// SPDX-License-Identifier: GPL-2.0 /* erasure coding */ #include "bcachefs.h" #include "alloc_background.h" #include "alloc_foreground.h" #include "backpointers.h" #include "bkey_buf.h" #include "bset.h" #include "btree_gc.h" #include "btree_update.h" #include "btree_write_buffer.h" #include "buckets.h" #include "checksum.h" #include "disk_groups.h" #include "ec.h" #include "error.h" #include "io_read.h" #include "keylist.h" #include "recovery.h" #include "replicas.h" #include "super-io.h" #include "util.h" #include #ifdef __KERNEL__ #include #include static void raid5_recov(unsigned disks, unsigned failed_idx, size_t size, void **data) { unsigned i = 2, nr; BUG_ON(failed_idx >= disks); swap(data[0], data[failed_idx]); memcpy(data[0], data[1], size); while (i < disks) { nr = min_t(unsigned, disks - i, MAX_XOR_BLOCKS); xor_blocks(nr, size, data[0], data + i); i += nr; } swap(data[0], data[failed_idx]); } static void raid_gen(int nd, int np, size_t size, void **v) { if (np >= 1) raid5_recov(nd + np, nd, size, v); if (np >= 2) raid6_call.gen_syndrome(nd + np, size, v); BUG_ON(np > 2); } static void raid_rec(int nr, int *ir, int nd, int np, size_t size, void **v) { switch (nr) { case 0: break; case 1: if (ir[0] < nd + 1) raid5_recov(nd + 1, ir[0], size, v); else raid6_call.gen_syndrome(nd + np, size, v); break; case 2: if (ir[1] < nd) { /* data+data failure. */ raid6_2data_recov(nd + np, size, ir[0], ir[1], v); } else if (ir[0] < nd) { /* data + p/q failure */ if (ir[1] == nd) /* data + p failure */ raid6_datap_recov(nd + np, size, ir[0], v); else { /* data + q failure */ raid5_recov(nd + 1, ir[0], size, v); raid6_call.gen_syndrome(nd + np, size, v); } } else { raid_gen(nd, np, size, v); } break; default: BUG(); } } #else #include #endif struct ec_bio { struct bch_dev *ca; struct ec_stripe_buf *buf; size_t idx; struct bio bio; }; /* Stripes btree keys: */ int bch2_stripe_invalid(struct bch_fs *c, struct bkey_s_c k, enum bkey_invalid_flags flags, struct printbuf *err) { const struct bch_stripe *s = bkey_s_c_to_stripe(k).v; int ret = 0; bkey_fsck_err_on(bkey_eq(k.k->p, POS_MIN) || bpos_gt(k.k->p, POS(0, U32_MAX)), c, err, stripe_pos_bad, "stripe at bad pos"); bkey_fsck_err_on(bkey_val_u64s(k.k) < stripe_val_u64s(s), c, err, stripe_val_size_bad, "incorrect value size (%zu < %u)", bkey_val_u64s(k.k), stripe_val_u64s(s)); ret = bch2_bkey_ptrs_invalid(c, k, flags, err); fsck_err: return ret; } void bch2_stripe_to_text(struct printbuf *out, struct bch_fs *c, struct bkey_s_c k) { const struct bch_stripe *sp = bkey_s_c_to_stripe(k).v; struct bch_stripe s = {}; memcpy(&s, sp, min(sizeof(s), bkey_val_bytes(k.k))); unsigned nr_data = s.nr_blocks - s.nr_redundant; prt_printf(out, "algo %u sectors %u blocks %u:%u csum ", s.algorithm, le16_to_cpu(s.sectors), nr_data, s.nr_redundant); bch2_prt_csum_type(out, s.csum_type); prt_printf(out, " gran %u", 1U << s.csum_granularity_bits); for (unsigned i = 0; i < s.nr_blocks; i++) { const struct bch_extent_ptr *ptr = sp->ptrs + i; if ((void *) ptr >= bkey_val_end(k)) break; bch2_extent_ptr_to_text(out, c, ptr); if (s.csum_type < BCH_CSUM_NR && i < nr_data && stripe_blockcount_offset(&s, i) < bkey_val_bytes(k.k)) prt_printf(out, "#%u", stripe_blockcount_get(sp, i)); } } /* Triggers: */ static int bch2_trans_mark_stripe_bucket(struct btree_trans *trans, struct bkey_s_c_stripe s, unsigned idx, bool deleting) { struct bch_fs *c = trans->c; const struct bch_extent_ptr *ptr = &s.v->ptrs[idx]; struct btree_iter iter; struct bkey_i_alloc_v4 *a; enum bch_data_type data_type = idx >= s.v->nr_blocks - s.v->nr_redundant ? BCH_DATA_parity : 0; s64 sectors = data_type ? le16_to_cpu(s.v->sectors) : 0; int ret = 0; if (deleting) sectors = -sectors; a = bch2_trans_start_alloc_update(trans, &iter, PTR_BUCKET_POS(c, ptr)); if (IS_ERR(a)) return PTR_ERR(a); ret = bch2_check_bucket_ref(trans, s.s_c, ptr, sectors, data_type, a->v.gen, a->v.data_type, a->v.dirty_sectors); if (ret) goto err; if (!deleting) { if (bch2_trans_inconsistent_on(a->v.stripe || a->v.stripe_redundancy, trans, "bucket %llu:%llu gen %u data type %s dirty_sectors %u: multiple stripes using same bucket (%u, %llu)", iter.pos.inode, iter.pos.offset, a->v.gen, bch2_data_type_str(a->v.data_type), a->v.dirty_sectors, a->v.stripe, s.k->p.offset)) { ret = -EIO; goto err; } if (bch2_trans_inconsistent_on(data_type && a->v.dirty_sectors, trans, "bucket %llu:%llu gen %u data type %s dirty_sectors %u: data already in stripe bucket %llu", iter.pos.inode, iter.pos.offset, a->v.gen, bch2_data_type_str(a->v.data_type), a->v.dirty_sectors, s.k->p.offset)) { ret = -EIO; goto err; } a->v.stripe = s.k->p.offset; a->v.stripe_redundancy = s.v->nr_redundant; a->v.data_type = BCH_DATA_stripe; } else { if (bch2_trans_inconsistent_on(a->v.stripe != s.k->p.offset || a->v.stripe_redundancy != s.v->nr_redundant, trans, "bucket %llu:%llu gen %u: not marked as stripe when deleting stripe %llu (got %u)", iter.pos.inode, iter.pos.offset, a->v.gen, s.k->p.offset, a->v.stripe)) { ret = -EIO; goto err; } a->v.stripe = 0; a->v.stripe_redundancy = 0; a->v.data_type = alloc_data_type(a->v, BCH_DATA_user); } a->v.dirty_sectors += sectors; if (data_type) a->v.data_type = !deleting ? data_type : 0; ret = bch2_trans_update(trans, &iter, &a->k_i, 0); if (ret) goto err; err: bch2_trans_iter_exit(trans, &iter); return ret; } static int mark_stripe_bucket(struct btree_trans *trans, struct bkey_s_c k, unsigned ptr_idx, unsigned flags) { struct bch_fs *c = trans->c; const struct bch_stripe *s = bkey_s_c_to_stripe(k).v; unsigned nr_data = s->nr_blocks - s->nr_redundant; bool parity = ptr_idx >= nr_data; enum bch_data_type data_type = parity ? BCH_DATA_parity : BCH_DATA_stripe; s64 sectors = parity ? le16_to_cpu(s->sectors) : 0; const struct bch_extent_ptr *ptr = s->ptrs + ptr_idx; struct bch_dev *ca = bch_dev_bkey_exists(c, ptr->dev); struct bucket old, new, *g; struct printbuf buf = PRINTBUF; int ret = 0; BUG_ON(!(flags & BTREE_TRIGGER_GC)); /* * XXX doesn't handle deletion */ percpu_down_read(&c->mark_lock); g = PTR_GC_BUCKET(ca, ptr); if (g->dirty_sectors || (g->stripe && g->stripe != k.k->p.offset)) { bch2_fs_inconsistent(c, "bucket %u:%zu gen %u: multiple stripes using same bucket\n%s", ptr->dev, PTR_BUCKET_NR(ca, ptr), g->gen, (bch2_bkey_val_to_text(&buf, c, k), buf.buf)); ret = -EINVAL; goto err; } bucket_lock(g); old = *g; ret = bch2_check_bucket_ref(trans, k, ptr, sectors, data_type, g->gen, g->data_type, g->dirty_sectors); if (ret) goto err; g->data_type = data_type; g->dirty_sectors += sectors; g->stripe = k.k->p.offset; g->stripe_redundancy = s->nr_redundant; new = *g; err: bucket_unlock(g); if (!ret) bch2_dev_usage_update_m(c, ca, &old, &new); percpu_up_read(&c->mark_lock); printbuf_exit(&buf); return ret; } int bch2_trigger_stripe(struct btree_trans *trans, enum btree_id btree_id, unsigned level, struct bkey_s_c old, struct bkey_s _new, unsigned flags) { struct bkey_s_c new = _new.s_c; struct bch_fs *c = trans->c; u64 idx = new.k->p.offset; const struct bch_stripe *old_s = old.k->type == KEY_TYPE_stripe ? bkey_s_c_to_stripe(old).v : NULL; const struct bch_stripe *new_s = new.k->type == KEY_TYPE_stripe ? bkey_s_c_to_stripe(new).v : NULL; if (flags & BTREE_TRIGGER_TRANSACTIONAL) { /* * If the pointers aren't changing, we don't need to do anything: */ if (new_s && old_s && new_s->nr_blocks == old_s->nr_blocks && new_s->nr_redundant == old_s->nr_redundant && !memcmp(old_s->ptrs, new_s->ptrs, new_s->nr_blocks * sizeof(struct bch_extent_ptr))) return 0; BUG_ON(new_s && old_s && (new_s->nr_blocks != old_s->nr_blocks || new_s->nr_redundant != old_s->nr_redundant)); if (new_s) { s64 sectors = le16_to_cpu(new_s->sectors); struct bch_replicas_padded r; bch2_bkey_to_replicas(&r.e, new); int ret = bch2_update_replicas_list(trans, &r.e, sectors * new_s->nr_redundant); if (ret) return ret; } if (old_s) { s64 sectors = -((s64) le16_to_cpu(old_s->sectors)); struct bch_replicas_padded r; bch2_bkey_to_replicas(&r.e, old); int ret = bch2_update_replicas_list(trans, &r.e, sectors * old_s->nr_redundant); if (ret) return ret; } unsigned nr_blocks = new_s ? new_s->nr_blocks : old_s->nr_blocks; for (unsigned i = 0; i < nr_blocks; i++) { if (new_s && old_s && !memcmp(&new_s->ptrs[i], &old_s->ptrs[i], sizeof(new_s->ptrs[i]))) continue; if (new_s) { int ret = bch2_trans_mark_stripe_bucket(trans, bkey_s_c_to_stripe(new), i, false); if (ret) return ret; } if (old_s) { int ret = bch2_trans_mark_stripe_bucket(trans, bkey_s_c_to_stripe(old), i, true); if (ret) return ret; } } } if (flags & BTREE_TRIGGER_ATOMIC) { struct stripe *m = genradix_ptr(&c->stripes, idx); if (!m) { struct printbuf buf1 = PRINTBUF; struct printbuf buf2 = PRINTBUF; bch2_bkey_val_to_text(&buf1, c, old); bch2_bkey_val_to_text(&buf2, c, new); bch_err_ratelimited(c, "error marking nonexistent stripe %llu while marking\n" "old %s\n" "new %s", idx, buf1.buf, buf2.buf); printbuf_exit(&buf2); printbuf_exit(&buf1); bch2_inconsistent_error(c); return -1; } if (!new_s) { bch2_stripes_heap_del(c, m, idx); memset(m, 0, sizeof(*m)); } else { m->sectors = le16_to_cpu(new_s->sectors); m->algorithm = new_s->algorithm; m->nr_blocks = new_s->nr_blocks; m->nr_redundant = new_s->nr_redundant; m->blocks_nonempty = 0; for (unsigned i = 0; i < new_s->nr_blocks; i++) m->blocks_nonempty += !!stripe_blockcount_get(new_s, i); if (!old_s) bch2_stripes_heap_insert(c, m, idx); else bch2_stripes_heap_update(c, m, idx); } } if (flags & BTREE_TRIGGER_GC) { struct gc_stripe *m = genradix_ptr_alloc(&c->gc_stripes, idx, GFP_KERNEL); if (!m) { bch_err(c, "error allocating memory for gc_stripes, idx %llu", idx); return -BCH_ERR_ENOMEM_mark_stripe; } /* * This will be wrong when we bring back runtime gc: we should * be unmarking the old key and then marking the new key */ m->alive = true; m->sectors = le16_to_cpu(new_s->sectors); m->nr_blocks = new_s->nr_blocks; m->nr_redundant = new_s->nr_redundant; for (unsigned i = 0; i < new_s->nr_blocks; i++) m->ptrs[i] = new_s->ptrs[i]; bch2_bkey_to_replicas(&m->r.e, new); /* * gc recalculates this field from stripe ptr * references: */ memset(m->block_sectors, 0, sizeof(m->block_sectors)); for (unsigned i = 0; i < new_s->nr_blocks; i++) { int ret = mark_stripe_bucket(trans, new, i, flags); if (ret) return ret; } int ret = bch2_update_replicas(c, new, &m->r.e, ((s64) m->sectors * m->nr_redundant), 0, true); if (ret) { struct printbuf buf = PRINTBUF; bch2_bkey_val_to_text(&buf, c, new); bch2_fs_fatal_error(c, ": no replicas entry for %s", buf.buf); printbuf_exit(&buf); return ret; } } return 0; } /* returns blocknr in stripe that we matched: */ static const struct bch_extent_ptr *bkey_matches_stripe(struct bch_stripe *s, struct bkey_s_c k, unsigned *block) { struct bkey_ptrs_c ptrs = bch2_bkey_ptrs_c(k); unsigned i, nr_data = s->nr_blocks - s->nr_redundant; bkey_for_each_ptr(ptrs, ptr) for (i = 0; i < nr_data; i++) if (__bch2_ptr_matches_stripe(&s->ptrs[i], ptr, le16_to_cpu(s->sectors))) { *block = i; return ptr; } return NULL; } static bool extent_has_stripe_ptr(struct bkey_s_c k, u64 idx) { switch (k.k->type) { case KEY_TYPE_extent: { struct bkey_s_c_extent e = bkey_s_c_to_extent(k); const union bch_extent_entry *entry; extent_for_each_entry(e, entry) if (extent_entry_type(entry) == BCH_EXTENT_ENTRY_stripe_ptr && entry->stripe_ptr.idx == idx) return true; break; } } return false; } /* Stripe bufs: */ static void ec_stripe_buf_exit(struct ec_stripe_buf *buf) { if (buf->key.k.type == KEY_TYPE_stripe) { struct bkey_i_stripe *s = bkey_i_to_stripe(&buf->key); unsigned i; for (i = 0; i < s->v.nr_blocks; i++) { kvfree(buf->data[i]); buf->data[i] = NULL; } } } /* XXX: this is a non-mempoolified memory allocation: */ static int ec_stripe_buf_init(struct ec_stripe_buf *buf, unsigned offset, unsigned size) { struct bch_stripe *v = &bkey_i_to_stripe(&buf->key)->v; unsigned csum_granularity = 1U << v->csum_granularity_bits; unsigned end = offset + size; unsigned i; BUG_ON(end > le16_to_cpu(v->sectors)); offset = round_down(offset, csum_granularity); end = min_t(unsigned, le16_to_cpu(v->sectors), round_up(end, csum_granularity)); buf->offset = offset; buf->size = end - offset; memset(buf->valid, 0xFF, sizeof(buf->valid)); for (i = 0; i < v->nr_blocks; i++) { buf->data[i] = kvmalloc(buf->size << 9, GFP_KERNEL); if (!buf->data[i]) goto err; } return 0; err: ec_stripe_buf_exit(buf); return -BCH_ERR_ENOMEM_stripe_buf; } /* Checksumming: */ static struct bch_csum ec_block_checksum(struct ec_stripe_buf *buf, unsigned block, unsigned offset) { struct bch_stripe *v = &bkey_i_to_stripe(&buf->key)->v; unsigned csum_granularity = 1 << v->csum_granularity_bits; unsigned end = buf->offset + buf->size; unsigned len = min(csum_granularity, end - offset); BUG_ON(offset >= end); BUG_ON(offset < buf->offset); BUG_ON(offset & (csum_granularity - 1)); BUG_ON(offset + len != le16_to_cpu(v->sectors) && (len & (csum_granularity - 1))); return bch2_checksum(NULL, v->csum_type, null_nonce(), buf->data[block] + ((offset - buf->offset) << 9), len << 9); } static void ec_generate_checksums(struct ec_stripe_buf *buf) { struct bch_stripe *v = &bkey_i_to_stripe(&buf->key)->v; unsigned i, j, csums_per_device = stripe_csums_per_device(v); if (!v->csum_type) return; BUG_ON(buf->offset); BUG_ON(buf->size != le16_to_cpu(v->sectors)); for (i = 0; i < v->nr_blocks; i++) for (j = 0; j < csums_per_device; j++) stripe_csum_set(v, i, j, ec_block_checksum(buf, i, j << v->csum_granularity_bits)); } static void ec_validate_checksums(struct bch_fs *c, struct ec_stripe_buf *buf) { struct bch_stripe *v = &bkey_i_to_stripe(&buf->key)->v; unsigned csum_granularity = 1 << v->csum_granularity_bits; unsigned i; if (!v->csum_type) return; for (i = 0; i < v->nr_blocks; i++) { unsigned offset = buf->offset; unsigned end = buf->offset + buf->size; if (!test_bit(i, buf->valid)) continue; while (offset < end) { unsigned j = offset >> v->csum_granularity_bits; unsigned len = min(csum_granularity, end - offset); struct bch_csum want = stripe_csum_get(v, i, j); struct bch_csum got = ec_block_checksum(buf, i, offset); if (bch2_crc_cmp(want, got)) { struct printbuf err = PRINTBUF; struct bch_dev *ca = bch_dev_bkey_exists(c, v->ptrs[i].dev); prt_str(&err, "stripe "); bch2_csum_err_msg(&err, v->csum_type, want, got); prt_printf(&err, " for %ps at %u of\n ", (void *) _RET_IP_, i); bch2_bkey_val_to_text(&err, c, bkey_i_to_s_c(&buf->key)); bch_err_ratelimited(ca, "%s", err.buf); printbuf_exit(&err); clear_bit(i, buf->valid); bch2_io_error(ca, BCH_MEMBER_ERROR_checksum); break; } offset += len; } } } /* Erasure coding: */ static void ec_generate_ec(struct ec_stripe_buf *buf) { struct bch_stripe *v = &bkey_i_to_stripe(&buf->key)->v; unsigned nr_data = v->nr_blocks - v->nr_redundant; unsigned bytes = le16_to_cpu(v->sectors) << 9; raid_gen(nr_data, v->nr_redundant, bytes, buf->data); } static unsigned ec_nr_failed(struct ec_stripe_buf *buf) { struct bch_stripe *v = &bkey_i_to_stripe(&buf->key)->v; return v->nr_blocks - bitmap_weight(buf->valid, v->nr_blocks); } static int ec_do_recov(struct bch_fs *c, struct ec_stripe_buf *buf) { struct bch_stripe *v = &bkey_i_to_stripe(&buf->key)->v; unsigned i, failed[BCH_BKEY_PTRS_MAX], nr_failed = 0; unsigned nr_data = v->nr_blocks - v->nr_redundant; unsigned bytes = buf->size << 9; if (ec_nr_failed(buf) > v->nr_redundant) { bch_err_ratelimited(c, "error doing reconstruct read: unable to read enough blocks"); return -1; } for (i = 0; i < nr_data; i++) if (!test_bit(i, buf->valid)) failed[nr_failed++] = i; raid_rec(nr_failed, failed, nr_data, v->nr_redundant, bytes, buf->data); return 0; } /* IO: */ static void ec_block_endio(struct bio *bio) { struct ec_bio *ec_bio = container_of(bio, struct ec_bio, bio); struct bch_stripe *v = &bkey_i_to_stripe(&ec_bio->buf->key)->v; struct bch_extent_ptr *ptr = &v->ptrs[ec_bio->idx]; struct bch_dev *ca = ec_bio->ca; struct closure *cl = bio->bi_private; if (bch2_dev_io_err_on(bio->bi_status, ca, bio_data_dir(bio) ? BCH_MEMBER_ERROR_write : BCH_MEMBER_ERROR_read, "erasure coding %s error: %s", bio_data_dir(bio) ? "write" : "read", bch2_blk_status_to_str(bio->bi_status))) clear_bit(ec_bio->idx, ec_bio->buf->valid); if (ptr_stale(ca, ptr)) { bch_err_ratelimited(ca->fs, "error %s stripe: stale pointer after io", bio_data_dir(bio) == READ ? "reading from" : "writing to"); clear_bit(ec_bio->idx, ec_bio->buf->valid); } bio_put(&ec_bio->bio); percpu_ref_put(&ca->io_ref); closure_put(cl); } static void ec_block_io(struct bch_fs *c, struct ec_stripe_buf *buf, blk_opf_t opf, unsigned idx, struct closure *cl) { struct bch_stripe *v = &bkey_i_to_stripe(&buf->key)->v; unsigned offset = 0, bytes = buf->size << 9; struct bch_extent_ptr *ptr = &v->ptrs[idx]; struct bch_dev *ca = bch_dev_bkey_exists(c, ptr->dev); enum bch_data_type data_type = idx < v->nr_blocks - v->nr_redundant ? BCH_DATA_user : BCH_DATA_parity; int rw = op_is_write(opf); if (ptr_stale(ca, ptr)) { bch_err_ratelimited(c, "error %s stripe: stale pointer", rw == READ ? "reading from" : "writing to"); clear_bit(idx, buf->valid); return; } if (!bch2_dev_get_ioref(ca, rw)) { clear_bit(idx, buf->valid); return; } this_cpu_add(ca->io_done->sectors[rw][data_type], buf->size); while (offset < bytes) { unsigned nr_iovecs = min_t(size_t, BIO_MAX_VECS, DIV_ROUND_UP(bytes, PAGE_SIZE)); unsigned b = min_t(size_t, bytes - offset, nr_iovecs << PAGE_SHIFT); struct ec_bio *ec_bio; ec_bio = container_of(bio_alloc_bioset(ca->disk_sb.bdev, nr_iovecs, opf, GFP_KERNEL, &c->ec_bioset), struct ec_bio, bio); ec_bio->ca = ca; ec_bio->buf = buf; ec_bio->idx = idx; ec_bio->bio.bi_iter.bi_sector = ptr->offset + buf->offset + (offset >> 9); ec_bio->bio.bi_end_io = ec_block_endio; ec_bio->bio.bi_private = cl; bch2_bio_map(&ec_bio->bio, buf->data[idx] + offset, b); closure_get(cl); percpu_ref_get(&ca->io_ref); submit_bio(&ec_bio->bio); offset += b; } percpu_ref_put(&ca->io_ref); } static int get_stripe_key_trans(struct btree_trans *trans, u64 idx, struct ec_stripe_buf *stripe) { struct btree_iter iter; struct bkey_s_c k; int ret; k = bch2_bkey_get_iter(trans, &iter, BTREE_ID_stripes, POS(0, idx), BTREE_ITER_SLOTS); ret = bkey_err(k); if (ret) goto err; if (k.k->type != KEY_TYPE_stripe) { ret = -ENOENT; goto err; } bkey_reassemble(&stripe->key, k); err: bch2_trans_iter_exit(trans, &iter); return ret; } /* recovery read path: */ int bch2_ec_read_extent(struct btree_trans *trans, struct bch_read_bio *rbio) { struct bch_fs *c = trans->c; struct ec_stripe_buf *buf; struct closure cl; struct bch_stripe *v; unsigned i, offset; int ret = 0; closure_init_stack(&cl); BUG_ON(!rbio->pick.has_ec); buf = kzalloc(sizeof(*buf), GFP_NOFS); if (!buf) return -BCH_ERR_ENOMEM_ec_read_extent; ret = lockrestart_do(trans, get_stripe_key_trans(trans, rbio->pick.ec.idx, buf)); if (ret) { bch_err_ratelimited(c, "error doing reconstruct read: error %i looking up stripe", ret); kfree(buf); return -EIO; } v = &bkey_i_to_stripe(&buf->key)->v; if (!bch2_ptr_matches_stripe(v, rbio->pick)) { bch_err_ratelimited(c, "error doing reconstruct read: pointer doesn't match stripe"); ret = -EIO; goto err; } offset = rbio->bio.bi_iter.bi_sector - v->ptrs[rbio->pick.ec.block].offset; if (offset + bio_sectors(&rbio->bio) > le16_to_cpu(v->sectors)) { bch_err_ratelimited(c, "error doing reconstruct read: read is bigger than stripe"); ret = -EIO; goto err; } ret = ec_stripe_buf_init(buf, offset, bio_sectors(&rbio->bio)); if (ret) goto err; for (i = 0; i < v->nr_blocks; i++) ec_block_io(c, buf, REQ_OP_READ, i, &cl); closure_sync(&cl); if (ec_nr_failed(buf) > v->nr_redundant) { bch_err_ratelimited(c, "error doing reconstruct read: unable to read enough blocks"); ret = -EIO; goto err; } ec_validate_checksums(c, buf); ret = ec_do_recov(c, buf); if (ret) goto err; memcpy_to_bio(&rbio->bio, rbio->bio.bi_iter, buf->data[rbio->pick.ec.block] + ((offset - buf->offset) << 9)); err: ec_stripe_buf_exit(buf); kfree(buf); return ret; } /* stripe bucket accounting: */ static int __ec_stripe_mem_alloc(struct bch_fs *c, size_t idx, gfp_t gfp) { ec_stripes_heap n, *h = &c->ec_stripes_heap; if (idx >= h->size) { if (!init_heap(&n, max(1024UL, roundup_pow_of_two(idx + 1)), gfp)) return -BCH_ERR_ENOMEM_ec_stripe_mem_alloc; mutex_lock(&c->ec_stripes_heap_lock); if (n.size > h->size) { memcpy(n.data, h->data, h->used * sizeof(h->data[0])); n.used = h->used; swap(*h, n); } mutex_unlock(&c->ec_stripes_heap_lock); free_heap(&n); } if (!genradix_ptr_alloc(&c->stripes, idx, gfp)) return -BCH_ERR_ENOMEM_ec_stripe_mem_alloc; if (c->gc_pos.phase != GC_PHASE_not_running && !genradix_ptr_alloc(&c->gc_stripes, idx, gfp)) return -BCH_ERR_ENOMEM_ec_stripe_mem_alloc; return 0; } static int ec_stripe_mem_alloc(struct btree_trans *trans, struct btree_iter *iter) { return allocate_dropping_locks_errcode(trans, __ec_stripe_mem_alloc(trans->c, iter->pos.offset, _gfp)); } /* * Hash table of open stripes: * Stripes that are being created or modified are kept in a hash table, so that * stripe deletion can skip them. */ static bool __bch2_stripe_is_open(struct bch_fs *c, u64 idx) { unsigned hash = hash_64(idx, ilog2(ARRAY_SIZE(c->ec_stripes_new))); struct ec_stripe_new *s; hlist_for_each_entry(s, &c->ec_stripes_new[hash], hash) if (s->idx == idx) return true; return false; } static bool bch2_stripe_is_open(struct bch_fs *c, u64 idx) { bool ret = false; spin_lock(&c->ec_stripes_new_lock); ret = __bch2_stripe_is_open(c, idx); spin_unlock(&c->ec_stripes_new_lock); return ret; } static bool bch2_try_open_stripe(struct bch_fs *c, struct ec_stripe_new *s, u64 idx) { bool ret; spin_lock(&c->ec_stripes_new_lock); ret = !__bch2_stripe_is_open(c, idx); if (ret) { unsigned hash = hash_64(idx, ilog2(ARRAY_SIZE(c->ec_stripes_new))); s->idx = idx; hlist_add_head(&s->hash, &c->ec_stripes_new[hash]); } spin_unlock(&c->ec_stripes_new_lock); return ret; } static void bch2_stripe_close(struct bch_fs *c, struct ec_stripe_new *s) { BUG_ON(!s->idx); spin_lock(&c->ec_stripes_new_lock); hlist_del_init(&s->hash); spin_unlock(&c->ec_stripes_new_lock); s->idx = 0; } /* Heap of all existing stripes, ordered by blocks_nonempty */ static u64 stripe_idx_to_delete(struct bch_fs *c) { ec_stripes_heap *h = &c->ec_stripes_heap; lockdep_assert_held(&c->ec_stripes_heap_lock); if (h->used && h->data[0].blocks_nonempty == 0 && !bch2_stripe_is_open(c, h->data[0].idx)) return h->data[0].idx; return 0; } static inline int ec_stripes_heap_cmp(ec_stripes_heap *h, struct ec_stripe_heap_entry l, struct ec_stripe_heap_entry r) { return ((l.blocks_nonempty > r.blocks_nonempty) - (l.blocks_nonempty < r.blocks_nonempty)); } static inline void ec_stripes_heap_set_backpointer(ec_stripes_heap *h, size_t i) { struct bch_fs *c = container_of(h, struct bch_fs, ec_stripes_heap); genradix_ptr(&c->stripes, h->data[i].idx)->heap_idx = i; } static void heap_verify_backpointer(struct bch_fs *c, size_t idx) { ec_stripes_heap *h = &c->ec_stripes_heap; struct stripe *m = genradix_ptr(&c->stripes, idx); BUG_ON(m->heap_idx >= h->used); BUG_ON(h->data[m->heap_idx].idx != idx); } void bch2_stripes_heap_del(struct bch_fs *c, struct stripe *m, size_t idx) { mutex_lock(&c->ec_stripes_heap_lock); heap_verify_backpointer(c, idx); heap_del(&c->ec_stripes_heap, m->heap_idx, ec_stripes_heap_cmp, ec_stripes_heap_set_backpointer); mutex_unlock(&c->ec_stripes_heap_lock); } void bch2_stripes_heap_insert(struct bch_fs *c, struct stripe *m, size_t idx) { mutex_lock(&c->ec_stripes_heap_lock); BUG_ON(heap_full(&c->ec_stripes_heap)); heap_add(&c->ec_stripes_heap, ((struct ec_stripe_heap_entry) { .idx = idx, .blocks_nonempty = m->blocks_nonempty, }), ec_stripes_heap_cmp, ec_stripes_heap_set_backpointer); heap_verify_backpointer(c, idx); mutex_unlock(&c->ec_stripes_heap_lock); } void bch2_stripes_heap_update(struct bch_fs *c, struct stripe *m, size_t idx) { ec_stripes_heap *h = &c->ec_stripes_heap; bool do_deletes; size_t i; mutex_lock(&c->ec_stripes_heap_lock); heap_verify_backpointer(c, idx); h->data[m->heap_idx].blocks_nonempty = m->blocks_nonempty; i = m->heap_idx; heap_sift_up(h, i, ec_stripes_heap_cmp, ec_stripes_heap_set_backpointer); heap_sift_down(h, i, ec_stripes_heap_cmp, ec_stripes_heap_set_backpointer); heap_verify_backpointer(c, idx); do_deletes = stripe_idx_to_delete(c) != 0; mutex_unlock(&c->ec_stripes_heap_lock); if (do_deletes) bch2_do_stripe_deletes(c); } /* stripe deletion */ static int ec_stripe_delete(struct btree_trans *trans, u64 idx) { struct bch_fs *c = trans->c; struct btree_iter iter; struct bkey_s_c k; struct bkey_s_c_stripe s; int ret; k = bch2_bkey_get_iter(trans, &iter, BTREE_ID_stripes, POS(0, idx), BTREE_ITER_INTENT); ret = bkey_err(k); if (ret) goto err; if (k.k->type != KEY_TYPE_stripe) { bch2_fs_inconsistent(c, "attempting to delete nonexistent stripe %llu", idx); ret = -EINVAL; goto err; } s = bkey_s_c_to_stripe(k); for (unsigned i = 0; i < s.v->nr_blocks; i++) if (stripe_blockcount_get(s.v, i)) { struct printbuf buf = PRINTBUF; bch2_bkey_val_to_text(&buf, c, k); bch2_fs_inconsistent(c, "attempting to delete nonempty stripe %s", buf.buf); printbuf_exit(&buf); ret = -EINVAL; goto err; } ret = bch2_btree_delete_at(trans, &iter, 0); err: bch2_trans_iter_exit(trans, &iter); return ret; } static void ec_stripe_delete_work(struct work_struct *work) { struct bch_fs *c = container_of(work, struct bch_fs, ec_stripe_delete_work); while (1) { mutex_lock(&c->ec_stripes_heap_lock); u64 idx = stripe_idx_to_delete(c); mutex_unlock(&c->ec_stripes_heap_lock); if (!idx) break; int ret = bch2_trans_do(c, NULL, NULL, BCH_TRANS_COMMIT_no_enospc, ec_stripe_delete(trans, idx)); bch_err_fn(c, ret); if (ret) break; } bch2_write_ref_put(c, BCH_WRITE_REF_stripe_delete); } void bch2_do_stripe_deletes(struct bch_fs *c) { if (bch2_write_ref_tryget(c, BCH_WRITE_REF_stripe_delete) && !queue_work(c->write_ref_wq, &c->ec_stripe_delete_work)) bch2_write_ref_put(c, BCH_WRITE_REF_stripe_delete); } /* stripe creation: */ static int ec_stripe_key_update(struct btree_trans *trans, struct bkey_i_stripe *new, bool create) { struct bch_fs *c = trans->c; struct btree_iter iter; struct bkey_s_c k; int ret; k = bch2_bkey_get_iter(trans, &iter, BTREE_ID_stripes, new->k.p, BTREE_ITER_INTENT); ret = bkey_err(k); if (ret) goto err; if (k.k->type != (create ? KEY_TYPE_deleted : KEY_TYPE_stripe)) { bch2_fs_inconsistent(c, "error %s stripe: got existing key type %s", create ? "creating" : "updating", bch2_bkey_types[k.k->type]); ret = -EINVAL; goto err; } if (k.k->type == KEY_TYPE_stripe) { const struct bch_stripe *old = bkey_s_c_to_stripe(k).v; unsigned i; if (old->nr_blocks != new->v.nr_blocks) { bch_err(c, "error updating stripe: nr_blocks does not match"); ret = -EINVAL; goto err; } for (i = 0; i < new->v.nr_blocks; i++) { unsigned v = stripe_blockcount_get(old, i); BUG_ON(v && (old->ptrs[i].dev != new->v.ptrs[i].dev || old->ptrs[i].gen != new->v.ptrs[i].gen || old->ptrs[i].offset != new->v.ptrs[i].offset)); stripe_blockcount_set(&new->v, i, v); } } ret = bch2_trans_update(trans, &iter, &new->k_i, 0); err: bch2_trans_iter_exit(trans, &iter); return ret; } static int ec_stripe_update_extent(struct btree_trans *trans, struct bpos bucket, u8 gen, struct ec_stripe_buf *s, struct bpos *bp_pos) { struct bch_stripe *v = &bkey_i_to_stripe(&s->key)->v; struct bch_fs *c = trans->c; struct bch_backpointer bp; struct btree_iter iter; struct bkey_s_c k; const struct bch_extent_ptr *ptr_c; struct bch_extent_ptr *ptr, *ec_ptr = NULL; struct bch_extent_stripe_ptr stripe_ptr; struct bkey_i *n; int ret, dev, block; ret = bch2_get_next_backpointer(trans, bucket, gen, bp_pos, &bp, BTREE_ITER_CACHED); if (ret) return ret; if (bpos_eq(*bp_pos, SPOS_MAX)) return 0; if (bp.level) { struct printbuf buf = PRINTBUF; struct btree_iter node_iter; struct btree *b; b = bch2_backpointer_get_node(trans, &node_iter, *bp_pos, bp); bch2_trans_iter_exit(trans, &node_iter); if (!b) return 0; prt_printf(&buf, "found btree node in erasure coded bucket: b=%px\n", b); bch2_backpointer_to_text(&buf, &bp); bch2_fs_inconsistent(c, "%s", buf.buf); printbuf_exit(&buf); return -EIO; } k = bch2_backpointer_get_key(trans, &iter, *bp_pos, bp, BTREE_ITER_INTENT); ret = bkey_err(k); if (ret) return ret; if (!k.k) { /* * extent no longer exists - we could flush the btree * write buffer and retry to verify, but no need: */ return 0; } if (extent_has_stripe_ptr(k, s->key.k.p.offset)) goto out; ptr_c = bkey_matches_stripe(v, k, &block); /* * It doesn't generally make sense to erasure code cached ptrs: * XXX: should we be incrementing a counter? */ if (!ptr_c || ptr_c->cached) goto out; dev = v->ptrs[block].dev; n = bch2_trans_kmalloc(trans, bkey_bytes(k.k) + sizeof(stripe_ptr)); ret = PTR_ERR_OR_ZERO(n); if (ret) goto out; bkey_reassemble(n, k); bch2_bkey_drop_ptrs(bkey_i_to_s(n), ptr, ptr->dev != dev); ec_ptr = bch2_bkey_has_device(bkey_i_to_s(n), dev); BUG_ON(!ec_ptr); stripe_ptr = (struct bch_extent_stripe_ptr) { .type = 1 << BCH_EXTENT_ENTRY_stripe_ptr, .block = block, .redundancy = v->nr_redundant, .idx = s->key.k.p.offset, }; __extent_entry_insert(n, (union bch_extent_entry *) ec_ptr, (union bch_extent_entry *) &stripe_ptr); ret = bch2_trans_update(trans, &iter, n, 0); out: bch2_trans_iter_exit(trans, &iter); return ret; } static int ec_stripe_update_bucket(struct btree_trans *trans, struct ec_stripe_buf *s, unsigned block) { struct bch_fs *c = trans->c; struct bch_stripe *v = &bkey_i_to_stripe(&s->key)->v; struct bch_extent_ptr bucket = v->ptrs[block]; struct bpos bucket_pos = PTR_BUCKET_POS(c, &bucket); struct bpos bp_pos = POS_MIN; int ret = 0; while (1) { ret = commit_do(trans, NULL, NULL, BCH_TRANS_COMMIT_no_check_rw| BCH_TRANS_COMMIT_no_enospc, ec_stripe_update_extent(trans, bucket_pos, bucket.gen, s, &bp_pos)); if (ret) break; if (bkey_eq(bp_pos, POS_MAX)) break; bp_pos = bpos_nosnap_successor(bp_pos); } return ret; } static int ec_stripe_update_extents(struct bch_fs *c, struct ec_stripe_buf *s) { struct btree_trans *trans = bch2_trans_get(c); struct bch_stripe *v = &bkey_i_to_stripe(&s->key)->v; unsigned i, nr_data = v->nr_blocks - v->nr_redundant; int ret = 0; ret = bch2_btree_write_buffer_flush_sync(trans); if (ret) goto err; for (i = 0; i < nr_data; i++) { ret = ec_stripe_update_bucket(trans, s, i); if (ret) break; } err: bch2_trans_put(trans); return ret; } static void zero_out_rest_of_ec_bucket(struct bch_fs *c, struct ec_stripe_new *s, unsigned block, struct open_bucket *ob) { struct bch_dev *ca = bch_dev_bkey_exists(c, ob->dev); unsigned offset = ca->mi.bucket_size - ob->sectors_free; int ret; if (!bch2_dev_get_ioref(ca, WRITE)) { s->err = -BCH_ERR_erofs_no_writes; return; } memset(s->new_stripe.data[block] + (offset << 9), 0, ob->sectors_free << 9); ret = blkdev_issue_zeroout(ca->disk_sb.bdev, ob->bucket * ca->mi.bucket_size + offset, ob->sectors_free, GFP_KERNEL, 0); percpu_ref_put(&ca->io_ref); if (ret) s->err = ret; } void bch2_ec_stripe_new_free(struct bch_fs *c, struct ec_stripe_new *s) { if (s->idx) bch2_stripe_close(c, s); kfree(s); } /* * data buckets of new stripe all written: create the stripe */ static void ec_stripe_create(struct ec_stripe_new *s) { struct bch_fs *c = s->c; struct open_bucket *ob; struct bch_stripe *v = &bkey_i_to_stripe(&s->new_stripe.key)->v; unsigned i, nr_data = v->nr_blocks - v->nr_redundant; int ret; BUG_ON(s->h->s == s); closure_sync(&s->iodone); if (!s->err) { for (i = 0; i < nr_data; i++) if (s->blocks[i]) { ob = c->open_buckets + s->blocks[i]; if (ob->sectors_free) zero_out_rest_of_ec_bucket(c, s, i, ob); } } if (s->err) { if (!bch2_err_matches(s->err, EROFS)) bch_err(c, "error creating stripe: error writing data buckets"); goto err; } if (s->have_existing_stripe) { ec_validate_checksums(c, &s->existing_stripe); if (ec_do_recov(c, &s->existing_stripe)) { bch_err(c, "error creating stripe: error reading existing stripe"); goto err; } for (i = 0; i < nr_data; i++) if (stripe_blockcount_get(&bkey_i_to_stripe(&s->existing_stripe.key)->v, i)) swap(s->new_stripe.data[i], s->existing_stripe.data[i]); ec_stripe_buf_exit(&s->existing_stripe); } BUG_ON(!s->allocated); BUG_ON(!s->idx); ec_generate_ec(&s->new_stripe); ec_generate_checksums(&s->new_stripe); /* write p/q: */ for (i = nr_data; i < v->nr_blocks; i++) ec_block_io(c, &s->new_stripe, REQ_OP_WRITE, i, &s->iodone); closure_sync(&s->iodone); if (ec_nr_failed(&s->new_stripe)) { bch_err(c, "error creating stripe: error writing redundancy buckets"); goto err; } ret = bch2_trans_do(c, &s->res, NULL, BCH_TRANS_COMMIT_no_check_rw| BCH_TRANS_COMMIT_no_enospc, ec_stripe_key_update(trans, bkey_i_to_stripe(&s->new_stripe.key), !s->have_existing_stripe)); bch_err_msg(c, ret, "creating stripe key"); if (ret) { goto err; } ret = ec_stripe_update_extents(c, &s->new_stripe); bch_err_msg(c, ret, "error updating extents"); if (ret) goto err; err: bch2_disk_reservation_put(c, &s->res); for (i = 0; i < v->nr_blocks; i++) if (s->blocks[i]) { ob = c->open_buckets + s->blocks[i]; if (i < nr_data) { ob->ec = NULL; __bch2_open_bucket_put(c, ob); } else { bch2_open_bucket_put(c, ob); } } mutex_lock(&c->ec_stripe_new_lock); list_del(&s->list); mutex_unlock(&c->ec_stripe_new_lock); wake_up(&c->ec_stripe_new_wait); ec_stripe_buf_exit(&s->existing_stripe); ec_stripe_buf_exit(&s->new_stripe); closure_debug_destroy(&s->iodone); ec_stripe_new_put(c, s, STRIPE_REF_stripe); } static struct ec_stripe_new *get_pending_stripe(struct bch_fs *c) { struct ec_stripe_new *s; mutex_lock(&c->ec_stripe_new_lock); list_for_each_entry(s, &c->ec_stripe_new_list, list) if (!atomic_read(&s->ref[STRIPE_REF_io])) goto out; s = NULL; out: mutex_unlock(&c->ec_stripe_new_lock); return s; } static void ec_stripe_create_work(struct work_struct *work) { struct bch_fs *c = container_of(work, struct bch_fs, ec_stripe_create_work); struct ec_stripe_new *s; while ((s = get_pending_stripe(c))) ec_stripe_create(s); bch2_write_ref_put(c, BCH_WRITE_REF_stripe_create); } void bch2_ec_do_stripe_creates(struct bch_fs *c) { bch2_write_ref_get(c, BCH_WRITE_REF_stripe_create); if (!queue_work(system_long_wq, &c->ec_stripe_create_work)) bch2_write_ref_put(c, BCH_WRITE_REF_stripe_create); } static void ec_stripe_set_pending(struct bch_fs *c, struct ec_stripe_head *h) { struct ec_stripe_new *s = h->s; BUG_ON(!s->allocated && !s->err); h->s = NULL; s->pending = true; mutex_lock(&c->ec_stripe_new_lock); list_add(&s->list, &c->ec_stripe_new_list); mutex_unlock(&c->ec_stripe_new_lock); ec_stripe_new_put(c, s, STRIPE_REF_io); } void bch2_ec_bucket_cancel(struct bch_fs *c, struct open_bucket *ob) { struct ec_stripe_new *s = ob->ec; s->err = -EIO; } void *bch2_writepoint_ec_buf(struct bch_fs *c, struct write_point *wp) { struct open_bucket *ob = ec_open_bucket(c, &wp->ptrs); struct bch_dev *ca; unsigned offset; if (!ob) return NULL; BUG_ON(!ob->ec->new_stripe.data[ob->ec_idx]); ca = bch_dev_bkey_exists(c, ob->dev); offset = ca->mi.bucket_size - ob->sectors_free; return ob->ec->new_stripe.data[ob->ec_idx] + (offset << 9); } static int unsigned_cmp(const void *_l, const void *_r) { unsigned l = *((const unsigned *) _l); unsigned r = *((const unsigned *) _r); return cmp_int(l, r); } /* pick most common bucket size: */ static unsigned pick_blocksize(struct bch_fs *c, struct bch_devs_mask *devs) { unsigned nr = 0, sizes[BCH_SB_MEMBERS_MAX]; struct { unsigned nr, size; } cur = { 0, 0 }, best = { 0, 0 }; for_each_member_device_rcu(c, ca, devs) sizes[nr++] = ca->mi.bucket_size; sort(sizes, nr, sizeof(unsigned), unsigned_cmp, NULL); for (unsigned i = 0; i < nr; i++) { if (sizes[i] != cur.size) { if (cur.nr > best.nr) best = cur; cur.nr = 0; cur.size = sizes[i]; } cur.nr++; } if (cur.nr > best.nr) best = cur; return best.size; } static bool may_create_new_stripe(struct bch_fs *c) { return false; } static void ec_stripe_key_init(struct bch_fs *c, struct bkey_i *k, unsigned nr_data, unsigned nr_parity, unsigned stripe_size) { struct bkey_i_stripe *s = bkey_stripe_init(k); unsigned u64s; s->v.sectors = cpu_to_le16(stripe_size); s->v.algorithm = 0; s->v.nr_blocks = nr_data + nr_parity; s->v.nr_redundant = nr_parity; s->v.csum_granularity_bits = ilog2(c->opts.encoded_extent_max >> 9); s->v.csum_type = BCH_CSUM_crc32c; s->v.pad = 0; while ((u64s = stripe_val_u64s(&s->v)) > BKEY_VAL_U64s_MAX) { BUG_ON(1 << s->v.csum_granularity_bits >= le16_to_cpu(s->v.sectors) || s->v.csum_granularity_bits == U8_MAX); s->v.csum_granularity_bits++; } set_bkey_val_u64s(&s->k, u64s); } static int ec_new_stripe_alloc(struct bch_fs *c, struct ec_stripe_head *h) { struct ec_stripe_new *s; lockdep_assert_held(&h->lock); s = kzalloc(sizeof(*s), GFP_KERNEL); if (!s) return -BCH_ERR_ENOMEM_ec_new_stripe_alloc; mutex_init(&s->lock); closure_init(&s->iodone, NULL); atomic_set(&s->ref[STRIPE_REF_stripe], 1); atomic_set(&s->ref[STRIPE_REF_io], 1); s->c = c; s->h = h; s->nr_data = min_t(unsigned, h->nr_active_devs, BCH_BKEY_PTRS_MAX) - h->redundancy; s->nr_parity = h->redundancy; ec_stripe_key_init(c, &s->new_stripe.key, s->nr_data, s->nr_parity, h->blocksize); h->s = s; return 0; } static struct ec_stripe_head * ec_new_stripe_head_alloc(struct bch_fs *c, unsigned target, unsigned algo, unsigned redundancy, enum bch_watermark watermark) { struct ec_stripe_head *h; h = kzalloc(sizeof(*h), GFP_KERNEL); if (!h) return NULL; mutex_init(&h->lock); BUG_ON(!mutex_trylock(&h->lock)); h->target = target; h->algo = algo; h->redundancy = redundancy; h->watermark = watermark; rcu_read_lock(); h->devs = target_rw_devs(c, BCH_DATA_user, target); for_each_member_device_rcu(c, ca, &h->devs) if (!ca->mi.durability) __clear_bit(ca->dev_idx, h->devs.d); h->blocksize = pick_blocksize(c, &h->devs); for_each_member_device_rcu(c, ca, &h->devs) if (ca->mi.bucket_size == h->blocksize) h->nr_active_devs++; rcu_read_unlock(); /* * If we only have redundancy + 1 devices, we're better off with just * replication: */ if (h->nr_active_devs < h->redundancy + 2) bch_err(c, "insufficient devices available to create stripe (have %u, need %u) - mismatched bucket sizes?", h->nr_active_devs, h->redundancy + 2); list_add(&h->list, &c->ec_stripe_head_list); return h; } void bch2_ec_stripe_head_put(struct bch_fs *c, struct ec_stripe_head *h) { if (h->s && h->s->allocated && bitmap_weight(h->s->blocks_allocated, h->s->nr_data) == h->s->nr_data) ec_stripe_set_pending(c, h); mutex_unlock(&h->lock); } static struct ec_stripe_head * __bch2_ec_stripe_head_get(struct btree_trans *trans, unsigned target, unsigned algo, unsigned redundancy, enum bch_watermark watermark) { struct bch_fs *c = trans->c; struct ec_stripe_head *h; int ret; if (!redundancy) return NULL; ret = bch2_trans_mutex_lock(trans, &c->ec_stripe_head_lock); if (ret) return ERR_PTR(ret); if (test_bit(BCH_FS_going_ro, &c->flags)) { h = ERR_PTR(-BCH_ERR_erofs_no_writes); goto found; } list_for_each_entry(h, &c->ec_stripe_head_list, list) if (h->target == target && h->algo == algo && h->redundancy == redundancy && h->watermark == watermark) { ret = bch2_trans_mutex_lock(trans, &h->lock); if (ret) h = ERR_PTR(ret); goto found; } h = ec_new_stripe_head_alloc(c, target, algo, redundancy, watermark); found: if (!IS_ERR_OR_NULL(h) && h->nr_active_devs < h->redundancy + 2) { mutex_unlock(&h->lock); h = NULL; } mutex_unlock(&c->ec_stripe_head_lock); return h; } static int new_stripe_alloc_buckets(struct btree_trans *trans, struct ec_stripe_head *h, enum bch_watermark watermark, struct closure *cl) { struct bch_fs *c = trans->c; struct bch_devs_mask devs = h->devs; struct open_bucket *ob; struct open_buckets buckets; struct bch_stripe *v = &bkey_i_to_stripe(&h->s->new_stripe.key)->v; unsigned i, j, nr_have_parity = 0, nr_have_data = 0; bool have_cache = true; int ret = 0; BUG_ON(v->nr_blocks != h->s->nr_data + h->s->nr_parity); BUG_ON(v->nr_redundant != h->s->nr_parity); for_each_set_bit(i, h->s->blocks_gotten, v->nr_blocks) { __clear_bit(v->ptrs[i].dev, devs.d); if (i < h->s->nr_data) nr_have_data++; else nr_have_parity++; } BUG_ON(nr_have_data > h->s->nr_data); BUG_ON(nr_have_parity > h->s->nr_parity); buckets.nr = 0; if (nr_have_parity < h->s->nr_parity) { ret = bch2_bucket_alloc_set_trans(trans, &buckets, &h->parity_stripe, &devs, h->s->nr_parity, &nr_have_parity, &have_cache, 0, BCH_DATA_parity, watermark, cl); open_bucket_for_each(c, &buckets, ob, i) { j = find_next_zero_bit(h->s->blocks_gotten, h->s->nr_data + h->s->nr_parity, h->s->nr_data); BUG_ON(j >= h->s->nr_data + h->s->nr_parity); h->s->blocks[j] = buckets.v[i]; v->ptrs[j] = bch2_ob_ptr(c, ob); __set_bit(j, h->s->blocks_gotten); } if (ret) return ret; } buckets.nr = 0; if (nr_have_data < h->s->nr_data) { ret = bch2_bucket_alloc_set_trans(trans, &buckets, &h->block_stripe, &devs, h->s->nr_data, &nr_have_data, &have_cache, 0, BCH_DATA_user, watermark, cl); open_bucket_for_each(c, &buckets, ob, i) { j = find_next_zero_bit(h->s->blocks_gotten, h->s->nr_data, 0); BUG_ON(j >= h->s->nr_data); h->s->blocks[j] = buckets.v[i]; v->ptrs[j] = bch2_ob_ptr(c, ob); __set_bit(j, h->s->blocks_gotten); } if (ret) return ret; } return 0; } /* XXX: doesn't obey target: */ static s64 get_existing_stripe(struct bch_fs *c, struct ec_stripe_head *head) { ec_stripes_heap *h = &c->ec_stripes_heap; struct stripe *m; size_t heap_idx; u64 stripe_idx; s64 ret = -1; if (may_create_new_stripe(c)) return -1; mutex_lock(&c->ec_stripes_heap_lock); for (heap_idx = 0; heap_idx < h->used; heap_idx++) { /* No blocks worth reusing, stripe will just be deleted: */ if (!h->data[heap_idx].blocks_nonempty) continue; stripe_idx = h->data[heap_idx].idx; m = genradix_ptr(&c->stripes, stripe_idx); if (m->algorithm == head->algo && m->nr_redundant == head->redundancy && m->sectors == head->blocksize && m->blocks_nonempty < m->nr_blocks - m->nr_redundant && bch2_try_open_stripe(c, head->s, stripe_idx)) { ret = stripe_idx; break; } } mutex_unlock(&c->ec_stripes_heap_lock); return ret; } static int __bch2_ec_stripe_head_reuse(struct btree_trans *trans, struct ec_stripe_head *h) { struct bch_fs *c = trans->c; struct bch_stripe *new_v = &bkey_i_to_stripe(&h->s->new_stripe.key)->v; struct bch_stripe *existing_v; unsigned i; s64 idx; int ret; /* * If we can't allocate a new stripe, and there's no stripes with empty * blocks for us to reuse, that means we have to wait on copygc: */ idx = get_existing_stripe(c, h); if (idx < 0) return -BCH_ERR_stripe_alloc_blocked; ret = get_stripe_key_trans(trans, idx, &h->s->existing_stripe); bch2_fs_fatal_err_on(ret && !bch2_err_matches(ret, BCH_ERR_transaction_restart), c, "reading stripe key: %s", bch2_err_str(ret)); if (ret) { bch2_stripe_close(c, h->s); return ret; } existing_v = &bkey_i_to_stripe(&h->s->existing_stripe.key)->v; BUG_ON(existing_v->nr_redundant != h->s->nr_parity); h->s->nr_data = existing_v->nr_blocks - existing_v->nr_redundant; ret = ec_stripe_buf_init(&h->s->existing_stripe, 0, h->blocksize); if (ret) { bch2_stripe_close(c, h->s); return ret; } BUG_ON(h->s->existing_stripe.size != h->blocksize); BUG_ON(h->s->existing_stripe.size != le16_to_cpu(existing_v->sectors)); /* * Free buckets we initially allocated - they might conflict with * blocks from the stripe we're reusing: */ for_each_set_bit(i, h->s->blocks_gotten, new_v->nr_blocks) { bch2_open_bucket_put(c, c->open_buckets + h->s->blocks[i]); h->s->blocks[i] = 0; } memset(h->s->blocks_gotten, 0, sizeof(h->s->blocks_gotten)); memset(h->s->blocks_allocated, 0, sizeof(h->s->blocks_allocated)); for (i = 0; i < existing_v->nr_blocks; i++) { if (stripe_blockcount_get(existing_v, i)) { __set_bit(i, h->s->blocks_gotten); __set_bit(i, h->s->blocks_allocated); } ec_block_io(c, &h->s->existing_stripe, READ, i, &h->s->iodone); } bkey_copy(&h->s->new_stripe.key, &h->s->existing_stripe.key); h->s->have_existing_stripe = true; return 0; } static int __bch2_ec_stripe_head_reserve(struct btree_trans *trans, struct ec_stripe_head *h) { struct bch_fs *c = trans->c; struct btree_iter iter; struct bkey_s_c k; struct bpos min_pos = POS(0, 1); struct bpos start_pos = bpos_max(min_pos, POS(0, c->ec_stripe_hint)); int ret; if (!h->s->res.sectors) { ret = bch2_disk_reservation_get(c, &h->s->res, h->blocksize, h->s->nr_parity, BCH_DISK_RESERVATION_NOFAIL); if (ret) return ret; } for_each_btree_key_norestart(trans, iter, BTREE_ID_stripes, start_pos, BTREE_ITER_SLOTS|BTREE_ITER_INTENT, k, ret) { if (bkey_gt(k.k->p, POS(0, U32_MAX))) { if (start_pos.offset) { start_pos = min_pos; bch2_btree_iter_set_pos(&iter, start_pos); continue; } ret = -BCH_ERR_ENOSPC_stripe_create; break; } if (bkey_deleted(k.k) && bch2_try_open_stripe(c, h->s, k.k->p.offset)) break; } c->ec_stripe_hint = iter.pos.offset; if (ret) goto err; ret = ec_stripe_mem_alloc(trans, &iter); if (ret) { bch2_stripe_close(c, h->s); goto err; } h->s->new_stripe.key.k.p = iter.pos; out: bch2_trans_iter_exit(trans, &iter); return ret; err: bch2_disk_reservation_put(c, &h->s->res); goto out; } struct ec_stripe_head *bch2_ec_stripe_head_get(struct btree_trans *trans, unsigned target, unsigned algo, unsigned redundancy, enum bch_watermark watermark, struct closure *cl) { struct bch_fs *c = trans->c; struct ec_stripe_head *h; bool waiting = false; int ret; h = __bch2_ec_stripe_head_get(trans, target, algo, redundancy, watermark); if (IS_ERR_OR_NULL(h)) return h; if (!h->s) { ret = ec_new_stripe_alloc(c, h); if (ret) { bch_err(c, "failed to allocate new stripe"); goto err; } } if (h->s->allocated) goto allocated; if (h->s->have_existing_stripe) goto alloc_existing; /* First, try to allocate a full stripe: */ ret = new_stripe_alloc_buckets(trans, h, BCH_WATERMARK_stripe, NULL) ?: __bch2_ec_stripe_head_reserve(trans, h); if (!ret) goto allocate_buf; if (bch2_err_matches(ret, BCH_ERR_transaction_restart) || bch2_err_matches(ret, ENOMEM)) goto err; /* * Not enough buckets available for a full stripe: we must reuse an * existing stripe: */ while (1) { ret = __bch2_ec_stripe_head_reuse(trans, h); if (!ret) break; if (waiting || !cl || ret != -BCH_ERR_stripe_alloc_blocked) goto err; if (watermark == BCH_WATERMARK_copygc) { ret = new_stripe_alloc_buckets(trans, h, watermark, NULL) ?: __bch2_ec_stripe_head_reserve(trans, h); if (ret) goto err; goto allocate_buf; } /* XXX freelist_wait? */ closure_wait(&c->freelist_wait, cl); waiting = true; } if (waiting) closure_wake_up(&c->freelist_wait); alloc_existing: /* * Retry allocating buckets, with the watermark for this * particular write: */ ret = new_stripe_alloc_buckets(trans, h, watermark, cl); if (ret) goto err; allocate_buf: ret = ec_stripe_buf_init(&h->s->new_stripe, 0, h->blocksize); if (ret) goto err; h->s->allocated = true; allocated: BUG_ON(!h->s->idx); BUG_ON(!h->s->new_stripe.data[0]); BUG_ON(trans->restarted); return h; err: bch2_ec_stripe_head_put(c, h); return ERR_PTR(ret); } static void __bch2_ec_stop(struct bch_fs *c, struct bch_dev *ca) { struct ec_stripe_head *h; struct open_bucket *ob; unsigned i; mutex_lock(&c->ec_stripe_head_lock); list_for_each_entry(h, &c->ec_stripe_head_list, list) { mutex_lock(&h->lock); if (!h->s) goto unlock; if (!ca) goto found; for (i = 0; i < bkey_i_to_stripe(&h->s->new_stripe.key)->v.nr_blocks; i++) { if (!h->s->blocks[i]) continue; ob = c->open_buckets + h->s->blocks[i]; if (ob->dev == ca->dev_idx) goto found; } goto unlock; found: h->s->err = -BCH_ERR_erofs_no_writes; ec_stripe_set_pending(c, h); unlock: mutex_unlock(&h->lock); } mutex_unlock(&c->ec_stripe_head_lock); } void bch2_ec_stop_dev(struct bch_fs *c, struct bch_dev *ca) { __bch2_ec_stop(c, ca); } void bch2_fs_ec_stop(struct bch_fs *c) { __bch2_ec_stop(c, NULL); } static bool bch2_fs_ec_flush_done(struct bch_fs *c) { bool ret; mutex_lock(&c->ec_stripe_new_lock); ret = list_empty(&c->ec_stripe_new_list); mutex_unlock(&c->ec_stripe_new_lock); return ret; } void bch2_fs_ec_flush(struct bch_fs *c) { wait_event(c->ec_stripe_new_wait, bch2_fs_ec_flush_done(c)); } int bch2_stripes_read(struct bch_fs *c) { int ret = bch2_trans_run(c, for_each_btree_key(trans, iter, BTREE_ID_stripes, POS_MIN, BTREE_ITER_PREFETCH, k, ({ if (k.k->type != KEY_TYPE_stripe) continue; ret = __ec_stripe_mem_alloc(c, k.k->p.offset, GFP_KERNEL); if (ret) break; const struct bch_stripe *s = bkey_s_c_to_stripe(k).v; struct stripe *m = genradix_ptr(&c->stripes, k.k->p.offset); m->sectors = le16_to_cpu(s->sectors); m->algorithm = s->algorithm; m->nr_blocks = s->nr_blocks; m->nr_redundant = s->nr_redundant; m->blocks_nonempty = 0; for (unsigned i = 0; i < s->nr_blocks; i++) m->blocks_nonempty += !!stripe_blockcount_get(s, i); bch2_stripes_heap_insert(c, m, k.k->p.offset); 0; }))); bch_err_fn(c, ret); return ret; } void bch2_stripes_heap_to_text(struct printbuf *out, struct bch_fs *c) { ec_stripes_heap *h = &c->ec_stripes_heap; struct stripe *m; size_t i; mutex_lock(&c->ec_stripes_heap_lock); for (i = 0; i < min_t(size_t, h->used, 50); i++) { m = genradix_ptr(&c->stripes, h->data[i].idx); prt_printf(out, "%zu %u/%u+%u", h->data[i].idx, h->data[i].blocks_nonempty, m->nr_blocks - m->nr_redundant, m->nr_redundant); if (bch2_stripe_is_open(c, h->data[i].idx)) prt_str(out, " open"); prt_newline(out); } mutex_unlock(&c->ec_stripes_heap_lock); } void bch2_new_stripes_to_text(struct printbuf *out, struct bch_fs *c) { struct ec_stripe_head *h; struct ec_stripe_new *s; mutex_lock(&c->ec_stripe_head_lock); list_for_each_entry(h, &c->ec_stripe_head_list, list) { prt_printf(out, "target %u algo %u redundancy %u %s:\n", h->target, h->algo, h->redundancy, bch2_watermarks[h->watermark]); if (h->s) prt_printf(out, "\tidx %llu blocks %u+%u allocated %u\n", h->s->idx, h->s->nr_data, h->s->nr_parity, bitmap_weight(h->s->blocks_allocated, h->s->nr_data)); } mutex_unlock(&c->ec_stripe_head_lock); prt_printf(out, "in flight:\n"); mutex_lock(&c->ec_stripe_new_lock); list_for_each_entry(s, &c->ec_stripe_new_list, list) { prt_printf(out, "\tidx %llu blocks %u+%u ref %u %u %s\n", s->idx, s->nr_data, s->nr_parity, atomic_read(&s->ref[STRIPE_REF_io]), atomic_read(&s->ref[STRIPE_REF_stripe]), bch2_watermarks[s->h->watermark]); } mutex_unlock(&c->ec_stripe_new_lock); } void bch2_fs_ec_exit(struct bch_fs *c) { struct ec_stripe_head *h; unsigned i; while (1) { mutex_lock(&c->ec_stripe_head_lock); h = list_first_entry_or_null(&c->ec_stripe_head_list, struct ec_stripe_head, list); if (h) list_del(&h->list); mutex_unlock(&c->ec_stripe_head_lock); if (!h) break; if (h->s) { for (i = 0; i < bkey_i_to_stripe(&h->s->new_stripe.key)->v.nr_blocks; i++) BUG_ON(h->s->blocks[i]); kfree(h->s); } kfree(h); } BUG_ON(!list_empty(&c->ec_stripe_new_list)); free_heap(&c->ec_stripes_heap); genradix_free(&c->stripes); bioset_exit(&c->ec_bioset); } void bch2_fs_ec_init_early(struct bch_fs *c) { spin_lock_init(&c->ec_stripes_new_lock); mutex_init(&c->ec_stripes_heap_lock); INIT_LIST_HEAD(&c->ec_stripe_head_list); mutex_init(&c->ec_stripe_head_lock); INIT_LIST_HEAD(&c->ec_stripe_new_list); mutex_init(&c->ec_stripe_new_lock); init_waitqueue_head(&c->ec_stripe_new_wait); INIT_WORK(&c->ec_stripe_create_work, ec_stripe_create_work); INIT_WORK(&c->ec_stripe_delete_work, ec_stripe_delete_work); } int bch2_fs_ec_init(struct bch_fs *c) { return bioset_init(&c->ec_bioset, 1, offsetof(struct ec_bio, bio), BIOSET_NEED_BVECS); }