// SPDX-License-Identifier: GPL-2.0-only /* * Copyright (c) 2023 MediaTek Inc. * Author: Balsam CHIHI */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include "../thermal_hwmon.h" #define LVTS_MONCTL0(__base) (__base + 0x0000) #define LVTS_MONCTL1(__base) (__base + 0x0004) #define LVTS_MONCTL2(__base) (__base + 0x0008) #define LVTS_MONINT(__base) (__base + 0x000C) #define LVTS_MONINTSTS(__base) (__base + 0x0010) #define LVTS_MONIDET0(__base) (__base + 0x0014) #define LVTS_MONIDET1(__base) (__base + 0x0018) #define LVTS_MONIDET2(__base) (__base + 0x001C) #define LVTS_MONIDET3(__base) (__base + 0x0020) #define LVTS_H2NTHRE(__base) (__base + 0x0024) #define LVTS_HTHRE(__base) (__base + 0x0028) #define LVTS_OFFSETH(__base) (__base + 0x0030) #define LVTS_OFFSETL(__base) (__base + 0x0034) #define LVTS_MSRCTL0(__base) (__base + 0x0038) #define LVTS_MSRCTL1(__base) (__base + 0x003C) #define LVTS_TSSEL(__base) (__base + 0x0040) #define LVTS_CALSCALE(__base) (__base + 0x0048) #define LVTS_ID(__base) (__base + 0x004C) #define LVTS_CONFIG(__base) (__base + 0x0050) #define LVTS_EDATA00(__base) (__base + 0x0054) #define LVTS_EDATA01(__base) (__base + 0x0058) #define LVTS_EDATA02(__base) (__base + 0x005C) #define LVTS_EDATA03(__base) (__base + 0x0060) #define LVTS_MSR0(__base) (__base + 0x0090) #define LVTS_MSR1(__base) (__base + 0x0094) #define LVTS_MSR2(__base) (__base + 0x0098) #define LVTS_MSR3(__base) (__base + 0x009C) #define LVTS_IMMD0(__base) (__base + 0x00A0) #define LVTS_IMMD1(__base) (__base + 0x00A4) #define LVTS_IMMD2(__base) (__base + 0x00A8) #define LVTS_IMMD3(__base) (__base + 0x00AC) #define LVTS_PROTCTL(__base) (__base + 0x00C0) #define LVTS_PROTTA(__base) (__base + 0x00C4) #define LVTS_PROTTB(__base) (__base + 0x00C8) #define LVTS_PROTTC(__base) (__base + 0x00CC) #define LVTS_CLKEN(__base) (__base + 0x00E4) #define LVTS_PERIOD_UNIT 0 #define LVTS_GROUP_INTERVAL 0 #define LVTS_FILTER_INTERVAL 0 #define LVTS_SENSOR_INTERVAL 0 #define LVTS_HW_FILTER 0x0 #define LVTS_TSSEL_CONF 0x13121110 #define LVTS_CALSCALE_CONF 0x300 #define LVTS_MONINT_CONF 0x8300318C #define LVTS_MONINT_OFFSET_SENSOR0 0xC #define LVTS_MONINT_OFFSET_SENSOR1 0x180 #define LVTS_MONINT_OFFSET_SENSOR2 0x3000 #define LVTS_MONINT_OFFSET_SENSOR3 0x3000000 #define LVTS_INT_SENSOR0 0x0009001F #define LVTS_INT_SENSOR1 0x001203E0 #define LVTS_INT_SENSOR2 0x00247C00 #define LVTS_INT_SENSOR3 0x1FC00000 #define LVTS_SENSOR_MAX 4 #define LVTS_GOLDEN_TEMP_MAX 62 #define LVTS_GOLDEN_TEMP_DEFAULT 50 #define LVTS_COEFF_A_MT8195 -250460 #define LVTS_COEFF_B_MT8195 250460 #define LVTS_COEFF_A_MT7988 -204650 #define LVTS_COEFF_B_MT7988 204650 #define LVTS_MSR_IMMEDIATE_MODE 0 #define LVTS_MSR_FILTERED_MODE 1 #define LVTS_MSR_READ_TIMEOUT_US 400 #define LVTS_MSR_READ_WAIT_US (LVTS_MSR_READ_TIMEOUT_US / 2) #define LVTS_HW_TSHUT_TEMP 105000 #define LVTS_MINIMUM_THRESHOLD 20000 static int golden_temp = LVTS_GOLDEN_TEMP_DEFAULT; static int golden_temp_offset; struct lvts_sensor_data { int dt_id; u8 cal_offsets[3]; }; struct lvts_ctrl_data { struct lvts_sensor_data lvts_sensor[LVTS_SENSOR_MAX]; u8 valid_sensor_mask; int offset; int mode; }; #define VALID_SENSOR_MAP(s0, s1, s2, s3) \ .valid_sensor_mask = (((s0) ? BIT(0) : 0) | \ ((s1) ? BIT(1) : 0) | \ ((s2) ? BIT(2) : 0) | \ ((s3) ? BIT(3) : 0)) #define lvts_for_each_valid_sensor(i, lvts_ctrl) \ for ((i) = 0; (i) < LVTS_SENSOR_MAX; (i)++) \ if (!((lvts_ctrl)->valid_sensor_mask & BIT(i))) \ continue; \ else struct lvts_data { const struct lvts_ctrl_data *lvts_ctrl; int num_lvts_ctrl; int temp_factor; int temp_offset; int gt_calib_bit_offset; }; struct lvts_sensor { struct thermal_zone_device *tz; void __iomem *msr; void __iomem *base; int id; int dt_id; int low_thresh; int high_thresh; }; struct lvts_ctrl { struct lvts_sensor sensors[LVTS_SENSOR_MAX]; const struct lvts_data *lvts_data; u32 calibration[LVTS_SENSOR_MAX]; u32 hw_tshut_raw_temp; u8 valid_sensor_mask; int mode; void __iomem *base; int low_thresh; int high_thresh; }; struct lvts_domain { struct lvts_ctrl *lvts_ctrl; struct reset_control *reset; struct clk *clk; int num_lvts_ctrl; void __iomem *base; size_t calib_len; u8 *calib; #ifdef CONFIG_DEBUG_FS struct dentry *dom_dentry; #endif }; #ifdef CONFIG_MTK_LVTS_THERMAL_DEBUGFS #define LVTS_DEBUG_FS_REGS(__reg) \ { \ .name = __stringify(__reg), \ .offset = __reg(0), \ } static const struct debugfs_reg32 lvts_regs[] = { LVTS_DEBUG_FS_REGS(LVTS_MONCTL0), LVTS_DEBUG_FS_REGS(LVTS_MONCTL1), LVTS_DEBUG_FS_REGS(LVTS_MONCTL2), LVTS_DEBUG_FS_REGS(LVTS_MONINT), LVTS_DEBUG_FS_REGS(LVTS_MONINTSTS), LVTS_DEBUG_FS_REGS(LVTS_MONIDET0), LVTS_DEBUG_FS_REGS(LVTS_MONIDET1), LVTS_DEBUG_FS_REGS(LVTS_MONIDET2), LVTS_DEBUG_FS_REGS(LVTS_MONIDET3), LVTS_DEBUG_FS_REGS(LVTS_H2NTHRE), LVTS_DEBUG_FS_REGS(LVTS_HTHRE), LVTS_DEBUG_FS_REGS(LVTS_OFFSETH), LVTS_DEBUG_FS_REGS(LVTS_OFFSETL), LVTS_DEBUG_FS_REGS(LVTS_MSRCTL0), LVTS_DEBUG_FS_REGS(LVTS_MSRCTL1), LVTS_DEBUG_FS_REGS(LVTS_TSSEL), LVTS_DEBUG_FS_REGS(LVTS_CALSCALE), LVTS_DEBUG_FS_REGS(LVTS_ID), LVTS_DEBUG_FS_REGS(LVTS_CONFIG), LVTS_DEBUG_FS_REGS(LVTS_EDATA00), LVTS_DEBUG_FS_REGS(LVTS_EDATA01), LVTS_DEBUG_FS_REGS(LVTS_EDATA02), LVTS_DEBUG_FS_REGS(LVTS_EDATA03), LVTS_DEBUG_FS_REGS(LVTS_MSR0), LVTS_DEBUG_FS_REGS(LVTS_MSR1), LVTS_DEBUG_FS_REGS(LVTS_MSR2), LVTS_DEBUG_FS_REGS(LVTS_MSR3), LVTS_DEBUG_FS_REGS(LVTS_IMMD0), LVTS_DEBUG_FS_REGS(LVTS_IMMD1), LVTS_DEBUG_FS_REGS(LVTS_IMMD2), LVTS_DEBUG_FS_REGS(LVTS_IMMD3), LVTS_DEBUG_FS_REGS(LVTS_PROTCTL), LVTS_DEBUG_FS_REGS(LVTS_PROTTA), LVTS_DEBUG_FS_REGS(LVTS_PROTTB), LVTS_DEBUG_FS_REGS(LVTS_PROTTC), LVTS_DEBUG_FS_REGS(LVTS_CLKEN), }; static int lvts_debugfs_init(struct device *dev, struct lvts_domain *lvts_td) { struct debugfs_regset32 *regset; struct lvts_ctrl *lvts_ctrl; struct dentry *dentry; char name[64]; int i; lvts_td->dom_dentry = debugfs_create_dir(dev_name(dev), NULL); if (IS_ERR(lvts_td->dom_dentry)) return 0; for (i = 0; i < lvts_td->num_lvts_ctrl; i++) { lvts_ctrl = &lvts_td->lvts_ctrl[i]; sprintf(name, "controller%d", i); dentry = debugfs_create_dir(name, lvts_td->dom_dentry); if (IS_ERR(dentry)) continue; regset = devm_kzalloc(dev, sizeof(*regset), GFP_KERNEL); if (!regset) continue; regset->base = lvts_ctrl->base; regset->regs = lvts_regs; regset->nregs = ARRAY_SIZE(lvts_regs); debugfs_create_regset32("registers", 0400, dentry, regset); } return 0; } static void lvts_debugfs_exit(struct lvts_domain *lvts_td) { debugfs_remove_recursive(lvts_td->dom_dentry); } #else static inline int lvts_debugfs_init(struct device *dev, struct lvts_domain *lvts_td) { return 0; } static void lvts_debugfs_exit(struct lvts_domain *lvts_td) { } #endif static int lvts_raw_to_temp(u32 raw_temp, int temp_factor) { int temperature; temperature = ((s64)(raw_temp & 0xFFFF) * temp_factor) >> 14; temperature += golden_temp_offset; return temperature; } static u32 lvts_temp_to_raw(int temperature, int temp_factor) { u32 raw_temp = ((s64)(golden_temp_offset - temperature)) << 14; raw_temp = div_s64(raw_temp, -temp_factor); return raw_temp; } static int lvts_get_temp(struct thermal_zone_device *tz, int *temp) { struct lvts_sensor *lvts_sensor = thermal_zone_device_priv(tz); struct lvts_ctrl *lvts_ctrl = container_of(lvts_sensor, struct lvts_ctrl, sensors[lvts_sensor->id]); const struct lvts_data *lvts_data = lvts_ctrl->lvts_data; void __iomem *msr = lvts_sensor->msr; u32 value; int rc; /* * Measurement registers: * * LVTS_MSR[0-3] / LVTS_IMMD[0-3] * * Bits: * * 32-17: Unused * 16 : Valid temperature * 15-0 : Raw temperature */ rc = readl_poll_timeout(msr, value, value & BIT(16), LVTS_MSR_READ_WAIT_US, LVTS_MSR_READ_TIMEOUT_US); /* * As the thermal zone temperature will read before the * hardware sensor is fully initialized, we have to check the * validity of the temperature returned when reading the * measurement register. The thermal controller will set the * valid bit temperature only when it is totally initialized. * * Otherwise, we may end up with garbage values out of the * functionning temperature and directly jump to a system * shutdown. */ if (rc) return -EAGAIN; *temp = lvts_raw_to_temp(value & 0xFFFF, lvts_data->temp_factor); return 0; } static void lvts_update_irq_mask(struct lvts_ctrl *lvts_ctrl) { u32 masks[] = { LVTS_MONINT_OFFSET_SENSOR0, LVTS_MONINT_OFFSET_SENSOR1, LVTS_MONINT_OFFSET_SENSOR2, LVTS_MONINT_OFFSET_SENSOR3, }; u32 value = 0; int i; value = readl(LVTS_MONINT(lvts_ctrl->base)); for (i = 0; i < ARRAY_SIZE(masks); i++) { if (lvts_ctrl->sensors[i].high_thresh == lvts_ctrl->high_thresh && lvts_ctrl->sensors[i].low_thresh == lvts_ctrl->low_thresh) value |= masks[i]; else value &= ~masks[i]; } writel(value, LVTS_MONINT(lvts_ctrl->base)); } static bool lvts_should_update_thresh(struct lvts_ctrl *lvts_ctrl, int high) { int i; if (high > lvts_ctrl->high_thresh) return true; lvts_for_each_valid_sensor(i, lvts_ctrl) if (lvts_ctrl->sensors[i].high_thresh == lvts_ctrl->high_thresh && lvts_ctrl->sensors[i].low_thresh == lvts_ctrl->low_thresh) return false; return true; } static int lvts_set_trips(struct thermal_zone_device *tz, int low, int high) { struct lvts_sensor *lvts_sensor = thermal_zone_device_priv(tz); struct lvts_ctrl *lvts_ctrl = container_of(lvts_sensor, struct lvts_ctrl, sensors[lvts_sensor->id]); const struct lvts_data *lvts_data = lvts_ctrl->lvts_data; void __iomem *base = lvts_sensor->base; u32 raw_low = lvts_temp_to_raw(low != -INT_MAX ? low : LVTS_MINIMUM_THRESHOLD, lvts_data->temp_factor); u32 raw_high = lvts_temp_to_raw(high, lvts_data->temp_factor); bool should_update_thresh; lvts_sensor->low_thresh = low; lvts_sensor->high_thresh = high; should_update_thresh = lvts_should_update_thresh(lvts_ctrl, high); if (should_update_thresh) { lvts_ctrl->high_thresh = high; lvts_ctrl->low_thresh = low; } lvts_update_irq_mask(lvts_ctrl); if (!should_update_thresh) return 0; /* * Low offset temperature threshold * * LVTS_OFFSETL * * Bits: * * 14-0 : Raw temperature for threshold */ pr_debug("%s: Setting low limit temperature interrupt: %d\n", thermal_zone_device_type(tz), low); writel(raw_low, LVTS_OFFSETL(base)); /* * High offset temperature threshold * * LVTS_OFFSETH * * Bits: * * 14-0 : Raw temperature for threshold */ pr_debug("%s: Setting high limit temperature interrupt: %d\n", thermal_zone_device_type(tz), high); writel(raw_high, LVTS_OFFSETH(base)); return 0; } static irqreturn_t lvts_ctrl_irq_handler(struct lvts_ctrl *lvts_ctrl) { irqreturn_t iret = IRQ_NONE; u32 value; u32 masks[] = { LVTS_INT_SENSOR0, LVTS_INT_SENSOR1, LVTS_INT_SENSOR2, LVTS_INT_SENSOR3 }; int i; /* * Interrupt monitoring status * * LVTS_MONINTST * * Bits: * * 31 : Interrupt for stage 3 * 30 : Interrupt for stage 2 * 29 : Interrupt for state 1 * 28 : Interrupt using filter on sensor 3 * * 27 : Interrupt using immediate on sensor 3 * 26 : Interrupt normal to hot on sensor 3 * 25 : Interrupt high offset on sensor 3 * 24 : Interrupt low offset on sensor 3 * * 23 : Interrupt hot threshold on sensor 3 * 22 : Interrupt cold threshold on sensor 3 * 21 : Interrupt using filter on sensor 2 * 20 : Interrupt using filter on sensor 1 * * 19 : Interrupt using filter on sensor 0 * 18 : Interrupt using immediate on sensor 2 * 17 : Interrupt using immediate on sensor 1 * 16 : Interrupt using immediate on sensor 0 * * 15 : Interrupt device access timeout interrupt * 14 : Interrupt normal to hot on sensor 2 * 13 : Interrupt high offset interrupt on sensor 2 * 12 : Interrupt low offset interrupt on sensor 2 * * 11 : Interrupt hot threshold on sensor 2 * 10 : Interrupt cold threshold on sensor 2 * 9 : Interrupt normal to hot on sensor 1 * 8 : Interrupt high offset interrupt on sensor 1 * * 7 : Interrupt low offset interrupt on sensor 1 * 6 : Interrupt hot threshold on sensor 1 * 5 : Interrupt cold threshold on sensor 1 * 4 : Interrupt normal to hot on sensor 0 * * 3 : Interrupt high offset interrupt on sensor 0 * 2 : Interrupt low offset interrupt on sensor 0 * 1 : Interrupt hot threshold on sensor 0 * 0 : Interrupt cold threshold on sensor 0 * * We are interested in the sensor(s) responsible of the * interrupt event. We update the thermal framework with the * thermal zone associated with the sensor. The framework will * take care of the rest whatever the kind of interrupt, we * are only interested in which sensor raised the interrupt. * * sensor 3 interrupt: 0001 1111 1100 0000 0000 0000 0000 0000 * => 0x1FC00000 * sensor 2 interrupt: 0000 0000 0010 0100 0111 1100 0000 0000 * => 0x00247C00 * sensor 1 interrupt: 0000 0000 0001 0010 0000 0011 1110 0000 * => 0X001203E0 * sensor 0 interrupt: 0000 0000 0000 1001 0000 0000 0001 1111 * => 0x0009001F */ value = readl(LVTS_MONINTSTS(lvts_ctrl->base)); /* * Let's figure out which sensors raised the interrupt * * NOTE: the masks array must be ordered with the index * corresponding to the sensor id eg. index=0, mask for * sensor0. */ for (i = 0; i < ARRAY_SIZE(masks); i++) { if (!(value & masks[i])) continue; thermal_zone_device_update(lvts_ctrl->sensors[i].tz, THERMAL_TRIP_VIOLATED); iret = IRQ_HANDLED; } /* * Write back to clear the interrupt status (W1C) */ writel(value, LVTS_MONINTSTS(lvts_ctrl->base)); return iret; } /* * Temperature interrupt handler. Even if the driver supports more * interrupt modes, we use the interrupt when the temperature crosses * the hot threshold the way up and the way down (modulo the * hysteresis). * * Each thermal domain has a couple of interrupts, one for hardware * reset and another one for all the thermal events happening on the * different sensors. * * The interrupt is configured for thermal events when crossing the * hot temperature limit. At each interrupt, we check in every * controller if there is an interrupt pending. */ static irqreturn_t lvts_irq_handler(int irq, void *data) { struct lvts_domain *lvts_td = data; irqreturn_t aux, iret = IRQ_NONE; int i; for (i = 0; i < lvts_td->num_lvts_ctrl; i++) { aux = lvts_ctrl_irq_handler(&lvts_td->lvts_ctrl[i]); if (aux != IRQ_HANDLED) continue; iret = IRQ_HANDLED; } return iret; } static struct thermal_zone_device_ops lvts_ops = { .get_temp = lvts_get_temp, .set_trips = lvts_set_trips, }; static int lvts_sensor_init(struct device *dev, struct lvts_ctrl *lvts_ctrl, const struct lvts_ctrl_data *lvts_ctrl_data) { struct lvts_sensor *lvts_sensor = lvts_ctrl->sensors; void __iomem *msr_regs[] = { LVTS_MSR0(lvts_ctrl->base), LVTS_MSR1(lvts_ctrl->base), LVTS_MSR2(lvts_ctrl->base), LVTS_MSR3(lvts_ctrl->base) }; void __iomem *imm_regs[] = { LVTS_IMMD0(lvts_ctrl->base), LVTS_IMMD1(lvts_ctrl->base), LVTS_IMMD2(lvts_ctrl->base), LVTS_IMMD3(lvts_ctrl->base) }; int i; lvts_for_each_valid_sensor(i, lvts_ctrl_data) { int dt_id = lvts_ctrl_data->lvts_sensor[i].dt_id; /* * At this point, we don't know which id matches which * sensor. Let's set arbitrally the id from the index. */ lvts_sensor[i].id = i; /* * The thermal zone registration will set the trip * point interrupt in the thermal controller * register. But this one will be reset in the * initialization after. So we need to post pone the * thermal zone creation after the controller is * setup. For this reason, we store the device tree * node id from the data in the sensor structure */ lvts_sensor[i].dt_id = dt_id; /* * We assign the base address of the thermal * controller as a back pointer. So it will be * accessible from the different thermal framework ops * as we pass the lvts_sensor pointer as thermal zone * private data. */ lvts_sensor[i].base = lvts_ctrl->base; /* * Each sensor has its own register address to read from. */ lvts_sensor[i].msr = lvts_ctrl_data->mode == LVTS_MSR_IMMEDIATE_MODE ? imm_regs[i] : msr_regs[i]; lvts_sensor[i].low_thresh = INT_MIN; lvts_sensor[i].high_thresh = INT_MIN; }; lvts_ctrl->valid_sensor_mask = lvts_ctrl_data->valid_sensor_mask; return 0; } /* * The efuse blob values follows the sensor enumeration per thermal * controller. The decoding of the stream is as follow: * * MT8192 : * Stream index map for MCU Domain mt8192 : * * <-----mcu-tc#0-----> <-----sensor#0-----> <-----sensor#1-----> * 0x01 | 0x02 | 0x03 | 0x04 | 0x05 | 0x06 | 0x07 | 0x08 | 0x09 | 0x0A | 0x0B * * <-----sensor#2-----> <-----sensor#3-----> * 0x0C | 0x0D | 0x0E | 0x0F | 0x10 | 0x11 | 0x12 | 0x13 * * <-----sensor#4-----> <-----sensor#5-----> <-----sensor#6-----> <-----sensor#7-----> * 0x14 | 0x15 | 0x16 | 0x17 | 0x18 | 0x19 | 0x1A | 0x1B | 0x1C | 0x1D | 0x1E | 0x1F | 0x20 | 0x21 | 0x22 | 0x23 * * Stream index map for AP Domain mt8192 : * * <-----sensor#0-----> <-----sensor#1-----> * 0x24 | 0x25 | 0x26 | 0x27 | 0x28 | 0x29 | 0x2A | 0x2B * * <-----sensor#2-----> <-----sensor#3-----> * 0x2C | 0x2D | 0x2E | 0x2F | 0x30 | 0x31 | 0x32 | 0x33 * * <-----sensor#4-----> <-----sensor#5-----> * 0x34 | 0x35 | 0x36 | 0x37 | 0x38 | 0x39 | 0x3A | 0x3B * * <-----sensor#6-----> <-----sensor#7-----> <-----sensor#8-----> * 0x3C | 0x3D | 0x3E | 0x3F | 0x40 | 0x41 | 0x42 | 0x43 | 0x44 | 0x45 | 0x46 | 0x47 * * MT8195 : * Stream index map for MCU Domain mt8195 : * * <-----mcu-tc#0-----> <-----sensor#0-----> <-----sensor#1-----> * 0x01 | 0x02 | 0x03 | 0x04 | 0x05 | 0x06 | 0x07 | 0x08 | 0x09 * * <-----mcu-tc#1-----> <-----sensor#2-----> <-----sensor#3-----> * 0x0A | 0x0B | 0x0C | 0x0D | 0x0E | 0x0F | 0x10 | 0x11 | 0x12 * * <-----mcu-tc#2-----> <-----sensor#4-----> <-----sensor#5-----> <-----sensor#6-----> <-----sensor#7-----> * 0x13 | 0x14 | 0x15 | 0x16 | 0x17 | 0x18 | 0x19 | 0x1A | 0x1B | 0x1C | 0x1D | 0x1E | 0x1F | 0x20 | 0x21 * * Stream index map for AP Domain mt8195 : * * <-----ap--tc#0-----> <-----sensor#0-----> <-----sensor#1-----> * 0x22 | 0x23 | 0x24 | 0x25 | 0x26 | 0x27 | 0x28 | 0x29 | 0x2A * * <-----ap--tc#1-----> <-----sensor#2-----> <-----sensor#3-----> * 0x2B | 0x2C | 0x2D | 0x2E | 0x2F | 0x30 | 0x31 | 0x32 | 0x33 * * <-----ap--tc#2-----> <-----sensor#4-----> <-----sensor#5-----> <-----sensor#6-----> * 0x34 | 0x35 | 0x36 | 0x37 | 0x38 | 0x39 | 0x3A | 0x3B | 0x3C | 0x3D | 0x3E | 0x3F * * <-----ap--tc#3-----> <-----sensor#7-----> <-----sensor#8-----> * 0x40 | 0x41 | 0x42 | 0x43 | 0x44 | 0x45 | 0x46 | 0x47 | 0x48 * * Note: In some cases, values don't strictly follow a little endian ordering. * The data description gives byte offsets constituting each calibration value * for each sensor. */ static int lvts_calibration_init(struct device *dev, struct lvts_ctrl *lvts_ctrl, const struct lvts_ctrl_data *lvts_ctrl_data, u8 *efuse_calibration, size_t calib_len) { int i; lvts_for_each_valid_sensor(i, lvts_ctrl_data) { const struct lvts_sensor_data *sensor = &lvts_ctrl_data->lvts_sensor[i]; if (sensor->cal_offsets[0] >= calib_len || sensor->cal_offsets[1] >= calib_len || sensor->cal_offsets[2] >= calib_len) return -EINVAL; lvts_ctrl->calibration[i] = (efuse_calibration[sensor->cal_offsets[0]] << 0) + (efuse_calibration[sensor->cal_offsets[1]] << 8) + (efuse_calibration[sensor->cal_offsets[2]] << 16); } return 0; } /* * The efuse bytes stream can be split into different chunk of * nvmems. This function reads and concatenate those into a single * buffer so it can be read sequentially when initializing the * calibration data. */ static int lvts_calibration_read(struct device *dev, struct lvts_domain *lvts_td, const struct lvts_data *lvts_data) { struct device_node *np = dev_of_node(dev); struct nvmem_cell *cell; struct property *prop; const char *cell_name; of_property_for_each_string(np, "nvmem-cell-names", prop, cell_name) { size_t len; u8 *efuse; cell = of_nvmem_cell_get(np, cell_name); if (IS_ERR(cell)) { dev_err(dev, "Failed to get cell '%s'\n", cell_name); return PTR_ERR(cell); } efuse = nvmem_cell_read(cell, &len); nvmem_cell_put(cell); if (IS_ERR(efuse)) { dev_err(dev, "Failed to read cell '%s'\n", cell_name); return PTR_ERR(efuse); } lvts_td->calib = devm_krealloc(dev, lvts_td->calib, lvts_td->calib_len + len, GFP_KERNEL); if (!lvts_td->calib) { kfree(efuse); return -ENOMEM; } memcpy(lvts_td->calib + lvts_td->calib_len, efuse, len); lvts_td->calib_len += len; kfree(efuse); } return 0; } static int lvts_golden_temp_init(struct device *dev, u8 *calib, const struct lvts_data *lvts_data) { u32 gt; /* * The golden temp information is contained in the first 32-bit * word of efuse data at a specific bit offset. */ gt = (((u32 *)calib)[0] >> lvts_data->gt_calib_bit_offset) & 0xff; /* A zero value for gt means that device has invalid efuse data */ if (!gt) return -ENODATA; if (gt < LVTS_GOLDEN_TEMP_MAX) golden_temp = gt; golden_temp_offset = golden_temp * 500 + lvts_data->temp_offset; return 0; } static int lvts_ctrl_init(struct device *dev, struct lvts_domain *lvts_td, const struct lvts_data *lvts_data) { size_t size = sizeof(*lvts_td->lvts_ctrl) * lvts_data->num_lvts_ctrl; struct lvts_ctrl *lvts_ctrl; int i, ret; /* * Create the calibration bytes stream from efuse data */ ret = lvts_calibration_read(dev, lvts_td, lvts_data); if (ret) return ret; ret = lvts_golden_temp_init(dev, lvts_td->calib, lvts_data); if (ret) return ret; lvts_ctrl = devm_kzalloc(dev, size, GFP_KERNEL); if (!lvts_ctrl) return -ENOMEM; for (i = 0; i < lvts_data->num_lvts_ctrl; i++) { lvts_ctrl[i].base = lvts_td->base + lvts_data->lvts_ctrl[i].offset; lvts_ctrl[i].lvts_data = lvts_data; ret = lvts_sensor_init(dev, &lvts_ctrl[i], &lvts_data->lvts_ctrl[i]); if (ret) return ret; ret = lvts_calibration_init(dev, &lvts_ctrl[i], &lvts_data->lvts_ctrl[i], lvts_td->calib, lvts_td->calib_len); if (ret) return ret; /* * The mode the ctrl will use to read the temperature * (filtered or immediate) */ lvts_ctrl[i].mode = lvts_data->lvts_ctrl[i].mode; /* * The temperature to raw temperature must be done * after initializing the calibration. */ lvts_ctrl[i].hw_tshut_raw_temp = lvts_temp_to_raw(LVTS_HW_TSHUT_TEMP, lvts_data->temp_factor); lvts_ctrl[i].low_thresh = INT_MIN; lvts_ctrl[i].high_thresh = INT_MIN; } /* * We no longer need the efuse bytes stream, let's free it */ devm_kfree(dev, lvts_td->calib); lvts_td->lvts_ctrl = lvts_ctrl; lvts_td->num_lvts_ctrl = lvts_data->num_lvts_ctrl; return 0; } /* * At this point the configuration register is the only place in the * driver where we write multiple values. Per hardware constraint, * each write in the configuration register must be separated by a * delay of 2 us. */ static void lvts_write_config(struct lvts_ctrl *lvts_ctrl, u32 *cmds, int nr_cmds) { int i; /* * Configuration register */ for (i = 0; i < nr_cmds; i++) { writel(cmds[i], LVTS_CONFIG(lvts_ctrl->base)); usleep_range(2, 4); } } static int lvts_irq_init(struct lvts_ctrl *lvts_ctrl) { /* * LVTS_PROTCTL : Thermal Protection Sensor Selection * * Bits: * * 19-18 : Sensor to base the protection on * 17-16 : Strategy: * 00 : Average of 4 sensors * 01 : Max of 4 sensors * 10 : Selected sensor with bits 19-18 * 11 : Reserved */ writel(BIT(16), LVTS_PROTCTL(lvts_ctrl->base)); /* * LVTS_PROTTA : Stage 1 temperature threshold * LVTS_PROTTB : Stage 2 temperature threshold * LVTS_PROTTC : Stage 3 temperature threshold * * Bits: * * 14-0: Raw temperature threshold * * writel(0x0, LVTS_PROTTA(lvts_ctrl->base)); * writel(0x0, LVTS_PROTTB(lvts_ctrl->base)); */ writel(lvts_ctrl->hw_tshut_raw_temp, LVTS_PROTTC(lvts_ctrl->base)); /* * LVTS_MONINT : Interrupt configuration register * * The LVTS_MONINT register layout is the same as the LVTS_MONINTSTS * register, except we set the bits to enable the interrupt. */ writel(LVTS_MONINT_CONF, LVTS_MONINT(lvts_ctrl->base)); return 0; } static int lvts_domain_reset(struct device *dev, struct reset_control *reset) { int ret; ret = reset_control_assert(reset); if (ret) return ret; return reset_control_deassert(reset); } /* * Enable or disable the clocks of a specified thermal controller */ static int lvts_ctrl_set_enable(struct lvts_ctrl *lvts_ctrl, int enable) { /* * LVTS_CLKEN : Internal LVTS clock * * Bits: * * 0 : enable / disable clock */ writel(enable, LVTS_CLKEN(lvts_ctrl->base)); return 0; } static int lvts_ctrl_connect(struct device *dev, struct lvts_ctrl *lvts_ctrl) { u32 id, cmds[] = { 0xC103FFFF, 0xC502FF55 }; lvts_write_config(lvts_ctrl, cmds, ARRAY_SIZE(cmds)); /* * LVTS_ID : Get ID and status of the thermal controller * * Bits: * * 0-5 : thermal controller id * 7 : thermal controller connection is valid */ id = readl(LVTS_ID(lvts_ctrl->base)); if (!(id & BIT(7))) return -EIO; return 0; } static int lvts_ctrl_initialize(struct device *dev, struct lvts_ctrl *lvts_ctrl) { /* * Write device mask: 0xC1030000 */ u32 cmds[] = { 0xC1030E01, 0xC1030CFC, 0xC1030A8C, 0xC103098D, 0xC10308F1, 0xC10307A6, 0xC10306B8, 0xC1030500, 0xC1030420, 0xC1030300, 0xC1030030, 0xC10300F6, 0xC1030050, 0xC1030060, 0xC10300AC, 0xC10300FC, 0xC103009D, 0xC10300F1, 0xC10300E1 }; lvts_write_config(lvts_ctrl, cmds, ARRAY_SIZE(cmds)); return 0; } static int lvts_ctrl_calibrate(struct device *dev, struct lvts_ctrl *lvts_ctrl) { int i; void __iomem *lvts_edata[] = { LVTS_EDATA00(lvts_ctrl->base), LVTS_EDATA01(lvts_ctrl->base), LVTS_EDATA02(lvts_ctrl->base), LVTS_EDATA03(lvts_ctrl->base) }; /* * LVTS_EDATA0X : Efuse calibration reference value for sensor X * * Bits: * * 20-0 : Efuse value for normalization data */ for (i = 0; i < LVTS_SENSOR_MAX; i++) writel(lvts_ctrl->calibration[i], lvts_edata[i]); return 0; } static int lvts_ctrl_configure(struct device *dev, struct lvts_ctrl *lvts_ctrl) { u32 value; /* * LVTS_TSSEL : Sensing point index numbering * * Bits: * * 31-24: ADC Sense 3 * 23-16: ADC Sense 2 * 15-8 : ADC Sense 1 * 7-0 : ADC Sense 0 */ value = LVTS_TSSEL_CONF; writel(value, LVTS_TSSEL(lvts_ctrl->base)); /* * LVTS_CALSCALE : ADC voltage round */ value = 0x300; value = LVTS_CALSCALE_CONF; /* * LVTS_MSRCTL0 : Sensor filtering strategy * * Filters: * * 000 : One sample * 001 : Avg 2 samples * 010 : 4 samples, drop min and max, avg 2 samples * 011 : 6 samples, drop min and max, avg 4 samples * 100 : 10 samples, drop min and max, avg 8 samples * 101 : 18 samples, drop min and max, avg 16 samples * * Bits: * * 0-2 : Sensor0 filter * 3-5 : Sensor1 filter * 6-8 : Sensor2 filter * 9-11 : Sensor3 filter */ value = LVTS_HW_FILTER << 9 | LVTS_HW_FILTER << 6 | LVTS_HW_FILTER << 3 | LVTS_HW_FILTER; writel(value, LVTS_MSRCTL0(lvts_ctrl->base)); /* * LVTS_MONCTL1 : Period unit and group interval configuration * * The clock source of LVTS thermal controller is 26MHz. * * The period unit is a time base for all the interval delays * specified in the registers. By default we use 12. The time * conversion is done by multiplying by 256 and 1/26.10^6 * * An interval delay multiplied by the period unit gives the * duration in seconds. * * - Filter interval delay is a delay between two samples of * the same sensor. * * - Sensor interval delay is a delay between two samples of * different sensors. * * - Group interval delay is a delay between different rounds. * * For example: * If Period unit = C, filter delay = 1, sensor delay = 2, group delay = 1, * and two sensors, TS1 and TS2, are in a LVTS thermal controller * and then * Period unit time = C * 1/26M * 256 = 12 * 38.46ns * 256 = 118.149us * Filter interval delay = 1 * Period unit = 118.149us * Sensor interval delay = 2 * Period unit = 236.298us * Group interval delay = 1 * Period unit = 118.149us * * TS1 TS1 ... TS1 TS2 TS2 ... TS2 TS1... * <--> Filter interval delay * <--> Sensor interval delay * <--> Group interval delay * Bits: * 29 - 20 : Group interval * 16 - 13 : Send a single interrupt when crossing the hot threshold (1) * or an interrupt everytime the hot threshold is crossed (0) * 9 - 0 : Period unit * */ value = LVTS_GROUP_INTERVAL << 20 | LVTS_PERIOD_UNIT; writel(value, LVTS_MONCTL1(lvts_ctrl->base)); /* * LVTS_MONCTL2 : Filtering and sensor interval * * Bits: * * 25-16 : Interval unit in PERIOD_UNIT between sample on * the same sensor, filter interval * 9-0 : Interval unit in PERIOD_UNIT between each sensor * */ value = LVTS_FILTER_INTERVAL << 16 | LVTS_SENSOR_INTERVAL; writel(value, LVTS_MONCTL2(lvts_ctrl->base)); return lvts_irq_init(lvts_ctrl); } static int lvts_ctrl_start(struct device *dev, struct lvts_ctrl *lvts_ctrl) { struct lvts_sensor *lvts_sensors = lvts_ctrl->sensors; struct thermal_zone_device *tz; u32 sensor_map = 0; int i; /* * Bitmaps to enable each sensor on immediate and filtered modes, as * described in MSRCTL1 and MONCTL0 registers below, respectively. */ u32 sensor_imm_bitmap[] = { BIT(4), BIT(5), BIT(6), BIT(9) }; u32 sensor_filt_bitmap[] = { BIT(0), BIT(1), BIT(2), BIT(3) }; u32 *sensor_bitmap = lvts_ctrl->mode == LVTS_MSR_IMMEDIATE_MODE ? sensor_imm_bitmap : sensor_filt_bitmap; lvts_for_each_valid_sensor(i, lvts_ctrl) { int dt_id = lvts_sensors[i].dt_id; tz = devm_thermal_of_zone_register(dev, dt_id, &lvts_sensors[i], &lvts_ops); if (IS_ERR(tz)) { /* * This thermal zone is not described in the * device tree. It is not an error from the * thermal OF code POV, we just continue. */ if (PTR_ERR(tz) == -ENODEV) continue; return PTR_ERR(tz); } devm_thermal_add_hwmon_sysfs(dev, tz); /* * The thermal zone pointer will be needed in the * interrupt handler, we store it in the sensor * structure. The thermal domain structure will be * passed to the interrupt handler private data as the * interrupt is shared for all the controller * belonging to the thermal domain. */ lvts_sensors[i].tz = tz; /* * This sensor was correctly associated with a thermal * zone, let's set the corresponding bit in the sensor * map, so we can enable the temperature monitoring in * the hardware thermal controller. */ sensor_map |= sensor_bitmap[i]; } /* * The initialization of the thermal zones give us * which sensor point to enable. If any thermal zone * was not described in the device tree, it won't be * enabled here in the sensor map. */ if (lvts_ctrl->mode == LVTS_MSR_IMMEDIATE_MODE) { /* * LVTS_MSRCTL1 : Measurement control * * Bits: * * 9: Ignore MSRCTL0 config and do immediate measurement on sensor3 * 6: Ignore MSRCTL0 config and do immediate measurement on sensor2 * 5: Ignore MSRCTL0 config and do immediate measurement on sensor1 * 4: Ignore MSRCTL0 config and do immediate measurement on sensor0 * * That configuration will ignore the filtering and the delays * introduced in MONCTL1 and MONCTL2 */ writel(sensor_map, LVTS_MSRCTL1(lvts_ctrl->base)); } else { /* * Bits: * 9: Single point access flow * 0-3: Enable sensing point 0-3 */ writel(sensor_map | BIT(9), LVTS_MONCTL0(lvts_ctrl->base)); } return 0; } static int lvts_domain_init(struct device *dev, struct lvts_domain *lvts_td, const struct lvts_data *lvts_data) { struct lvts_ctrl *lvts_ctrl; int i, ret; ret = lvts_ctrl_init(dev, lvts_td, lvts_data); if (ret) return ret; ret = lvts_domain_reset(dev, lvts_td->reset); if (ret) { dev_dbg(dev, "Failed to reset domain"); return ret; } for (i = 0; i < lvts_td->num_lvts_ctrl; i++) { lvts_ctrl = &lvts_td->lvts_ctrl[i]; /* * Initialization steps: * * - Enable the clock * - Connect to the LVTS * - Initialize the LVTS * - Prepare the calibration data * - Select monitored sensors * [ Configure sampling ] * [ Configure the interrupt ] * - Start measurement */ ret = lvts_ctrl_set_enable(lvts_ctrl, true); if (ret) { dev_dbg(dev, "Failed to enable LVTS clock"); return ret; } ret = lvts_ctrl_connect(dev, lvts_ctrl); if (ret) { dev_dbg(dev, "Failed to connect to LVTS controller"); return ret; } ret = lvts_ctrl_initialize(dev, lvts_ctrl); if (ret) { dev_dbg(dev, "Failed to initialize controller"); return ret; } ret = lvts_ctrl_calibrate(dev, lvts_ctrl); if (ret) { dev_dbg(dev, "Failed to calibrate controller"); return ret; } ret = lvts_ctrl_configure(dev, lvts_ctrl); if (ret) { dev_dbg(dev, "Failed to configure controller"); return ret; } ret = lvts_ctrl_start(dev, lvts_ctrl); if (ret) { dev_dbg(dev, "Failed to start controller"); return ret; } } return lvts_debugfs_init(dev, lvts_td); } static int lvts_probe(struct platform_device *pdev) { const struct lvts_data *lvts_data; struct lvts_domain *lvts_td; struct device *dev = &pdev->dev; struct resource *res; int irq, ret; lvts_td = devm_kzalloc(dev, sizeof(*lvts_td), GFP_KERNEL); if (!lvts_td) return -ENOMEM; lvts_data = of_device_get_match_data(dev); if (!lvts_data) return -ENODEV; lvts_td->clk = devm_clk_get_enabled(dev, NULL); if (IS_ERR(lvts_td->clk)) return dev_err_probe(dev, PTR_ERR(lvts_td->clk), "Failed to retrieve clock\n"); res = platform_get_mem_or_io(pdev, 0); if (!res) return dev_err_probe(dev, (-ENXIO), "No IO resource\n"); lvts_td->base = devm_platform_get_and_ioremap_resource(pdev, 0, &res); if (IS_ERR(lvts_td->base)) return dev_err_probe(dev, PTR_ERR(lvts_td->base), "Failed to map io resource\n"); lvts_td->reset = devm_reset_control_get_by_index(dev, 0); if (IS_ERR(lvts_td->reset)) return dev_err_probe(dev, PTR_ERR(lvts_td->reset), "Failed to get reset control\n"); irq = platform_get_irq(pdev, 0); if (irq < 0) return irq; golden_temp_offset = lvts_data->temp_offset; ret = lvts_domain_init(dev, lvts_td, lvts_data); if (ret) return dev_err_probe(dev, ret, "Failed to initialize the lvts domain\n"); /* * At this point the LVTS is initialized and enabled. We can * safely enable the interrupt. */ ret = devm_request_threaded_irq(dev, irq, NULL, lvts_irq_handler, IRQF_ONESHOT, dev_name(dev), lvts_td); if (ret) return dev_err_probe(dev, ret, "Failed to request interrupt\n"); platform_set_drvdata(pdev, lvts_td); return 0; } static void lvts_remove(struct platform_device *pdev) { struct lvts_domain *lvts_td; int i; lvts_td = platform_get_drvdata(pdev); for (i = 0; i < lvts_td->num_lvts_ctrl; i++) lvts_ctrl_set_enable(&lvts_td->lvts_ctrl[i], false); lvts_debugfs_exit(lvts_td); } static const struct lvts_ctrl_data mt7988_lvts_ap_data_ctrl[] = { { .lvts_sensor = { { .dt_id = MT7988_CPU_0, .cal_offsets = { 0x00, 0x01, 0x02 } }, { .dt_id = MT7988_CPU_1, .cal_offsets = { 0x04, 0x05, 0x06 } }, { .dt_id = MT7988_ETH2P5G_0, .cal_offsets = { 0x08, 0x09, 0x0a } }, { .dt_id = MT7988_ETH2P5G_1, .cal_offsets = { 0x0c, 0x0d, 0x0e } } }, VALID_SENSOR_MAP(1, 1, 1, 1), .offset = 0x0, }, { .lvts_sensor = { { .dt_id = MT7988_TOPS_0, .cal_offsets = { 0x14, 0x15, 0x16 } }, { .dt_id = MT7988_TOPS_1, .cal_offsets = { 0x18, 0x19, 0x1a } }, { .dt_id = MT7988_ETHWARP_0, .cal_offsets = { 0x1c, 0x1d, 0x1e } }, { .dt_id = MT7988_ETHWARP_1, .cal_offsets = { 0x20, 0x21, 0x22 } } }, VALID_SENSOR_MAP(1, 1, 1, 1), .offset = 0x100, } }; static int lvts_suspend(struct device *dev) { struct lvts_domain *lvts_td; int i; lvts_td = dev_get_drvdata(dev); for (i = 0; i < lvts_td->num_lvts_ctrl; i++) lvts_ctrl_set_enable(&lvts_td->lvts_ctrl[i], false); clk_disable_unprepare(lvts_td->clk); return 0; } static int lvts_resume(struct device *dev) { struct lvts_domain *lvts_td; int i, ret; lvts_td = dev_get_drvdata(dev); ret = clk_prepare_enable(lvts_td->clk); if (ret) return ret; for (i = 0; i < lvts_td->num_lvts_ctrl; i++) lvts_ctrl_set_enable(&lvts_td->lvts_ctrl[i], true); return 0; } /* * The MT8186 calibration data is stored as packed 3-byte little-endian * values using a weird layout that makes sense only when viewed as a 32-bit * hexadecimal word dump. Let's suppose SxBy where x = sensor number and * y = byte number where the LSB is y=0. We then have: * * [S0B2-S0B1-S0B0-S1B2] [S1B1-S1B0-S2B2-S2B1] [S2B0-S3B2-S3B1-S3B0] * * However, when considering a byte stream, those appear as follows: * * [S1B2] [S0B0[ [S0B1] [S0B2] [S2B1] [S2B2] [S1B0] [S1B1] [S3B0] [S3B1] [S3B2] [S2B0] * * Hence the rather confusing offsets provided below. */ static const struct lvts_ctrl_data mt8186_lvts_data_ctrl[] = { { .lvts_sensor = { { .dt_id = MT8186_LITTLE_CPU0, .cal_offsets = { 5, 6, 7 } }, { .dt_id = MT8186_LITTLE_CPU1, .cal_offsets = { 10, 11, 4 } }, { .dt_id = MT8186_LITTLE_CPU2, .cal_offsets = { 15, 8, 9 } }, { .dt_id = MT8186_CAM, .cal_offsets = { 12, 13, 14 } } }, VALID_SENSOR_MAP(1, 1, 1, 1), .offset = 0x0, }, { .lvts_sensor = { { .dt_id = MT8186_BIG_CPU0, .cal_offsets = { 22, 23, 16 } }, { .dt_id = MT8186_BIG_CPU1, .cal_offsets = { 27, 20, 21 } } }, VALID_SENSOR_MAP(1, 1, 0, 0), .offset = 0x100, }, { .lvts_sensor = { { .dt_id = MT8186_NNA, .cal_offsets = { 29, 30, 31 } }, { .dt_id = MT8186_ADSP, .cal_offsets = { 34, 35, 28 } }, { .dt_id = MT8186_MFG, .cal_offsets = { 39, 32, 33 } } }, VALID_SENSOR_MAP(1, 1, 1, 0), .offset = 0x200, } }; static const struct lvts_ctrl_data mt8188_lvts_mcu_data_ctrl[] = { { .lvts_sensor = { { .dt_id = MT8188_MCU_LITTLE_CPU0, .cal_offsets = { 22, 23, 24 } }, { .dt_id = MT8188_MCU_LITTLE_CPU1, .cal_offsets = { 25, 26, 27 } }, { .dt_id = MT8188_MCU_LITTLE_CPU2, .cal_offsets = { 28, 29, 30 } }, { .dt_id = MT8188_MCU_LITTLE_CPU3, .cal_offsets = { 31, 32, 33 } }, }, VALID_SENSOR_MAP(1, 1, 1, 1), .offset = 0x0, }, { .lvts_sensor = { { .dt_id = MT8188_MCU_BIG_CPU0, .cal_offsets = { 34, 35, 36 } }, { .dt_id = MT8188_MCU_BIG_CPU1, .cal_offsets = { 37, 38, 39 } }, }, VALID_SENSOR_MAP(1, 1, 0, 0), .offset = 0x100, } }; static const struct lvts_ctrl_data mt8188_lvts_ap_data_ctrl[] = { { .lvts_sensor = { { /* unused */ }, { .dt_id = MT8188_AP_APU, .cal_offsets = { 40, 41, 42 } }, }, VALID_SENSOR_MAP(0, 1, 0, 0), .offset = 0x0, }, { .lvts_sensor = { { .dt_id = MT8188_AP_GPU1, .cal_offsets = { 43, 44, 45 } }, { .dt_id = MT8188_AP_GPU2, .cal_offsets = { 46, 47, 48 } }, { .dt_id = MT8188_AP_SOC1, .cal_offsets = { 49, 50, 51 } }, }, VALID_SENSOR_MAP(1, 1, 1, 0), .offset = 0x100, }, { .lvts_sensor = { { .dt_id = MT8188_AP_SOC2, .cal_offsets = { 52, 53, 54 } }, { .dt_id = MT8188_AP_SOC3, .cal_offsets = { 55, 56, 57 } }, }, VALID_SENSOR_MAP(1, 1, 0, 0), .offset = 0x200, }, { .lvts_sensor = { { .dt_id = MT8188_AP_CAM1, .cal_offsets = { 58, 59, 60 } }, { .dt_id = MT8188_AP_CAM2, .cal_offsets = { 61, 62, 63 } }, }, VALID_SENSOR_MAP(1, 1, 0, 0), .offset = 0x300, } }; static const struct lvts_ctrl_data mt8192_lvts_mcu_data_ctrl[] = { { .lvts_sensor = { { .dt_id = MT8192_MCU_BIG_CPU0, .cal_offsets = { 0x04, 0x05, 0x06 } }, { .dt_id = MT8192_MCU_BIG_CPU1, .cal_offsets = { 0x08, 0x09, 0x0a } } }, VALID_SENSOR_MAP(1, 1, 0, 0), .offset = 0x0, .mode = LVTS_MSR_FILTERED_MODE, }, { .lvts_sensor = { { .dt_id = MT8192_MCU_BIG_CPU2, .cal_offsets = { 0x0c, 0x0d, 0x0e } }, { .dt_id = MT8192_MCU_BIG_CPU3, .cal_offsets = { 0x10, 0x11, 0x12 } } }, VALID_SENSOR_MAP(1, 1, 0, 0), .offset = 0x100, .mode = LVTS_MSR_FILTERED_MODE, }, { .lvts_sensor = { { .dt_id = MT8192_MCU_LITTLE_CPU0, .cal_offsets = { 0x14, 0x15, 0x16 } }, { .dt_id = MT8192_MCU_LITTLE_CPU1, .cal_offsets = { 0x18, 0x19, 0x1a } }, { .dt_id = MT8192_MCU_LITTLE_CPU2, .cal_offsets = { 0x1c, 0x1d, 0x1e } }, { .dt_id = MT8192_MCU_LITTLE_CPU3, .cal_offsets = { 0x20, 0x21, 0x22 } } }, VALID_SENSOR_MAP(1, 1, 1, 1), .offset = 0x200, .mode = LVTS_MSR_FILTERED_MODE, } }; static const struct lvts_ctrl_data mt8192_lvts_ap_data_ctrl[] = { { .lvts_sensor = { { .dt_id = MT8192_AP_VPU0, .cal_offsets = { 0x24, 0x25, 0x26 } }, { .dt_id = MT8192_AP_VPU1, .cal_offsets = { 0x28, 0x29, 0x2a } } }, VALID_SENSOR_MAP(1, 1, 0, 0), .offset = 0x0, }, { .lvts_sensor = { { .dt_id = MT8192_AP_GPU0, .cal_offsets = { 0x2c, 0x2d, 0x2e } }, { .dt_id = MT8192_AP_GPU1, .cal_offsets = { 0x30, 0x31, 0x32 } } }, VALID_SENSOR_MAP(1, 1, 0, 0), .offset = 0x100, }, { .lvts_sensor = { { .dt_id = MT8192_AP_INFRA, .cal_offsets = { 0x34, 0x35, 0x36 } }, { .dt_id = MT8192_AP_CAM, .cal_offsets = { 0x38, 0x39, 0x3a } }, }, VALID_SENSOR_MAP(1, 1, 0, 0), .offset = 0x200, }, { .lvts_sensor = { { .dt_id = MT8192_AP_MD0, .cal_offsets = { 0x3c, 0x3d, 0x3e } }, { .dt_id = MT8192_AP_MD1, .cal_offsets = { 0x40, 0x41, 0x42 } }, { .dt_id = MT8192_AP_MD2, .cal_offsets = { 0x44, 0x45, 0x46 } } }, VALID_SENSOR_MAP(1, 1, 1, 0), .offset = 0x300, } }; static const struct lvts_ctrl_data mt8195_lvts_mcu_data_ctrl[] = { { .lvts_sensor = { { .dt_id = MT8195_MCU_BIG_CPU0, .cal_offsets = { 0x04, 0x05, 0x06 } }, { .dt_id = MT8195_MCU_BIG_CPU1, .cal_offsets = { 0x07, 0x08, 0x09 } } }, VALID_SENSOR_MAP(1, 1, 0, 0), .offset = 0x0, }, { .lvts_sensor = { { .dt_id = MT8195_MCU_BIG_CPU2, .cal_offsets = { 0x0d, 0x0e, 0x0f } }, { .dt_id = MT8195_MCU_BIG_CPU3, .cal_offsets = { 0x10, 0x11, 0x12 } } }, VALID_SENSOR_MAP(1, 1, 0, 0), .offset = 0x100, }, { .lvts_sensor = { { .dt_id = MT8195_MCU_LITTLE_CPU0, .cal_offsets = { 0x16, 0x17, 0x18 } }, { .dt_id = MT8195_MCU_LITTLE_CPU1, .cal_offsets = { 0x19, 0x1a, 0x1b } }, { .dt_id = MT8195_MCU_LITTLE_CPU2, .cal_offsets = { 0x1c, 0x1d, 0x1e } }, { .dt_id = MT8195_MCU_LITTLE_CPU3, .cal_offsets = { 0x1f, 0x20, 0x21 } } }, VALID_SENSOR_MAP(1, 1, 1, 1), .offset = 0x200, } }; static const struct lvts_ctrl_data mt8195_lvts_ap_data_ctrl[] = { { .lvts_sensor = { { .dt_id = MT8195_AP_VPU0, .cal_offsets = { 0x25, 0x26, 0x27 } }, { .dt_id = MT8195_AP_VPU1, .cal_offsets = { 0x28, 0x29, 0x2a } } }, VALID_SENSOR_MAP(1, 1, 0, 0), .offset = 0x0, }, { .lvts_sensor = { { .dt_id = MT8195_AP_GPU0, .cal_offsets = { 0x2e, 0x2f, 0x30 } }, { .dt_id = MT8195_AP_GPU1, .cal_offsets = { 0x31, 0x32, 0x33 } } }, VALID_SENSOR_MAP(1, 1, 0, 0), .offset = 0x100, }, { .lvts_sensor = { { .dt_id = MT8195_AP_VDEC, .cal_offsets = { 0x37, 0x38, 0x39 } }, { .dt_id = MT8195_AP_IMG, .cal_offsets = { 0x3a, 0x3b, 0x3c } }, { .dt_id = MT8195_AP_INFRA, .cal_offsets = { 0x3d, 0x3e, 0x3f } } }, VALID_SENSOR_MAP(1, 1, 1, 0), .offset = 0x200, }, { .lvts_sensor = { { .dt_id = MT8195_AP_CAM0, .cal_offsets = { 0x43, 0x44, 0x45 } }, { .dt_id = MT8195_AP_CAM1, .cal_offsets = { 0x46, 0x47, 0x48 } } }, VALID_SENSOR_MAP(1, 1, 0, 0), .offset = 0x300, } }; static const struct lvts_data mt7988_lvts_ap_data = { .lvts_ctrl = mt7988_lvts_ap_data_ctrl, .num_lvts_ctrl = ARRAY_SIZE(mt7988_lvts_ap_data_ctrl), .temp_factor = LVTS_COEFF_A_MT7988, .temp_offset = LVTS_COEFF_B_MT7988, .gt_calib_bit_offset = 24, }; static const struct lvts_data mt8186_lvts_data = { .lvts_ctrl = mt8186_lvts_data_ctrl, .num_lvts_ctrl = ARRAY_SIZE(mt8186_lvts_data_ctrl), .temp_factor = LVTS_COEFF_A_MT7988, .temp_offset = LVTS_COEFF_B_MT7988, .gt_calib_bit_offset = 24, }; static const struct lvts_data mt8188_lvts_mcu_data = { .lvts_ctrl = mt8188_lvts_mcu_data_ctrl, .num_lvts_ctrl = ARRAY_SIZE(mt8188_lvts_mcu_data_ctrl), .temp_factor = LVTS_COEFF_A_MT8195, .temp_offset = LVTS_COEFF_B_MT8195, .gt_calib_bit_offset = 20, }; static const struct lvts_data mt8188_lvts_ap_data = { .lvts_ctrl = mt8188_lvts_ap_data_ctrl, .num_lvts_ctrl = ARRAY_SIZE(mt8188_lvts_ap_data_ctrl), .temp_factor = LVTS_COEFF_A_MT8195, .temp_offset = LVTS_COEFF_B_MT8195, .gt_calib_bit_offset = 20, }; static const struct lvts_data mt8192_lvts_mcu_data = { .lvts_ctrl = mt8192_lvts_mcu_data_ctrl, .num_lvts_ctrl = ARRAY_SIZE(mt8192_lvts_mcu_data_ctrl), .temp_factor = LVTS_COEFF_A_MT8195, .temp_offset = LVTS_COEFF_B_MT8195, .gt_calib_bit_offset = 24, }; static const struct lvts_data mt8192_lvts_ap_data = { .lvts_ctrl = mt8192_lvts_ap_data_ctrl, .num_lvts_ctrl = ARRAY_SIZE(mt8192_lvts_ap_data_ctrl), .temp_factor = LVTS_COEFF_A_MT8195, .temp_offset = LVTS_COEFF_B_MT8195, .gt_calib_bit_offset = 24, }; static const struct lvts_data mt8195_lvts_mcu_data = { .lvts_ctrl = mt8195_lvts_mcu_data_ctrl, .num_lvts_ctrl = ARRAY_SIZE(mt8195_lvts_mcu_data_ctrl), .temp_factor = LVTS_COEFF_A_MT8195, .temp_offset = LVTS_COEFF_B_MT8195, .gt_calib_bit_offset = 24, }; static const struct lvts_data mt8195_lvts_ap_data = { .lvts_ctrl = mt8195_lvts_ap_data_ctrl, .num_lvts_ctrl = ARRAY_SIZE(mt8195_lvts_ap_data_ctrl), .temp_factor = LVTS_COEFF_A_MT8195, .temp_offset = LVTS_COEFF_B_MT8195, .gt_calib_bit_offset = 24, }; static const struct of_device_id lvts_of_match[] = { { .compatible = "mediatek,mt7988-lvts-ap", .data = &mt7988_lvts_ap_data }, { .compatible = "mediatek,mt8186-lvts", .data = &mt8186_lvts_data }, { .compatible = "mediatek,mt8188-lvts-mcu", .data = &mt8188_lvts_mcu_data }, { .compatible = "mediatek,mt8188-lvts-ap", .data = &mt8188_lvts_ap_data }, { .compatible = "mediatek,mt8192-lvts-mcu", .data = &mt8192_lvts_mcu_data }, { .compatible = "mediatek,mt8192-lvts-ap", .data = &mt8192_lvts_ap_data }, { .compatible = "mediatek,mt8195-lvts-mcu", .data = &mt8195_lvts_mcu_data }, { .compatible = "mediatek,mt8195-lvts-ap", .data = &mt8195_lvts_ap_data }, {}, }; MODULE_DEVICE_TABLE(of, lvts_of_match); static const struct dev_pm_ops lvts_pm_ops = { NOIRQ_SYSTEM_SLEEP_PM_OPS(lvts_suspend, lvts_resume) }; static struct platform_driver lvts_driver = { .probe = lvts_probe, .remove_new = lvts_remove, .driver = { .name = "mtk-lvts-thermal", .of_match_table = lvts_of_match, .pm = &lvts_pm_ops, }, }; module_platform_driver(lvts_driver); MODULE_AUTHOR("Balsam CHIHI "); MODULE_DESCRIPTION("MediaTek LVTS Thermal Driver"); MODULE_LICENSE("GPL");