nvme_common_command, dptr); return NVME_SC_SGL_INVALID_DATA | NVME_SC_DNR; } return 0; } u16 nvmet_zero_sgl(struct nvmet_req *req, off_t off, size_t len) { if (sg_zero_buffer(req->sg, req->sg_cnt, len, off) != len) { req->error_loc = offsetof(struct nvme_common_command, dptr); return NVME_SC_SGL_INVALID_DATA | NVME_SC_DNR; } return 0; } static u32 nvmet_max_nsid(struct nvmet_subsys *subsys) { struct nvmet_ns *cur; unsigned long idx; u32 nsid = 0; xa_for_each(&subsys->namespaces, idx, cur) nsid = cur->nsid; return nsid; } static u32 nvmet_async_event_result(struct nvmet_async_event *aen) { return aen->event_type | (aen->event_info << 8) | (aen->log_page << 16); } static void nvmet_async_events_failall(struct nvmet_ctrl *ctrl) { struct nvmet_req *req; mutex_lock(&ctrl->lock); while (ctrl->nr_async_event_cmds) { req = ctrl->async_event_cmds[--ctrl->nr_async_event_cmds]; mutex_unlock(&ctrl->lock); nvmet_req_complete(req, NVME_SC_INTERNAL | NVME_SC_DNR); mutex_lock(&ctrl->lock); } mutex_unlock(&ctrl->lock); } static void nvmet_async_events_process(struct nvmet_ctrl *ctrl) { struct nvmet_async_event *aen; struct nvmet_req *req; mutex_lock(&ctrl->lock); while (ctrl->nr_async_event_cmds && !list_empty(&ctrl->async_events)) { aen = list_first_entry(&ctrl->async_events, struct nvmet_async_event, entry); req = ctrl->async_event_cmds[--ctrl->nr_async_event_cmds]; nvmet_set_result(req, nvmet_async_event_result(aen)); list_del(&aen->entry); kfree(aen); mutex_unlock(&ctrl->lock); trace_nvmet_async_event(ctrl, req->cqe->result.u32); nvmet_req_complete(req, 0); mutex_lock(&ctrl->lock); } mutex_unlock(&ctrl->lock); } static void nvmet_async_events_free(struct nvmet_ctrl *ctrl) { struct nvmet_async_event *aen, *tmp; mutex_lock(&ctrl->lock); list_for_each_entry_safe(aen, tmp, &ctrl->async_events, entry) { list_del(&aen->entry); kfree(aen); } mutex_unlock(&ctrl->lock); } static void nvmet_async_event_work(struct work_struct *work) { struct nvmet_ctrl *ctrl = container_of(work, struct nvmet_ctrl, async_event_work); nvmet_async_events_process(ctrl); } void nvmet_add_async_event(struct nvmet_ctrl *ctrl, u8 event_type, u8 event_info, u8 log_page) { struct nvmet_async_event *aen; aen = kmalloc(sizeof(*aen), GFP_KERNEL); if (!aen) return; aen->event_type = event_type; aen->event_info = event_info; aen->log_page = log_page; mutex_lock(&ctrl->lock); list_add_tail(&aen->entry, &ctrl->async_events); mutex_unlock(&ctrl->lock); queue_work(nvmet_wq, &ctrl->async_event_work); } static void nvmet_add_to_changed_ns_log(struct nvmet_ctrl *ctrl, __le32 nsid) { u32 i; mutex_lock(&ctrl->lock); if (ctrl->nr_changed_ns > NVME_MAX_CHANGED_NAMESPACES) goto out_unlock; for (i = 0; i < ctrl->nr_changed_ns; i++) { if (ctrl->changed_ns_list[i] == nsid) goto out_unlock; } if (ctrl->nr_changed_ns == NVME_MAX_CHANGED_NAMESPACES) { ctrl->changed_ns_list[0] = cpu_to_le32(0xffffffff); ctrl->nr_changed_ns = U32_MAX; goto out_unlock; } ctrl->changed_ns_list[ctrl->nr_changed_ns++] = nsid; out_unlock: mutex_unlock(&ctrl->lock); } void nvmet_ns_changed(struct nvmet_subsys *subsys, u32 nsid) { struct nvmet_ctrl *ctrl; lockdep_assert_held(&subsys->lock); list_for_each_entry(ctrl, &subsys->ctrls, subsys_entry) { nvmet_add_to_changed_ns_log(ctrl, cpu_to_le32(nsid)); if (nvmet_aen_bit_disabled(ctrl, NVME_AEN_BIT_NS_ATTR)) continue; nvmet_add_async_event(ctrl, NVME_AER_NOTICE, NVME_AER_NOTICE_NS_CHANGED, NVME_LOG_CHANGED_NS); } } void nvmet_send_ana_event(struct nvmet_subsys *subsys, struct nvmet_port *port) { struct nvmet_ctrl *ctrl; mutex_lock(&subsys->lock); list_for_each_entry(ctrl, &subsys->ctrls, subsys_entry) { if (port && ctrl->port != port) continue; if (nvmet_aen_bit_disabled(ctrl, NVME_AEN_BIT_ANA_CHANGE)) continue; nvmet_add_async_event(ctrl, NVME_AER_NOTICE, NVME_AER_NOTICE_ANA, NVME_LOG_ANA); } mutex_unlock(&subsys->lock); } void nvmet_port_send_ana_event(struct nvmet_port *port) { struct nvmet_subsys_link *p; down_read(&nvmet_config_sem); list_for_each_entry(p, &port->subsystems, entry) nvmet_send_ana_event(p->subsys, port); up_read(&nvmet_config_sem); } int nvmet_register_transport(const struct nvmet_fabrics_ops *ops) { int ret = 0; down_write(&nvmet_config_sem); if (nvmet_transports[ops->type]) ret = -EINVAL; else nvmet_transports[ops->type] = ops; up_write(&nvmet_config_sem); return ret; } EXPORT_SYMBOL_GPL(nvmet_register_transport); void nvmet_unregister_transport(const struct nvmet_fabrics_ops *ops) { down_write(&nvmet_config_sem); nvmet_transports[ops->type] = NULL; up_write(&nvmet_config_sem); } EXPORT_SYMBOL_GPL(nvmet_unregister_transport); void nvmet_port_del_ctrls(struct nvmet_port *port, struct nvmet_subsys *subsys) { struct nvmet_ctrl *ctrl; mutex_lock(&subsys->lock); list_for_each_entry(ctrl, &subsys->ctrls, subsys_entry) { if (ctrl->port == port) ctrl->ops->delete_ctrl(ctrl); } mutex_unlock(&subsys->lock); } int nvmet_enable_port(struct nvmet_port *port) { const struct nvmet_fabrics_ops *ops; int ret; lockdep_assert_held(&nvmet_config_sem); ops = nvmet_transports[port->disc_addr.trtype]; if (!ops) { up_write(&nvmet_config_sem); request_module("nvmet-transport-%d", port->disc_addr.trtype); down_write(&nvmet_config_sem); ops = nvmet_transports[port->disc_addr.trtype]; if (!ops) { pr_err("transport type %d not supported\n", port->disc_addr.trtype); return -EINVAL; } } if (!try_module_get(ops->owner)) return -EINVAL; /* * If the user requested PI support and the transport isn't pi capable, * don't enable the port. */ if (port->pi_enable && !(ops->flags & NVMF_METADATA_SUPPORTED)) { pr_err("T10-PI is not supported by transport type %d\n", port->disc_addr.trtype); ret = -EINVAL; goto out_put; } ret = ops->add_port(port); if (ret) goto out_put; /* If the transport didn't set inline_data_size, then disable it. */ if (port->inline_data_size < 0) port->inline_data_size = 0; /* * If the transport didn't set the max_queue_size properly, then clamp * it to the target limits. Also set default values in case the * transport didn't set it at all. */ if (port->max_queue_size < 0) port->max_queue_size = NVMET_MAX_QUEUE_SIZE; else port->max_queue_size = clamp_t(int, port->max_queue_size, NVMET_MIN_QUEUE_SIZE, NVMET_MAX_QUEUE_SIZE); port->enabled = true; port->tr_ops = ops; return 0; out_put: module_put(ops->owner); return ret; } void nvmet_disable_port(struct nvmet_port *port) { const struct nvmet_fabrics_ops *ops; lockdep_assert_held(&nvmet_config_sem); port->enabled = false; port->tr_ops = NULL; ops = nvmet_transports[port->disc_addr.trtype]; ops->remove_port(port); module_put(ops->owner); } static void nvmet_keep_alive_timer(struct work_struct *work) { struct nvmet_ctrl *ctrl = container_of(to_delayed_work(work), struct nvmet_ctrl, ka_work); bool reset_tbkas = ctrl->reset_tbkas; ctrl->reset_tbkas = false; if (reset_tbkas) { pr_debug("ctrl %d reschedule traffic based keep-alive timer\n", ctrl->cntlid); queue_delayed_work(nvmet_wq, &ctrl->ka_work, ctrl->kato * HZ); return; } pr_err("ctrl %d keep-alive timer (%d seconds) expired!\n", ctrl->cntlid, ctrl->kato); nvmet_ctrl_fatal_error(ctrl); } void nvmet_start_keep_alive_timer(struct nvmet_ctrl *ctrl) { if (unlikely(ctrl->kato == 0)) return; pr_debug("ctrl %d start keep-alive timer for %d secs\n", ctrl->cntlid, ctrl->kato); queue_delayed_work(nvmet_wq, &ctrl->ka_work, ctrl->kato * HZ); } void nvmet_stop_keep_alive_timer(struct nvmet_ctrl *ctrl) { if (unlikely(ctrl->kato == 0)) return; pr_debug("ctrl %d stop keep-alive\n", ctrl->cntlid); cancel_delayed_work_sync(&ctrl->ka_work); } u16 nvmet_req_find_ns(struct nvmet_req *req) { u32 nsid = le32_to_cpu(req->cmd->common.nsid); struct nvmet_subsys *subsys = nvmet_req_subsys(req); req->ns = xa_load(&subsys->namespaces, nsid); if (unlikely(!req->ns)) { req->error_loc = offsetof(struct nvme_common_command, nsid); if (nvmet_subsys_nsid_exists(subsys, nsid)) return NVME_SC_INTERNAL_PATH_ERROR; return NVME_SC_INVALID_NS | NVME_SC_DNR; } percpu_ref_get(&req->ns->ref); return NVME_SC_SUCCESS; } static void nvmet_destroy_namespace(struct percpu_ref *ref) { struct nvmet_ns *ns = container_of(ref, struct nvmet_ns, ref); complete(&ns->disable_done); } void nvmet_put_namespace(struct nvmet_ns *ns) { percpu_ref_put(&ns->ref); } static void nvmet_ns_dev_disable(struct nvmet_ns *ns) { nvmet_bdev_ns_disable(ns); nvmet_file_ns_disable(ns); } static int nvmet_p2pmem_ns_enable(struct nvmet_ns *ns) { int ret; struct pci_dev *p2p_dev; if (!ns->use_p2pmem) return 0; if (!ns->bdev) { pr_err("peer-to-peer DMA is not supported by non-block device namespaces\n"); return -EINVAL; } if (!blk_queue_pci_p2pdma(ns->bdev->bd_disk->queue)) { pr_err("peer-to-peer DMA is not supported by the driver of %s\n", ns->device_path); return -EINVAL; } if (ns->p2p_dev) { ret = pci_p2pdma_distance(ns->p2p_dev, nvmet_ns_dev(ns), true); if (ret < 0) return -EINVAL; } else { /* * Right now we just check that there is p2pmem available so * we can report an error to the user right away if there * is not. We'll find the actual device to use once we * setup the controller when the port's device is available. */ p2p_dev = pci_p2pmem_find(nvmet_ns_dev(ns)); if (!p2p_dev) { pr_err("no peer-to-peer memory is available for %s\n", ns->device_path); return -EINVAL; } pci_dev_put(p2p_dev); } return 0; } /* * Note: ctrl->subsys->lock should be held when calling this function */ static void nvmet_p2pmem_ns_add_p2p(struct nvmet_ctrl *ctrl, struct nvmet_ns *ns) { struct device *clients[2]; struct pci_dev *p2p_dev; int ret; if (!ctrl->p2p_client || !ns->use_p2pmem) return; if (ns->p2p_dev) { ret = pci_p2pdma_distance(ns->p2p_dev, ctrl->p2p_client, true); if (ret < 0) return; p2p_dev = pci_dev_get(ns->p2p_dev); } else { clients[0] = ctrl->p2p_client; clients[1] = nvmet_ns_dev(ns); p2p_dev = pci_p2pmem_find_many(clients, ARRAY_SIZE(clients)); if (!p2p_dev) { pr_err("no peer-to-peer memory is available that's supported by %s and %s\n", dev_name(ctrl->p2p_client), ns->device_path); return; } } ret = radix_tree_insert(&ctrl->p2p_ns_map, ns->nsid, p2p_dev); if (ret < 0) pci_dev_put(p2p_dev); pr_info("using p2pmem on %s for nsid %d\n", pci_name(p2p_dev), ns->nsid); } bool nvmet_ns_revalidate(struct nvmet_ns *ns) { loff_t oldsize = ns->size; if (ns->bdev) nvmet_bdev_ns_revalidate(ns); else nvmet_file_ns_revalidate(ns); return oldsize != ns->size; } int nvmet_ns_enable(struct nvmet_ns *ns) { struct nvmet_subsys *subsys = ns->subsys; struct nvmet_ctrl *ctrl; int ret; mutex_lock(&subsys->lock); ret = 0; if (nvmet_is_passthru_subsys(subsys)) { pr_info("cannot enable both passthru and regular namespaces for a single subsystem"); goto out_unlock; } if (ns->enabled) goto out_unlock; ret = -EMFILE; if (subsys->nr_namespaces == NVMET_MAX_NAMESPACES) goto out_unlock; ret = nvmet_bdev_ns_enable(ns); if (ret == -ENOTBLK) ret = nvmet_file_ns_enable(ns); if (ret) goto out_unlock; ret = nvmet_p2pmem_ns_enable(ns); if (ret) goto out_dev_disable; list_for_each_entry(ctrl, &subsys->ctrls, subsys_entry) nvmet_p2pmem_ns_add_p2p(ctrl, ns); ret = percpu_ref_init(&ns->ref, nvmet_destroy_namespace, 0, GFP_KERNEL); if (ret) goto out_dev_put; if (ns->nsid > subsys->max_nsid) subsys->max_nsid = ns->nsid; ret = xa_insert(&subsys->namespaces, ns->nsid, ns, GFP_KERNEL); if (ret) goto out_restore_subsys_maxnsid; subsys->nr_namespaces++; nvmet_ns_changed(subsys, ns->nsid); ns->enabled = true; ret = 0; out_unlock: mutex_unlock(&subsys->lock); return ret; out_restore_subsys_maxnsid: subsys->max_nsid = nvmet_max_nsid(subsys); percpu_ref_exit(&ns->ref); out_dev_put: list_for_each_entry(ctrl, &subsys->ctrls, subsys_entry) pci_dev_put(radix_tree_delete(&ctrl->p2p_ns_map, ns->nsid)); out_dev_disable: nvmet_ns_dev_disable(ns); goto out_unlock; } void nvmet_ns_disable(struct nvmet_ns *ns) { struct nvmet_subsys *subsys = ns->subsys; struct nvmet_ctrl *ctrl; mutex_lock(&subsys->lock); if (!ns->enabled) goto out_unlock; ns->enabled = false; xa_erase(&ns->subsys->namespaces, ns->nsid); if (ns->nsid == subsys->max_nsid) subsys->max_nsid = nvmet_max_nsid(subsys); list_for_each_entry(ctrl, &subsys->ctrls, subsys_entry) pci_dev_put(radix_tree_delete(&ctrl->p2p_ns_map, ns->nsid)); mutex_unlock(&subsys->lock); /* * Now that we removed the namespaces from the lookup list, we * can kill the per_cpu ref and wait for any remaining references * to be dropped, as well as a RCU grace period for anyone only * using the namepace under rcu_read_lock(). Note that we can't * use call_rcu here as we need to ensure the namespaces have * been fully destroyed before unloading the module. */ percpu_ref_kill(&ns->ref); synchronize_rcu(); wait_for_completion(&ns->disable_done); percpu_ref_exit(&ns->ref); mutex_lock(&subsys->lock); subsys->nr_namespaces--; nvmet_ns_changed(subsys, ns->nsid); nvmet_ns_dev_disable(ns); out_unlock: mutex_unlock(&subsys->lock); } void nvmet_ns_free(struct nvmet_ns *ns) { nvmet_ns_disable(ns); down_write(&nvmet_ana_sem); nvmet_ana_group_enabled[ns->anagrpid]--; up_write(&nvmet_ana_sem); kfree(ns->device_path); kfree(ns); } struct nvmet_ns *nvmet_ns_alloc(struct nvmet_subsys *subsys, u32 nsid) { struct nvmet_ns *ns; ns = kzalloc(sizeof(*ns), GFP_KERNEL); if (!ns) return NULL; init_completion(&ns->disable_done); ns->nsid = nsid; ns->subsys = subsys; down_write(&nvmet_ana_sem); ns->anagrpid = NVMET_DEFAULT_ANA_GRPID; nvmet_ana_group_enabled[ns->anagrpid]++; up_write(&nvmet_ana_sem); uuid_gen(&ns->uuid); ns->buffered_io = false; ns->csi = NVME_CSI_NVM; return ns; } static void nvmet_update_sq_head(struct nvmet_req *req) { if (req->sq->size) { u32 old_sqhd, new_sqhd; old_sqhd = READ_ONCE(req->sq->sqhd); do { new_sqhd = (old_sqhd + 1) % req->sq->size; } while (!try_cmpxchg(&req->sq->sqhd, &old_sqhd, new_sqhd)); } req->cqe->sq_head = cpu_to_le16(req->sq->sqhd & 0x0000FFFF); } static void nvmet_set_error(struct nvmet_req *req, u16 status) { struct nvmet_ctrl *ctrl = req->sq->ctrl; struct nvme_error_slot *new_error_slot; unsigned long flags; req->cqe->status = cpu_to_le16(status << 1); if (!ctrl || req->error_loc == NVMET_NO_ERROR_LOC) return; spin_lock_irqsave(&ctrl->error_lock, flags); ctrl->err_counter++; new_error_slot = &ctrl->slots[ctrl->err_counter % NVMET_ERROR_LOG_SLOTS]; new_error_slot->error_count = cpu_to_le64(ctrl->err_counter); new_error_slot->sqid = cpu_to_le16(req->sq->qid); new_error_slot->cmdid = cpu_to_le16(req->cmd->common.command_id); new_error_slot->status_field = cpu_to_le16(status << 1); new_error_slot->param_error_location = cpu_to_le16(req->error_loc); new_error_slot->lba = cpu_to_le64(req->error_slba); new_error_slot->nsid = req->cmd->common.nsid; spin_unlock_irqrestore(&ctrl->error_lock, flags); /* set the more bit for this request */ req->cqe->status |= cpu_to_le16(1 << 14); } static void __nvmet_req_complete(struct nvmet_req *req, u16 status) { struct nvmet_ns *ns = req->ns; if (!req->sq->sqhd_disabled) nvmet_update_sq_head(req); req->cqe->sq_id = cpu_to_le16(req->sq->qid); req->cqe->command_id = req->cmd->common.command_id; if (unlikely(status)) nvmet_set_error(req, status); trace_nvmet_req_complete(req); req->ops->queue_response(req); if (ns) nvmet_put_namespace(ns); } void nvmet_req_complete(struct nvmet_req *req, u16 status) { struct nvmet_sq *sq = req->sq; __nvmet_req_complete(req, status); percpu_ref_put(&sq->ref); } EXPORT_SYMBOL_GPL(nvmet_req_complete); void nvmet_cq_setup(struct nvmet_ctrl *ctrl, struct nvmet_cq *cq, u16 qid, u16 size) { cq->qid = qid; cq->size = size; } void nvmet_sq_setup(struct nvmet_ctrl *ctrl, struct nvmet_sq *sq, u16 qid, u16 size) { sq->sqhd = 0; sq->qid = qid; sq->size = size; ctrl->sqs[qid] = sq; } static void nvmet_confirm_sq(struct percpu_ref *ref) { struct nvmet_sq *sq = container_of(ref, struct nvmet_sq, ref); complete(&sq->confirm_done); } void nvmet_sq_destroy(struct nvmet_sq *sq) { struct nvmet_ctrl *ctrl = sq->ctrl; /* * If this is the admin queue, complete all AERs so that our * queue doesn't have outstanding requests on it. */ if (ctrl && ctrl->sqs && ctrl->sqs[0] == sq) nvmet_async_events_failall(ctrl); percpu_ref_kill_and_confirm(&sq->ref, nvmet_confirm_sq); wait_for_completion(&sq->confirm_done); wait_for_completion(&sq->free_done); percpu_ref_exit(&sq->ref); nvmet_auth_sq_free(sq); /* * we must reference the ctrl again after waiting for inflight IO * to complete. Because admin connect may have sneaked in after we * store sq->ctrl locally, but before we killed the percpu_ref. the * admin connect allocates and assigns sq->ctrl, which now needs a * final ref put, as this ctrl is going away. */ ctrl = sq->ctrl; if (ctrl) { /* * The teardown flow may take some time, and the host may not * send us keep-alive during this period, hence reset the * traffic based keep-alive timer so we don't trigger a * controller teardown as a result of a keep-alive expiration. */ ctrl->reset_tbkas = true; sq->ctrl->sqs[sq->qid] = NULL; nvmet_ctrl_put(ctrl); sq->ctrl = NULL; /* allows reusing the queue later */ } } EXPORT_SYMBOL_GPL(nvmet_sq_destroy); static void nvmet_sq_free(struct percpu_ref *ref) { struct nvmet_sq *sq = container_of(ref, struct nvmet_sq, ref); complete(&sq->free_done); } int nvmet_sq_init(struct nvmet_sq *sq) { int ret; ret = percpu_ref_init(&sq->ref, nvmet_sq_free, 0, GFP_KERNEL); if (ret) { pr_err("percpu_ref init failed!\n"); return ret; } init_completion(&sq->free_done); init_completion(&sq->confirm_done); nvmet_auth_sq_init(sq); return 0; } EXPORT_SYMBOL_GPL(nvmet_sq_init); static inline u16 nvmet_check_ana_state(struct nvmet_port *port, struct nvmet_ns *ns) { enum nvme_ana_state state = port->ana_state[ns->anagrpid]; if (unlikely(state == NVME_ANA_INACCESSIBLE)) return NVME_SC_ANA_INACCESSIBLE; if (unlikely(state == NVME_ANA_PERSISTENT_LOSS)) return NVME_SC_ANA_PERSISTENT_LOSS; if (unlikely(state == NVME_ANA_CHANGE)) return NVME_SC_ANA_TRANSITION; return 0; } static inline u16 nvmet_io_cmd_check_access(struct nvmet_req *req) { if (unlikely(req->ns->readonly)) { switch (req->cmd->common.opcode) { case nvme_cmd_read: case nvme_cmd_flush: break; default: return NVME_SC_NS_WRITE_PROTECTED; } } return 0; } static u16 nvmet_parse_io_cmd(struct nvmet_req *req) { struct nvme_command *cmd = req->cmd; u16 ret; if (nvme_is_fabrics(cmd)) return nvmet_parse_fabrics_io_cmd(req); if (unlikely(!nvmet_check_auth_status(req))) return NVME_SC_AUTH_REQUIRED | NVME_SC_DNR; ret = nvmet_check_ctrl_status(req); if (unlikely(ret)) return ret; if (nvmet_is_passthru_req(req)) return nvmet_parse_passthru_io_cmd(req); ret = nvmet_req_find_ns(req); if (unlikely(ret)) return ret; ret = nvmet_check_ana_state(req->port, req->ns); if (unlikely(ret)) { req->error_loc = offsetof(struct nvme_common_command, nsid); return ret; } ret = nvmet_io_cmd_check_access(req); if (unlikely(ret)) { req->error_loc = offsetof(struct nvme_common_command, nsid); return ret; } switch (req->ns->csi) { case NVME_CSI_NVM: if (req->ns->file) return nvmet_file_parse_io_cmd(req); return nvmet_bdev_parse_io_cmd(req); case NVME_CSI_ZNS: if (IS_ENABLED(CONFIG_BLK_DEV_ZONED)) return nvmet_bdev_zns_parse_io_cmd(req); return NVME_SC_INVALID_IO_CMD_SET; default: return NVME_SC_INVALID_IO_CMD_SET; } } bool nvmet_req_init(struct nvmet_req *req, struct nvmet_cq *cq, struct nvmet_sq *sq, const struct nvmet_fabrics_ops *ops) { u8 flags = req->cmd->common.flags; u16 status; req->cq = cq; req->sq = sq; req->ops = ops; req->sg = NULL; req->metadata_sg = NULL; req->sg_cnt = 0; req->metadata_sg_cnt = 0; req->transfer_len = 0; req->metadata_len = 0; req->cqe->status = 0; req->cqe->sq_head = 0; req->ns = NULL; req->error_loc = NVMET_NO_ERROR_LOC; req->error_slba = 0; /* no support for fused commands yet */ if (unlikely(flags & (NVME_CMD_FUSE_FIRST | NVME_CMD_FUSE_SECOND))) { req->error_loc = offsetof(struct nvme_common_command, flags); status = NVME_SC_INVALID_FIELD | NVME_SC_DNR; goto fail; } /* * For fabrics, PSDT field shall describe metadata pointer (MPTR) that * contains an address of a single contiguous physical buffer that is * byte aligned. */ if (unlikely((flags & NVME_CMD_SGL_ALL) != NVME_CMD_SGL_METABUF)) { req->error_loc = offsetof(struct nvme_common_command, flags); status = NVME_SC_INVALID_FIELD | NVME_SC_DNR; goto fail; } if (unlikely(!req->sq->ctrl)) /* will return an error for any non-connect command: */ status = nvmet_parse_connect_cmd(req); else if (likely(req->sq->qid != 0)) status = nvmet_parse_io_cmd(req); else status = nvmet_parse_admin_cmd(req); if (status) goto fail; trace_nvmet_req_init(req, req->cmd); if (unlikely(!percpu_ref_tryget_live(&sq->ref))) { status = NVME_SC_INVALID_FIELD | NVME_SC_DNR; goto fail; } if (sq->ctrl) sq->ctrl->reset_tbkas = true; return true; fail: __nvmet_req_complete(req, status); return false; } EXPORT_SYMBOL_GPL(nvmet_req_init); void nvmet_req_uninit(struct nvmet_req *req) { percpu_ref_put(&req->sq->ref); if (req->ns) nvmet_put_namespace(req->ns); } EXPORT_SYMBOL_GPL(nvmet_req_uninit); bool nvmet_check_transfer_len(struct nvmet_req *req, size_t len) { if (unlikely(len != req->transfer_len)) { req->error_loc = offsetof(struct nvme_common_command, dptr); nvmet_req_complete(req, NVME_SC_SGL_INVALID_DATA | NVME_SC_DNR); return false; } return true; } EXPORT_SYMBOL_GPL(nvmet_check_transfer_len); bool nvmet_check_data_len_lte(struct nvmet_req *req, size_t data_len) { if (unlikely(data_len > req->transfer_len)) { req->error_loc = offsetof(struct nvme_common_command, dptr); nvmet_req_complete(req, NVME_SC_SGL_INVALID_DATA | NVME_SC_DNR); return false; } return true; } static unsigned int nvmet_data_transfer_len(struct nvmet_req *req) { return req->transfer_len - req->metadata_len; } static int nvmet_req_alloc_p2pmem_sgls(struct pci_dev *p2p_dev, struct nvmet_req *req) { req->sg = pci_p2pmem_alloc_sgl(p2p_dev, &req->sg_cnt, nvmet_data_transfer_len(req)); if (!req->sg) goto out_err; if (req->metadata_len) { req->metadata_sg = pci_p2pmem_alloc_sgl(p2p_dev, &req->metadata_sg_cnt, req->metadata_len); if (!req->metadata_sg) goto out_free_sg; } req->p2p_dev = p2p_dev; return 0; out_free_sg: pci_p2pmem_free_sgl(req->p2p_dev, req->sg); out_err: return -ENOMEM; } static struct pci_dev *nvmet_req_find_p2p_dev(struct nvmet_req *req) { if (!IS_ENABLED(CONFIG_PCI_P2PDMA) || !req->sq->ctrl || !req->sq->qid || !req->ns) return NULL; return radix_tree_lookup(&req->sq->ctrl->p2p_ns_map, req->ns->nsid); } int nvmet_req_alloc_sgls(struct nvmet_req *req) { struct pci_dev *p2p_dev = nvmet_req_find_p2p_dev(req); if (p2p_dev && !nvmet_req_alloc_p2pmem_sgls(p2p_dev, req)) return 0; req->sg = sgl_alloc(nvmet_data_transfer_len(req), GFP_KERNEL, &req->sg_cnt); if (unlikely(!req->sg)) goto out; if (req->metadata_len) { req->metadata_sg = sgl_alloc(req->metadata_len, GFP_KERNEL, &req->metadata_sg_cnt); if (unlikely(!req->metadata_sg)) goto out_free; } return 0; out_free: sgl_free(req->sg); out: return -ENOMEM; } EXPORT_SYMBOL_GPL(nvmet_req_alloc_sgls); void nvmet_req_free_sgls(struct nvmet_req *req) { if (req->p2p_dev) { pci_p2pmem_free_sgl(req->p2p_dev, req->sg); if (req->metadata_sg) pci_p2pmem_free_sgl(req->p2p_dev, req->metadata_sg); req->p2p_dev = NULL; } else { sgl_free(req->sg); if (req->metadata_sg) sgl_free(req->metadata_sg); } req->sg = NULL; req->metadata_sg = NULL; req->sg_cnt = 0; req->metadata_sg_cnt = 0; } EXPORT_SYMBOL_GPL(nvmet_req_free_sgls); static inline bool nvmet_cc_en(u32 cc) { return (cc >> NVME_CC_EN_SHIFT) & 0x1; } static inline u8 nvmet_cc_css(u32 cc) { return (cc >> NVME_CC_CSS_SHIFT) & 0x7; } static inline u8 nvmet_cc_mps(u32 cc) { return (cc >> NVME_CC_MPS_SHIFT) & 0xf; } static inline u8 nvmet_cc_ams(u32 cc) { return (cc >> NVME_CC_AMS_SHIFT) & 0x7; } static inline u8 nvmet_cc_shn(u32 cc) { return (cc >> NVME_CC_SHN_SHIFT) & 0x3; } static inline u8 nvmet_cc_iosqes(u32 cc) { return (cc >> NVME_CC_IOSQES_SHIFT) & 0xf; } static inline u8 nvmet_cc_iocqes(u32 cc) { return (cc >> NVME_CC_IOCQES_SHIFT) & 0xf; } static inline bool nvmet_css_supported(u8 cc_css) { switch (cc_css << NVME_CC_CSS_SHIFT) { case NVME_CC_CSS_NVM: case NVME_CC_CSS_CSI: return true; default: return false; } } static void nvmet_start_ctrl(struct nvmet_ctrl *ctrl) { lockdep_assert_held(&ctrl->lock); /* * Only I/O controllers should verify iosqes,iocqes. * Strictly speaking, the spec says a discovery controller * should verify iosqes,iocqes are zeroed, however that * would break backwards compatibility, so don't enforce it. */ if (!nvmet_is_disc_subsys(ctrl->subsys) && (nvmet_cc_iosqes(ctrl->cc) != NVME_NVM_IOSQES || nvmet_cc_iocqes(ctrl->cc) != NVME_NVM_IOCQES)) { ctrl->csts = NVME_CSTS_CFS; return; } if (nvmet_cc_mps(ctrl->cc) != 0 || nvmet_cc_ams(ctrl->cc) != 0 || !nvmet_css_supported(nvmet_cc_css(ctrl->cc))) { ctrl->csts = NVME_CSTS_CFS; return; } ctrl->csts = NVME_CSTS_RDY; /* * Controllers that are not yet enabled should not really enforce the * keep alive timeout, but we still want to track a timeout and cleanup * in case a host died before it enabled the controller. Hence, simply * reset the keep alive timer when the controller is enabled. */ if (ctrl->kato) mod_delayed_work(nvmet_wq, &ctrl->ka_work, ctrl->kato * HZ); } static void nvmet_clear_ctrl(struct nvmet_ctrl *ctrl) { lockdep_assert_held(&ctrl->lock); /* XXX: tear down queues? */ ctrl->csts &= ~NVME_CSTS_RDY; ctrl->cc = 0; } void nvmet_update_cc(struct nvmet_ctrl *ctrl, u32 new) { u32 old; mutex_lock(&ctrl->lock); old = ctrl->cc; ctrl->cc = new; if (nvmet_cc_en(new) && !nvmet_cc_en(old)) nvmet_start_ctrl(ctrl); if (!nvmet_cc_en(new) && nvmet_cc_en(old)) nvmet_clear_ctrl(ctrl); if (nvmet_cc_shn(new) && !nvmet_cc_shn(old)) { nvmet_clear_ctrl(ctrl); ctrl->csts |= NVME_CSTS_SHST_CMPLT; } if (!nvmet_cc_shn(new) && nvmet_cc_shn(old)) ctrl->csts &= ~NVME_CSTS_SHST_CMPLT; mutex_unlock(&ctrl->lock); } static void nvmet_init_cap(struct nvmet_ctrl *ctrl) { /* command sets supported: NVMe command set: */ ctrl->cap = (1ULL << 37); /* Controller supports one or more I/O Command Sets */ ctrl->cap |= (1ULL << 43); /* CC.EN timeout in 500msec units: */ ctrl->cap |= (15ULL << 24); /* maximum queue entries supported: */ if (ctrl->ops->get_max_queue_size) ctrl->cap |= min_t(u16, ctrl->ops->get_max_queue_size(ctrl), ctrl->port->max_queue_size) - 1; else ctrl->cap |= ctrl->port->max_queue_size - 1; if (nvmet_is_passthru_subsys(ctrl->subsys)) nvmet_passthrough_override_cap(ctrl); } struct nvmet_ctrl *nvmet_ctrl_find_get(const char *subsysnqn, const char *hostnqn, u16 cntlid, struct nvmet_req *req) { struct nvmet_ctrl *ctrl = NULL; struct nvmet_subsys *subsys; subsys = nvmet_find_get_subsys(req->port, subsysnqn); if (!subsys) { pr_warn("connect request for invalid subsystem %s!\n", subsysnqn); req->cqe->result.u32 = IPO_IATTR_CONNECT_DATA(subsysnqn); goto out; } mutex_lock(&subsys->lock); list_for_each_entry(ctrl, &subsys->ctrls, subsys_entry) { if (ctrl->cntlid == cntlid) { if (strncmp(hostnqn, ctrl->hostnqn, NVMF_NQN_SIZE)) { pr_warn("hostnqn mismatch.\n"); continue; } if (!kref_get_unless_zero(&ctrl->ref)) continue; /* ctrl found */ goto found; } } ctrl = NULL; /* ctrl not found */ pr_warn("could not find controller %d for subsys %s / host %s\n", cntlid, subsysnqn, hostnqn); req->cqe->result.u32 = IPO_IATTR_CONNECT_DATA(cntlid); found: mutex_unlock(&subsys->lock); nvmet_subsys_put(subsys); out: return ctrl; } u16 nvmet_check_ctrl_status(struct nvmet_req *req) { if (unlikely(!(req->sq->ctrl->cc & NVME_CC_ENABLE))) { pr_err("got cmd %d while CC.EN == 0 on qid = %d\n", req->cmd->common.opcode, req->sq->qid); return NVME_SC_CMD_SEQ_ERROR | NVME_SC_DNR; } if (unlikely(!(req->sq->ctrl->csts & NVME_CSTS_RDY))) { pr_err("got cmd %d while CSTS.RDY == 0 on qid = %d\n", req->cmd->common.opcode, req->sq->qid); return NVME_SC_CMD_SEQ_ERROR | NVME_SC_DNR; } if (unlikely(!nvmet_check_auth_status(req))) { pr_warn("qid %d not authenticated\n", req->sq->qid); return NVME_SC_AUTH_REQUIRED | NVME_SC_DNR; } return 0; } bool nvmet_host_allowed(struct nvmet_subsys *subsys, const char *hostnqn) { struct nvmet_host_link *p; lockdep_assert_held(&nvmet_config_sem); if (subsys->allow_any_host) return true; if (nvmet_is_disc_subsys(subsys)) /* allow all access to disc subsys */ return true; list_for_each_entry(p, &subsys->hosts, entry) { if (!strcmp(nvmet_host_name(p->host), hostnqn)) return true; } return false; } /* * Note: ctrl->subsys->lock should be held when calling this function */ static void nvmet_setup_p2p_ns_map(struct nvmet_ctrl *ctrl, struct nvmet_req *req) { struct nvmet_ns *ns; unsigned long idx; if (!req->p2p_client) return; ctrl->p2p_client = get_device(req->p2p_client); xa_for_each(&ctrl->subsys->namespaces, idx, ns) nvmet_p2pmem_ns_add_p2p(ctrl, ns); } /* * Note: ctrl->subsys->lock should be held when calling this function */ static void nvmet_release_p2p_ns_map(struct nvmet_ctrl *ctrl) { struct radix_tree_iter iter; void __rcu **slot; radix_tree_for_each_slot(slot, &ctrl->p2p_ns_map, &iter, 0) pci_dev_put(radix_tree_deref_slot(slot)); put_device(ctrl->p2p_client); } static void nvmet_fatal_error_handler(struct work_struct *work) { struct nvmet_ctrl *ctrl = container_of(work, struct nvmet_ctrl, fatal_err_work); pr_err("ctrl %d fatal error occurred!\n", ctrl->cntlid); ctrl->ops->delete_ctrl(ctrl); } u16 nvmet_alloc_ctrl(const char *subsysnqn, const char *hostnqn, struct nvmet_req *req, u32 kato, struct nvmet_ctrl **ctrlp) { struct nvmet_subsys *subsys; struct nvmet_ctrl *ctrl; int ret; u16 status; status = NVME_SC_CONNECT_INVALID_PARAM | NVME_SC_DNR; subsys = nvmet_find_get_subsys(req->port, subsysnqn); if (!subsys) { pr_warn("connect request for invalid subsystem %s!\n", subsysnqn); req->cqe->result.u32 = IPO_IATTR_CONNECT_DATA(subsysnqn); req->error_loc = offsetof(struct nvme_common_command, dptr); goto out; } down_read(&nvmet_config_sem); if (!nvmet_host_allowed(subsys, hostnqn)) { pr_info("connect by host %s for subsystem %s not allowed\n", hostnqn, subsysnqn); req->cqe->result.u32 = IPO_IATTR_CONNECT_DATA(hostnqn); up_read(&nvmet_config_sem); status = NVME_SC_CONNECT_INVALID_HOST | NVME_SC_DNR; req->error_loc = offsetof(struct nvme_common_command, dptr); goto out_put_subsystem; } up_read(&nvmet_config_sem); status = NVME_SC_INTERNAL; ctrl = kzalloc(sizeof(*ctrl), GFP_KERNEL); if (!ctrl) goto out_put_subsystem; mutex_init(&ctrl->lock); ctrl->port = req->port; ctrl->ops = req->ops; #ifdef CONFIG_NVME_TARGET_PASSTHRU /* By default, set loop targets to clear IDS by default */ if (ctrl->port->disc_addr.trtype == NVMF_TRTYPE_LOOP) subsys->clear_ids = 1; #endif INIT_WORK(&ctrl->async_event_work, nvmet_async_event_work); INIT_LIST_HEAD(&ctrl->async_events); INIT_RADIX_TREE(&ctrl->p2p_ns_map, GFP_KERNEL); INIT_WORK(&ctrl->fatal_err_work, nvmet_fatal_error_handler); INIT_DELAYED_WORK(&ctrl->ka_work, nvmet_keep_alive_timer); memcpy(ctrl->subsysnqn, subsysnqn, NVMF_NQN_SIZE); memcpy(ctrl->hostnqn, hostnqn, NVMF_NQN_SIZE); kref_init(&ctrl->ref); ctrl->subsys = subsys; ctrl->pi_support = ctrl->port->pi_enable && ctrl->subsys->pi_support; nvmet_init_cap(ctrl); WRITE_ONCE(ctrl->aen_enabled, NVMET_AEN_CFG_OPTIONAL); ctrl->changed_ns_list = kmalloc_array(NVME_MAX_CHANGED_NAMESPACES, sizeof(__le32), GFP_KERNEL); if (!ctrl->changed_ns_list) goto out_free_ctrl; ctrl->sqs = kcalloc(subsys->max_qid + 1, sizeof(struct nvmet_sq *), GFP_KERNEL); if (!ctrl->sqs) goto out_free_changed_ns_list; ret = ida_alloc_range(&cntlid_ida, subsys->cntlid_min, subsys->cntlid_max, GFP_KERNEL); if (ret < 0) { status = NVME_SC_CONNECT_CTRL_BUSY | NVME_SC_DNR; goto out_free_sqs; } ctrl->cntlid = ret; /* * Discovery controllers may use some arbitrary high value * in order to cleanup stale discovery sessions */ if (nvmet_is_disc_subsys(ctrl->subsys) && !kato) kato = NVMET_DISC_KATO_MS; /* keep-alive timeout in seconds */ ctrl->kato = DIV_ROUND_UP(kato, 1000); ctrl->err_counter = 0; spin_lock_init(&ctrl->error_lock); nvmet_start_keep_alive_timer(ctrl); mutex_lock(&subsys->lock); list_add_tail(&ctrl->subsys_entry, &subsys->ctrls); nvmet_setup_p2p_ns_map(ctrl, req); mutex_unlock(&subsys->lock); *ctrlp = ctrl; return 0; out_free_sqs: kfree(ctrl->sqs); out_free_changed_ns_list: kfree(ctrl->changed_ns_list); out_free_ctrl: kfree(ctrl); out_put_subsystem: nvmet_subsys_put(subsys); out: return status; } static void nvmet_ctrl_free(struct kref *ref) { struct nvmet_ctrl *ctrl = container_of(ref, struct nvmet_ctrl, ref); struct nvmet_subsys *subsys = ctrl->subsys; mutex_lock(&subsys->lock); nvmet_release_p2p_ns_map(ctrl); list_del(&ctrl->subsys_entry); mutex_unlock(&subsys->lock); nvmet_stop_keep_alive_timer(ctrl); flush_work(&ctrl->async_event_work); cancel_work_sync(&ctrl->fatal_err_work); nvmet_destroy_auth(ctrl); ida_free(&cntlid_ida, ctrl->cntlid); nvmet_async_events_free(ctrl); kfree(ctrl->sqs); kfree(ctrl->changed_ns_list); kfree(ctrl); nvmet_subsys_put(subsys); } void nvmet_ctrl_put(struct nvmet_ctrl *ctrl) { kref_put(&ctrl->ref, nvmet_ctrl_free); } void nvmet_ctrl_fatal_error(struct nvmet_ctrl *ctrl) { mutex_lock(&ctrl->lock); if (!(ctrl->csts & NVME_CSTS_CFS)) { ctrl->csts |= NVME_CSTS_CFS; queue_work(nvmet_wq, &ctrl->fatal_err_work); } mutex_unlock(&ctrl->lock); } EXPORT_SYMBOL_GPL(nvmet_ctrl_fatal_error); static struct nvmet_subsys *nvmet_find_get_subsys(struct nvmet_port *port, const char *subsysnqn) { struct nvmet_subsys_link *p; if (!port) return NULL; if (!strcmp(NVME_DISC_SUBSYS_NAME, subsysnqn)) { if (!kref_get_unless_zero(&nvmet_disc_subsys->ref)) return NULL; return nvmet_disc_subsys; } down_read(&nvmet_config_sem); if (!strncmp(nvmet_disc_subsys->subsysnqn, subsysnqn, NVMF_NQN_SIZE)) { if (kref_get_unless_zero(&nvmet_disc_subsys->ref)) { up_read(&nvmet_config_sem); return nvmet_disc_subsys; } } list_for_each_entry(p, &port->subsystems, entry) { if (!strncmp(p->subsys->subsysnqn, subsysnqn, NVMF_NQN_SIZE)) { if (!kref_get_unless_zero(&p->subsys->ref)) break; up_read(&nvmet_config_sem); return p->subsys; } } up_read(&nvmet_config_sem); return NULL; } struct nvmet_subsys *nvmet_subsys_alloc(const char *subsysnqn, enum nvme_subsys_type type) { struct nvmet_subsys *subsys; char serial[NVMET_SN_MAX_SIZE / 2]; int ret; subsys = kzalloc(sizeof(*subsys), GFP_KERNEL); if (!subsys) return ERR_PTR(-ENOMEM); subsys->ver = NVMET_DEFAULT_VS; /* generate a random serial number as our controllers are ephemeral: */ get_random_bytes(&serial, sizeof(serial)); bin2hex(subsys->serial, &serial, sizeof(serial)); subsys->model_number = kstrdup(NVMET_DEFAULT_CTRL_MODEL, GFP_KERNEL); if (!subsys->model_number) { ret = -ENOMEM; goto free_subsys; } subsys->ieee_oui = 0; subsys->firmware_rev = kstrndup(UTS_RELEASE, NVMET_FR_MAX_SIZE, GFP_KERNEL); if (!subsys->firmware_rev) { ret = -ENOMEM; goto free_mn; } switch (type) { case NVME_NQN_NVME: subsys->max_qid = NVMET_NR_QUEUES; break; case NVME_NQN_DISC: case NVME_NQN_CURR: subsys->max_qid = 0; break; default: pr_err("%s: Unknown Subsystem type - %d\n", __func__, type); ret = -EINVAL; goto free_fr; } subsys->type = type; subsys->subsysnqn = kstrndup(subsysnqn, NVMF_NQN_SIZE, GFP_KERNEL); if (!subsys->subsysnqn) { ret = -ENOMEM; goto free_fr; } subsys->cntlid_min = NVME_CNTLID_MIN; subsys->cntlid_max = NVME_CNTLID_MAX; kref_init(&subsys->ref); mutex_init(&subsys->lock); xa_init(&subsys->namespaces); INIT_LIST_HEAD(&subsys->ctrls); INIT_LIST_HEAD(&subsys->hosts); return subsys; free_fr: kfree(subsys->firmware_rev); free_mn: kfree(subsys->model_number); free_subsys: kfree(subsys); return ERR_PTR(ret); } static void nvmet_subsys_free(struct kref *ref) { struct nvmet_subsys *subsys = container_of(ref, struct nvmet_subsys, ref); WARN_ON_ONCE(!xa_empty(&subsys->namespaces)); xa_destroy(&subsys->namespaces); nvmet_passthru_subsys_free(subsys); kfree(subsys->subsysnqn); kfree(subsys->model_number); kfree(subsys->firmware_rev); kfree(subsys); } void nvmet_subsys_del_ctrls(struct nvmet_subsys *subsys) { struct nvmet_ctrl *ctrl; mutex_lock(&subsys->lock); list_for_each_entry(ctrl, &subsys->ctrls, subsys_entry) ctrl->ops->delete_ctrl(ctrl); mutex_unlock(&subsys->lock); } void nvmet_subsys_put(struct nvmet_subsys *subsys) { kref_put(&subsys->ref, nvmet_subsys_free); } static int __init nvmet_init(void) { int error = -ENOMEM; nvmet_ana_group_enabled[NVMET_DEFAULT_ANA_GRPID] = 1; nvmet_bvec_cache = kmem_cache_create("nvmet-bvec", NVMET_MAX_MPOOL_BVEC * sizeof(struct bio_vec), 0, SLAB_HWCACHE_ALIGN, NULL); if (!nvmet_bvec_cache) return -ENOMEM; zbd_wq = alloc_workqueue("nvmet-zbd-wq", WQ_MEM_RECLAIM, 0); if (!zbd_wq) goto out_destroy_bvec_cache; buffered_io_wq = alloc_workqueue("nvmet-buffered-io-wq", WQ_MEM_RECLAIM, 0); if (!buffered_io_wq) goto out_free_zbd_work_queue; nvmet_wq = alloc_workqueue("nvmet-wq", WQ_MEM_RECLAIM | WQ_UNBOUND, 0); if (!nvmet_wq) goto out_free_buffered_work_queue; error = nvmet_init_discovery(); if (error) goto out_free_nvmet_work_queue; error = nvmet_init_configfs(); if (error) goto out_exit_discovery; return 0; out_exit_discovery: nvmet_exit_discovery(); out_free_nvmet_work_queue: destroy_workqueue(nvmet_wq); out_free_buffered_work_queue: destroy_workqueue(buffered_io_wq); out_free_zbd_work_queue: destroy_workqueue(zbd_wq); out_destroy_bvec_cache: kmem_cache_destroy(nvmet_bvec_cache); return error; } static void __exit nvmet_exit(void) { nvmet_exit_configfs(); nvmet_exit_discovery(); ida_destroy(&cntlid_ida); destroy_workqueue(nvmet_wq); destroy_workqueue(buffered_io_wq); destroy_workqueue(zbd_wq); kmem_cache_destroy(nvmet_bvec_cache); BUILD_BUG_ON(sizeof(struct nvmf_disc_rsp_page_entry) != 1024); BUILD_BUG_ON(sizeof(struct nvmf_disc_rsp_page_hdr) != 1024); } module_init(nvmet_init); module_exit(nvmet_exit); MODULE_DESCRIPTION("NVMe target core framework"); MODULE_LICENSE("GPL v2");