// SPDX-License-Identifier: GPL-2.0 /* * AMD HSMP Platform Driver * Copyright (c) 2022, AMD. * All Rights Reserved. * * This file provides a device implementation for HSMP interface */ #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt #include #include #include #include #include #include #include #include #include #include #define DRIVER_NAME "amd_hsmp" #define DRIVER_VERSION "2.2" #define ACPI_HSMP_DEVICE_HID "AMDI0097" /* HSMP Status / Error codes */ #define HSMP_STATUS_NOT_READY 0x00 #define HSMP_STATUS_OK 0x01 #define HSMP_ERR_INVALID_MSG 0xFE #define HSMP_ERR_INVALID_INPUT 0xFF /* Timeout in millsec */ #define HSMP_MSG_TIMEOUT 100 #define HSMP_SHORT_SLEEP 1 #define HSMP_WR true #define HSMP_RD false /* * To access specific HSMP mailbox register, s/w writes the SMN address of HSMP mailbox * register into the SMN_INDEX register, and reads/writes the SMN_DATA reg. * Below are required SMN address for HSMP Mailbox register offsets in SMU address space */ #define SMN_HSMP_BASE 0x3B00000 #define SMN_HSMP_MSG_ID 0x0010534 #define SMN_HSMP_MSG_ID_F1A_M0H 0x0010934 #define SMN_HSMP_MSG_RESP 0x0010980 #define SMN_HSMP_MSG_DATA 0x00109E0 #define HSMP_INDEX_REG 0xc4 #define HSMP_DATA_REG 0xc8 #define HSMP_CDEV_NAME "hsmp_cdev" #define HSMP_DEVNODE_NAME "hsmp" #define HSMP_METRICS_TABLE_NAME "metrics_bin" #define HSMP_ATTR_GRP_NAME_SIZE 10 /* These are the strings specified in ACPI table */ #define MSG_IDOFF_STR "MsgIdOffset" #define MSG_ARGOFF_STR "MsgArgOffset" #define MSG_RESPOFF_STR "MsgRspOffset" #define MAX_AMD_SOCKETS 8 struct hsmp_mbaddr_info { u32 base_addr; u32 msg_id_off; u32 msg_resp_off; u32 msg_arg_off; u32 size; }; struct hsmp_socket { struct bin_attribute hsmp_attr; struct hsmp_mbaddr_info mbinfo; void __iomem *metric_tbl_addr; void __iomem *virt_base_addr; struct semaphore hsmp_sem; char name[HSMP_ATTR_GRP_NAME_SIZE]; struct pci_dev *root; struct device *dev; u16 sock_ind; }; struct hsmp_plat_device { struct miscdevice hsmp_device; struct hsmp_socket *sock; u32 proto_ver; u16 num_sockets; bool is_acpi_device; bool is_probed; }; static struct hsmp_plat_device plat_dev; static int amd_hsmp_pci_rdwr(struct hsmp_socket *sock, u32 offset, u32 *value, bool write) { int ret; if (!sock->root) return -ENODEV; ret = pci_write_config_dword(sock->root, HSMP_INDEX_REG, sock->mbinfo.base_addr + offset); if (ret) return ret; ret = (write ? pci_write_config_dword(sock->root, HSMP_DATA_REG, *value) : pci_read_config_dword(sock->root, HSMP_DATA_REG, value)); return ret; } static void amd_hsmp_acpi_rdwr(struct hsmp_socket *sock, u32 offset, u32 *value, bool write) { if (write) iowrite32(*value, sock->virt_base_addr + offset); else *value = ioread32(sock->virt_base_addr + offset); } static int amd_hsmp_rdwr(struct hsmp_socket *sock, u32 offset, u32 *value, bool write) { if (plat_dev.is_acpi_device) amd_hsmp_acpi_rdwr(sock, offset, value, write); else return amd_hsmp_pci_rdwr(sock, offset, value, write); return 0; } /* * Send a message to the HSMP port via PCI-e config space registers * or by writing to MMIO space. * * The caller is expected to zero out any unused arguments. * If a response is expected, the number of response words should be greater than 0. * * Returns 0 for success and populates the requested number of arguments. * Returns a negative error code for failure. */ static int __hsmp_send_message(struct hsmp_socket *sock, struct hsmp_message *msg) { struct hsmp_mbaddr_info *mbinfo; unsigned long timeout, short_sleep; u32 mbox_status; u32 index; int ret; mbinfo = &sock->mbinfo; /* Clear the status register */ mbox_status = HSMP_STATUS_NOT_READY; ret = amd_hsmp_rdwr(sock, mbinfo->msg_resp_off, &mbox_status, HSMP_WR); if (ret) { pr_err("Error %d clearing mailbox status register\n", ret); return ret; } index = 0; /* Write any message arguments */ while (index < msg->num_args) { ret = amd_hsmp_rdwr(sock, mbinfo->msg_arg_off + (index << 2), &msg->args[index], HSMP_WR); if (ret) { pr_err("Error %d writing message argument %d\n", ret, index); return ret; } index++; } /* Write the message ID which starts the operation */ ret = amd_hsmp_rdwr(sock, mbinfo->msg_id_off, &msg->msg_id, HSMP_WR); if (ret) { pr_err("Error %d writing message ID %u\n", ret, msg->msg_id); return ret; } /* * Depending on when the trigger write completes relative to the SMU * firmware 1 ms cycle, the operation may take from tens of us to 1 ms * to complete. Some operations may take more. Therefore we will try * a few short duration sleeps and switch to long sleeps if we don't * succeed quickly. */ short_sleep = jiffies + msecs_to_jiffies(HSMP_SHORT_SLEEP); timeout = jiffies + msecs_to_jiffies(HSMP_MSG_TIMEOUT); while (time_before(jiffies, timeout)) { ret = amd_hsmp_rdwr(sock, mbinfo->msg_resp_off, &mbox_status, HSMP_RD); if (ret) { pr_err("Error %d reading mailbox status\n", ret); return ret; } if (mbox_status != HSMP_STATUS_NOT_READY) break; if (time_before(jiffies, short_sleep)) usleep_range(50, 100); else usleep_range(1000, 2000); } if (unlikely(mbox_status == HSMP_STATUS_NOT_READY)) { return -ETIMEDOUT; } else if (unlikely(mbox_status == HSMP_ERR_INVALID_MSG)) { return -ENOMSG; } else if (unlikely(mbox_status == HSMP_ERR_INVALID_INPUT)) { return -EINVAL; } else if (unlikely(mbox_status != HSMP_STATUS_OK)) { pr_err("Message ID %u unknown failure (status = 0x%X)\n", msg->msg_id, mbox_status); return -EIO; } /* * SMU has responded OK. Read response data. * SMU reads the input arguments from eight 32 bit registers starting * from SMN_HSMP_MSG_DATA and writes the response data to the same * SMN_HSMP_MSG_DATA address. * We copy the response data if any, back to the args[]. */ index = 0; while (index < msg->response_sz) { ret = amd_hsmp_rdwr(sock, mbinfo->msg_arg_off + (index << 2), &msg->args[index], HSMP_RD); if (ret) { pr_err("Error %d reading response %u for message ID:%u\n", ret, index, msg->msg_id); break; } index++; } return ret; } static int validate_message(struct hsmp_message *msg) { /* msg_id against valid range of message IDs */ if (msg->msg_id < HSMP_TEST || msg->msg_id >= HSMP_MSG_ID_MAX) return -ENOMSG; /* msg_id is a reserved message ID */ if (hsmp_msg_desc_table[msg->msg_id].type == HSMP_RSVD) return -ENOMSG; /* num_args and response_sz against the HSMP spec */ if (msg->num_args != hsmp_msg_desc_table[msg->msg_id].num_args || msg->response_sz != hsmp_msg_desc_table[msg->msg_id].response_sz) return -EINVAL; return 0; } int hsmp_send_message(struct hsmp_message *msg) { struct hsmp_socket *sock; int ret; if (!msg) return -EINVAL; ret = validate_message(msg); if (ret) return ret; if (!plat_dev.sock || msg->sock_ind >= plat_dev.num_sockets) return -ENODEV; sock = &plat_dev.sock[msg->sock_ind]; /* * The time taken by smu operation to complete is between * 10us to 1ms. Sometime it may take more time. * In SMP system timeout of 100 millisecs should * be enough for the previous thread to finish the operation */ ret = down_timeout(&sock->hsmp_sem, msecs_to_jiffies(HSMP_MSG_TIMEOUT)); if (ret < 0) return ret; ret = __hsmp_send_message(sock, msg); up(&sock->hsmp_sem); return ret; } EXPORT_SYMBOL_GPL(hsmp_send_message); static int hsmp_test(u16 sock_ind, u32 value) { struct hsmp_message msg = { 0 }; int ret; /* * Test the hsmp port by performing TEST command. The test message * takes one argument and returns the value of that argument + 1. */ msg.msg_id = HSMP_TEST; msg.num_args = 1; msg.response_sz = 1; msg.args[0] = value; msg.sock_ind = sock_ind; ret = hsmp_send_message(&msg); if (ret) return ret; /* Check the response value */ if (msg.args[0] != (value + 1)) { dev_err(plat_dev.sock[sock_ind].dev, "Socket %d test message failed, Expected 0x%08X, received 0x%08X\n", sock_ind, (value + 1), msg.args[0]); return -EBADE; } return ret; } static long hsmp_ioctl(struct file *fp, unsigned int cmd, unsigned long arg) { int __user *arguser = (int __user *)arg; struct hsmp_message msg = { 0 }; int ret; if (copy_struct_from_user(&msg, sizeof(msg), arguser, sizeof(struct hsmp_message))) return -EFAULT; /* * Check msg_id is within the range of supported msg ids * i.e within the array bounds of hsmp_msg_desc_table */ if (msg.msg_id < HSMP_TEST || msg.msg_id >= HSMP_MSG_ID_MAX) return -ENOMSG; switch (fp->f_mode & (FMODE_WRITE | FMODE_READ)) { case FMODE_WRITE: /* * Device is opened in O_WRONLY mode * Execute only set/configure commands */ if (hsmp_msg_desc_table[msg.msg_id].type != HSMP_SET) return -EINVAL; break; case FMODE_READ: /* * Device is opened in O_RDONLY mode * Execute only get/monitor commands */ if (hsmp_msg_desc_table[msg.msg_id].type != HSMP_GET) return -EINVAL; break; case FMODE_READ | FMODE_WRITE: /* * Device is opened in O_RDWR mode * Execute both get/monitor and set/configure commands */ break; default: return -EINVAL; } ret = hsmp_send_message(&msg); if (ret) return ret; if (hsmp_msg_desc_table[msg.msg_id].response_sz > 0) { /* Copy results back to user for get/monitor commands */ if (copy_to_user(arguser, &msg, sizeof(struct hsmp_message))) return -EFAULT; } return 0; } static const struct file_operations hsmp_fops = { .owner = THIS_MODULE, .unlocked_ioctl = hsmp_ioctl, .compat_ioctl = hsmp_ioctl, }; /* This is the UUID used for HSMP */ static const guid_t acpi_hsmp_uuid = GUID_INIT(0xb74d619d, 0x5707, 0x48bd, 0xa6, 0x9f, 0x4e, 0xa2, 0x87, 0x1f, 0xc2, 0xf6); static inline bool is_acpi_hsmp_uuid(union acpi_object *obj) { if (obj->type == ACPI_TYPE_BUFFER && obj->buffer.length == UUID_SIZE) return guid_equal((guid_t *)obj->buffer.pointer, &acpi_hsmp_uuid); return false; } static inline int hsmp_get_uid(struct device *dev, u16 *sock_ind) { char *uid; /* * UID (ID00, ID01..IDXX) is used for differentiating sockets, * read it and strip the "ID" part of it and convert the remaining * bytes to integer. */ uid = acpi_device_uid(ACPI_COMPANION(dev)); return kstrtou16(uid + 2, 10, sock_ind); } static acpi_status hsmp_resource(struct acpi_resource *res, void *data) { struct hsmp_socket *sock = data; struct resource r; switch (res->type) { case ACPI_RESOURCE_TYPE_FIXED_MEMORY32: if (!acpi_dev_resource_memory(res, &r)) return AE_ERROR; if (!r.start || r.end < r.start || !(r.flags & IORESOURCE_MEM_WRITEABLE)) return AE_ERROR; sock->mbinfo.base_addr = r.start; sock->mbinfo.size = resource_size(&r); break; case ACPI_RESOURCE_TYPE_END_TAG: break; default: return AE_ERROR; } return AE_OK; } static int hsmp_read_acpi_dsd(struct hsmp_socket *sock) { struct acpi_buffer buf = { ACPI_ALLOCATE_BUFFER, NULL }; union acpi_object *guid, *mailbox_package; union acpi_object *dsd; acpi_status status; int ret = 0; int j; status = acpi_evaluate_object_typed(ACPI_HANDLE(sock->dev), "_DSD", NULL, &buf, ACPI_TYPE_PACKAGE); if (ACPI_FAILURE(status)) { dev_err(sock->dev, "Failed to read mailbox reg offsets from DSD table, err: %s\n", acpi_format_exception(status)); return -ENODEV; } dsd = buf.pointer; /* HSMP _DSD property should contain 2 objects. * 1. guid which is an acpi object of type ACPI_TYPE_BUFFER * 2. mailbox which is an acpi object of type ACPI_TYPE_PACKAGE * This mailbox object contains 3 more acpi objects of type * ACPI_TYPE_PACKAGE for holding msgid, msgresp, msgarg offsets * these packages inturn contain 2 acpi objects of type * ACPI_TYPE_STRING and ACPI_TYPE_INTEGER */ if (!dsd || dsd->type != ACPI_TYPE_PACKAGE || dsd->package.count != 2) { ret = -EINVAL; goto free_buf; } guid = &dsd->package.elements[0]; mailbox_package = &dsd->package.elements[1]; if (!is_acpi_hsmp_uuid(guid) || mailbox_package->type != ACPI_TYPE_PACKAGE) { dev_err(sock->dev, "Invalid hsmp _DSD table data\n"); ret = -EINVAL; goto free_buf; } for (j = 0; j < mailbox_package->package.count; j++) { union acpi_object *msgobj, *msgstr, *msgint; msgobj = &mailbox_package->package.elements[j]; msgstr = &msgobj->package.elements[0]; msgint = &msgobj->package.elements[1]; /* package should have 1 string and 1 integer object */ if (msgobj->type != ACPI_TYPE_PACKAGE || msgstr->type != ACPI_TYPE_STRING || msgint->type != ACPI_TYPE_INTEGER) { ret = -EINVAL; goto free_buf; } if (!strncmp(msgstr->string.pointer, MSG_IDOFF_STR, msgstr->string.length)) { sock->mbinfo.msg_id_off = msgint->integer.value; } else if (!strncmp(msgstr->string.pointer, MSG_RESPOFF_STR, msgstr->string.length)) { sock->mbinfo.msg_resp_off = msgint->integer.value; } else if (!strncmp(msgstr->string.pointer, MSG_ARGOFF_STR, msgstr->string.length)) { sock->mbinfo.msg_arg_off = msgint->integer.value; } else { ret = -ENOENT; goto free_buf; } } if (!sock->mbinfo.msg_id_off || !sock->mbinfo.msg_resp_off || !sock->mbinfo.msg_arg_off) ret = -EINVAL; free_buf: ACPI_FREE(buf.pointer); return ret; } static int hsmp_read_acpi_crs(struct hsmp_socket *sock) { acpi_status status; status = acpi_walk_resources(ACPI_HANDLE(sock->dev), METHOD_NAME__CRS, hsmp_resource, sock); if (ACPI_FAILURE(status)) { dev_err(sock->dev, "Failed to look up MP1 base address from CRS method, err: %s\n", acpi_format_exception(status)); return -EINVAL; } if (!sock->mbinfo.base_addr || !sock->mbinfo.size) return -EINVAL; /* The mapped region should be un cached */ sock->virt_base_addr = devm_ioremap_uc(sock->dev, sock->mbinfo.base_addr, sock->mbinfo.size); if (!sock->virt_base_addr) { dev_err(sock->dev, "Failed to ioremap MP1 base address\n"); return -ENOMEM; } return 0; } /* Parse the ACPI table to read the data */ static int hsmp_parse_acpi_table(struct device *dev, u16 sock_ind) { struct hsmp_socket *sock = &plat_dev.sock[sock_ind]; int ret; sock->sock_ind = sock_ind; sock->dev = dev; plat_dev.is_acpi_device = true; sema_init(&sock->hsmp_sem, 1); /* Read MP1 base address from CRS method */ ret = hsmp_read_acpi_crs(sock); if (ret) return ret; /* Read mailbox offsets from DSD table */ return hsmp_read_acpi_dsd(sock); } static ssize_t hsmp_metric_tbl_read(struct file *filp, struct kobject *kobj, struct bin_attribute *bin_attr, char *buf, loff_t off, size_t count) { struct hsmp_socket *sock = bin_attr->private; struct hsmp_message msg = { 0 }; int ret; if (!sock) return -EINVAL; /* Do not support lseek(), reads entire metric table */ if (count < bin_attr->size) { dev_err(sock->dev, "Wrong buffer size\n"); return -EINVAL; } msg.msg_id = HSMP_GET_METRIC_TABLE; msg.sock_ind = sock->sock_ind; ret = hsmp_send_message(&msg); if (ret) return ret; memcpy_fromio(buf, sock->metric_tbl_addr, bin_attr->size); return bin_attr->size; } static int hsmp_get_tbl_dram_base(u16 sock_ind) { struct hsmp_socket *sock = &plat_dev.sock[sock_ind]; struct hsmp_message msg = { 0 }; phys_addr_t dram_addr; int ret; msg.sock_ind = sock_ind; msg.response_sz = hsmp_msg_desc_table[HSMP_GET_METRIC_TABLE_DRAM_ADDR].response_sz; msg.msg_id = HSMP_GET_METRIC_TABLE_DRAM_ADDR; ret = hsmp_send_message(&msg); if (ret) return ret; /* * calculate the metric table DRAM address from lower and upper 32 bits * sent from SMU and ioremap it to virtual address. */ dram_addr = msg.args[0] | ((u64)(msg.args[1]) << 32); if (!dram_addr) { dev_err(sock->dev, "Invalid DRAM address for metric table\n"); return -ENOMEM; } sock->metric_tbl_addr = devm_ioremap(sock->dev, dram_addr, sizeof(struct hsmp_metric_table)); if (!sock->metric_tbl_addr) { dev_err(sock->dev, "Failed to ioremap metric table addr\n"); return -ENOMEM; } return 0; } static umode_t hsmp_is_sock_attr_visible(struct kobject *kobj, struct bin_attribute *battr, int id) { if (plat_dev.proto_ver == HSMP_PROTO_VER6) return battr->attr.mode; else return 0; } static int hsmp_init_metric_tbl_bin_attr(struct bin_attribute **hattrs, u16 sock_ind) { struct bin_attribute *hattr = &plat_dev.sock[sock_ind].hsmp_attr; sysfs_bin_attr_init(hattr); hattr->attr.name = HSMP_METRICS_TABLE_NAME; hattr->attr.mode = 0444; hattr->read = hsmp_metric_tbl_read; hattr->size = sizeof(struct hsmp_metric_table); hattr->private = &plat_dev.sock[sock_ind]; hattrs[0] = hattr; if (plat_dev.proto_ver == HSMP_PROTO_VER6) return hsmp_get_tbl_dram_base(sock_ind); else return 0; } /* One bin sysfs for metrics table */ #define NUM_HSMP_ATTRS 1 static int hsmp_create_attr_list(struct attribute_group *attr_grp, struct device *dev, u16 sock_ind) { struct bin_attribute **hsmp_bin_attrs; /* Null terminated list of attributes */ hsmp_bin_attrs = devm_kcalloc(dev, NUM_HSMP_ATTRS + 1, sizeof(*hsmp_bin_attrs), GFP_KERNEL); if (!hsmp_bin_attrs) return -ENOMEM; attr_grp->bin_attrs = hsmp_bin_attrs; return hsmp_init_metric_tbl_bin_attr(hsmp_bin_attrs, sock_ind); } static int hsmp_create_non_acpi_sysfs_if(struct device *dev) { const struct attribute_group **hsmp_attr_grps; struct attribute_group *attr_grp; u16 i; hsmp_attr_grps = devm_kcalloc(dev, plat_dev.num_sockets + 1, sizeof(*hsmp_attr_grps), GFP_KERNEL); if (!hsmp_attr_grps) return -ENOMEM; /* Create a sysfs directory for each socket */ for (i = 0; i < plat_dev.num_sockets; i++) { attr_grp = devm_kzalloc(dev, sizeof(struct attribute_group), GFP_KERNEL); if (!attr_grp) return -ENOMEM; snprintf(plat_dev.sock[i].name, HSMP_ATTR_GRP_NAME_SIZE, "socket%u", (u8)i); attr_grp->name = plat_dev.sock[i].name; attr_grp->is_bin_visible = hsmp_is_sock_attr_visible; hsmp_attr_grps[i] = attr_grp; hsmp_create_attr_list(attr_grp, dev, i); } return devm_device_add_groups(dev, hsmp_attr_grps); } static int hsmp_create_acpi_sysfs_if(struct device *dev) { struct attribute_group *attr_grp; u16 sock_ind; int ret; attr_grp = devm_kzalloc(dev, sizeof(struct attribute_group), GFP_KERNEL); if (!attr_grp) return -ENOMEM; attr_grp->is_bin_visible = hsmp_is_sock_attr_visible; ret = hsmp_get_uid(dev, &sock_ind); if (ret) return ret; ret = hsmp_create_attr_list(attr_grp, dev, sock_ind); if (ret) return ret; return devm_device_add_group(dev, attr_grp); } static int hsmp_cache_proto_ver(u16 sock_ind) { struct hsmp_message msg = { 0 }; int ret; msg.msg_id = HSMP_GET_PROTO_VER; msg.sock_ind = sock_ind; msg.response_sz = hsmp_msg_desc_table[HSMP_GET_PROTO_VER].response_sz; ret = hsmp_send_message(&msg); if (!ret) plat_dev.proto_ver = msg.args[0]; return ret; } static inline bool is_f1a_m0h(void) { if (boot_cpu_data.x86 == 0x1A && boot_cpu_data.x86_model <= 0x0F) return true; return false; } static int init_platform_device(struct device *dev) { struct hsmp_socket *sock; int ret, i; for (i = 0; i < plat_dev.num_sockets; i++) { if (!node_to_amd_nb(i)) return -ENODEV; sock = &plat_dev.sock[i]; sock->root = node_to_amd_nb(i)->root; sock->sock_ind = i; sock->dev = dev; sock->mbinfo.base_addr = SMN_HSMP_BASE; /* * This is a transitional change from non-ACPI to ACPI, only * family 0x1A, model 0x00 platform is supported for both ACPI and non-ACPI. */ if (is_f1a_m0h()) sock->mbinfo.msg_id_off = SMN_HSMP_MSG_ID_F1A_M0H; else sock->mbinfo.msg_id_off = SMN_HSMP_MSG_ID; sock->mbinfo.msg_resp_off = SMN_HSMP_MSG_RESP; sock->mbinfo.msg_arg_off = SMN_HSMP_MSG_DATA; sema_init(&sock->hsmp_sem, 1); /* Test the hsmp interface on each socket */ ret = hsmp_test(i, 0xDEADBEEF); if (ret) { dev_err(dev, "HSMP test message failed on Fam:%x model:%x\n", boot_cpu_data.x86, boot_cpu_data.x86_model); dev_err(dev, "Is HSMP disabled in BIOS ?\n"); return ret; } } return 0; } static const struct acpi_device_id amd_hsmp_acpi_ids[] = { {ACPI_HSMP_DEVICE_HID, 0}, {} }; MODULE_DEVICE_TABLE(acpi, amd_hsmp_acpi_ids); static int hsmp_pltdrv_probe(struct platform_device *pdev) { struct acpi_device *adev; u16 sock_ind = 0; int ret; /* * On ACPI supported BIOS, there is an ACPI HSMP device added for * each socket, so the per socket probing, but the memory allocated for * sockets should be contiguous to access it as an array, * Hence allocate memory for all the sockets at once instead of allocating * on each probe. */ if (!plat_dev.is_probed) { plat_dev.sock = devm_kcalloc(&pdev->dev, plat_dev.num_sockets, sizeof(*plat_dev.sock), GFP_KERNEL); if (!plat_dev.sock) return -ENOMEM; } adev = ACPI_COMPANION(&pdev->dev); if (adev && !acpi_match_device_ids(adev, amd_hsmp_acpi_ids)) { ret = hsmp_get_uid(&pdev->dev, &sock_ind); if (ret) return ret; if (sock_ind >= plat_dev.num_sockets) return -EINVAL; ret = hsmp_parse_acpi_table(&pdev->dev, sock_ind); if (ret) { dev_err(&pdev->dev, "Failed to parse ACPI table\n"); return ret; } /* Test the hsmp interface */ ret = hsmp_test(sock_ind, 0xDEADBEEF); if (ret) { dev_err(&pdev->dev, "HSMP test message failed on Fam:%x model:%x\n", boot_cpu_data.x86, boot_cpu_data.x86_model); dev_err(&pdev->dev, "Is HSMP disabled in BIOS ?\n"); return ret; } } else { ret = init_platform_device(&pdev->dev); if (ret) { dev_err(&pdev->dev, "Failed to init HSMP mailbox\n"); return ret; } } ret = hsmp_cache_proto_ver(sock_ind); if (ret) { dev_err(&pdev->dev, "Failed to read HSMP protocol version\n"); return ret; } if (plat_dev.is_acpi_device) ret = hsmp_create_acpi_sysfs_if(&pdev->dev); else ret = hsmp_create_non_acpi_sysfs_if(&pdev->dev); if (ret) dev_err(&pdev->dev, "Failed to create HSMP sysfs interface\n"); if (!plat_dev.is_probed) { plat_dev.hsmp_device.name = HSMP_CDEV_NAME; plat_dev.hsmp_device.minor = MISC_DYNAMIC_MINOR; plat_dev.hsmp_device.fops = &hsmp_fops; plat_dev.hsmp_device.parent = &pdev->dev; plat_dev.hsmp_device.nodename = HSMP_DEVNODE_NAME; plat_dev.hsmp_device.mode = 0644; ret = misc_register(&plat_dev.hsmp_device); if (ret) return ret; plat_dev.is_probed = true; } return 0; } static void hsmp_pltdrv_remove(struct platform_device *pdev) { /* * We register only one misc_device even on multi socket system. * So, deregister should happen only once. */ if (plat_dev.is_probed) { misc_deregister(&plat_dev.hsmp_device); plat_dev.is_probed = false; } } static struct platform_driver amd_hsmp_driver = { .probe = hsmp_pltdrv_probe, .remove_new = hsmp_pltdrv_remove, .driver = { .name = DRIVER_NAME, .acpi_match_table = amd_hsmp_acpi_ids, }, }; static struct platform_device *amd_hsmp_platdev; static int hsmp_plat_dev_register(void) { int ret; amd_hsmp_platdev = platform_device_alloc(DRIVER_NAME, PLATFORM_DEVID_NONE); if (!amd_hsmp_platdev) return -ENOMEM; ret = platform_device_add(amd_hsmp_platdev); if (ret) platform_device_put(amd_hsmp_platdev); return ret; } /* * This check is only needed for backward compatibility of previous platforms. * All new platforms are expected to support ACPI based probing. */ static bool legacy_hsmp_support(void) { if (boot_cpu_data.x86_vendor != X86_VENDOR_AMD) return false; switch (boot_cpu_data.x86) { case 0x19: switch (boot_cpu_data.x86_model) { case 0x00 ... 0x1F: case 0x30 ... 0x3F: case 0x90 ... 0x9F: case 0xA0 ... 0xAF: return true; default: return false; } case 0x1A: switch (boot_cpu_data.x86_model) { case 0x00 ... 0x1F: return true; default: return false; } default: return false; } return false; } static int __init hsmp_plt_init(void) { int ret = -ENODEV; /* * amd_nb_num() returns number of SMN/DF interfaces present in the system * if we have N SMN/DF interfaces that ideally means N sockets */ plat_dev.num_sockets = amd_nb_num(); if (plat_dev.num_sockets == 0 || plat_dev.num_sockets > MAX_AMD_SOCKETS) return ret; ret = platform_driver_register(&amd_hsmp_driver); if (ret) return ret; if (!plat_dev.is_acpi_device) { if (legacy_hsmp_support()) { /* Not ACPI device, but supports HSMP, register a plat_dev */ ret = hsmp_plat_dev_register(); } else { /* Not ACPI, Does not support HSMP */ pr_info("HSMP is not supported on Family:%x model:%x\n", boot_cpu_data.x86, boot_cpu_data.x86_model); ret = -ENODEV; } if (ret) platform_driver_unregister(&amd_hsmp_driver); } return ret; } static void __exit hsmp_plt_exit(void) { platform_device_unregister(amd_hsmp_platdev); platform_driver_unregister(&amd_hsmp_driver); } device_initcall(hsmp_plt_init); module_exit(hsmp_plt_exit); MODULE_DESCRIPTION("AMD HSMP Platform Interface Driver"); MODULE_VERSION(DRIVER_VERSION); MODULE_LICENSE("GPL v2");