// SPDX-License-Identifier: GPL-2.0-only /* * Generic OPP Interface * * Copyright (C) 2009-2010 Texas Instruments Incorporated. * Nishanth Menon * Romit Dasgupta * Kevin Hilman */ #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt #include #include #include #include #include #include #include #include #include #include "opp.h" /* * The root of the list of all opp-tables. All opp_table structures branch off * from here, with each opp_table containing the list of opps it supports in * various states of availability. */ LIST_HEAD(opp_tables); /* Lock to allow exclusive modification to the device and opp lists */ DEFINE_MUTEX(opp_table_lock); /* Flag indicating that opp_tables list is being updated at the moment */ static bool opp_tables_busy; /* OPP ID allocator */ static DEFINE_XARRAY_ALLOC1(opp_configs); static bool _find_opp_dev(const struct device *dev, struct opp_table *opp_table) { struct opp_device *opp_dev; bool found = false; mutex_lock(&opp_table->lock); list_for_each_entry(opp_dev, &opp_table->dev_list, node) if (opp_dev->dev == dev) { found = true; break; } mutex_unlock(&opp_table->lock); return found; } static struct opp_table *_find_opp_table_unlocked(struct device *dev) { struct opp_table *opp_table; list_for_each_entry(opp_table, &opp_tables, node) { if (_find_opp_dev(dev, opp_table)) { _get_opp_table_kref(opp_table); return opp_table; } } return ERR_PTR(-ENODEV); } /** * _find_opp_table() - find opp_table struct using device pointer * @dev: device pointer used to lookup OPP table * * Search OPP table for one containing matching device. * * Return: pointer to 'struct opp_table' if found, otherwise -ENODEV or * -EINVAL based on type of error. * * The callers must call dev_pm_opp_put_opp_table() after the table is used. */ struct opp_table *_find_opp_table(struct device *dev) { struct opp_table *opp_table; if (IS_ERR_OR_NULL(dev)) { pr_err("%s: Invalid parameters\n", __func__); return ERR_PTR(-EINVAL); } mutex_lock(&opp_table_lock); opp_table = _find_opp_table_unlocked(dev); mutex_unlock(&opp_table_lock); return opp_table; } /* * Returns true if multiple clocks aren't there, else returns false with WARN. * * We don't force clk_count == 1 here as there are users who don't have a clock * representation in the OPP table and manage the clock configuration themselves * in an platform specific way. */ static bool assert_single_clk(struct opp_table *opp_table) { return !WARN_ON(opp_table->clk_count > 1); } /** * dev_pm_opp_get_voltage() - Gets the voltage corresponding to an opp * @opp: opp for which voltage has to be returned for * * Return: voltage in micro volt corresponding to the opp, else * return 0 * * This is useful only for devices with single power supply. */ unsigned long dev_pm_opp_get_voltage(struct dev_pm_opp *opp) { if (IS_ERR_OR_NULL(opp)) { pr_err("%s: Invalid parameters\n", __func__); return 0; } return opp->supplies[0].u_volt; } EXPORT_SYMBOL_GPL(dev_pm_opp_get_voltage); /** * dev_pm_opp_get_supplies() - Gets the supply information corresponding to an opp * @opp: opp for which voltage has to be returned for * @supplies: Placeholder for copying the supply information. * * Return: negative error number on failure, 0 otherwise on success after * setting @supplies. * * This can be used for devices with any number of power supplies. The caller * must ensure the @supplies array must contain space for each regulator. */ int dev_pm_opp_get_supplies(struct dev_pm_opp *opp, struct dev_pm_opp_supply *supplies) { if (IS_ERR_OR_NULL(opp) || !supplies) { pr_err("%s: Invalid parameters\n", __func__); return -EINVAL; } memcpy(supplies, opp->supplies, sizeof(*supplies) * opp->opp_table->regulator_count); return 0; } EXPORT_SYMBOL_GPL(dev_pm_opp_get_supplies); /** * dev_pm_opp_get_power() - Gets the power corresponding to an opp * @opp: opp for which power has to be returned for * * Return: power in micro watt corresponding to the opp, else * return 0 * * This is useful only for devices with single power supply. */ unsigned long dev_pm_opp_get_power(struct dev_pm_opp *opp) { unsigned long opp_power = 0; int i; if (IS_ERR_OR_NULL(opp)) { pr_err("%s: Invalid parameters\n", __func__); return 0; } for (i = 0; i < opp->opp_table->regulator_count; i++) opp_power += opp->supplies[i].u_watt; return opp_power; } EXPORT_SYMBOL_GPL(dev_pm_opp_get_power); /** * dev_pm_opp_get_freq_indexed() - Gets the frequency corresponding to an * available opp with specified index * @opp: opp for which frequency has to be returned for * @index: index of the frequency within the required opp * * Return: frequency in hertz corresponding to the opp with specified index, * else return 0 */ unsigned long dev_pm_opp_get_freq_indexed(struct dev_pm_opp *opp, u32 index) { if (IS_ERR_OR_NULL(opp) || index >= opp->opp_table->clk_count) { pr_err("%s: Invalid parameters\n", __func__); return 0; } return opp->rates[index]; } EXPORT_SYMBOL_GPL(dev_pm_opp_get_freq_indexed); /** * dev_pm_opp_get_level() - Gets the level corresponding to an available opp * @opp: opp for which level value has to be returned for * * Return: level read from device tree corresponding to the opp, else * return U32_MAX. */ unsigned int dev_pm_opp_get_level(struct dev_pm_opp *opp) { if (IS_ERR_OR_NULL(opp) || !opp->available) { pr_err("%s: Invalid parameters\n", __func__); return 0; } return opp->level; } EXPORT_SYMBOL_GPL(dev_pm_opp_get_level); /** * dev_pm_opp_get_required_pstate() - Gets the required performance state * corresponding to an available opp * @opp: opp for which performance state has to be returned for * @index: index of the required opp * * Return: performance state read from device tree corresponding to the * required opp, else return U32_MAX. */ unsigned int dev_pm_opp_get_required_pstate(struct dev_pm_opp *opp, unsigned int index) { if (IS_ERR_OR_NULL(opp) || !opp->available || index >= opp->opp_table->required_opp_count) { pr_err("%s: Invalid parameters\n", __func__); return 0; } /* required-opps not fully initialized yet */ if (lazy_linking_pending(opp->opp_table)) return 0; /* The required OPP table must belong to a genpd */ if (unlikely(!opp->opp_table->required_opp_tables[index]->is_genpd)) { pr_err("%s: Performance state is only valid for genpds.\n", __func__); return 0; } return opp->required_opps[index]->level; } EXPORT_SYMBOL_GPL(dev_pm_opp_get_required_pstate); /** * dev_pm_opp_is_turbo() - Returns if opp is turbo OPP or not * @opp: opp for which turbo mode is being verified * * Turbo OPPs are not for normal use, and can be enabled (under certain * conditions) for short duration of times to finish high throughput work * quickly. Running on them for longer times may overheat the chip. * * Return: true if opp is turbo opp, else false. */ bool dev_pm_opp_is_turbo(struct dev_pm_opp *opp) { if (IS_ERR_OR_NULL(opp) || !opp->available) { pr_err("%s: Invalid parameters\n", __func__); return false; } return opp->turbo; } EXPORT_SYMBOL_GPL(dev_pm_opp_is_turbo); /** * dev_pm_opp_get_max_clock_latency() - Get max clock latency in nanoseconds * @dev: device for which we do this operation * * Return: This function returns the max clock latency in nanoseconds. */ unsigned long dev_pm_opp_get_max_clock_latency(struct device *dev) { struct opp_table *opp_table; unsigned long clock_latency_ns; opp_table = _find_opp_table(dev); if (IS_ERR(opp_table)) return 0; clock_latency_ns = opp_table->clock_latency_ns_max; dev_pm_opp_put_opp_table(opp_table); return clock_latency_ns; } EXPORT_SYMBOL_GPL(dev_pm_opp_get_max_clock_latency); /** * dev_pm_opp_get_max_volt_latency() - Get max voltage latency in nanoseconds * @dev: device for which we do this operation * * Return: This function returns the max voltage latency in nanoseconds. */ unsigned long dev_pm_opp_get_max_volt_latency(struct device *dev) { struct opp_table *opp_table; struct dev_pm_opp *opp; struct regulator *reg; unsigned long latency_ns = 0; int ret, i, count; struct { unsigned long min; unsigned long max; } *uV; opp_table = _find_opp_table(dev); if (IS_ERR(opp_table)) return 0; /* Regulator may not be required for the device */ if (!opp_table->regulators) goto put_opp_table; count = opp_table->regulator_count; uV = kmalloc_array(count, sizeof(*uV), GFP_KERNEL); if (!uV) goto put_opp_table; mutex_lock(&opp_table->lock); for (i = 0; i < count; i++) { uV[i].min = ~0; uV[i].max = 0; list_for_each_entry(opp, &opp_table->opp_list, node) { if (!opp->available) continue; if (opp->supplies[i].u_volt_min < uV[i].min) uV[i].min = opp->supplies[i].u_volt_min; if (opp->supplies[i].u_volt_max > uV[i].max) uV[i].max = opp->supplies[i].u_volt_max; } } mutex_unlock(&opp_table->lock); /* * The caller needs to ensure that opp_table (and hence the regulator) * isn't freed, while we are executing this routine. */ for (i = 0; i < count; i++) { reg = opp_table->regulators[i]; ret = regulator_set_voltage_time(reg, uV[i].min, uV[i].max); if (ret > 0) latency_ns += ret * 1000; } kfree(uV); put_opp_table: dev_pm_opp_put_opp_table(opp_table); return latency_ns; } EXPORT_SYMBOL_GPL(dev_pm_opp_get_max_volt_latency); /** * dev_pm_opp_get_max_transition_latency() - Get max transition latency in * nanoseconds * @dev: device for which we do this operation * * Return: This function returns the max transition latency, in nanoseconds, to * switch from one OPP to other. */ unsigned long dev_pm_opp_get_max_transition_latency(struct device *dev) { return dev_pm_opp_get_max_volt_latency(dev) + dev_pm_opp_get_max_clock_latency(dev); } EXPORT_SYMBOL_GPL(dev_pm_opp_get_max_transition_latency); /** * dev_pm_opp_get_suspend_opp_freq() - Get frequency of suspend opp in Hz * @dev: device for which we do this operation * * Return: This function returns the frequency of the OPP marked as suspend_opp * if one is available, else returns 0; */ unsigned long dev_pm_opp_get_suspend_opp_freq(struct device *dev) { struct opp_table *opp_table; unsigned long freq = 0; opp_table = _find_opp_table(dev); if (IS_ERR(opp_table)) return 0; if (opp_table->suspend_opp && opp_table->suspend_opp->available) freq = dev_pm_opp_get_freq(opp_table->suspend_opp); dev_pm_opp_put_opp_table(opp_table); return freq; } EXPORT_SYMBOL_GPL(dev_pm_opp_get_suspend_opp_freq); int _get_opp_count(struct opp_table *opp_table) { struct dev_pm_opp *opp; int count = 0; mutex_lock(&opp_table->lock); list_for_each_entry(opp, &opp_table->opp_list, node) { if (opp->available) count++; } mutex_unlock(&opp_table->lock); return count; } /** * dev_pm_opp_get_opp_count() - Get number of opps available in the opp table * @dev: device for which we do this operation * * Return: This function returns the number of available opps if there are any, * else returns 0 if none or the corresponding error value. */ int dev_pm_opp_get_opp_count(struct device *dev) { struct opp_table *opp_table; int count; opp_table = _find_opp_table(dev); if (IS_ERR(opp_table)) { count = PTR_ERR(opp_table); dev_dbg(dev, "%s: OPP table not found (%d)\n", __func__, count); return count; } count = _get_opp_count(opp_table); dev_pm_opp_put_opp_table(opp_table); return count; } EXPORT_SYMBOL_GPL(dev_pm_opp_get_opp_count); /* Helpers to read keys */ static unsigned long _read_freq(struct dev_pm_opp *opp, int index) { return opp->rates[index]; } static unsigned long _read_level(struct dev_pm_opp *opp, int index) { return opp->level; } static unsigned long _read_bw(struct dev_pm_opp *opp, int index) { return opp->bandwidth[index].peak; } /* Generic comparison helpers */ static bool _compare_exact(struct dev_pm_opp **opp, struct dev_pm_opp *temp_opp, unsigned long opp_key, unsigned long key) { if (opp_key == key) { *opp = temp_opp; return true; } return false; } static bool _compare_ceil(struct dev_pm_opp **opp, struct dev_pm_opp *temp_opp, unsigned long opp_key, unsigned long key) { if (opp_key >= key) { *opp = temp_opp; return true; } return false; } static bool _compare_floor(struct dev_pm_opp **opp, struct dev_pm_opp *temp_opp, unsigned long opp_key, unsigned long key) { if (opp_key > key) return true; *opp = temp_opp; return false; } /* Generic key finding helpers */ static struct dev_pm_opp *_opp_table_find_key(struct opp_table *opp_table, unsigned long *key, int index, bool available, unsigned long (*read)(struct dev_pm_opp *opp, int index), bool (*compare)(struct dev_pm_opp **opp, struct dev_pm_opp *temp_opp, unsigned long opp_key, unsigned long key), bool (*assert)(struct opp_table *opp_table)) { struct dev_pm_opp *temp_opp, *opp = ERR_PTR(-ERANGE); /* Assert that the requirement is met */ if (assert && !assert(opp_table)) return ERR_PTR(-EINVAL); mutex_lock(&opp_table->lock); list_for_each_entry(temp_opp, &opp_table->opp_list, node) { if (temp_opp->available == available) { if (compare(&opp, temp_opp, read(temp_opp, index), *key)) break; } } /* Increment the reference count of OPP */ if (!IS_ERR(opp)) { *key = read(opp, index); dev_pm_opp_get(opp); } mutex_unlock(&opp_table->lock); return opp; } static struct dev_pm_opp * _find_key(struct device *dev, unsigned long *key, int index, bool available, unsigned long (*read)(struct dev_pm_opp *opp, int index), bool (*compare)(struct dev_pm_opp **opp, struct dev_pm_opp *temp_opp, unsigned long opp_key, unsigned long key), bool (*assert)(struct opp_table *opp_table)) { struct opp_table *opp_table; struct dev_pm_opp *opp; opp_table = _find_opp_table(dev); if (IS_ERR(opp_table)) { dev_err(dev, "%s: OPP table not found (%ld)\n", __func__, PTR_ERR(opp_table)); return ERR_CAST(opp_table); } opp = _opp_table_find_key(opp_table, key, index, available, read, compare, assert); dev_pm_opp_put_opp_table(opp_table); return opp; } static struct dev_pm_opp *_find_key_exact(struct device *dev, unsigned long key, int index, bool available, unsigned long (*read)(struct dev_pm_opp *opp, int index), bool (*assert)(struct opp_table *opp_table)) { /* * The value of key will be updated here, but will be ignored as the * caller doesn't need it. */ return _find_key(dev, &key, index, available, read, _compare_exact, assert); } static struct dev_pm_opp *_opp_table_find_key_ceil(struct opp_table *opp_table, unsigned long *key, int index, bool available, unsigned long (*read)(struct dev_pm_opp *opp, int index), bool (*assert)(struct opp_table *opp_table)) { return _opp_table_find_key(opp_table, key, index, available, read, _compare_ceil, assert); } static struct dev_pm_opp *_find_key_ceil(struct device *dev, unsigned long *key, int index, bool available, unsigned long (*read)(struct dev_pm_opp *opp, int index), bool (*assert)(struct opp_table *opp_table)) { return _find_key(dev, key, index, available, read, _compare_ceil, assert); } static struct dev_pm_opp *_find_key_floor(struct device *dev, unsigned long *key, int index, bool available, unsigned long (*read)(struct dev_pm_opp *opp, int index), bool (*assert)(struct opp_table *opp_table)) { return _find_key(dev, key, index, available, read, _compare_floor, assert); } /** * dev_pm_opp_find_freq_exact() - search for an exact frequency * @dev: device for which we do this operation * @freq: frequency to search for * @available: true/false - match for available opp * * Return: Searches for exact match in the opp table and returns pointer to the * matching opp if found, else returns ERR_PTR in case of error and should * be handled using IS_ERR. Error return values can be: * EINVAL: for bad pointer * ERANGE: no match found for search * ENODEV: if device not found in list of registered devices * * Note: available is a modifier for the search. if available=true, then the * match is for exact matching frequency and is available in the stored OPP * table. if false, the match is for exact frequency which is not available. * * This provides a mechanism to enable an opp which is not available currently * or the opposite as well. * * The callers are required to call dev_pm_opp_put() for the returned OPP after * use. */ struct dev_pm_opp *dev_pm_opp_find_freq_exact(struct device *dev, unsigned long freq, bool available) { return _find_key_exact(dev, freq, 0, available, _read_freq, assert_single_clk); } EXPORT_SYMBOL_GPL(dev_pm_opp_find_freq_exact); /** * dev_pm_opp_find_freq_exact_indexed() - Search for an exact freq for the * clock corresponding to the index * @dev: Device for which we do this operation * @freq: frequency to search for * @index: Clock index * @available: true/false - match for available opp * * Search for the matching exact OPP for the clock corresponding to the * specified index from a starting freq for a device. * * Return: matching *opp , else returns ERR_PTR in case of error and should be * handled using IS_ERR. Error return values can be: * EINVAL: for bad pointer * ERANGE: no match found for search * ENODEV: if device not found in list of registered devices * * The callers are required to call dev_pm_opp_put() for the returned OPP after * use. */ struct dev_pm_opp * dev_pm_opp_find_freq_exact_indexed(struct device *dev, unsigned long freq, u32 index, bool available) { return _find_key_exact(dev, freq, index, available, _read_freq, NULL); } EXPORT_SYMBOL_GPL(dev_pm_opp_find_freq_exact_indexed); static noinline struct dev_pm_opp *_find_freq_ceil(struct opp_table *opp_table, unsigned long *freq) { return _opp_table_find_key_ceil(opp_table, freq, 0, true, _read_freq, assert_single_clk); } /** * dev_pm_opp_find_freq_ceil() - Search for an rounded ceil freq * @dev: device for which we do this operation * @freq: Start frequency * * Search for the matching ceil *available* OPP from a starting freq * for a device. * * Return: matching *opp and refreshes *freq accordingly, else returns * ERR_PTR in case of error and should be handled using IS_ERR. Error return * values can be: * EINVAL: for bad pointer * ERANGE: no match found for search * ENODEV: if device not found in list of registered devices * * The callers are required to call dev_pm_opp_put() for the returned OPP after * use. */ struct dev_pm_opp *dev_pm_opp_find_freq_ceil(struct device *dev, unsigned long *freq) { return _find_key_ceil(dev, freq, 0, true, _read_freq, assert_single_clk); } EXPORT_SYMBOL_GPL(dev_pm_opp_find_freq_ceil); /** * dev_pm_opp_find_freq_ceil_indexed() - Search for a rounded ceil freq for the * clock corresponding to the index * @dev: Device for which we do this operation * @freq: Start frequency * @index: Clock index * * Search for the matching ceil *available* OPP for the clock corresponding to * the specified index from a starting freq for a device. * * Return: matching *opp and refreshes *freq accordingly, else returns * ERR_PTR in case of error and should be handled using IS_ERR. Error return * values can be: * EINVAL: for bad pointer * ERANGE: no match found for search * ENODEV: if device not found in list of registered devices * * The callers are required to call dev_pm_opp_put() for the returned OPP after * use. */ struct dev_pm_opp * dev_pm_opp_find_freq_ceil_indexed(struct device *dev, unsigned long *freq, u32 index) { return _find_key_ceil(dev, freq, index, true, _read_freq, NULL); } EXPORT_SYMBOL_GPL(dev_pm_opp_find_freq_ceil_indexed); /** * dev_pm_opp_find_freq_floor() - Search for a rounded floor freq * @dev: device for which we do this operation * @freq: Start frequency * * Search for the matching floor *available* OPP from a starting freq * for a device. * * Return: matching *opp and refreshes *freq accordingly, else returns * ERR_PTR in case of error and should be handled using IS_ERR. Error return * values can be: * EINVAL: for bad pointer * ERANGE: no match found for search * ENODEV: if device not found in list of registered devices * * The callers are required to call dev_pm_opp_put() for the returned OPP after * use. */ struct dev_pm_opp *dev_pm_opp_find_freq_floor(struct device *dev, unsigned long *freq) { return _find_key_floor(dev, freq, 0, true, _read_freq, assert_single_clk); } EXPORT_SYMBOL_GPL(dev_pm_opp_find_freq_floor); /** * dev_pm_opp_find_freq_floor_indexed() - Search for a rounded floor freq for the * clock corresponding to the index * @dev: Device for which we do this operation * @freq: Start frequency * @index: Clock index * * Search for the matching floor *available* OPP for the clock corresponding to * the specified index from a starting freq for a device. * * Return: matching *opp and refreshes *freq accordingly, else returns * ERR_PTR in case of error and should be handled using IS_ERR. Error return * values can be: * EINVAL: for bad pointer * ERANGE: no match found for search * ENODEV: if device not found in list of registered devices * * The callers are required to call dev_pm_opp_put() for the returned OPP after * use. */ struct dev_pm_opp * dev_pm_opp_find_freq_floor_indexed(struct device *dev, unsigned long *freq, u32 index) { return _find_key_floor(dev, freq, index, true, _read_freq, NULL); } EXPORT_SYMBOL_GPL(dev_pm_opp_find_freq_floor_indexed); /** * dev_pm_opp_find_level_exact() - search for an exact level * @dev: device for which we do this operation * @level: level to search for * * Return: Searches for exact match in the opp table and returns pointer to the * matching opp if found, else returns ERR_PTR in case of error and should * be handled using IS_ERR. Error return values can be: * EINVAL: for bad pointer * ERANGE: no match found for search * ENODEV: if device not found in list of registered devices * * The callers are required to call dev_pm_opp_put() for the returned OPP after * use. */ struct dev_pm_opp *dev_pm_opp_find_level_exact(struct device *dev, unsigned int level) { return _find_key_exact(dev, level, 0, true, _read_level, NULL); } EXPORT_SYMBOL_GPL(dev_pm_opp_find_level_exact); /** * dev_pm_opp_find_level_ceil() - search for an rounded up level * @dev: device for which we do this operation * @level: level to search for * * Return: Searches for rounded up match in the opp table and returns pointer * to the matching opp if found, else returns ERR_PTR in case of error and * should be handled using IS_ERR. Error return values can be: * EINVAL: for bad pointer * ERANGE: no match found for search * ENODEV: if device not found in list of registered devices * * The callers are required to call dev_pm_opp_put() for the returned OPP after * use. */ struct dev_pm_opp *dev_pm_opp_find_level_ceil(struct device *dev, unsigned int *level) { unsigned long temp = *level; struct dev_pm_opp *opp; opp = _find_key_ceil(dev, &temp, 0, true, _read_level, NULL); if (IS_ERR(opp)) return opp; /* False match */ if (temp == OPP_LEVEL_UNSET) { dev_err(dev, "%s: OPP levels aren't available\n", __func__); dev_pm_opp_put(opp); return ERR_PTR(-ENODEV); } *level = temp; return opp; } EXPORT_SYMBOL_GPL(dev_pm_opp_find_level_ceil); /** * dev_pm_opp_find_level_floor() - Search for a rounded floor level * @dev: device for which we do this operation * @level: Start level * * Search for the matching floor *available* OPP from a starting level * for a device. * * Return: matching *opp and refreshes *level accordingly, else returns * ERR_PTR in case of error and should be handled using IS_ERR. Error return * values can be: * EINVAL: for bad pointer * ERANGE: no match found for search * ENODEV: if device not found in list of registered devices * * The callers are required to call dev_pm_opp_put() for the returned OPP after * use. */ struct dev_pm_opp *dev_pm_opp_find_level_floor(struct device *dev, unsigned int *level) { unsigned long temp = *level; struct dev_pm_opp *opp; opp = _find_key_floor(dev, &temp, 0, true, _read_level, NULL); *level = temp; return opp; } EXPORT_SYMBOL_GPL(dev_pm_opp_find_level_floor); /** * dev_pm_opp_find_bw_ceil() - Search for a rounded ceil bandwidth * @dev: device for which we do this operation * @bw: start bandwidth * @index: which bandwidth to compare, in case of OPPs with several values * * Search for the matching floor *available* OPP from a starting bandwidth * for a device. * * Return: matching *opp and refreshes *bw accordingly, else returns * ERR_PTR in case of error and should be handled using IS_ERR. Error return * values can be: * EINVAL: for bad pointer * ERANGE: no match found for search * ENODEV: if device not found in list of registered devices * * The callers are required to call dev_pm_opp_put() for the returned OPP after * use. */ struct dev_pm_opp *dev_pm_opp_find_bw_ceil(struct device *dev, unsigned int *bw, int index) { unsigned long temp = *bw; struct dev_pm_opp *opp; opp = _find_key_ceil(dev, &temp, index, true, _read_bw, NULL); *bw = temp; return opp; } EXPORT_SYMBOL_GPL(dev_pm_opp_find_bw_ceil); /** * dev_pm_opp_find_bw_floor() - Search for a rounded floor bandwidth * @dev: device for which we do this operation * @bw: start bandwidth * @index: which bandwidth to compare, in case of OPPs with several values * * Search for the matching floor *available* OPP from a starting bandwidth * for a device. * * Return: matching *opp and refreshes *bw accordingly, else returns * ERR_PTR in case of error and should be handled using IS_ERR. Error return * values can be: * EINVAL: for bad pointer * ERANGE: no match found for search * ENODEV: if device not found in list of registered devices * * The callers are required to call dev_pm_opp_put() for the returned OPP after * use. */ struct dev_pm_opp *dev_pm_opp_find_bw_floor(struct device *dev, unsigned int *bw, int index) { unsigned long temp = *bw; struct dev_pm_opp *opp; opp = _find_key_floor(dev, &temp, index, true, _read_bw, NULL); *bw = temp; return opp; } EXPORT_SYMBOL_GPL(dev_pm_opp_find_bw_floor); static int _set_opp_voltage(struct device *dev, struct regulator *reg, struct dev_pm_opp_supply *supply) { int ret; /* Regulator not available for device */ if (IS_ERR(reg)) { dev_dbg(dev, "%s: regulator not available: %ld\n", __func__, PTR_ERR(reg)); return 0; } dev_dbg(dev, "%s: voltages (mV): %lu %lu %lu\n", __func__, supply->u_volt_min, supply->u_volt, supply->u_volt_max); ret = regulator_set_voltage_triplet(reg, supply->u_volt_min, supply->u_volt, supply->u_volt_max); if (ret) dev_err(dev, "%s: failed to set voltage (%lu %lu %lu mV): %d\n", __func__, supply->u_volt_min, supply->u_volt, supply->u_volt_max, ret); return ret; } static int _opp_config_clk_single(struct device *dev, struct opp_table *opp_table, struct dev_pm_opp *opp, void *data, bool scaling_down) { unsigned long *target = data; unsigned long freq; int ret; /* One of target and opp must be available */ if (target) { freq = *target; } else if (opp) { freq = opp->rates[0]; } else { WARN_ON(1); return -EINVAL; } ret = clk_set_rate(opp_table->clk, freq); if (ret) { dev_err(dev, "%s: failed to set clock rate: %d\n", __func__, ret); } else { opp_table->current_rate_single_clk = freq; } return ret; } /* * Simple implementation for configuring multiple clocks. Configure clocks in * the order in which they are present in the array while scaling up. */ int dev_pm_opp_config_clks_simple(struct device *dev, struct opp_table *opp_table, struct dev_pm_opp *opp, void *data, bool scaling_down) { int ret, i; if (scaling_down) { for (i = opp_table->clk_count - 1; i >= 0; i--) { ret = clk_set_rate(opp_table->clks[i], opp->rates[i]); if (ret) { dev_err(dev, "%s: failed to set clock rate: %d\n", __func__, ret); return ret; } } } else { for (i = 0; i < opp_table->clk_count; i++) { ret = clk_set_rate(opp_table->clks[i], opp->rates[i]); if (ret) { dev_err(dev, "%s: failed to set clock rate: %d\n", __func__, ret); return ret; } } } return 0; } EXPORT_SYMBOL_GPL(dev_pm_opp_config_clks_simple); static int _opp_config_regulator_single(struct device *dev, struct dev_pm_opp *old_opp, struct dev_pm_opp *new_opp, struct regulator **regulators, unsigned int count) { struct regulator *reg = regulators[0]; int ret; /* This function only supports single regulator per device */ if (WARN_ON(count > 1)) { dev_err(dev, "multiple regulators are not supported\n"); return -EINVAL; } ret = _set_opp_voltage(dev, reg, new_opp->supplies); if (ret) return ret; /* * Enable the regulator after setting its voltages, otherwise it breaks * some boot-enabled regulators. */ if (unlikely(!new_opp->opp_table->enabled)) { ret = regulator_enable(reg); if (ret < 0) dev_warn(dev, "Failed to enable regulator: %d", ret); } return 0; } static int _set_opp_bw(const struct opp_table *opp_table, struct dev_pm_opp *opp, struct device *dev) { u32 avg, peak; int i, ret; if (!opp_table->paths) return 0; for (i = 0; i < opp_table->path_count; i++) { if (!opp) { avg = 0; peak = 0; } else { avg = opp->bandwidth[i].avg; peak = opp->bandwidth[i].peak; } ret = icc_set_bw(opp_table->paths[i], avg, peak); if (ret) { dev_err(dev, "Failed to %s bandwidth[%d]: %d\n", opp ? "set" : "remove", i, ret); return ret; } } return 0; } /* This is only called for PM domain for now */ static int _set_required_opps(struct device *dev, struct opp_table *opp_table, struct dev_pm_opp *opp, bool up) { struct device **devs = opp_table->required_devs; struct dev_pm_opp *required_opp; int index, target, delta, ret; if (!devs) return 0; /* required-opps not fully initialized yet */ if (lazy_linking_pending(opp_table)) return -EBUSY; /* Scaling up? Set required OPPs in normal order, else reverse */ if (up) { index = 0; target = opp_table->required_opp_count; delta = 1; } else { index = opp_table->required_opp_count - 1; target = -1; delta = -1; } while (index != target) { if (devs[index]) { required_opp = opp ? opp->required_opps[index] : NULL; ret = dev_pm_opp_set_opp(devs[index], required_opp); if (ret) return ret; } index += delta; } return 0; } static int _set_opp_level(struct device *dev, struct opp_table *opp_table, struct dev_pm_opp *opp) { unsigned int level = 0; int ret = 0; if (opp) { if (opp->level == OPP_LEVEL_UNSET) return 0; level = opp->level; } /* Request a new performance state through the device's PM domain. */ ret = dev_pm_domain_set_performance_state(dev, level); if (ret) dev_err(dev, "Failed to set performance state %u (%d)\n", level, ret); return ret; } static void _find_current_opp(struct device *dev, struct opp_table *opp_table) { struct dev_pm_opp *opp = ERR_PTR(-ENODEV); unsigned long freq; if (!IS_ERR(opp_table->clk)) { freq = clk_get_rate(opp_table->clk); opp = _find_freq_ceil(opp_table, &freq); } /* * Unable to find the current OPP ? Pick the first from the list since * it is in ascending order, otherwise rest of the code will need to * make special checks to validate current_opp. */ if (IS_ERR(opp)) { mutex_lock(&opp_table->lock); opp = list_first_entry(&opp_table->opp_list, struct dev_pm_opp, node); dev_pm_opp_get(opp); mutex_unlock(&opp_table->lock); } opp_table->current_opp = opp; } static int _disable_opp_table(struct device *dev, struct opp_table *opp_table) { int ret; if (!opp_table->enabled) return 0; /* * Some drivers need to support cases where some platforms may * have OPP table for the device, while others don't and * opp_set_rate() just needs to behave like clk_set_rate(). */ if (!_get_opp_count(opp_table)) return 0; ret = _set_opp_bw(opp_table, NULL, dev); if (ret) return ret; if (opp_table->regulators) regulator_disable(opp_table->regulators[0]); ret = _set_opp_level(dev, opp_table, NULL); if (ret) goto out; ret = _set_required_opps(dev, opp_table, NULL, false); out: opp_table->enabled = false; return ret; } static int _set_opp(struct device *dev, struct opp_table *opp_table, struct dev_pm_opp *opp, void *clk_data, bool forced) { struct dev_pm_opp *old_opp; int scaling_down, ret; if (unlikely(!opp)) return _disable_opp_table(dev, opp_table); /* Find the currently set OPP if we don't know already */ if (unlikely(!opp_table->current_opp)) _find_current_opp(dev, opp_table); old_opp = opp_table->current_opp; /* Return early if nothing to do */ if (!forced && old_opp == opp && opp_table->enabled) { dev_dbg_ratelimited(dev, "%s: OPPs are same, nothing to do\n", __func__); return 0; } dev_dbg(dev, "%s: switching OPP: Freq %lu -> %lu Hz, Level %u -> %u, Bw %u -> %u\n", __func__, old_opp->rates[0], opp->rates[0], old_opp->level, opp->level, old_opp->bandwidth ? old_opp->bandwidth[0].peak : 0, opp->bandwidth ? opp->bandwidth[0].peak : 0); scaling_down = _opp_compare_key(opp_table, old_opp, opp); if (scaling_down == -1) scaling_down = 0; /* Scaling up? Configure required OPPs before frequency */ if (!scaling_down) { ret = _set_required_opps(dev, opp_table, opp, true); if (ret) { dev_err(dev, "Failed to set required opps: %d\n", ret); return ret; } ret = _set_opp_level(dev, opp_table, opp); if (ret) return ret; ret = _set_opp_bw(opp_table, opp, dev); if (ret) { dev_err(dev, "Failed to set bw: %d\n", ret); return ret; } if (opp_table->config_regulators) { ret = opp_table->config_regulators(dev, old_opp, opp, opp_table->regulators, opp_table->regulator_count); if (ret) { dev_err(dev, "Failed to set regulator voltages: %d\n", ret); return ret; } } } if (opp_table->config_clks) { ret = opp_table->config_clks(dev, opp_table, opp, clk_data, scaling_down); if (ret) return ret; } /* Scaling down? Configure required OPPs after frequency */ if (scaling_down) { if (opp_table->config_regulators) { ret = opp_table->config_regulators(dev, old_opp, opp, opp_table->regulators, opp_table->regulator_count); if (ret) { dev_err(dev, "Failed to set regulator voltages: %d\n", ret); return ret; } } ret = _set_opp_bw(opp_table, opp, dev); if (ret) { dev_err(dev, "Failed to set bw: %d\n", ret); return ret; } ret = _set_opp_level(dev, opp_table, opp); if (ret) return ret; ret = _set_required_opps(dev, opp_table, opp, false); if (ret) { dev_err(dev, "Failed to set required opps: %d\n", ret); return ret; } } opp_table->enabled = true; dev_pm_opp_put(old_opp); /* Make sure current_opp doesn't get freed */ dev_pm_opp_get(opp); opp_table->current_opp = opp; return ret; } /** * dev_pm_opp_set_rate() - Configure new OPP based on frequency * @dev: device for which we do this operation * @target_freq: frequency to achieve * * This configures the power-supplies to the levels specified by the OPP * corresponding to the target_freq, and programs the clock to a value <= * target_freq, as rounded by clk_round_rate(). Device wanting to run at fmax * provided by the opp, should have already rounded to the target OPP's * frequency. */ int dev_pm_opp_set_rate(struct device *dev, unsigned long target_freq) { struct opp_table *opp_table; unsigned long freq = 0, temp_freq; struct dev_pm_opp *opp = NULL; bool forced = false; int ret; opp_table = _find_opp_table(dev); if (IS_ERR(opp_table)) { dev_err(dev, "%s: device's opp table doesn't exist\n", __func__); return PTR_ERR(opp_table); } if (target_freq) { /* * For IO devices which require an OPP on some platforms/SoCs * while just needing to scale the clock on some others * we look for empty OPP tables with just a clock handle and * scale only the clk. This makes dev_pm_opp_set_rate() * equivalent to a clk_set_rate() */ if (!_get_opp_count(opp_table)) { ret = opp_table->config_clks(dev, opp_table, NULL, &target_freq, false); goto put_opp_table; } freq = clk_round_rate(opp_table->clk, target_freq); if ((long)freq <= 0) freq = target_freq; /* * The clock driver may support finer resolution of the * frequencies than the OPP table, don't update the frequency we * pass to clk_set_rate() here. */ temp_freq = freq; opp = _find_freq_ceil(opp_table, &temp_freq); if (IS_ERR(opp)) { ret = PTR_ERR(opp); dev_err(dev, "%s: failed to find OPP for freq %lu (%d)\n", __func__, freq, ret); goto put_opp_table; } /* * An OPP entry specifies the highest frequency at which other * properties of the OPP entry apply. Even if the new OPP is * same as the old one, we may still reach here for a different * value of the frequency. In such a case, do not abort but * configure the hardware to the desired frequency forcefully. */ forced = opp_table->current_rate_single_clk != freq; } ret = _set_opp(dev, opp_table, opp, &freq, forced); if (freq) dev_pm_opp_put(opp); put_opp_table: dev_pm_opp_put_opp_table(opp_table); return ret; } EXPORT_SYMBOL_GPL(dev_pm_opp_set_rate); /** * dev_pm_opp_set_opp() - Configure device for OPP * @dev: device for which we do this operation * @opp: OPP to set to * * This configures the device based on the properties of the OPP passed to this * routine. * * Return: 0 on success, a negative error number otherwise. */ int dev_pm_opp_set_opp(struct device *dev, struct dev_pm_opp *opp) { struct opp_table *opp_table; int ret; opp_table = _find_opp_table(dev); if (IS_ERR(opp_table)) { dev_err(dev, "%s: device opp doesn't exist\n", __func__); return PTR_ERR(opp_table); } ret = _set_opp(dev, opp_table, opp, NULL, false); dev_pm_opp_put_opp_table(opp_table); return ret; } EXPORT_SYMBOL_GPL(dev_pm_opp_set_opp); /* OPP-dev Helpers */ static void _remove_opp_dev(struct opp_device *opp_dev, struct opp_table *opp_table) { opp_debug_unregister(opp_dev, opp_table); list_del(&opp_dev->node); kfree(opp_dev); } struct opp_device *_add_opp_dev(const struct device *dev, struct opp_table *opp_table) { struct opp_device *opp_dev; opp_dev = kzalloc(sizeof(*opp_dev), GFP_KERNEL); if (!opp_dev) return NULL; /* Initialize opp-dev */ opp_dev->dev = dev; mutex_lock(&opp_table->lock); list_add(&opp_dev->node, &opp_table->dev_list); mutex_unlock(&opp_table->lock); /* Create debugfs entries for the opp_table */ opp_debug_register(opp_dev, opp_table); return opp_dev; } static struct opp_table *_allocate_opp_table(struct device *dev, int index) { struct opp_table *opp_table; struct opp_device *opp_dev; int ret; /* * Allocate a new OPP table. In the infrequent case where a new * device is needed to be added, we pay this penalty. */ opp_table = kzalloc(sizeof(*opp_table), GFP_KERNEL); if (!opp_table) return ERR_PTR(-ENOMEM); mutex_init(&opp_table->lock); INIT_LIST_HEAD(&opp_table->dev_list); INIT_LIST_HEAD(&opp_table->lazy); opp_table->clk = ERR_PTR(-ENODEV); /* Mark regulator count uninitialized */ opp_table->regulator_count = -1; opp_dev = _add_opp_dev(dev, opp_table); if (!opp_dev) { ret = -ENOMEM; goto err; } _of_init_opp_table(opp_table, dev, index); /* Find interconnect path(s) for the device */ ret = dev_pm_opp_of_find_icc_paths(dev, opp_table); if (ret) { if (ret == -EPROBE_DEFER) goto remove_opp_dev; dev_warn(dev, "%s: Error finding interconnect paths: %d\n", __func__, ret); } BLOCKING_INIT_NOTIFIER_HEAD(&opp_table->head); INIT_LIST_HEAD(&opp_table->opp_list); kref_init(&opp_table->kref); return opp_table; remove_opp_dev: _of_clear_opp_table(opp_table); _remove_opp_dev(opp_dev, opp_table); mutex_destroy(&opp_table->lock); err: kfree(opp_table); return ERR_PTR(ret); } void _get_opp_table_kref(struct opp_table *opp_table) { kref_get(&opp_table->kref); } static struct opp_table *_update_opp_table_clk(struct device *dev, struct opp_table *opp_table, bool getclk) { int ret; /* * Return early if we don't need to get clk or we have already done it * earlier. */ if (!getclk || IS_ERR(opp_table) || !IS_ERR(opp_table->clk) || opp_table->clks) return opp_table; /* Find clk for the device */ opp_table->clk = clk_get(dev, NULL); ret = PTR_ERR_OR_ZERO(opp_table->clk); if (!ret) { opp_table->config_clks = _opp_config_clk_single; opp_table->clk_count = 1; return opp_table; } if (ret == -ENOENT) { /* * There are few platforms which don't want the OPP core to * manage device's clock settings. In such cases neither the * platform provides the clks explicitly to us, nor the DT * contains a valid clk entry. The OPP nodes in DT may still * contain "opp-hz" property though, which we need to parse and * allow the platform to find an OPP based on freq later on. * * This is a simple solution to take care of such corner cases, * i.e. make the clk_count 1, which lets us allocate space for * frequency in opp->rates and also parse the entries in DT. */ opp_table->clk_count = 1; dev_dbg(dev, "%s: Couldn't find clock: %d\n", __func__, ret); return opp_table; } dev_pm_opp_put_opp_table(opp_table); dev_err_probe(dev, ret, "Couldn't find clock\n"); return ERR_PTR(ret); } /* * We need to make sure that the OPP table for a device doesn't get added twice, * if this routine gets called in parallel with the same device pointer. * * The simplest way to enforce that is to perform everything (find existing * table and if not found, create a new one) under the opp_table_lock, so only * one creator gets access to the same. But that expands the critical section * under the lock and may end up causing circular dependencies with frameworks * like debugfs, interconnect or clock framework as they may be direct or * indirect users of OPP core. * * And for that reason we have to go for a bit tricky implementation here, which * uses the opp_tables_busy flag to indicate if another creator is in the middle * of adding an OPP table and others should wait for it to finish. */ struct opp_table *_add_opp_table_indexed(struct device *dev, int index, bool getclk) { struct opp_table *opp_table; again: mutex_lock(&opp_table_lock); opp_table = _find_opp_table_unlocked(dev); if (!IS_ERR(opp_table)) goto unlock; /* * The opp_tables list or an OPP table's dev_list is getting updated by * another user, wait for it to finish. */ if (unlikely(opp_tables_busy)) { mutex_unlock(&opp_table_lock); cpu_relax(); goto again; } opp_tables_busy = true; opp_table = _managed_opp(dev, index); /* Drop the lock to reduce the size of critical section */ mutex_unlock(&opp_table_lock); if (opp_table) { if (!_add_opp_dev(dev, opp_table)) { dev_pm_opp_put_opp_table(opp_table); opp_table = ERR_PTR(-ENOMEM); } mutex_lock(&opp_table_lock); } else { opp_table = _allocate_opp_table(dev, index); mutex_lock(&opp_table_lock); if (!IS_ERR(opp_table)) list_add(&opp_table->node, &opp_tables); } opp_tables_busy = false; unlock: mutex_unlock(&opp_table_lock); return _update_opp_table_clk(dev, opp_table, getclk); } static struct opp_table *_add_opp_table(struct device *dev, bool getclk) { return _add_opp_table_indexed(dev, 0, getclk); } struct opp_table *dev_pm_opp_get_opp_table(struct device *dev) { return _find_opp_table(dev); } EXPORT_SYMBOL_GPL(dev_pm_opp_get_opp_table); static void _opp_table_kref_release(struct kref *kref) { struct opp_table *opp_table = container_of(kref, struct opp_table, kref); struct opp_device *opp_dev, *temp; int i; /* Drop the lock as soon as we can */ list_del(&opp_table->node); mutex_unlock(&opp_table_lock); if (opp_table->current_opp) dev_pm_opp_put(opp_table->current_opp); _of_clear_opp_table(opp_table); /* Release automatically acquired single clk */ if (!IS_ERR(opp_table->clk)) clk_put(opp_table->clk); if (opp_table->paths) { for (i = 0; i < opp_table->path_count; i++) icc_put(opp_table->paths[i]); kfree(opp_table->paths); } WARN_ON(!list_empty(&opp_table->opp_list)); list_for_each_entry_safe(opp_dev, temp, &opp_table->dev_list, node) _remove_opp_dev(opp_dev, opp_table); mutex_destroy(&opp_table->lock); kfree(opp_table); } void dev_pm_opp_put_opp_table(struct opp_table *opp_table) { kref_put_mutex(&opp_table->kref, _opp_table_kref_release, &opp_table_lock); } EXPORT_SYMBOL_GPL(dev_pm_opp_put_opp_table); void _opp_free(struct dev_pm_opp *opp) { kfree(opp); } static void _opp_kref_release(struct kref *kref) { struct dev_pm_opp *opp = container_of(kref, struct dev_pm_opp, kref); struct opp_table *opp_table = opp->opp_table; list_del(&opp->node); mutex_unlock(&opp_table->lock); /* * Notify the changes in the availability of the operable * frequency/voltage list. */ blocking_notifier_call_chain(&opp_table->head, OPP_EVENT_REMOVE, opp); _of_clear_opp(opp_table, opp); opp_debug_remove_one(opp); kfree(opp); } void dev_pm_opp_get(struct dev_pm_opp *opp) { kref_get(&opp->kref); } void dev_pm_opp_put(struct dev_pm_opp *opp) { kref_put_mutex(&opp->kref, _opp_kref_release, &opp->opp_table->lock); } EXPORT_SYMBOL_GPL(dev_pm_opp_put); /** * dev_pm_opp_remove() - Remove an OPP from OPP table * @dev: device for which we do this operation * @freq: OPP to remove with matching 'freq' * * This function removes an opp from the opp table. */ void dev_pm_opp_remove(struct device *dev, unsigned long freq) { struct dev_pm_opp *opp = NULL, *iter; struct opp_table *opp_table; opp_table = _find_opp_table(dev); if (IS_ERR(opp_table)) return; if (!assert_single_clk(opp_table)) goto put_table; mutex_lock(&opp_table->lock); list_for_each_entry(iter, &opp_table->opp_list, node) { if (iter->rates[0] == freq) { opp = iter; break; } } mutex_unlock(&opp_table->lock); if (opp) { dev_pm_opp_put(opp); /* Drop the reference taken by dev_pm_opp_add() */ dev_pm_opp_put_opp_table(opp_table); } else { dev_warn(dev, "%s: Couldn't find OPP with freq: %lu\n", __func__, freq); } put_table: /* Drop the reference taken by _find_opp_table() */ dev_pm_opp_put_opp_table(opp_table); } EXPORT_SYMBOL_GPL(dev_pm_opp_remove); static struct dev_pm_opp *_opp_get_next(struct opp_table *opp_table, bool dynamic) { struct dev_pm_opp *opp = NULL, *temp; mutex_lock(&opp_table->lock); list_for_each_entry(temp, &opp_table->opp_list, node) { /* * Refcount must be dropped only once for each OPP by OPP core, * do that with help of "removed" flag. */ if (!temp->removed && dynamic == temp->dynamic) { opp = temp; break; } } mutex_unlock(&opp_table->lock); return opp; } /* * Can't call dev_pm_opp_put() from under the lock as debugfs removal needs to * happen lock less to avoid circular dependency issues. This routine must be * called without the opp_table->lock held. */ static void _opp_remove_all(struct opp_table *opp_table, bool dynamic) { struct dev_pm_opp *opp; while ((opp = _opp_get_next(opp_table, dynamic))) { opp->removed = true; dev_pm_opp_put(opp); /* Drop the references taken by dev_pm_opp_add() */ if (dynamic) dev_pm_opp_put_opp_table(opp_table); } } bool _opp_remove_all_static(struct opp_table *opp_table) { mutex_lock(&opp_table->lock); if (!opp_table->parsed_static_opps) { mutex_unlock(&opp_table->lock); return false; } if (--opp_table->parsed_static_opps) { mutex_unlock(&opp_table->lock); return true; } mutex_unlock(&opp_table->lock); _opp_remove_all(opp_table, false); return true; } /** * dev_pm_opp_remove_all_dynamic() - Remove all dynamically created OPPs * @dev: device for which we do this operation * * This function removes all dynamically created OPPs from the opp table. */ void dev_pm_opp_remove_all_dynamic(struct device *dev) { struct opp_table *opp_table; opp_table = _find_opp_table(dev); if (IS_ERR(opp_table)) return; _opp_remove_all(opp_table, true); /* Drop the reference taken by _find_opp_table() */ dev_pm_opp_put_opp_table(opp_table); } EXPORT_SYMBOL_GPL(dev_pm_opp_remove_all_dynamic); struct dev_pm_opp *_opp_allocate(struct opp_table *opp_table) { struct dev_pm_opp *opp; int supply_count, supply_size, icc_size, clk_size; /* Allocate space for at least one supply */ supply_count = opp_table->regulator_count > 0 ? opp_table->regulator_count : 1; supply_size = sizeof(*opp->supplies) * supply_count; clk_size = sizeof(*opp->rates) * opp_table->clk_count; icc_size = sizeof(*opp->bandwidth) * opp_table->path_count; /* allocate new OPP node and supplies structures */ opp = kzalloc(sizeof(*opp) + supply_size + clk_size + icc_size, GFP_KERNEL); if (!opp) return NULL; /* Put the supplies, bw and clock at the end of the OPP structure */ opp->supplies = (struct dev_pm_opp_supply *)(opp + 1); opp->rates = (unsigned long *)(opp->supplies + supply_count); if (icc_size) opp->bandwidth = (struct dev_pm_opp_icc_bw *)(opp->rates + opp_table->clk_count); INIT_LIST_HEAD(&opp->node); opp->level = OPP_LEVEL_UNSET; return opp; } static bool _opp_supported_by_regulators(struct dev_pm_opp *opp, struct opp_table *opp_table) { struct regulator *reg; int i; if (!opp_table->regulators) return true; for (i = 0; i < opp_table->regulator_count; i++) { reg = opp_table->regulators[i]; if (!regulator_is_supported_voltage(reg, opp->supplies[i].u_volt_min, opp->supplies[i].u_volt_max)) { pr_warn("%s: OPP minuV: %lu maxuV: %lu, not supported by regulator\n", __func__, opp->supplies[i].u_volt_min, opp->supplies[i].u_volt_max); return false; } } return true; } static int _opp_compare_rate(struct opp_table *opp_table, struct dev_pm_opp *opp1, struct dev_pm_opp *opp2) { int i; for (i = 0; i < opp_table->clk_count; i++) { if (opp1->rates[i] != opp2->rates[i]) return opp1->rates[i] < opp2->rates[i] ? -1 : 1; } /* Same rates for both OPPs */ return 0; } static int _opp_compare_bw(struct opp_table *opp_table, struct dev_pm_opp *opp1, struct dev_pm_opp *opp2) { int i; for (i = 0; i < opp_table->path_count; i++) { if (opp1->bandwidth[i].peak != opp2->bandwidth[i].peak) return opp1->bandwidth[i].peak < opp2->bandwidth[i].peak ? -1 : 1; } /* Same bw for both OPPs */ return 0; } /* * Returns * 0: opp1 == opp2 * 1: opp1 > opp2 * -1: opp1 < opp2 */ int _opp_compare_key(struct opp_table *opp_table, struct dev_pm_opp *opp1, struct dev_pm_opp *opp2) { int ret; ret = _opp_compare_rate(opp_table, opp1, opp2); if (ret) return ret; ret = _opp_compare_bw(opp_table, opp1, opp2); if (ret) return ret; if (opp1->level != opp2->level) return opp1->level < opp2->level ? -1 : 1; /* Duplicate OPPs */ return 0; } static int _opp_is_duplicate(struct device *dev, struct dev_pm_opp *new_opp, struct opp_table *opp_table, struct list_head **head) { struct dev_pm_opp *opp; int opp_cmp; /* * Insert new OPP in order of increasing frequency and discard if * already present. * * Need to use &opp_table->opp_list in the condition part of the 'for' * loop, don't replace it with head otherwise it will become an infinite * loop. */ list_for_each_entry(opp, &opp_table->opp_list, node) { opp_cmp = _opp_compare_key(opp_table, new_opp, opp); if (opp_cmp > 0) { *head = &opp->node; continue; } if (opp_cmp < 0) return 0; /* Duplicate OPPs */ dev_warn(dev, "%s: duplicate OPPs detected. Existing: freq: %lu, volt: %lu, enabled: %d. New: freq: %lu, volt: %lu, enabled: %d\n", __func__, opp->rates[0], opp->supplies[0].u_volt, opp->available, new_opp->rates[0], new_opp->supplies[0].u_volt, new_opp->available); /* Should we compare voltages for all regulators here ? */ return opp->available && new_opp->supplies[0].u_volt == opp->supplies[0].u_volt ? -EBUSY : -EEXIST; } return 0; } void _required_opps_available(struct dev_pm_opp *opp, int count) { int i; for (i = 0; i < count; i++) { if (opp->required_opps[i]->available) continue; opp->available = false; pr_warn("%s: OPP not supported by required OPP %pOF (%lu)\n", __func__, opp->required_opps[i]->np, opp->rates[0]); return; } } /* * Returns: * 0: On success. And appropriate error message for duplicate OPPs. * -EBUSY: For OPP with same freq/volt and is available. The callers of * _opp_add() must return 0 if they receive -EBUSY from it. This is to make * sure we don't print error messages unnecessarily if different parts of * kernel try to initialize the OPP table. * -EEXIST: For OPP with same freq but different volt or is unavailable. This * should be considered an error by the callers of _opp_add(). */ int _opp_add(struct device *dev, struct dev_pm_opp *new_opp, struct opp_table *opp_table) { struct list_head *head; int ret; mutex_lock(&opp_table->lock); head = &opp_table->opp_list; ret = _opp_is_duplicate(dev, new_opp, opp_table, &head); if (ret) { mutex_unlock(&opp_table->lock); return ret; } list_add(&new_opp->node, head); mutex_unlock(&opp_table->lock); new_opp->opp_table = opp_table; kref_init(&new_opp->kref); opp_debug_create_one(new_opp, opp_table); if (!_opp_supported_by_regulators(new_opp, opp_table)) { new_opp->available = false; dev_warn(dev, "%s: OPP not supported by regulators (%lu)\n", __func__, new_opp->rates[0]); } /* required-opps not fully initialized yet */ if (lazy_linking_pending(opp_table)) return 0; _required_opps_available(new_opp, opp_table->required_opp_count); return 0; } /** * _opp_add_v1() - Allocate a OPP based on v1 bindings. * @opp_table: OPP table * @dev: device for which we do this operation * @data: The OPP data for the OPP to add * @dynamic: Dynamically added OPPs. * * This function adds an opp definition to the opp table and returns status. * The opp is made available by default and it can be controlled using * dev_pm_opp_enable/disable functions and may be removed by dev_pm_opp_remove. * * NOTE: "dynamic" parameter impacts OPPs added by the dev_pm_opp_of_add_table * and freed by dev_pm_opp_of_remove_table. * * Return: * 0 On success OR * Duplicate OPPs (both freq and volt are same) and opp->available * -EEXIST Freq are same and volt are different OR * Duplicate OPPs (both freq and volt are same) and !opp->available * -ENOMEM Memory allocation failure */ int _opp_add_v1(struct opp_table *opp_table, struct device *dev, struct dev_pm_opp_data *data, bool dynamic) { struct dev_pm_opp *new_opp; unsigned long tol, u_volt = data->u_volt; int ret; if (!assert_single_clk(opp_table)) return -EINVAL; new_opp = _opp_allocate(opp_table); if (!new_opp) return -ENOMEM; /* populate the opp table */ new_opp->rates[0] = data->freq; new_opp->level = data->level; new_opp->turbo = data->turbo; tol = u_volt * opp_table->voltage_tolerance_v1 / 100; new_opp->supplies[0].u_volt = u_volt; new_opp->supplies[0].u_volt_min = u_volt - tol; new_opp->supplies[0].u_volt_max = u_volt + tol; new_opp->available = true; new_opp->dynamic = dynamic; ret = _opp_add(dev, new_opp, opp_table); if (ret) { /* Don't return error for duplicate OPPs */ if (ret == -EBUSY) ret = 0; goto free_opp; } /* * Notify the changes in the availability of the operable * frequency/voltage list. */ blocking_notifier_call_chain(&opp_table->head, OPP_EVENT_ADD, new_opp); return 0; free_opp: _opp_free(new_opp); return ret; } /* * This is required only for the V2 bindings, and it enables a platform to * specify the hierarchy of versions it supports. OPP layer will then enable * OPPs, which are available for those versions, based on its 'opp-supported-hw' * property. */ static int _opp_set_supported_hw(struct opp_table *opp_table, const u32 *versions, unsigned int count) { /* Another CPU that shares the OPP table has set the property ? */ if (opp_table->supported_hw) return 0; opp_table->supported_hw = kmemdup(versions, count * sizeof(*versions), GFP_KERNEL); if (!opp_table->supported_hw) return -ENOMEM; opp_table->supported_hw_count = count; return 0; } static void _opp_put_supported_hw(struct opp_table *opp_table) { if (opp_table->supported_hw) { kfree(opp_table->supported_hw); opp_table->supported_hw = NULL; opp_table->supported_hw_count = 0; } } /* * This is required only for the V2 bindings, and it enables a platform to * specify the extn to be used for certain property names. The properties to * which the extension will apply are opp-microvolt and opp-microamp. OPP core * should postfix the property name with - while looking for them. */ static int _opp_set_prop_name(struct opp_table *opp_table, const char *name) { /* Another CPU that shares the OPP table has set the property ? */ if (!opp_table->prop_name) { opp_table->prop_name = kstrdup(name, GFP_KERNEL); if (!opp_table->prop_name) return -ENOMEM; } return 0; } static void _opp_put_prop_name(struct opp_table *opp_table) { if (opp_table->prop_name) { kfree(opp_table->prop_name); opp_table->prop_name = NULL; } } /* * In order to support OPP switching, OPP layer needs to know the name of the * device's regulators, as the core would be required to switch voltages as * well. * * This must be called before any OPPs are initialized for the device. */ static int _opp_set_regulators(struct opp_table *opp_table, struct device *dev, const char * const names[]) { const char * const *temp = names; struct regulator *reg; int count = 0, ret, i; /* Count number of regulators */ while (*temp++) count++; if (!count) return -EINVAL; /* Another CPU that shares the OPP table has set the regulators ? */ if (opp_table->regulators) return 0; opp_table->regulators = kmalloc_array(count, sizeof(*opp_table->regulators), GFP_KERNEL); if (!opp_table->regulators) return -ENOMEM; for (i = 0; i < count; i++) { reg = regulator_get_optional(dev, names[i]); if (IS_ERR(reg)) { ret = dev_err_probe(dev, PTR_ERR(reg), "%s: no regulator (%s) found\n", __func__, names[i]); goto free_regulators; } opp_table->regulators[i] = reg; } opp_table->regulator_count = count; /* Set generic config_regulators() for single regulators here */ if (count == 1) opp_table->config_regulators = _opp_config_regulator_single; return 0; free_regulators: while (i != 0) regulator_put(opp_table->regulators[--i]); kfree(opp_table->regulators); opp_table->regulators = NULL; opp_table->regulator_count = -1; return ret; } static void _opp_put_regulators(struct opp_table *opp_table) { int i; if (!opp_table->regulators) return; if (opp_table->enabled) { for (i = opp_table->regulator_count - 1; i >= 0; i--) regulator_disable(opp_table->regulators[i]); } for (i = opp_table->regulator_count - 1; i >= 0; i--) regulator_put(opp_table->regulators[i]); kfree(opp_table->regulators); opp_table->regulators = NULL; opp_table->regulator_count = -1; } static void _put_clks(struct opp_table *opp_table, int count) { int i; for (i = count - 1; i >= 0; i--) clk_put(opp_table->clks[i]); kfree(opp_table->clks); opp_table->clks = NULL; } /* * In order to support OPP switching, OPP layer needs to get pointers to the * clocks for the device. Simple cases work fine without using this routine * (i.e. by passing connection-id as NULL), but for a device with multiple * clocks available, the OPP core needs to know the exact names of the clks to * use. * * This must be called before any OPPs are initialized for the device. */ static int _opp_set_clknames(struct opp_table *opp_table, struct device *dev, const char * const names[], config_clks_t config_clks) { const char * const *temp = names; int count = 0, ret, i; struct clk *clk; /* Count number of clks */ while (*temp++) count++; /* * This is a special case where we have a single clock, whose connection * id name is NULL, i.e. first two entries are NULL in the array. */ if (!count && !names[1]) count = 1; /* Fail early for invalid configurations */ if (!count || (!config_clks && count > 1)) return -EINVAL; /* Another CPU that shares the OPP table has set the clkname ? */ if (opp_table->clks) return 0; opp_table->clks = kmalloc_array(count, sizeof(*opp_table->clks), GFP_KERNEL); if (!opp_table->clks) return -ENOMEM; /* Find clks for the device */ for (i = 0; i < count; i++) { clk = clk_get(dev, names[i]); if (IS_ERR(clk)) { ret = dev_err_probe(dev, PTR_ERR(clk), "%s: Couldn't find clock with name: %s\n", __func__, names[i]); goto free_clks; } opp_table->clks[i] = clk; } opp_table->clk_count = count; opp_table->config_clks = config_clks; /* Set generic single clk set here */ if (count == 1) { if (!opp_table->config_clks) opp_table->config_clks = _opp_config_clk_single; /* * We could have just dropped the "clk" field and used "clks" * everywhere. Instead we kept the "clk" field around for * following reasons: * * - avoiding clks[0] everywhere else. * - not running single clk helpers for multiple clk usecase by * mistake. * * Since this is single-clk case, just update the clk pointer * too. */ opp_table->clk = opp_table->clks[0]; } return 0; free_clks: _put_clks(opp_table, i); return ret; } static void _opp_put_clknames(struct opp_table *opp_table) { if (!opp_table->clks) return; opp_table->config_clks = NULL; opp_table->clk = ERR_PTR(-ENODEV); _put_clks(opp_table, opp_table->clk_count); } /* * This is useful to support platforms with multiple regulators per device. * * This must be called before any OPPs are initialized for the device. */ static int _opp_set_config_regulators_helper(struct opp_table *opp_table, struct device *dev, config_regulators_t config_regulators) { /* Another CPU that shares the OPP table has set the helper ? */ if (!opp_table->config_regulators) opp_table->config_regulators = config_regulators; return 0; } static void _opp_put_config_regulators_helper(struct opp_table *opp_table) { if (opp_table->config_regulators) opp_table->config_regulators = NULL; } static void _opp_detach_genpd(struct opp_table *opp_table) { int index; for (index = 0; index < opp_table->required_opp_count; index++) { if (!opp_table->required_devs[index]) continue; dev_pm_domain_detach(opp_table->required_devs[index], false); opp_table->required_devs[index] = NULL; } } /* * Multiple generic power domains for a device are supported with the help of * virtual genpd devices, which are created for each consumer device - genpd * pair. These are the device structures which are attached to the power domain * and are required by the OPP core to set the performance state of the genpd. * The same API also works for the case where single genpd is available and so * we don't need to support that separately. * * This helper will normally be called by the consumer driver of the device * "dev", as only that has details of the genpd names. * * This helper needs to be called once with a list of all genpd to attach. * Otherwise the original device structure will be used instead by the OPP core. * * The order of entries in the names array must match the order in which * "required-opps" are added in DT. */ static int _opp_attach_genpd(struct opp_table *opp_table, struct device *dev, const char * const *names, struct device ***virt_devs) { struct device *virt_dev, *gdev; struct opp_table *genpd_table; int index = 0, ret = -EINVAL; const char * const *name = names; if (!opp_table->required_devs) { dev_err(dev, "Required OPPs not available, can't attach genpd\n"); return -EINVAL; } /* Genpd core takes care of propagation to parent genpd */ if (opp_table->is_genpd) { dev_err(dev, "%s: Operation not supported for genpds\n", __func__); return -EOPNOTSUPP; } /* Checking only the first one is enough ? */ if (opp_table->required_devs[0]) return 0; while (*name) { if (index >= opp_table->required_opp_count) { dev_err(dev, "Index can't be greater than required-opp-count - 1, %s (%d : %d)\n", *name, opp_table->required_opp_count, index); goto err; } virt_dev = dev_pm_domain_attach_by_name(dev, *name); if (IS_ERR_OR_NULL(virt_dev)) { ret = virt_dev ? PTR_ERR(virt_dev) : -ENODEV; dev_err(dev, "Couldn't attach to pm_domain: %d\n", ret); goto err; } /* * The required_opp_tables parsing is not perfect, as the OPP * core does the parsing solely based on the DT node pointers. * The core sets the required_opp_tables entry to the first OPP * table in the "opp_tables" list, that matches with the node * pointer. * * If the target DT OPP table is used by multiple devices and * they all create separate instances of 'struct opp_table' from * it, then it is possible that the required_opp_tables entry * may be set to the incorrect sibling device. * * Cross check it again and fix if required. */ gdev = dev_to_genpd_dev(virt_dev); if (IS_ERR(gdev)) { ret = PTR_ERR(gdev); goto err; } genpd_table = _find_opp_table(gdev); if (!IS_ERR(genpd_table)) { if (genpd_table != opp_table->required_opp_tables[index]) { dev_pm_opp_put_opp_table(opp_table->required_opp_tables[index]); opp_table->required_opp_tables[index] = genpd_table; } else { dev_pm_opp_put_opp_table(genpd_table); } } /* * Add the virtual genpd device as a user of the OPP table, so * we can call dev_pm_opp_set_opp() on it directly. * * This will be automatically removed when the OPP table is * removed, don't need to handle that here. */ if (!_add_opp_dev(virt_dev, opp_table->required_opp_tables[index])) { ret = -ENOMEM; goto err; } opp_table->required_devs[index] = virt_dev; index++; name++; } if (virt_devs) *virt_devs = opp_table->required_devs; return 0; err: _opp_detach_genpd(opp_table); return ret; } static int _opp_set_required_devs(struct opp_table *opp_table, struct device *dev, struct device **required_devs) { int i; if (!opp_table->required_devs) { dev_err(dev, "Required OPPs not available, can't set required devs\n"); return -EINVAL; } /* Another device that shares the OPP table has set the required devs ? */ if (opp_table->required_devs[0]) return 0; for (i = 0; i < opp_table->required_opp_count; i++) { /* Genpd core takes care of propagation to parent genpd */ if (required_devs[i] && opp_table->is_genpd && opp_table->required_opp_tables[i]->is_genpd) { dev_err(dev, "%s: Operation not supported for genpds\n", __func__); return -EOPNOTSUPP; } opp_table->required_devs[i] = required_devs[i]; } return 0; } static void _opp_put_required_devs(struct opp_table *opp_table) { int i; for (i = 0; i < opp_table->required_opp_count; i++) opp_table->required_devs[i] = NULL; } static void _opp_clear_config(struct opp_config_data *data) { if (data->flags & OPP_CONFIG_REQUIRED_DEVS) _opp_put_required_devs(data->opp_table); else if (data->flags & OPP_CONFIG_GENPD) _opp_detach_genpd(data->opp_table); if (data->flags & OPP_CONFIG_REGULATOR) _opp_put_regulators(data->opp_table); if (data->flags & OPP_CONFIG_SUPPORTED_HW) _opp_put_supported_hw(data->opp_table); if (data->flags & OPP_CONFIG_REGULATOR_HELPER) _opp_put_config_regulators_helper(data->opp_table); if (data->flags & OPP_CONFIG_PROP_NAME) _opp_put_prop_name(data->opp_table); if (data->flags & OPP_CONFIG_CLK) _opp_put_clknames(data->opp_table); dev_pm_opp_put_opp_table(data->opp_table); kfree(data); } /** * dev_pm_opp_set_config() - Set OPP configuration for the device. * @dev: Device for which configuration is being set. * @config: OPP configuration. * * This allows all device OPP configurations to be performed at once. * * This must be called before any OPPs are initialized for the device. This may * be called multiple times for the same OPP table, for example once for each * CPU that share the same table. This must be balanced by the same number of * calls to dev_pm_opp_clear_config() in order to free the OPP table properly. * * This returns a token to the caller, which must be passed to * dev_pm_opp_clear_config() to free the resources later. The value of the * returned token will be >= 1 for success and negative for errors. The minimum * value of 1 is chosen here to make it easy for callers to manage the resource. */ int dev_pm_opp_set_config(struct device *dev, struct dev_pm_opp_config *config) { struct opp_table *opp_table; struct opp_config_data *data; unsigned int id; int ret; data = kmalloc(sizeof(*data), GFP_KERNEL); if (!data) return -ENOMEM; opp_table = _add_opp_table(dev, false); if (IS_ERR(opp_table)) { kfree(data); return PTR_ERR(opp_table); } data->opp_table = opp_table; data->flags = 0; /* This should be called before OPPs are initialized */ if (WARN_ON(!list_empty(&opp_table->opp_list))) { ret = -EBUSY; goto err; } /* Configure clocks */ if (config->clk_names) { ret = _opp_set_clknames(opp_table, dev, config->clk_names, config->config_clks); if (ret) goto err; data->flags |= OPP_CONFIG_CLK; } else if (config->config_clks) { /* Don't allow config callback without clocks */ ret = -EINVAL; goto err; } /* Configure property names */ if (config->prop_name) { ret = _opp_set_prop_name(opp_table, config->prop_name); if (ret) goto err; data->flags |= OPP_CONFIG_PROP_NAME; } /* Configure config_regulators helper */ if (config->config_regulators) { ret = _opp_set_config_regulators_helper(opp_table, dev, config->config_regulators); if (ret) goto err; data->flags |= OPP_CONFIG_REGULATOR_HELPER; } /* Configure supported hardware */ if (config->supported_hw) { ret = _opp_set_supported_hw(opp_table, config->supported_hw, config->supported_hw_count); if (ret) goto err; data->flags |= OPP_CONFIG_SUPPORTED_HW; } /* Configure supplies */ if (config->regulator_names) { ret = _opp_set_regulators(opp_table, dev, config->regulator_names); if (ret) goto err; data->flags |= OPP_CONFIG_REGULATOR; } /* Attach genpds */ if (config->genpd_names) { if (config->required_devs) goto err; ret = _opp_attach_genpd(opp_table, dev, config->genpd_names, config->virt_devs); if (ret) goto err; data->flags |= OPP_CONFIG_GENPD; } else if (config->required_devs) { ret = _opp_set_required_devs(opp_table, dev, config->required_devs); if (ret) goto err; data->flags |= OPP_CONFIG_REQUIRED_DEVS; } ret = xa_alloc(&opp_configs, &id, data, XA_LIMIT(1, INT_MAX), GFP_KERNEL); if (ret) goto err; return id; err: _opp_clear_config(data); return ret; } EXPORT_SYMBOL_GPL(dev_pm_opp_set_config); /** * dev_pm_opp_clear_config() - Releases resources blocked for OPP configuration. * @token: The token returned by dev_pm_opp_set_config() previously. * * This allows all device OPP configurations to be cleared at once. This must be * called once for each call made to dev_pm_opp_set_config(), in order to free * the OPPs properly. * * Currently the first call itself ends up freeing all the OPP configurations, * while the later ones only drop the OPP table reference. This works well for * now as we would never want to use an half initialized OPP table and want to * remove the configurations together. */ void dev_pm_opp_clear_config(int token) { struct opp_config_data *data; /* * This lets the callers call this unconditionally and keep their code * simple. */ if (unlikely(token <= 0)) return; data = xa_erase(&opp_configs, token); if (WARN_ON(!data)) return; _opp_clear_config(data); } EXPORT_SYMBOL_GPL(dev_pm_opp_clear_config); static void devm_pm_opp_config_release(void *token) { dev_pm_opp_clear_config((unsigned long)token); } /** * devm_pm_opp_set_config() - Set OPP configuration for the device. * @dev: Device for which configuration is being set. * @config: OPP configuration. * * This allows all device OPP configurations to be performed at once. * This is a resource-managed variant of dev_pm_opp_set_config(). * * Return: 0 on success and errorno otherwise. */ int devm_pm_opp_set_config(struct device *dev, struct dev_pm_opp_config *config) { int token = dev_pm_opp_set_config(dev, config); if (token < 0) return token; return devm_add_action_or_reset(dev, devm_pm_opp_config_release, (void *) ((unsigned long) token)); } EXPORT_SYMBOL_GPL(devm_pm_opp_set_config); /** * dev_pm_opp_xlate_required_opp() - Find required OPP for @src_table OPP. * @src_table: OPP table which has @dst_table as one of its required OPP table. * @dst_table: Required OPP table of the @src_table. * @src_opp: OPP from the @src_table. * * This function returns the OPP (present in @dst_table) pointed out by the * "required-opps" property of the @src_opp (present in @src_table). * * The callers are required to call dev_pm_opp_put() for the returned OPP after * use. * * Return: pointer to 'struct dev_pm_opp' on success and errorno otherwise. */ struct dev_pm_opp *dev_pm_opp_xlate_required_opp(struct opp_table *src_table, struct opp_table *dst_table, struct dev_pm_opp *src_opp) { struct dev_pm_opp *opp, *dest_opp = ERR_PTR(-ENODEV); int i; if (!src_table || !dst_table || !src_opp || !src_table->required_opp_tables) return ERR_PTR(-EINVAL); /* required-opps not fully initialized yet */ if (lazy_linking_pending(src_table)) return ERR_PTR(-EBUSY); for (i = 0; i < src_table->required_opp_count; i++) { if (src_table->required_opp_tables[i] == dst_table) { mutex_lock(&src_table->lock); list_for_each_entry(opp, &src_table->opp_list, node) { if (opp == src_opp) { dest_opp = opp->required_opps[i]; dev_pm_opp_get(dest_opp); break; } } mutex_unlock(&src_table->lock); break; } } if (IS_ERR(dest_opp)) { pr_err("%s: Couldn't find matching OPP (%p: %p)\n", __func__, src_table, dst_table); } return dest_opp; } EXPORT_SYMBOL_GPL(dev_pm_opp_xlate_required_opp); /** * dev_pm_opp_xlate_performance_state() - Find required OPP's pstate for src_table. * @src_table: OPP table which has dst_table as one of its required OPP table. * @dst_table: Required OPP table of the src_table. * @pstate: Current performance state of the src_table. * * This Returns pstate of the OPP (present in @dst_table) pointed out by the * "required-opps" property of the OPP (present in @src_table) which has * performance state set to @pstate. * * Return: Zero or positive performance state on success, otherwise negative * value on errors. */ int dev_pm_opp_xlate_performance_state(struct opp_table *src_table, struct opp_table *dst_table, unsigned int pstate) { struct dev_pm_opp *opp; int dest_pstate = -EINVAL; int i; /* * Normally the src_table will have the "required_opps" property set to * point to one of the OPPs in the dst_table, but in some cases the * genpd and its master have one to one mapping of performance states * and so none of them have the "required-opps" property set. Return the * pstate of the src_table as it is in such cases. */ if (!src_table || !src_table->required_opp_count) return pstate; /* Both OPP tables must belong to genpds */ if (unlikely(!src_table->is_genpd || !dst_table->is_genpd)) { pr_err("%s: Performance state is only valid for genpds.\n", __func__); return -EINVAL; } /* required-opps not fully initialized yet */ if (lazy_linking_pending(src_table)) return -EBUSY; for (i = 0; i < src_table->required_opp_count; i++) { if (src_table->required_opp_tables[i]->np == dst_table->np) break; } if (unlikely(i == src_table->required_opp_count)) { pr_err("%s: Couldn't find matching OPP table (%p: %p)\n", __func__, src_table, dst_table); return -EINVAL; } mutex_lock(&src_table->lock); list_for_each_entry(opp, &src_table->opp_list, node) { if (opp->level == pstate) { dest_pstate = opp->required_opps[i]->level; goto unlock; } } pr_err("%s: Couldn't find matching OPP (%p: %p)\n", __func__, src_table, dst_table); unlock: mutex_unlock(&src_table->lock); return dest_pstate; } /** * dev_pm_opp_add_dynamic() - Add an OPP table from a table definitions * @dev: The device for which we do this operation * @data: The OPP data for the OPP to add * * This function adds an opp definition to the opp table and returns status. * The opp is made available by default and it can be controlled using * dev_pm_opp_enable/disable functions. * * Return: * 0 On success OR * Duplicate OPPs (both freq and volt are same) and opp->available * -EEXIST Freq are same and volt are different OR * Duplicate OPPs (both freq and volt are same) and !opp->available * -ENOMEM Memory allocation failure */ int dev_pm_opp_add_dynamic(struct device *dev, struct dev_pm_opp_data *data) { struct opp_table *opp_table; int ret; opp_table = _add_opp_table(dev, true); if (IS_ERR(opp_table)) return PTR_ERR(opp_table); /* Fix regulator count for dynamic OPPs */ opp_table->regulator_count = 1; ret = _opp_add_v1(opp_table, dev, data, true); if (ret) dev_pm_opp_put_opp_table(opp_table); return ret; } EXPORT_SYMBOL_GPL(dev_pm_opp_add_dynamic); /** * _opp_set_availability() - helper to set the availability of an opp * @dev: device for which we do this operation * @freq: OPP frequency to modify availability * @availability_req: availability status requested for this opp * * Set the availability of an OPP, opp_{enable,disable} share a common logic * which is isolated here. * * Return: -EINVAL for bad pointers, -ENOMEM if no memory available for the * copy operation, returns 0 if no modification was done OR modification was * successful. */ static int _opp_set_availability(struct device *dev, unsigned long freq, bool availability_req) { struct opp_table *opp_table; struct dev_pm_opp *tmp_opp, *opp = ERR_PTR(-ENODEV); int r = 0; /* Find the opp_table */ opp_table = _find_opp_table(dev); if (IS_ERR(opp_table)) { r = PTR_ERR(opp_table); dev_warn(dev, "%s: Device OPP not found (%d)\n", __func__, r); return r; } if (!assert_single_clk(opp_table)) { r = -EINVAL; goto put_table; } mutex_lock(&opp_table->lock); /* Do we have the frequency? */ list_for_each_entry(tmp_opp, &opp_table->opp_list, node) { if (tmp_opp->rates[0] == freq) { opp = tmp_opp; break; } } if (IS_ERR(opp)) { r = PTR_ERR(opp); goto unlock; } /* Is update really needed? */ if (opp->available == availability_req) goto unlock; opp->available = availability_req; dev_pm_opp_get(opp); mutex_unlock(&opp_table->lock); /* Notify the change of the OPP availability */ if (availability_req) blocking_notifier_call_chain(&opp_table->head, OPP_EVENT_ENABLE, opp); else blocking_notifier_call_chain(&opp_table->head, OPP_EVENT_DISABLE, opp); dev_pm_opp_put(opp); goto put_table; unlock: mutex_unlock(&opp_table->lock); put_table: dev_pm_opp_put_opp_table(opp_table); return r; } /** * dev_pm_opp_adjust_voltage() - helper to change the voltage of an OPP * @dev: device for which we do this operation * @freq: OPP frequency to adjust voltage of * @u_volt: new OPP target voltage * @u_volt_min: new OPP min voltage * @u_volt_max: new OPP max voltage * * Return: -EINVAL for bad pointers, -ENOMEM if no memory available for the * copy operation, returns 0 if no modifcation was done OR modification was * successful. */ int dev_pm_opp_adjust_voltage(struct device *dev, unsigned long freq, unsigned long u_volt, unsigned long u_volt_min, unsigned long u_volt_max) { struct opp_table *opp_table; struct dev_pm_opp *tmp_opp, *opp = ERR_PTR(-ENODEV); int r = 0; /* Find the opp_table */ opp_table = _find_opp_table(dev); if (IS_ERR(opp_table)) { r = PTR_ERR(opp_table); dev_warn(dev, "%s: Device OPP not found (%d)\n", __func__, r); return r; } if (!assert_single_clk(opp_table)) { r = -EINVAL; goto put_table; } mutex_lock(&opp_table->lock); /* Do we have the frequency? */ list_for_each_entry(tmp_opp, &opp_table->opp_list, node) { if (tmp_opp->rates[0] == freq) { opp = tmp_opp; break; } } if (IS_ERR(opp)) { r = PTR_ERR(opp); goto adjust_unlock; } /* Is update really needed? */ if (opp->supplies->u_volt == u_volt) goto adjust_unlock; opp->supplies->u_volt = u_volt; opp->supplies->u_volt_min = u_volt_min; opp->supplies->u_volt_max = u_volt_max; dev_pm_opp_get(opp); mutex_unlock(&opp_table->lock); /* Notify the voltage change of the OPP */ blocking_notifier_call_chain(&opp_table->head, OPP_EVENT_ADJUST_VOLTAGE, opp); dev_pm_opp_put(opp); goto put_table; adjust_unlock: mutex_unlock(&opp_table->lock); put_table: dev_pm_opp_put_opp_table(opp_table); return r; } EXPORT_SYMBOL_GPL(dev_pm_opp_adjust_voltage); /** * dev_pm_opp_sync_regulators() - Sync state of voltage regulators * @dev: device for which we do this operation * * Sync voltage state of the OPP table regulators. * * Return: 0 on success or a negative error value. */ int dev_pm_opp_sync_regulators(struct device *dev) { struct opp_table *opp_table; struct regulator *reg; int i, ret = 0; /* Device may not have OPP table */ opp_table = _find_opp_table(dev); if (IS_ERR(opp_table)) return 0; /* Regulator may not be required for the device */ if (unlikely(!opp_table->regulators)) goto put_table; /* Nothing to sync if voltage wasn't changed */ if (!opp_table->enabled) goto put_table; for (i = 0; i < opp_table->regulator_count; i++) { reg = opp_table->regulators[i]; ret = regulator_sync_voltage(reg); if (ret) break; } put_table: /* Drop reference taken by _find_opp_table() */ dev_pm_opp_put_opp_table(opp_table); return ret; } EXPORT_SYMBOL_GPL(dev_pm_opp_sync_regulators); /** * dev_pm_opp_enable() - Enable a specific OPP * @dev: device for which we do this operation * @freq: OPP frequency to enable * * Enables a provided opp. If the operation is valid, this returns 0, else the * corresponding error value. It is meant to be used for users an OPP available * after being temporarily made unavailable with dev_pm_opp_disable. * * Return: -EINVAL for bad pointers, -ENOMEM if no memory available for the * copy operation, returns 0 if no modification was done OR modification was * successful. */ int dev_pm_opp_enable(struct device *dev, unsigned long freq) { return _opp_set_availability(dev, freq, true); } EXPORT_SYMBOL_GPL(dev_pm_opp_enable); /** * dev_pm_opp_disable() - Disable a specific OPP * @dev: device for which we do this operation * @freq: OPP frequency to disable * * Disables a provided opp. If the operation is valid, this returns * 0, else the corresponding error value. It is meant to be a temporary * control by users to make this OPP not available until the circumstances are * right to make it available again (with a call to dev_pm_opp_enable). * * Return: -EINVAL for bad pointers, -ENOMEM if no memory available for the * copy operation, returns 0 if no modification was done OR modification was * successful. */ int dev_pm_opp_disable(struct device *dev, unsigned long freq) { return _opp_set_availability(dev, freq, false); } EXPORT_SYMBOL_GPL(dev_pm_opp_disable); /** * dev_pm_opp_register_notifier() - Register OPP notifier for the device * @dev: Device for which notifier needs to be registered * @nb: Notifier block to be registered * * Return: 0 on success or a negative error value. */ int dev_pm_opp_register_notifier(struct device *dev, struct notifier_block *nb) { struct opp_table *opp_table; int ret; opp_table = _find_opp_table(dev); if (IS_ERR(opp_table)) return PTR_ERR(opp_table); ret = blocking_notifier_chain_register(&opp_table->head, nb); dev_pm_opp_put_opp_table(opp_table); return ret; } EXPORT_SYMBOL(dev_pm_opp_register_notifier); /** * dev_pm_opp_unregister_notifier() - Unregister OPP notifier for the device * @dev: Device for which notifier needs to be unregistered * @nb: Notifier block to be unregistered * * Return: 0 on success or a negative error value. */ int dev_pm_opp_unregister_notifier(struct device *dev, struct notifier_block *nb) { struct opp_table *opp_table; int ret; opp_table = _find_opp_table(dev); if (IS_ERR(opp_table)) return PTR_ERR(opp_table); ret = blocking_notifier_chain_unregister(&opp_table->head, nb); dev_pm_opp_put_opp_table(opp_table); return ret; } EXPORT_SYMBOL(dev_pm_opp_unregister_notifier); /** * dev_pm_opp_remove_table() - Free all OPPs associated with the device * @dev: device pointer used to lookup OPP table. * * Free both OPPs created using static entries present in DT and the * dynamically added entries. */ void dev_pm_opp_remove_table(struct device *dev) { struct opp_table *opp_table; /* Check for existing table for 'dev' */ opp_table = _find_opp_table(dev); if (IS_ERR(opp_table)) { int error = PTR_ERR(opp_table); if (error != -ENODEV) WARN(1, "%s: opp_table: %d\n", IS_ERR_OR_NULL(dev) ? "Invalid device" : dev_name(dev), error); return; } /* * Drop the extra reference only if the OPP table was successfully added * with dev_pm_opp_of_add_table() earlier. **/ if (_opp_remove_all_static(opp_table)) dev_pm_opp_put_opp_table(opp_table); /* Drop reference taken by _find_opp_table() */ dev_pm_opp_put_opp_table(opp_table); } EXPORT_SYMBOL_GPL(dev_pm_opp_remove_table);