// SPDX-License-Identifier: GPL-2.0-or-later /* * Freescale FlexTimer Module (FTM) PWM Driver * * Copyright 2012-2013 Freescale Semiconductor, Inc. */ #include <linux/clk.h> #include <linux/err.h> #include <linux/io.h> #include <linux/kernel.h> #include <linux/module.h> #include <linux/mutex.h> #include <linux/of.h> #include <linux/platform_device.h> #include <linux/pm.h> #include <linux/pwm.h> #include <linux/regmap.h> #include <linux/slab.h> #include <linux/fsl/ftm.h> #define FTM_SC_CLK(c) (((c) + 1) << FTM_SC_CLK_MASK_SHIFT) enum fsl_pwm_clk { FSL_PWM_CLK_SYS, FSL_PWM_CLK_FIX, FSL_PWM_CLK_EXT, FSL_PWM_CLK_CNTEN, FSL_PWM_CLK_MAX }; struct fsl_ftm_soc { bool has_enable_bits; }; struct fsl_pwm_periodcfg { enum fsl_pwm_clk clk_select; unsigned int clk_ps; unsigned int mod_period; }; struct fsl_pwm_chip { struct pwm_chip chip; struct mutex lock; struct regmap *regmap; /* This value is valid iff a pwm is running */ struct fsl_pwm_periodcfg period; struct clk *ipg_clk; struct clk *clk[FSL_PWM_CLK_MAX]; const struct fsl_ftm_soc *soc; }; static inline struct fsl_pwm_chip *to_fsl_chip(struct pwm_chip *chip) { return container_of(chip, struct fsl_pwm_chip, chip); } static void ftm_clear_write_protection(struct fsl_pwm_chip *fpc) { u32 val; regmap_read(fpc->regmap, FTM_FMS, &val); if (val & FTM_FMS_WPEN) regmap_set_bits(fpc->regmap, FTM_MODE, FTM_MODE_WPDIS); } static void ftm_set_write_protection(struct fsl_pwm_chip *fpc) { regmap_set_bits(fpc->regmap, FTM_FMS, FTM_FMS_WPEN); } static bool fsl_pwm_periodcfg_are_equal(const struct fsl_pwm_periodcfg *a, const struct fsl_pwm_periodcfg *b) { if (a->clk_select != b->clk_select) return false; if (a->clk_ps != b->clk_ps) return false; if (a->mod_period != b->mod_period) return false; return true; } static int fsl_pwm_request(struct pwm_chip *chip, struct pwm_device *pwm) { int ret; struct fsl_pwm_chip *fpc = to_fsl_chip(chip); ret = clk_prepare_enable(fpc->ipg_clk); if (!ret && fpc->soc->has_enable_bits) { mutex_lock(&fpc->lock); regmap_set_bits(fpc->regmap, FTM_SC, BIT(pwm->hwpwm + 16)); mutex_unlock(&fpc->lock); } return ret; } static void fsl_pwm_free(struct pwm_chip *chip, struct pwm_device *pwm) { struct fsl_pwm_chip *fpc = to_fsl_chip(chip); if (fpc->soc->has_enable_bits) { mutex_lock(&fpc->lock); regmap_clear_bits(fpc->regmap, FTM_SC, BIT(pwm->hwpwm + 16)); mutex_unlock(&fpc->lock); } clk_disable_unprepare(fpc->ipg_clk); } static unsigned int fsl_pwm_ticks_to_ns(struct fsl_pwm_chip *fpc, unsigned int ticks) { unsigned long rate; unsigned long long exval; rate = clk_get_rate(fpc->clk[fpc->period.clk_select]); exval = ticks; exval *= 1000000000UL; do_div(exval, rate >> fpc->period.clk_ps); return exval; } static bool fsl_pwm_calculate_period_clk(struct fsl_pwm_chip *fpc, unsigned int period_ns, enum fsl_pwm_clk index, struct fsl_pwm_periodcfg *periodcfg ) { unsigned long long c; unsigned int ps; c = clk_get_rate(fpc->clk[index]); c = c * period_ns; do_div(c, 1000000000UL); if (c == 0) return false; for (ps = 0; ps < 8 ; ++ps, c >>= 1) { if (c <= 0x10000) { periodcfg->clk_select = index; periodcfg->clk_ps = ps; periodcfg->mod_period = c - 1; return true; } } return false; } static bool fsl_pwm_calculate_period(struct fsl_pwm_chip *fpc, unsigned int period_ns, struct fsl_pwm_periodcfg *periodcfg) { enum fsl_pwm_clk m0, m1; unsigned long fix_rate, ext_rate; bool ret; ret = fsl_pwm_calculate_period_clk(fpc, period_ns, FSL_PWM_CLK_SYS, periodcfg); if (ret) return true; fix_rate = clk_get_rate(fpc->clk[FSL_PWM_CLK_FIX]); ext_rate = clk_get_rate(fpc->clk[FSL_PWM_CLK_EXT]); if (fix_rate > ext_rate) { m0 = FSL_PWM_CLK_FIX; m1 = FSL_PWM_CLK_EXT; } else { m0 = FSL_PWM_CLK_EXT; m1 = FSL_PWM_CLK_FIX; } ret = fsl_pwm_calculate_period_clk(fpc, period_ns, m0, periodcfg); if (ret) return true; return fsl_pwm_calculate_period_clk(fpc, period_ns, m1, periodcfg); } static unsigned int fsl_pwm_calculate_duty(struct fsl_pwm_chip *fpc, unsigned int duty_ns) { unsigned long long duty; unsigned int period = fpc->period.mod_period + 1; unsigned int period_ns = fsl_pwm_ticks_to_ns(fpc, period); duty = (unsigned long long)duty_ns * period; do_div(duty, period_ns); return (unsigned int)duty; } static bool fsl_pwm_is_any_pwm_enabled(struct fsl_pwm_chip *fpc, struct pwm_device *pwm) { u32 val; regmap_read(fpc->regmap, FTM_OUTMASK, &val); if (~val & 0xFF) return true; else return false; } static bool fsl_pwm_is_other_pwm_enabled(struct fsl_pwm_chip *fpc, struct pwm_device *pwm) { u32 val; regmap_read(fpc->regmap, FTM_OUTMASK, &val); if (~(val | BIT(pwm->hwpwm)) & 0xFF) return true; else return false; } static int fsl_pwm_apply_config(struct fsl_pwm_chip *fpc, struct pwm_device *pwm, const struct pwm_state *newstate) { unsigned int duty; u32 reg_polarity; struct fsl_pwm_periodcfg periodcfg; bool do_write_period = false; if (!fsl_pwm_calculate_period(fpc, newstate->period, &periodcfg)) { dev_err(fpc->chip.dev, "failed to calculate new period\n"); return -EINVAL; } if (!fsl_pwm_is_any_pwm_enabled(fpc, pwm)) do_write_period = true; /* * The Freescale FTM controller supports only a single period for * all PWM channels, therefore verify if the newly computed period * is different than the current period being used. In such case * we allow to change the period only if no other pwm is running. */ else if (!fsl_pwm_periodcfg_are_equal(&fpc->period, &periodcfg)) { if (fsl_pwm_is_other_pwm_enabled(fpc, pwm)) { dev_err(fpc->chip.dev, "Cannot change period for PWM %u, disable other PWMs first\n", pwm->hwpwm); return -EBUSY; } if (fpc->period.clk_select != periodcfg.clk_select) { int ret; enum fsl_pwm_clk oldclk = fpc->period.clk_select; enum fsl_pwm_clk newclk = periodcfg.clk_select; ret = clk_prepare_enable(fpc->clk[newclk]); if (ret) return ret; clk_disable_unprepare(fpc->clk[oldclk]); } do_write_period = true; } ftm_clear_write_protection(fpc); if (do_write_period) { regmap_update_bits(fpc->regmap, FTM_SC, FTM_SC_CLK_MASK, FTM_SC_CLK(periodcfg.clk_select)); regmap_update_bits(fpc->regmap, FTM_SC, FTM_SC_PS_MASK, periodcfg.clk_ps); regmap_write(fpc->regmap, FTM_MOD, periodcfg.mod_period); fpc->period = periodcfg; } duty = fsl_pwm_calculate_duty(fpc, newstate->duty_cycle); regmap_write(fpc->regmap, FTM_CSC(pwm->hwpwm), FTM_CSC_MSB | FTM_CSC_ELSB); regmap_write(fpc->regmap, FTM_CV(pwm->hwpwm), duty); reg_polarity = 0; if (newstate->polarity == PWM_POLARITY_INVERSED) reg_polarity = BIT(pwm->hwpwm); regmap_update_bits(fpc->regmap, FTM_POL, BIT(pwm->hwpwm), reg_polarity); ftm_set_write_protection(fpc); return 0; } static int fsl_pwm_apply(struct pwm_chip *chip, struct pwm_device *pwm, const struct pwm_state *newstate) { struct fsl_pwm_chip *fpc = to_fsl_chip(chip); struct pwm_state *oldstate = &pwm->state; int ret = 0; /* * oldstate to newstate : action * * disabled to disabled : ignore * enabled to disabled : disable * enabled to enabled : update settings * disabled to enabled : update settings + enable */ mutex_lock(&fpc->lock); if (!newstate->enabled) { if (oldstate->enabled) { regmap_set_bits(fpc->regmap, FTM_OUTMASK, BIT(pwm->hwpwm)); clk_disable_unprepare(fpc->clk[FSL_PWM_CLK_CNTEN]); clk_disable_unprepare(fpc->clk[fpc->period.clk_select]); } goto end_mutex; } ret = fsl_pwm_apply_config(fpc, pwm, newstate); if (ret) goto end_mutex; /* check if need to enable */ if (!oldstate->enabled) { ret = clk_prepare_enable(fpc->clk[fpc->period.clk_select]); if (ret) goto end_mutex; ret = clk_prepare_enable(fpc->clk[FSL_PWM_CLK_CNTEN]); if (ret) { clk_disable_unprepare(fpc->clk[fpc->period.clk_select]); goto end_mutex; } regmap_clear_bits(fpc->regmap, FTM_OUTMASK, BIT(pwm->hwpwm)); } end_mutex: mutex_unlock(&fpc->lock); return ret; } static const struct pwm_ops fsl_pwm_ops = { .request = fsl_pwm_request, .free = fsl_pwm_free, .apply = fsl_pwm_apply, }; static int fsl_pwm_init(struct fsl_pwm_chip *fpc) { int ret; ret = clk_prepare_enable(fpc->ipg_clk); if (ret) return ret; regmap_write(fpc->regmap, FTM_CNTIN, 0x00); regmap_write(fpc->regmap, FTM_OUTINIT, 0x00); regmap_write(fpc->regmap, FTM_OUTMASK, 0xFF); clk_disable_unprepare(fpc->ipg_clk); return 0; } static bool fsl_pwm_volatile_reg(struct device *dev, unsigned int reg) { switch (reg) { case FTM_FMS: case FTM_MODE: case FTM_CNT: return true; } return false; } static const struct regmap_config fsl_pwm_regmap_config = { .reg_bits = 32, .reg_stride = 4, .val_bits = 32, .max_register = FTM_PWMLOAD, .volatile_reg = fsl_pwm_volatile_reg, .cache_type = REGCACHE_FLAT, }; static int fsl_pwm_probe(struct platform_device *pdev) { struct fsl_pwm_chip *fpc; void __iomem *base; int ret; fpc = devm_kzalloc(&pdev->dev, sizeof(*fpc), GFP_KERNEL); if (!fpc) return -ENOMEM; mutex_init(&fpc->lock); fpc->soc = of_device_get_match_data(&pdev->dev); fpc->chip.dev = &pdev->dev; base = devm_platform_ioremap_resource(pdev, 0); if (IS_ERR(base)) return PTR_ERR(base); fpc->regmap = devm_regmap_init_mmio_clk(&pdev->dev, "ftm_sys", base, &fsl_pwm_regmap_config); if (IS_ERR(fpc->regmap)) { dev_err(&pdev->dev, "regmap init failed\n"); return PTR_ERR(fpc->regmap); } fpc->clk[FSL_PWM_CLK_SYS] = devm_clk_get(&pdev->dev, "ftm_sys"); if (IS_ERR(fpc->clk[FSL_PWM_CLK_SYS])) { dev_err(&pdev->dev, "failed to get \"ftm_sys\" clock\n"); return PTR_ERR(fpc->clk[FSL_PWM_CLK_SYS]); } fpc->clk[FSL_PWM_CLK_FIX] = devm_clk_get(fpc->chip.dev, "ftm_fix"); if (IS_ERR(fpc->clk[FSL_PWM_CLK_FIX])) return PTR_ERR(fpc->clk[FSL_PWM_CLK_FIX]); fpc->clk[FSL_PWM_CLK_EXT] = devm_clk_get(fpc->chip.dev, "ftm_ext"); if (IS_ERR(fpc->clk[FSL_PWM_CLK_EXT])) return PTR_ERR(fpc->clk[FSL_PWM_CLK_EXT]); fpc->clk[FSL_PWM_CLK_CNTEN] = devm_clk_get(fpc->chip.dev, "ftm_cnt_clk_en"); if (IS_ERR(fpc->clk[FSL_PWM_CLK_CNTEN])) return PTR_ERR(fpc->clk[FSL_PWM_CLK_CNTEN]); /* * ipg_clk is the interface clock for the IP. If not provided, use the * ftm_sys clock as the default. */ fpc->ipg_clk = devm_clk_get(&pdev->dev, "ipg"); if (IS_ERR(fpc->ipg_clk)) fpc->ipg_clk = fpc->clk[FSL_PWM_CLK_SYS]; fpc->chip.ops = &fsl_pwm_ops; fpc->chip.npwm = 8; ret = devm_pwmchip_add(&pdev->dev, &fpc->chip); if (ret < 0) { dev_err(&pdev->dev, "failed to add PWM chip: %d\n", ret); return ret; } platform_set_drvdata(pdev, fpc); return fsl_pwm_init(fpc); } #ifdef CONFIG_PM_SLEEP static int fsl_pwm_suspend(struct device *dev) { struct fsl_pwm_chip *fpc = dev_get_drvdata(dev); int i; regcache_cache_only(fpc->regmap, true); regcache_mark_dirty(fpc->regmap); for (i = 0; i < fpc->chip.npwm; i++) { struct pwm_device *pwm = &fpc->chip.pwms[i]; if (!test_bit(PWMF_REQUESTED, &pwm->flags)) continue; clk_disable_unprepare(fpc->ipg_clk); if (!pwm_is_enabled(pwm)) continue; clk_disable_unprepare(fpc->clk[FSL_PWM_CLK_CNTEN]); clk_disable_unprepare(fpc->clk[fpc->period.clk_select]); } return 0; } static int fsl_pwm_resume(struct device *dev) { struct fsl_pwm_chip *fpc = dev_get_drvdata(dev); int i; for (i = 0; i < fpc->chip.npwm; i++) { struct pwm_device *pwm = &fpc->chip.pwms[i]; if (!test_bit(PWMF_REQUESTED, &pwm->flags)) continue; clk_prepare_enable(fpc->ipg_clk); if (!pwm_is_enabled(pwm)) continue; clk_prepare_enable(fpc->clk[fpc->period.clk_select]); clk_prepare_enable(fpc->clk[FSL_PWM_CLK_CNTEN]); } /* restore all registers from cache */ regcache_cache_only(fpc->regmap, false); regcache_sync(fpc->regmap); return 0; } #endif static const struct dev_pm_ops fsl_pwm_pm_ops = { SET_SYSTEM_SLEEP_PM_OPS(fsl_pwm_suspend, fsl_pwm_resume) }; static const struct fsl_ftm_soc vf610_ftm_pwm = { .has_enable_bits = false, }; static const struct fsl_ftm_soc imx8qm_ftm_pwm = { .has_enable_bits = true, }; static const struct of_device_id fsl_pwm_dt_ids[] = { { .compatible = "fsl,vf610-ftm-pwm", .data = &vf610_ftm_pwm }, { .compatible = "fsl,imx8qm-ftm-pwm", .data = &imx8qm_ftm_pwm }, { /* sentinel */ } }; MODULE_DEVICE_TABLE(of, fsl_pwm_dt_ids); static struct platform_driver fsl_pwm_driver = { .driver = { .name = "fsl-ftm-pwm", .of_match_table = fsl_pwm_dt_ids, .pm = &fsl_pwm_pm_ops, }, .probe = fsl_pwm_probe, }; module_platform_driver(fsl_pwm_driver); MODULE_DESCRIPTION("Freescale FlexTimer Module PWM Driver"); MODULE_AUTHOR("Xiubo Li <Li.Xiubo@freescale.com>"); MODULE_ALIAS("platform:fsl-ftm-pwm"); MODULE_LICENSE("GPL");