/* SPDX-License-Identifier: GPL-2.0 */ /* * fs/f2fs/f2fs.h * * Copyright (c) 2012 Samsung Electronics Co., Ltd. * http://www.samsung.com/ */ #ifndef _LINUX_F2FS_H #define _LINUX_F2FS_H #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include struct pagevec; #ifdef CONFIG_F2FS_CHECK_FS #define f2fs_bug_on(sbi, condition) BUG_ON(condition) #else #define f2fs_bug_on(sbi, condition) \ do { \ if (WARN_ON(condition)) \ set_sbi_flag(sbi, SBI_NEED_FSCK); \ } while (0) #endif enum { FAULT_KMALLOC, FAULT_KVMALLOC, FAULT_PAGE_ALLOC, FAULT_PAGE_GET, FAULT_ALLOC_BIO, /* it's obsolete due to bio_alloc() will never fail */ FAULT_ALLOC_NID, FAULT_ORPHAN, FAULT_BLOCK, FAULT_DIR_DEPTH, FAULT_EVICT_INODE, FAULT_TRUNCATE, FAULT_READ_IO, FAULT_CHECKPOINT, FAULT_DISCARD, FAULT_WRITE_IO, FAULT_SLAB_ALLOC, FAULT_DQUOT_INIT, FAULT_LOCK_OP, FAULT_BLKADDR_VALIDITY, FAULT_BLKADDR_CONSISTENCE, FAULT_NO_SEGMENT, FAULT_MAX, }; #ifdef CONFIG_F2FS_FAULT_INJECTION #define F2FS_ALL_FAULT_TYPE (GENMASK(FAULT_MAX - 1, 0)) struct f2fs_fault_info { atomic_t inject_ops; int inject_rate; unsigned int inject_type; }; extern const char *f2fs_fault_name[FAULT_MAX]; #define IS_FAULT_SET(fi, type) ((fi)->inject_type & BIT(type)) /* maximum retry count for injected failure */ #define DEFAULT_FAILURE_RETRY_COUNT 8 #else #define DEFAULT_FAILURE_RETRY_COUNT 1 #endif /* * For mount options */ #define F2FS_MOUNT_DISABLE_ROLL_FORWARD 0x00000001 #define F2FS_MOUNT_DISCARD 0x00000002 #define F2FS_MOUNT_NOHEAP 0x00000004 #define F2FS_MOUNT_XATTR_USER 0x00000008 #define F2FS_MOUNT_POSIX_ACL 0x00000010 #define F2FS_MOUNT_DISABLE_EXT_IDENTIFY 0x00000020 #define F2FS_MOUNT_INLINE_XATTR 0x00000040 #define F2FS_MOUNT_INLINE_DATA 0x00000080 #define F2FS_MOUNT_INLINE_DENTRY 0x00000100 #define F2FS_MOUNT_FLUSH_MERGE 0x00000200 #define F2FS_MOUNT_NOBARRIER 0x00000400 #define F2FS_MOUNT_FASTBOOT 0x00000800 #define F2FS_MOUNT_READ_EXTENT_CACHE 0x00001000 #define F2FS_MOUNT_DATA_FLUSH 0x00002000 #define F2FS_MOUNT_FAULT_INJECTION 0x00004000 #define F2FS_MOUNT_USRQUOTA 0x00008000 #define F2FS_MOUNT_GRPQUOTA 0x00010000 #define F2FS_MOUNT_PRJQUOTA 0x00020000 #define F2FS_MOUNT_QUOTA 0x00040000 #define F2FS_MOUNT_INLINE_XATTR_SIZE 0x00080000 #define F2FS_MOUNT_RESERVE_ROOT 0x00100000 #define F2FS_MOUNT_DISABLE_CHECKPOINT 0x00200000 #define F2FS_MOUNT_NORECOVERY 0x00400000 #define F2FS_MOUNT_ATGC 0x00800000 #define F2FS_MOUNT_MERGE_CHECKPOINT 0x01000000 #define F2FS_MOUNT_GC_MERGE 0x02000000 #define F2FS_MOUNT_COMPRESS_CACHE 0x04000000 #define F2FS_MOUNT_AGE_EXTENT_CACHE 0x08000000 #define F2FS_OPTION(sbi) ((sbi)->mount_opt) #define clear_opt(sbi, option) (F2FS_OPTION(sbi).opt &= ~F2FS_MOUNT_##option) #define set_opt(sbi, option) (F2FS_OPTION(sbi).opt |= F2FS_MOUNT_##option) #define test_opt(sbi, option) (F2FS_OPTION(sbi).opt & F2FS_MOUNT_##option) #define ver_after(a, b) (typecheck(unsigned long long, a) && \ typecheck(unsigned long long, b) && \ ((long long)((a) - (b)) > 0)) typedef u32 block_t; /* * should not change u32, since it is the on-disk block * address format, __le32. */ typedef u32 nid_t; #define COMPRESS_EXT_NUM 16 /* * An implementation of an rwsem that is explicitly unfair to readers. This * prevents priority inversion when a low-priority reader acquires the read lock * while sleeping on the write lock but the write lock is needed by * higher-priority clients. */ struct f2fs_rwsem { struct rw_semaphore internal_rwsem; #ifdef CONFIG_F2FS_UNFAIR_RWSEM wait_queue_head_t read_waiters; #endif }; struct f2fs_mount_info { unsigned int opt; block_t root_reserved_blocks; /* root reserved blocks */ kuid_t s_resuid; /* reserved blocks for uid */ kgid_t s_resgid; /* reserved blocks for gid */ int active_logs; /* # of active logs */ int inline_xattr_size; /* inline xattr size */ #ifdef CONFIG_F2FS_FAULT_INJECTION struct f2fs_fault_info fault_info; /* For fault injection */ #endif #ifdef CONFIG_QUOTA /* Names of quota files with journalled quota */ char *s_qf_names[MAXQUOTAS]; int s_jquota_fmt; /* Format of quota to use */ #endif /* For which write hints are passed down to block layer */ int alloc_mode; /* segment allocation policy */ int fsync_mode; /* fsync policy */ int fs_mode; /* fs mode: LFS or ADAPTIVE */ int bggc_mode; /* bggc mode: off, on or sync */ int memory_mode; /* memory mode */ int errors; /* errors parameter */ int discard_unit; /* * discard command's offset/size should * be aligned to this unit: block, * segment or section */ struct fscrypt_dummy_policy dummy_enc_policy; /* test dummy encryption */ block_t unusable_cap_perc; /* percentage for cap */ block_t unusable_cap; /* Amount of space allowed to be * unusable when disabling checkpoint */ /* For compression */ unsigned char compress_algorithm; /* algorithm type */ unsigned char compress_log_size; /* cluster log size */ unsigned char compress_level; /* compress level */ bool compress_chksum; /* compressed data chksum */ unsigned char compress_ext_cnt; /* extension count */ unsigned char nocompress_ext_cnt; /* nocompress extension count */ int compress_mode; /* compression mode */ unsigned char extensions[COMPRESS_EXT_NUM][F2FS_EXTENSION_LEN]; /* extensions */ unsigned char noextensions[COMPRESS_EXT_NUM][F2FS_EXTENSION_LEN]; /* extensions */ }; #define F2FS_FEATURE_ENCRYPT 0x00000001 #define F2FS_FEATURE_BLKZONED 0x00000002 #define F2FS_FEATURE_ATOMIC_WRITE 0x00000004 #define F2FS_FEATURE_EXTRA_ATTR 0x00000008 #define F2FS_FEATURE_PRJQUOTA 0x00000010 #define F2FS_FEATURE_INODE_CHKSUM 0x00000020 #define F2FS_FEATURE_FLEXIBLE_INLINE_XATTR 0x00000040 #define F2FS_FEATURE_QUOTA_INO 0x00000080 #define F2FS_FEATURE_INODE_CRTIME 0x00000100 #define F2FS_FEATURE_LOST_FOUND 0x00000200 #define F2FS_FEATURE_VERITY 0x00000400 #define F2FS_FEATURE_SB_CHKSUM 0x00000800 #define F2FS_FEATURE_CASEFOLD 0x00001000 #define F2FS_FEATURE_COMPRESSION 0x00002000 #define F2FS_FEATURE_RO 0x00004000 #define __F2FS_HAS_FEATURE(raw_super, mask) \ ((raw_super->feature & cpu_to_le32(mask)) != 0) #define F2FS_HAS_FEATURE(sbi, mask) __F2FS_HAS_FEATURE(sbi->raw_super, mask) /* * Default values for user and/or group using reserved blocks */ #define F2FS_DEF_RESUID 0 #define F2FS_DEF_RESGID 0 /* * For checkpoint manager */ enum { NAT_BITMAP, SIT_BITMAP }; #define CP_UMOUNT 0x00000001 #define CP_FASTBOOT 0x00000002 #define CP_SYNC 0x00000004 #define CP_RECOVERY 0x00000008 #define CP_DISCARD 0x00000010 #define CP_TRIMMED 0x00000020 #define CP_PAUSE 0x00000040 #define CP_RESIZE 0x00000080 #define DEF_MAX_DISCARD_REQUEST 8 /* issue 8 discards per round */ #define DEF_MIN_DISCARD_ISSUE_TIME 50 /* 50 ms, if exists */ #define DEF_MID_DISCARD_ISSUE_TIME 500 /* 500 ms, if device busy */ #define DEF_MAX_DISCARD_ISSUE_TIME 60000 /* 60 s, if no candidates */ #define DEF_DISCARD_URGENT_UTIL 80 /* do more discard over 80% */ #define DEF_CP_INTERVAL 60 /* 60 secs */ #define DEF_IDLE_INTERVAL 5 /* 5 secs */ #define DEF_DISABLE_INTERVAL 5 /* 5 secs */ #define DEF_DISABLE_QUICK_INTERVAL 1 /* 1 secs */ #define DEF_UMOUNT_DISCARD_TIMEOUT 5 /* 5 secs */ struct cp_control { int reason; __u64 trim_start; __u64 trim_end; __u64 trim_minlen; }; /* * indicate meta/data type */ enum { META_CP, META_NAT, META_SIT, META_SSA, META_MAX, META_POR, DATA_GENERIC, /* check range only */ DATA_GENERIC_ENHANCE, /* strong check on range and segment bitmap */ DATA_GENERIC_ENHANCE_READ, /* * strong check on range and segment * bitmap but no warning due to race * condition of read on truncated area * by extent_cache */ DATA_GENERIC_ENHANCE_UPDATE, /* * strong check on range and segment * bitmap for update case */ META_GENERIC, }; /* for the list of ino */ enum { ORPHAN_INO, /* for orphan ino list */ APPEND_INO, /* for append ino list */ UPDATE_INO, /* for update ino list */ TRANS_DIR_INO, /* for transactions dir ino list */ FLUSH_INO, /* for multiple device flushing */ MAX_INO_ENTRY, /* max. list */ }; struct ino_entry { struct list_head list; /* list head */ nid_t ino; /* inode number */ unsigned int dirty_device; /* dirty device bitmap */ }; /* for the list of inodes to be GCed */ struct inode_entry { struct list_head list; /* list head */ struct inode *inode; /* vfs inode pointer */ }; struct fsync_node_entry { struct list_head list; /* list head */ struct page *page; /* warm node page pointer */ unsigned int seq_id; /* sequence id */ }; struct ckpt_req { struct completion wait; /* completion for checkpoint done */ struct llist_node llnode; /* llist_node to be linked in wait queue */ int ret; /* return code of checkpoint */ ktime_t queue_time; /* request queued time */ }; struct ckpt_req_control { struct task_struct *f2fs_issue_ckpt; /* checkpoint task */ int ckpt_thread_ioprio; /* checkpoint merge thread ioprio */ wait_queue_head_t ckpt_wait_queue; /* waiting queue for wake-up */ atomic_t issued_ckpt; /* # of actually issued ckpts */ atomic_t total_ckpt; /* # of total ckpts */ atomic_t queued_ckpt; /* # of queued ckpts */ struct llist_head issue_list; /* list for command issue */ spinlock_t stat_lock; /* lock for below checkpoint time stats */ unsigned int cur_time; /* cur wait time in msec for currently issued checkpoint */ unsigned int peak_time; /* peak wait time in msec until now */ }; /* for the bitmap indicate blocks to be discarded */ struct discard_entry { struct list_head list; /* list head */ block_t start_blkaddr; /* start blockaddr of current segment */ unsigned char discard_map[SIT_VBLOCK_MAP_SIZE]; /* segment discard bitmap */ }; /* minimum discard granularity, unit: block count */ #define MIN_DISCARD_GRANULARITY 1 /* default discard granularity of inner discard thread, unit: block count */ #define DEFAULT_DISCARD_GRANULARITY 16 /* default maximum discard granularity of ordered discard, unit: block count */ #define DEFAULT_MAX_ORDERED_DISCARD_GRANULARITY 16 /* max discard pend list number */ #define MAX_PLIST_NUM 512 #define plist_idx(blk_num) ((blk_num) >= MAX_PLIST_NUM ? \ (MAX_PLIST_NUM - 1) : ((blk_num) - 1)) enum { D_PREP, /* initial */ D_PARTIAL, /* partially submitted */ D_SUBMIT, /* all submitted */ D_DONE, /* finished */ }; struct discard_info { block_t lstart; /* logical start address */ block_t len; /* length */ block_t start; /* actual start address in dev */ }; struct discard_cmd { struct rb_node rb_node; /* rb node located in rb-tree */ struct discard_info di; /* discard info */ struct list_head list; /* command list */ struct completion wait; /* compleation */ struct block_device *bdev; /* bdev */ unsigned short ref; /* reference count */ unsigned char state; /* state */ unsigned char queued; /* queued discard */ int error; /* bio error */ spinlock_t lock; /* for state/bio_ref updating */ unsigned short bio_ref; /* bio reference count */ }; enum { DPOLICY_BG, DPOLICY_FORCE, DPOLICY_FSTRIM, DPOLICY_UMOUNT, MAX_DPOLICY, }; enum { DPOLICY_IO_AWARE_DISABLE, /* force to not be aware of IO */ DPOLICY_IO_AWARE_ENABLE, /* force to be aware of IO */ DPOLICY_IO_AWARE_MAX, }; struct discard_policy { int type; /* type of discard */ unsigned int min_interval; /* used for candidates exist */ unsigned int mid_interval; /* used for device busy */ unsigned int max_interval; /* used for candidates not exist */ unsigned int max_requests; /* # of discards issued per round */ unsigned int io_aware_gran; /* minimum granularity discard not be aware of I/O */ bool io_aware; /* issue discard in idle time */ bool sync; /* submit discard with REQ_SYNC flag */ bool ordered; /* issue discard by lba order */ bool timeout; /* discard timeout for put_super */ unsigned int granularity; /* discard granularity */ }; struct discard_cmd_control { struct task_struct *f2fs_issue_discard; /* discard thread */ struct list_head entry_list; /* 4KB discard entry list */ struct list_head pend_list[MAX_PLIST_NUM];/* store pending entries */ struct list_head wait_list; /* store on-flushing entries */ struct list_head fstrim_list; /* in-flight discard from fstrim */ wait_queue_head_t discard_wait_queue; /* waiting queue for wake-up */ struct mutex cmd_lock; unsigned int nr_discards; /* # of discards in the list */ unsigned int max_discards; /* max. discards to be issued */ unsigned int max_discard_request; /* max. discard request per round */ unsigned int min_discard_issue_time; /* min. interval between discard issue */ unsigned int mid_discard_issue_time; /* mid. interval between discard issue */ unsigned int max_discard_issue_time; /* max. interval between discard issue */ unsigned int discard_io_aware_gran; /* minimum discard granularity not be aware of I/O */ unsigned int discard_urgent_util; /* utilization which issue discard proactively */ unsigned int discard_granularity; /* discard granularity */ unsigned int max_ordered_discard; /* maximum discard granularity issued by lba order */ unsigned int discard_io_aware; /* io_aware policy */ unsigned int undiscard_blks; /* # of undiscard blocks */ unsigned int next_pos; /* next discard position */ atomic_t issued_discard; /* # of issued discard */ atomic_t queued_discard; /* # of queued discard */ atomic_t discard_cmd_cnt; /* # of cached cmd count */ struct rb_root_cached root; /* root of discard rb-tree */ bool rbtree_check; /* config for consistence check */ bool discard_wake; /* to wake up discard thread */ }; /* for the list of fsync inodes, used only during recovery */ struct fsync_inode_entry { struct list_head list; /* list head */ struct inode *inode; /* vfs inode pointer */ block_t blkaddr; /* block address locating the last fsync */ block_t last_dentry; /* block address locating the last dentry */ }; #define nats_in_cursum(jnl) (le16_to_cpu((jnl)->n_nats)) #define sits_in_cursum(jnl) (le16_to_cpu((jnl)->n_sits)) #define nat_in_journal(jnl, i) ((jnl)->nat_j.entries[i].ne) #define nid_in_journal(jnl, i) ((jnl)->nat_j.entries[i].nid) #define sit_in_journal(jnl, i) ((jnl)->sit_j.entries[i].se) #define segno_in_journal(jnl, i) ((jnl)->sit_j.entries[i].segno) #define MAX_NAT_JENTRIES(jnl) (NAT_JOURNAL_ENTRIES - nats_in_cursum(jnl)) #define MAX_SIT_JENTRIES(jnl) (SIT_JOURNAL_ENTRIES - sits_in_cursum(jnl)) static inline int update_nats_in_cursum(struct f2fs_journal *journal, int i) { int before = nats_in_cursum(journal); journal->n_nats = cpu_to_le16(before + i); return before; } static inline int update_sits_in_cursum(struct f2fs_journal *journal, int i) { int before = sits_in_cursum(journal); journal->n_sits = cpu_to_le16(before + i); return before; } static inline bool __has_cursum_space(struct f2fs_journal *journal, int size, int type) { if (type == NAT_JOURNAL) return size <= MAX_NAT_JENTRIES(journal); return size <= MAX_SIT_JENTRIES(journal); } /* for inline stuff */ #define DEF_INLINE_RESERVED_SIZE 1 static inline int get_extra_isize(struct inode *inode); static inline int get_inline_xattr_addrs(struct inode *inode); #define MAX_INLINE_DATA(inode) (sizeof(__le32) * \ (CUR_ADDRS_PER_INODE(inode) - \ get_inline_xattr_addrs(inode) - \ DEF_INLINE_RESERVED_SIZE)) /* for inline dir */ #define NR_INLINE_DENTRY(inode) (MAX_INLINE_DATA(inode) * BITS_PER_BYTE / \ ((SIZE_OF_DIR_ENTRY + F2FS_SLOT_LEN) * \ BITS_PER_BYTE + 1)) #define INLINE_DENTRY_BITMAP_SIZE(inode) \ DIV_ROUND_UP(NR_INLINE_DENTRY(inode), BITS_PER_BYTE) #define INLINE_RESERVED_SIZE(inode) (MAX_INLINE_DATA(inode) - \ ((SIZE_OF_DIR_ENTRY + F2FS_SLOT_LEN) * \ NR_INLINE_DENTRY(inode) + \ INLINE_DENTRY_BITMAP_SIZE(inode))) /* * For INODE and NODE manager */ /* for directory operations */ struct f2fs_filename { /* * The filename the user specified. This is NULL for some * filesystem-internal operations, e.g. converting an inline directory * to a non-inline one, or roll-forward recovering an encrypted dentry. */ const struct qstr *usr_fname; /* * The on-disk filename. For encrypted directories, this is encrypted. * This may be NULL for lookups in an encrypted dir without the key. */ struct fscrypt_str disk_name; /* The dirhash of this filename */ f2fs_hash_t hash; #ifdef CONFIG_FS_ENCRYPTION /* * For lookups in encrypted directories: either the buffer backing * disk_name, or a buffer that holds the decoded no-key name. */ struct fscrypt_str crypto_buf; #endif #if IS_ENABLED(CONFIG_UNICODE) /* * For casefolded directories: the casefolded name, but it's left NULL * if the original name is not valid Unicode, if the original name is * "." or "..", if the directory is both casefolded and encrypted and * its encryption key is unavailable, or if the filesystem is doing an * internal operation where usr_fname is also NULL. In all these cases * we fall back to treating the name as an opaque byte sequence. */ struct fscrypt_str cf_name; #endif }; struct f2fs_dentry_ptr { struct inode *inode; void *bitmap; struct f2fs_dir_entry *dentry; __u8 (*filename)[F2FS_SLOT_LEN]; int max; int nr_bitmap; }; static inline void make_dentry_ptr_block(struct inode *inode, struct f2fs_dentry_ptr *d, struct f2fs_dentry_block *t) { d->inode = inode; d->max = NR_DENTRY_IN_BLOCK; d->nr_bitmap = SIZE_OF_DENTRY_BITMAP; d->bitmap = t->dentry_bitmap; d->dentry = t->dentry; d->filename = t->filename; } static inline void make_dentry_ptr_inline(struct inode *inode, struct f2fs_dentry_ptr *d, void *t) { int entry_cnt = NR_INLINE_DENTRY(inode); int bitmap_size = INLINE_DENTRY_BITMAP_SIZE(inode); int reserved_size = INLINE_RESERVED_SIZE(inode); d->inode = inode; d->max = entry_cnt; d->nr_bitmap = bitmap_size; d->bitmap = t; d->dentry = t + bitmap_size + reserved_size; d->filename = t + bitmap_size + reserved_size + SIZE_OF_DIR_ENTRY * entry_cnt; } /* * XATTR_NODE_OFFSET stores xattrs to one node block per file keeping -1 * as its node offset to distinguish from index node blocks. * But some bits are used to mark the node block. */ #define XATTR_NODE_OFFSET ((((unsigned int)-1) << OFFSET_BIT_SHIFT) \ >> OFFSET_BIT_SHIFT) enum { ALLOC_NODE, /* allocate a new node page if needed */ LOOKUP_NODE, /* look up a node without readahead */ LOOKUP_NODE_RA, /* * look up a node with readahead called * by get_data_block. */ }; #define DEFAULT_RETRY_IO_COUNT 8 /* maximum retry read IO or flush count */ /* congestion wait timeout value, default: 20ms */ #define DEFAULT_IO_TIMEOUT (msecs_to_jiffies(20)) /* maximum retry quota flush count */ #define DEFAULT_RETRY_QUOTA_FLUSH_COUNT 8 /* maximum retry of EIO'ed page */ #define MAX_RETRY_PAGE_EIO 100 #define F2FS_LINK_MAX 0xffffffff /* maximum link count per file */ #define MAX_DIR_RA_PAGES 4 /* maximum ra pages of dir */ /* dirty segments threshold for triggering CP */ #define DEFAULT_DIRTY_THRESHOLD 4 #define RECOVERY_MAX_RA_BLOCKS BIO_MAX_VECS #define RECOVERY_MIN_RA_BLOCKS 1 #define F2FS_ONSTACK_PAGES 16 /* nr of onstack pages */ /* for in-memory extent cache entry */ #define F2FS_MIN_EXTENT_LEN 64 /* minimum extent length */ /* number of extent info in extent cache we try to shrink */ #define READ_EXTENT_CACHE_SHRINK_NUMBER 128 /* number of age extent info in extent cache we try to shrink */ #define AGE_EXTENT_CACHE_SHRINK_NUMBER 128 #define LAST_AGE_WEIGHT 30 #define SAME_AGE_REGION 1024 /* * Define data block with age less than 1GB as hot data * define data block with age less than 10GB but more than 1GB as warm data */ #define DEF_HOT_DATA_AGE_THRESHOLD 262144 #define DEF_WARM_DATA_AGE_THRESHOLD 2621440 /* extent cache type */ enum extent_type { EX_READ, EX_BLOCK_AGE, NR_EXTENT_CACHES, }; struct extent_info { unsigned int fofs; /* start offset in a file */ unsigned int len; /* length of the extent */ union { /* read extent_cache */ struct { /* start block address of the extent */ block_t blk; #ifdef CONFIG_F2FS_FS_COMPRESSION /* physical extent length of compressed blocks */ unsigned int c_len; #endif }; /* block age extent_cache */ struct { /* block age of the extent */ unsigned long long age; /* last total blocks allocated */ unsigned long long last_blocks; }; }; }; struct extent_node { struct rb_node rb_node; /* rb node located in rb-tree */ struct extent_info ei; /* extent info */ struct list_head list; /* node in global extent list of sbi */ struct extent_tree *et; /* extent tree pointer */ }; struct extent_tree { nid_t ino; /* inode number */ enum extent_type type; /* keep the extent tree type */ struct rb_root_cached root; /* root of extent info rb-tree */ struct extent_node *cached_en; /* recently accessed extent node */ struct list_head list; /* to be used by sbi->zombie_list */ rwlock_t lock; /* protect extent info rb-tree */ atomic_t node_cnt; /* # of extent node in rb-tree*/ bool largest_updated; /* largest extent updated */ struct extent_info largest; /* largest cached extent for EX_READ */ }; struct extent_tree_info { struct radix_tree_root extent_tree_root;/* cache extent cache entries */ struct mutex extent_tree_lock; /* locking extent radix tree */ struct list_head extent_list; /* lru list for shrinker */ spinlock_t extent_lock; /* locking extent lru list */ atomic_t total_ext_tree; /* extent tree count */ struct list_head zombie_list; /* extent zombie tree list */ atomic_t total_zombie_tree; /* extent zombie tree count */ atomic_t total_ext_node; /* extent info count */ }; /* * State of block returned by f2fs_map_blocks. */ #define F2FS_MAP_NEW (1U << 0) #define F2FS_MAP_MAPPED (1U << 1) #define F2FS_MAP_DELALLOC (1U << 2) #define F2FS_MAP_FLAGS (F2FS_MAP_NEW | F2FS_MAP_MAPPED |\ F2FS_MAP_DELALLOC) struct f2fs_map_blocks { struct block_device *m_bdev; /* for multi-device dio */ block_t m_pblk; block_t m_lblk; unsigned int m_len; unsigned int m_flags; pgoff_t *m_next_pgofs; /* point next possible non-hole pgofs */ pgoff_t *m_next_extent; /* point to next possible extent */ int m_seg_type; bool m_may_create; /* indicate it is from write path */ bool m_multidev_dio; /* indicate it allows multi-device dio */ }; /* for flag in get_data_block */ enum { F2FS_GET_BLOCK_DEFAULT, F2FS_GET_BLOCK_FIEMAP, F2FS_GET_BLOCK_BMAP, F2FS_GET_BLOCK_DIO, F2FS_GET_BLOCK_PRE_DIO, F2FS_GET_BLOCK_PRE_AIO, F2FS_GET_BLOCK_PRECACHE, }; /* * i_advise uses FADVISE_XXX_BIT. We can add additional hints later. */ #define FADVISE_COLD_BIT 0x01 #define FADVISE_LOST_PINO_BIT 0x02 #define FADVISE_ENCRYPT_BIT 0x04 #define FADVISE_ENC_NAME_BIT 0x08 #define FADVISE_KEEP_SIZE_BIT 0x10 #define FADVISE_HOT_BIT 0x20 #define FADVISE_VERITY_BIT 0x40 #define FADVISE_TRUNC_BIT 0x80 #define FADVISE_MODIFIABLE_BITS (FADVISE_COLD_BIT | FADVISE_HOT_BIT) #define file_is_cold(inode) is_file(inode, FADVISE_COLD_BIT) #define file_set_cold(inode) set_file(inode, FADVISE_COLD_BIT) #define file_clear_cold(inode) clear_file(inode, FADVISE_COLD_BIT) #define file_wrong_pino(inode) is_file(inode, FADVISE_LOST_PINO_BIT) #define file_lost_pino(inode) set_file(inode, FADVISE_LOST_PINO_BIT) #define file_got_pino(inode) clear_file(inode, FADVISE_LOST_PINO_BIT) #define file_is_encrypt(inode) is_file(inode, FADVISE_ENCRYPT_BIT) #define file_set_encrypt(inode) set_file(inode, FADVISE_ENCRYPT_BIT) #define file_enc_name(inode) is_file(inode, FADVISE_ENC_NAME_BIT) #define file_set_enc_name(inode) set_file(inode, FADVISE_ENC_NAME_BIT) #define file_keep_isize(inode) is_file(inode, FADVISE_KEEP_SIZE_BIT) #define file_set_keep_isize(inode) set_file(inode, FADVISE_KEEP_SIZE_BIT) #define file_is_hot(inode) is_file(inode, FADVISE_HOT_BIT) #define file_set_hot(inode) set_file(inode, FADVISE_HOT_BIT) #define file_clear_hot(inode) clear_file(inode, FADVISE_HOT_BIT) #define file_is_verity(inode) is_file(inode, FADVISE_VERITY_BIT) #define file_set_verity(inode) set_file(inode, FADVISE_VERITY_BIT) #define file_should_truncate(inode) is_file(inode, FADVISE_TRUNC_BIT) #define file_need_truncate(inode) set_file(inode, FADVISE_TRUNC_BIT) #define file_dont_truncate(inode) clear_file(inode, FADVISE_TRUNC_BIT) #define DEF_DIR_LEVEL 0 /* used for f2fs_inode_info->flags */ enum { FI_NEW_INODE, /* indicate newly allocated inode */ FI_DIRTY_INODE, /* indicate inode is dirty or not */ FI_AUTO_RECOVER, /* indicate inode is recoverable */ FI_DIRTY_DIR, /* indicate directory has dirty pages */ FI_INC_LINK, /* need to increment i_nlink */ FI_ACL_MODE, /* indicate acl mode */ FI_NO_ALLOC, /* should not allocate any blocks */ FI_FREE_NID, /* free allocated nide */ FI_NO_EXTENT, /* not to use the extent cache */ FI_INLINE_XATTR, /* used for inline xattr */ FI_INLINE_DATA, /* used for inline data*/ FI_INLINE_DENTRY, /* used for inline dentry */ FI_APPEND_WRITE, /* inode has appended data */ FI_UPDATE_WRITE, /* inode has in-place-update data */ FI_NEED_IPU, /* used for ipu per file */ FI_ATOMIC_FILE, /* indicate atomic file */ FI_DATA_EXIST, /* indicate data exists */ FI_INLINE_DOTS, /* indicate inline dot dentries */ FI_SKIP_WRITES, /* should skip data page writeback */ FI_OPU_WRITE, /* used for opu per file */ FI_DIRTY_FILE, /* indicate regular/symlink has dirty pages */ FI_PREALLOCATED_ALL, /* all blocks for write were preallocated */ FI_HOT_DATA, /* indicate file is hot */ FI_EXTRA_ATTR, /* indicate file has extra attribute */ FI_PROJ_INHERIT, /* indicate file inherits projectid */ FI_PIN_FILE, /* indicate file should not be gced */ FI_VERITY_IN_PROGRESS, /* building fs-verity Merkle tree */ FI_COMPRESSED_FILE, /* indicate file's data can be compressed */ FI_COMPRESS_CORRUPT, /* indicate compressed cluster is corrupted */ FI_MMAP_FILE, /* indicate file was mmapped */ FI_ENABLE_COMPRESS, /* enable compression in "user" compression mode */ FI_COMPRESS_RELEASED, /* compressed blocks were released */ FI_ALIGNED_WRITE, /* enable aligned write */ FI_COW_FILE, /* indicate COW file */ FI_ATOMIC_COMMITTED, /* indicate atomic commit completed except disk sync */ FI_ATOMIC_REPLACE, /* indicate atomic replace */ FI_OPENED_FILE, /* indicate file has been opened */ FI_MAX, /* max flag, never be used */ }; struct f2fs_inode_info { struct inode vfs_inode; /* serve a vfs inode */ unsigned long i_flags; /* keep an inode flags for ioctl */ unsigned char i_advise; /* use to give file attribute hints */ unsigned char i_dir_level; /* use for dentry level for large dir */ union { unsigned int i_current_depth; /* only for directory depth */ unsigned short i_gc_failures; /* for gc failure statistic */ }; unsigned int i_pino; /* parent inode number */ umode_t i_acl_mode; /* keep file acl mode temporarily */ /* Use below internally in f2fs*/ unsigned long flags[BITS_TO_LONGS(FI_MAX)]; /* use to pass per-file flags */ struct f2fs_rwsem i_sem; /* protect fi info */ atomic_t dirty_pages; /* # of dirty pages */ f2fs_hash_t chash; /* hash value of given file name */ unsigned int clevel; /* maximum level of given file name */ struct task_struct *task; /* lookup and create consistency */ struct task_struct *cp_task; /* separate cp/wb IO stats*/ struct task_struct *wb_task; /* indicate inode is in context of writeback */ nid_t i_xattr_nid; /* node id that contains xattrs */ loff_t last_disk_size; /* lastly written file size */ spinlock_t i_size_lock; /* protect last_disk_size */ #ifdef CONFIG_QUOTA struct dquot __rcu *i_dquot[MAXQUOTAS]; /* quota space reservation, managed internally by quota code */ qsize_t i_reserved_quota; #endif struct list_head dirty_list; /* dirty list for dirs and files */ struct list_head gdirty_list; /* linked in global dirty list */ struct task_struct *atomic_write_task; /* store atomic write task */ struct extent_tree *extent_tree[NR_EXTENT_CACHES]; /* cached extent_tree entry */ union { struct inode *cow_inode; /* copy-on-write inode for atomic write */ struct inode *atomic_inode; /* point to atomic_inode, available only for cow_inode */ }; /* avoid racing between foreground op and gc */ struct f2fs_rwsem i_gc_rwsem[2]; struct f2fs_rwsem i_xattr_sem; /* avoid racing between reading and changing EAs */ int i_extra_isize; /* size of extra space located in i_addr */ kprojid_t i_projid; /* id for project quota */ int i_inline_xattr_size; /* inline xattr size */ struct timespec64 i_crtime; /* inode creation time */ struct timespec64 i_disk_time[3];/* inode disk times */ /* for file compress */ atomic_t i_compr_blocks; /* # of compressed blocks */ unsigned char i_compress_algorithm; /* algorithm type */ unsigned char i_log_cluster_size; /* log of cluster size */ unsigned char i_compress_level; /* compress level (lz4hc,zstd) */ unsigned char i_compress_flag; /* compress flag */ unsigned int i_cluster_size; /* cluster size */ unsigned int atomic_write_cnt; loff_t original_i_size; /* original i_size before atomic write */ }; static inline void get_read_extent_info(struct extent_info *ext, struct f2fs_extent *i_ext) { ext->fofs = le32_to_cpu(i_ext->fofs); ext->blk = le32_to_cpu(i_ext->blk); ext->len = le32_to_cpu(i_ext->len); } static inline void set_raw_read_extent(struct extent_info *ext, struct f2fs_extent *i_ext) { i_ext->fofs = cpu_to_le32(ext->fofs); i_ext->blk = cpu_to_le32(ext->blk); i_ext->len = cpu_to_le32(ext->len); } static inline bool __is_discard_mergeable(struct discard_info *back, struct discard_info *front, unsigned int max_len) { return (back->lstart + back->len == front->lstart) && (back->len + front->len <= max_len); } static inline bool __is_discard_back_mergeable(struct discard_info *cur, struct discard_info *back, unsigned int max_len) { return __is_discard_mergeable(back, cur, max_len); } static inline bool __is_discard_front_mergeable(struct discard_info *cur, struct discard_info *front, unsigned int max_len) { return __is_discard_mergeable(cur, front, max_len); } /* * For free nid management */ enum nid_state { FREE_NID, /* newly added to free nid list */ PREALLOC_NID, /* it is preallocated */ MAX_NID_STATE, }; enum nat_state { TOTAL_NAT, DIRTY_NAT, RECLAIMABLE_NAT, MAX_NAT_STATE, }; struct f2fs_nm_info { block_t nat_blkaddr; /* base disk address of NAT */ nid_t max_nid; /* maximum possible node ids */ nid_t available_nids; /* # of available node ids */ nid_t next_scan_nid; /* the next nid to be scanned */ nid_t max_rf_node_blocks; /* max # of nodes for recovery */ unsigned int ram_thresh; /* control the memory footprint */ unsigned int ra_nid_pages; /* # of nid pages to be readaheaded */ unsigned int dirty_nats_ratio; /* control dirty nats ratio threshold */ /* NAT cache management */ struct radix_tree_root nat_root;/* root of the nat entry cache */ struct radix_tree_root nat_set_root;/* root of the nat set cache */ struct f2fs_rwsem nat_tree_lock; /* protect nat entry tree */ struct list_head nat_entries; /* cached nat entry list (clean) */ spinlock_t nat_list_lock; /* protect clean nat entry list */ unsigned int nat_cnt[MAX_NAT_STATE]; /* the # of cached nat entries */ unsigned int nat_blocks; /* # of nat blocks */ /* free node ids management */ struct radix_tree_root free_nid_root;/* root of the free_nid cache */ struct list_head free_nid_list; /* list for free nids excluding preallocated nids */ unsigned int nid_cnt[MAX_NID_STATE]; /* the number of free node id */ spinlock_t nid_list_lock; /* protect nid lists ops */ struct mutex build_lock; /* lock for build free nids */ unsigned char **free_nid_bitmap; unsigned char *nat_block_bitmap; unsigned short *free_nid_count; /* free nid count of NAT block */ /* for checkpoint */ char *nat_bitmap; /* NAT bitmap pointer */ unsigned int nat_bits_blocks; /* # of nat bits blocks */ unsigned char *nat_bits; /* NAT bits blocks */ unsigned char *full_nat_bits; /* full NAT pages */ unsigned char *empty_nat_bits; /* empty NAT pages */ #ifdef CONFIG_F2FS_CHECK_FS char *nat_bitmap_mir; /* NAT bitmap mirror */ #endif int bitmap_size; /* bitmap size */ }; /* * this structure is used as one of function parameters. * all the information are dedicated to a given direct node block determined * by the data offset in a file. */ struct dnode_of_data { struct inode *inode; /* vfs inode pointer */ struct page *inode_page; /* its inode page, NULL is possible */ struct page *node_page; /* cached direct node page */ nid_t nid; /* node id of the direct node block */ unsigned int ofs_in_node; /* data offset in the node page */ bool inode_page_locked; /* inode page is locked or not */ bool node_changed; /* is node block changed */ char cur_level; /* level of hole node page */ char max_level; /* level of current page located */ block_t data_blkaddr; /* block address of the node block */ }; static inline void set_new_dnode(struct dnode_of_data *dn, struct inode *inode, struct page *ipage, struct page *npage, nid_t nid) { memset(dn, 0, sizeof(*dn)); dn->inode = inode; dn->inode_page = ipage; dn->node_page = npage; dn->nid = nid; } /* * For SIT manager * * By default, there are 6 active log areas across the whole main area. * When considering hot and cold data separation to reduce cleaning overhead, * we split 3 for data logs and 3 for node logs as hot, warm, and cold types, * respectively. * In the current design, you should not change the numbers intentionally. * Instead, as a mount option such as active_logs=x, you can use 2, 4, and 6 * logs individually according to the underlying devices. (default: 6) * Just in case, on-disk layout covers maximum 16 logs that consist of 8 for * data and 8 for node logs. */ #define NR_CURSEG_DATA_TYPE (3) #define NR_CURSEG_NODE_TYPE (3) #define NR_CURSEG_INMEM_TYPE (2) #define NR_CURSEG_RO_TYPE (2) #define NR_CURSEG_PERSIST_TYPE (NR_CURSEG_DATA_TYPE + NR_CURSEG_NODE_TYPE) #define NR_CURSEG_TYPE (NR_CURSEG_INMEM_TYPE + NR_CURSEG_PERSIST_TYPE) enum { CURSEG_HOT_DATA = 0, /* directory entry blocks */ CURSEG_WARM_DATA, /* data blocks */ CURSEG_COLD_DATA, /* multimedia or GCed data blocks */ CURSEG_HOT_NODE, /* direct node blocks of directory files */ CURSEG_WARM_NODE, /* direct node blocks of normal files */ CURSEG_COLD_NODE, /* indirect node blocks */ NR_PERSISTENT_LOG, /* number of persistent log */ CURSEG_COLD_DATA_PINNED = NR_PERSISTENT_LOG, /* pinned file that needs consecutive block address */ CURSEG_ALL_DATA_ATGC, /* SSR alloctor in hot/warm/cold data area */ NO_CHECK_TYPE, /* number of persistent & inmem log */ }; struct flush_cmd { struct completion wait; struct llist_node llnode; nid_t ino; int ret; }; struct flush_cmd_control { struct task_struct *f2fs_issue_flush; /* flush thread */ wait_queue_head_t flush_wait_queue; /* waiting queue for wake-up */ atomic_t issued_flush; /* # of issued flushes */ atomic_t queued_flush; /* # of queued flushes */ struct llist_head issue_list; /* list for command issue */ struct llist_node *dispatch_list; /* list for command dispatch */ }; struct f2fs_sm_info { struct sit_info *sit_info; /* whole segment information */ struct free_segmap_info *free_info; /* free segment information */ struct dirty_seglist_info *dirty_info; /* dirty segment information */ struct curseg_info *curseg_array; /* active segment information */ struct f2fs_rwsem curseg_lock; /* for preventing curseg change */ block_t seg0_blkaddr; /* block address of 0'th segment */ block_t main_blkaddr; /* start block address of main area */ block_t ssa_blkaddr; /* start block address of SSA area */ unsigned int segment_count; /* total # of segments */ unsigned int main_segments; /* # of segments in main area */ unsigned int reserved_segments; /* # of reserved segments */ unsigned int additional_reserved_segments;/* reserved segs for IO align feature */ unsigned int ovp_segments; /* # of overprovision segments */ /* a threshold to reclaim prefree segments */ unsigned int rec_prefree_segments; struct list_head sit_entry_set; /* sit entry set list */ unsigned int ipu_policy; /* in-place-update policy */ unsigned int min_ipu_util; /* in-place-update threshold */ unsigned int min_fsync_blocks; /* threshold for fsync */ unsigned int min_seq_blocks; /* threshold for sequential blocks */ unsigned int min_hot_blocks; /* threshold for hot block allocation */ unsigned int min_ssr_sections; /* threshold to trigger SSR allocation */ /* for flush command control */ struct flush_cmd_control *fcc_info; /* for discard command control */ struct discard_cmd_control *dcc_info; }; /* * For superblock */ /* * COUNT_TYPE for monitoring * * f2fs monitors the number of several block types such as on-writeback, * dirty dentry blocks, dirty node blocks, and dirty meta blocks. */ #define WB_DATA_TYPE(p, f) \ (f || f2fs_is_cp_guaranteed(p) ? F2FS_WB_CP_DATA : F2FS_WB_DATA) enum count_type { F2FS_DIRTY_DENTS, F2FS_DIRTY_DATA, F2FS_DIRTY_QDATA, F2FS_DIRTY_NODES, F2FS_DIRTY_META, F2FS_DIRTY_IMETA, F2FS_WB_CP_DATA, F2FS_WB_DATA, F2FS_RD_DATA, F2FS_RD_NODE, F2FS_RD_META, F2FS_DIO_WRITE, F2FS_DIO_READ, NR_COUNT_TYPE, }; /* * The below are the page types of bios used in submit_bio(). * The available types are: * DATA User data pages. It operates as async mode. * NODE Node pages. It operates as async mode. * META FS metadata pages such as SIT, NAT, CP. * NR_PAGE_TYPE The number of page types. * META_FLUSH Make sure the previous pages are written * with waiting the bio's completion * ... Only can be used with META. */ #define PAGE_TYPE_OF_BIO(type) ((type) > META ? META : (type)) #define PAGE_TYPE_ON_MAIN(type) ((type) == DATA || (type) == NODE) enum page_type { DATA = 0, NODE = 1, /* should not change this */ META, NR_PAGE_TYPE, META_FLUSH, IPU, /* the below types are used by tracepoints only. */ OPU, }; enum temp_type { HOT = 0, /* must be zero for meta bio */ WARM, COLD, NR_TEMP_TYPE, }; enum need_lock_type { LOCK_REQ = 0, LOCK_DONE, LOCK_RETRY, }; enum cp_reason_type { CP_NO_NEEDED, CP_NON_REGULAR, CP_COMPRESSED, CP_HARDLINK, CP_SB_NEED_CP, CP_WRONG_PINO, CP_NO_SPC_ROLL, CP_NODE_NEED_CP, CP_FASTBOOT_MODE, CP_SPEC_LOG_NUM, CP_RECOVER_DIR, }; enum iostat_type { /* WRITE IO */ APP_DIRECT_IO, /* app direct write IOs */ APP_BUFFERED_IO, /* app buffered write IOs */ APP_WRITE_IO, /* app write IOs */ APP_MAPPED_IO, /* app mapped IOs */ APP_BUFFERED_CDATA_IO, /* app buffered write IOs on compressed file */ APP_MAPPED_CDATA_IO, /* app mapped write IOs on compressed file */ FS_DATA_IO, /* data IOs from kworker/fsync/reclaimer */ FS_CDATA_IO, /* data IOs from kworker/fsync/reclaimer on compressed file */ FS_NODE_IO, /* node IOs from kworker/fsync/reclaimer */ FS_META_IO, /* meta IOs from kworker/reclaimer */ FS_GC_DATA_IO, /* data IOs from forground gc */ FS_GC_NODE_IO, /* node IOs from forground gc */ FS_CP_DATA_IO, /* data IOs from checkpoint */ FS_CP_NODE_IO, /* node IOs from checkpoint */ FS_CP_META_IO, /* meta IOs from checkpoint */ /* READ IO */ APP_DIRECT_READ_IO, /* app direct read IOs */ APP_BUFFERED_READ_IO, /* app buffered read IOs */ APP_READ_IO, /* app read IOs */ APP_MAPPED_READ_IO, /* app mapped read IOs */ APP_BUFFERED_CDATA_READ_IO, /* app buffered read IOs on compressed file */ APP_MAPPED_CDATA_READ_IO, /* app mapped read IOs on compressed file */ FS_DATA_READ_IO, /* data read IOs */ FS_GDATA_READ_IO, /* data read IOs from background gc */ FS_CDATA_READ_IO, /* compressed data read IOs */ FS_NODE_READ_IO, /* node read IOs */ FS_META_READ_IO, /* meta read IOs */ /* other */ FS_DISCARD_IO, /* discard */ FS_FLUSH_IO, /* flush */ FS_ZONE_RESET_IO, /* zone reset */ NR_IO_TYPE, }; struct f2fs_io_info { struct f2fs_sb_info *sbi; /* f2fs_sb_info pointer */ nid_t ino; /* inode number */ enum page_type type; /* contains DATA/NODE/META/META_FLUSH */ enum temp_type temp; /* contains HOT/WARM/COLD */ enum req_op op; /* contains REQ_OP_ */ blk_opf_t op_flags; /* req_flag_bits */ block_t new_blkaddr; /* new block address to be written */ block_t old_blkaddr; /* old block address before Cow */ struct page *page; /* page to be written */ struct page *encrypted_page; /* encrypted page */ struct page *compressed_page; /* compressed page */ struct list_head list; /* serialize IOs */ unsigned int compr_blocks; /* # of compressed block addresses */ unsigned int need_lock:8; /* indicate we need to lock cp_rwsem */ unsigned int version:8; /* version of the node */ unsigned int submitted:1; /* indicate IO submission */ unsigned int in_list:1; /* indicate fio is in io_list */ unsigned int is_por:1; /* indicate IO is from recovery or not */ unsigned int encrypted:1; /* indicate file is encrypted */ unsigned int meta_gc:1; /* require meta inode GC */ enum iostat_type io_type; /* io type */ struct writeback_control *io_wbc; /* writeback control */ struct bio **bio; /* bio for ipu */ sector_t *last_block; /* last block number in bio */ }; struct bio_entry { struct bio *bio; struct list_head list; }; #define is_read_io(rw) ((rw) == READ) struct f2fs_bio_info { struct f2fs_sb_info *sbi; /* f2fs superblock */ struct bio *bio; /* bios to merge */ sector_t last_block_in_bio; /* last block number */ struct f2fs_io_info fio; /* store buffered io info. */ #ifdef CONFIG_BLK_DEV_ZONED struct completion zone_wait; /* condition value for the previous open zone to close */ struct bio *zone_pending_bio; /* pending bio for the previous zone */ void *bi_private; /* previous bi_private for pending bio */ #endif struct f2fs_rwsem io_rwsem; /* blocking op for bio */ spinlock_t io_lock; /* serialize DATA/NODE IOs */ struct list_head io_list; /* track fios */ struct list_head bio_list; /* bio entry list head */ struct f2fs_rwsem bio_list_lock; /* lock to protect bio entry list */ }; #define FDEV(i) (sbi->devs[i]) #define RDEV(i) (raw_super->devs[i]) struct f2fs_dev_info { struct file *bdev_file; struct block_device *bdev; char path[MAX_PATH_LEN]; unsigned int total_segments; block_t start_blk; block_t end_blk; #ifdef CONFIG_BLK_DEV_ZONED unsigned int nr_blkz; /* Total number of zones */ unsigned long *blkz_seq; /* Bitmap indicating sequential zones */ #endif }; enum inode_type { DIR_INODE, /* for dirty dir inode */ FILE_INODE, /* for dirty regular/symlink inode */ DIRTY_META, /* for all dirtied inode metadata */ NR_INODE_TYPE, }; /* for inner inode cache management */ struct inode_management { struct radix_tree_root ino_root; /* ino entry array */ spinlock_t ino_lock; /* for ino entry lock */ struct list_head ino_list; /* inode list head */ unsigned long ino_num; /* number of entries */ }; /* for GC_AT */ struct atgc_management { bool atgc_enabled; /* ATGC is enabled or not */ struct rb_root_cached root; /* root of victim rb-tree */ struct list_head victim_list; /* linked with all victim entries */ unsigned int victim_count; /* victim count in rb-tree */ unsigned int candidate_ratio; /* candidate ratio */ unsigned int max_candidate_count; /* max candidate count */ unsigned int age_weight; /* age weight, vblock_weight = 100 - age_weight */ unsigned long long age_threshold; /* age threshold */ }; struct f2fs_gc_control { unsigned int victim_segno; /* target victim segment number */ int init_gc_type; /* FG_GC or BG_GC */ bool no_bg_gc; /* check the space and stop bg_gc */ bool should_migrate_blocks; /* should migrate blocks */ bool err_gc_skipped; /* return EAGAIN if GC skipped */ unsigned int nr_free_secs; /* # of free sections to do GC */ }; /* * For s_flag in struct f2fs_sb_info * Modification on enum should be synchronized with s_flag array */ enum { SBI_IS_DIRTY, /* dirty flag for checkpoint */ SBI_IS_CLOSE, /* specify unmounting */ SBI_NEED_FSCK, /* need fsck.f2fs to fix */ SBI_POR_DOING, /* recovery is doing or not */ SBI_NEED_SB_WRITE, /* need to recover superblock */ SBI_NEED_CP, /* need to checkpoint */ SBI_IS_SHUTDOWN, /* shutdown by ioctl */ SBI_IS_RECOVERED, /* recovered orphan/data */ SBI_CP_DISABLED, /* CP was disabled last mount */ SBI_CP_DISABLED_QUICK, /* CP was disabled quickly */ SBI_QUOTA_NEED_FLUSH, /* need to flush quota info in CP */ SBI_QUOTA_SKIP_FLUSH, /* skip flushing quota in current CP */ SBI_QUOTA_NEED_REPAIR, /* quota file may be corrupted */ SBI_IS_RESIZEFS, /* resizefs is in process */ SBI_IS_FREEZING, /* freezefs is in process */ SBI_IS_WRITABLE, /* remove ro mountoption transiently */ MAX_SBI_FLAG, }; enum { CP_TIME, REQ_TIME, DISCARD_TIME, GC_TIME, DISABLE_TIME, UMOUNT_DISCARD_TIMEOUT, MAX_TIME, }; /* Note that you need to keep synchronization with this gc_mode_names array */ enum { GC_NORMAL, GC_IDLE_CB, GC_IDLE_GREEDY, GC_IDLE_AT, GC_URGENT_HIGH, GC_URGENT_LOW, GC_URGENT_MID, MAX_GC_MODE, }; enum { BGGC_MODE_ON, /* background gc is on */ BGGC_MODE_OFF, /* background gc is off */ BGGC_MODE_SYNC, /* * background gc is on, migrating blocks * like foreground gc */ }; enum { FS_MODE_ADAPTIVE, /* use both lfs/ssr allocation */ FS_MODE_LFS, /* use lfs allocation only */ FS_MODE_FRAGMENT_SEG, /* segment fragmentation mode */ FS_MODE_FRAGMENT_BLK, /* block fragmentation mode */ }; enum { ALLOC_MODE_DEFAULT, /* stay default */ ALLOC_MODE_REUSE, /* reuse segments as much as possible */ }; enum fsync_mode { FSYNC_MODE_POSIX, /* fsync follows posix semantics */ FSYNC_MODE_STRICT, /* fsync behaves in line with ext4 */ FSYNC_MODE_NOBARRIER, /* fsync behaves nobarrier based on posix */ }; enum { COMPR_MODE_FS, /* * automatically compress compression * enabled files */ COMPR_MODE_USER, /* * automatical compression is disabled. * user can control the file compression * using ioctls */ }; enum { DISCARD_UNIT_BLOCK, /* basic discard unit is block */ DISCARD_UNIT_SEGMENT, /* basic discard unit is segment */ DISCARD_UNIT_SECTION, /* basic discard unit is section */ }; enum { MEMORY_MODE_NORMAL, /* memory mode for normal devices */ MEMORY_MODE_LOW, /* memory mode for low memry devices */ }; enum errors_option { MOUNT_ERRORS_READONLY, /* remount fs ro on errors */ MOUNT_ERRORS_CONTINUE, /* continue on errors */ MOUNT_ERRORS_PANIC, /* panic on errors */ }; enum { BACKGROUND, FOREGROUND, MAX_CALL_TYPE, TOTAL_CALL = FOREGROUND, }; static inline int f2fs_test_bit(unsigned int nr, char *addr); static inline void f2fs_set_bit(unsigned int nr, char *addr); static inline void f2fs_clear_bit(unsigned int nr, char *addr); /* * Layout of f2fs page.private: * * Layout A: lowest bit should be 1 * | bit0 = 1 | bit1 | bit2 | ... | bit MAX | private data .... | * bit 0 PAGE_PRIVATE_NOT_POINTER * bit 1 PAGE_PRIVATE_ONGOING_MIGRATION * bit 2 PAGE_PRIVATE_INLINE_INODE * bit 3 PAGE_PRIVATE_REF_RESOURCE * bit 4- f2fs private data * * Layout B: lowest bit should be 0 * page.private is a wrapped pointer. */ enum { PAGE_PRIVATE_NOT_POINTER, /* private contains non-pointer data */ PAGE_PRIVATE_ONGOING_MIGRATION, /* data page which is on-going migrating */ PAGE_PRIVATE_INLINE_INODE, /* inode page contains inline data */ PAGE_PRIVATE_REF_RESOURCE, /* dirty page has referenced resources */ PAGE_PRIVATE_MAX }; /* For compression */ enum compress_algorithm_type { COMPRESS_LZO, COMPRESS_LZ4, COMPRESS_ZSTD, COMPRESS_LZORLE, COMPRESS_MAX, }; enum compress_flag { COMPRESS_CHKSUM, COMPRESS_MAX_FLAG, }; #define COMPRESS_WATERMARK 20 #define COMPRESS_PERCENT 20 #define COMPRESS_DATA_RESERVED_SIZE 4 struct compress_data { __le32 clen; /* compressed data size */ __le32 chksum; /* compressed data chksum */ __le32 reserved[COMPRESS_DATA_RESERVED_SIZE]; /* reserved */ u8 cdata[]; /* compressed data */ }; #define COMPRESS_HEADER_SIZE (sizeof(struct compress_data)) #define F2FS_COMPRESSED_PAGE_MAGIC 0xF5F2C000 #define F2FS_ZSTD_DEFAULT_CLEVEL 1 #define COMPRESS_LEVEL_OFFSET 8 /* compress context */ struct compress_ctx { struct inode *inode; /* inode the context belong to */ pgoff_t cluster_idx; /* cluster index number */ unsigned int cluster_size; /* page count in cluster */ unsigned int log_cluster_size; /* log of cluster size */ struct page **rpages; /* pages store raw data in cluster */ unsigned int nr_rpages; /* total page number in rpages */ struct page **cpages; /* pages store compressed data in cluster */ unsigned int nr_cpages; /* total page number in cpages */ unsigned int valid_nr_cpages; /* valid page number in cpages */ void *rbuf; /* virtual mapped address on rpages */ struct compress_data *cbuf; /* virtual mapped address on cpages */ size_t rlen; /* valid data length in rbuf */ size_t clen; /* valid data length in cbuf */ void *private; /* payload buffer for specified compression algorithm */ void *private2; /* extra payload buffer */ }; /* compress context for write IO path */ struct compress_io_ctx { u32 magic; /* magic number to indicate page is compressed */ struct inode *inode; /* inode the context belong to */ struct page **rpages; /* pages store raw data in cluster */ unsigned int nr_rpages; /* total page number in rpages */ atomic_t pending_pages; /* in-flight compressed page count */ }; /* Context for decompressing one cluster on the read IO path */ struct decompress_io_ctx { u32 magic; /* magic number to indicate page is compressed */ struct inode *inode; /* inode the context belong to */ pgoff_t cluster_idx; /* cluster index number */ unsigned int cluster_size; /* page count in cluster */ unsigned int log_cluster_size; /* log of cluster size */ struct page **rpages; /* pages store raw data in cluster */ unsigned int nr_rpages; /* total page number in rpages */ struct page **cpages; /* pages store compressed data in cluster */ unsigned int nr_cpages; /* total page number in cpages */ struct page **tpages; /* temp pages to pad holes in cluster */ void *rbuf; /* virtual mapped address on rpages */ struct compress_data *cbuf; /* virtual mapped address on cpages */ size_t rlen; /* valid data length in rbuf */ size_t clen; /* valid data length in cbuf */ /* * The number of compressed pages remaining to be read in this cluster. * This is initially nr_cpages. It is decremented by 1 each time a page * has been read (or failed to be read). When it reaches 0, the cluster * is decompressed (or an error is reported). * * If an error occurs before all the pages have been submitted for I/O, * then this will never reach 0. In this case the I/O submitter is * responsible for calling f2fs_decompress_end_io() instead. */ atomic_t remaining_pages; /* * Number of references to this decompress_io_ctx. * * One reference is held for I/O completion. This reference is dropped * after the pagecache pages are updated and unlocked -- either after * decompression (and verity if enabled), or after an error. * * In addition, each compressed page holds a reference while it is in a * bio. These references are necessary prevent compressed pages from * being freed while they are still in a bio. */ refcount_t refcnt; bool failed; /* IO error occurred before decompression? */ bool need_verity; /* need fs-verity verification after decompression? */ void *private; /* payload buffer for specified decompression algorithm */ void *private2; /* extra payload buffer */ struct work_struct verity_work; /* work to verify the decompressed pages */ struct work_struct free_work; /* work for late free this structure itself */ }; #define NULL_CLUSTER ((unsigned int)(~0)) #define MIN_COMPRESS_LOG_SIZE 2 #define MAX_COMPRESS_LOG_SIZE 8 #define MAX_COMPRESS_WINDOW_SIZE(log_size) ((PAGE_SIZE) << (log_size)) struct f2fs_sb_info { struct super_block *sb; /* pointer to VFS super block */ struct proc_dir_entry *s_proc; /* proc entry */ struct f2fs_super_block *raw_super; /* raw super block pointer */ struct f2fs_rwsem sb_lock; /* lock for raw super block */ int valid_super_block; /* valid super block no */ unsigned long s_flag; /* flags for sbi */ struct mutex writepages; /* mutex for writepages() */ #ifdef CONFIG_BLK_DEV_ZONED unsigned int blocks_per_blkz; /* F2FS blocks per zone */ unsigned int max_open_zones; /* max open zone resources of the zoned device */ #endif /* for node-related operations */ struct f2fs_nm_info *nm_info; /* node manager */ struct inode *node_inode; /* cache node blocks */ /* for segment-related operations */ struct f2fs_sm_info *sm_info; /* segment manager */ /* for bio operations */ struct f2fs_bio_info *write_io[NR_PAGE_TYPE]; /* for write bios */ /* keep migration IO order for LFS mode */ struct f2fs_rwsem io_order_lock; pgoff_t page_eio_ofs[NR_PAGE_TYPE]; /* EIO page offset */ int page_eio_cnt[NR_PAGE_TYPE]; /* EIO count */ /* for checkpoint */ struct f2fs_checkpoint *ckpt; /* raw checkpoint pointer */ int cur_cp_pack; /* remain current cp pack */ spinlock_t cp_lock; /* for flag in ckpt */ struct inode *meta_inode; /* cache meta blocks */ struct f2fs_rwsem cp_global_sem; /* checkpoint procedure lock */ struct f2fs_rwsem cp_rwsem; /* blocking FS operations */ struct f2fs_rwsem node_write; /* locking node writes */ struct f2fs_rwsem node_change; /* locking node change */ wait_queue_head_t cp_wait; unsigned long last_time[MAX_TIME]; /* to store time in jiffies */ long interval_time[MAX_TIME]; /* to store thresholds */ struct ckpt_req_control cprc_info; /* for checkpoint request control */ struct inode_management im[MAX_INO_ENTRY]; /* manage inode cache */ spinlock_t fsync_node_lock; /* for node entry lock */ struct list_head fsync_node_list; /* node list head */ unsigned int fsync_seg_id; /* sequence id */ unsigned int fsync_node_num; /* number of node entries */ /* for orphan inode, use 0'th array */ unsigned int max_orphans; /* max orphan inodes */ /* for inode management */ struct list_head inode_list[NR_INODE_TYPE]; /* dirty inode list */ spinlock_t inode_lock[NR_INODE_TYPE]; /* for dirty inode list lock */ struct mutex flush_lock; /* for flush exclusion */ /* for extent tree cache */ struct extent_tree_info extent_tree[NR_EXTENT_CACHES]; atomic64_t allocated_data_blocks; /* for block age extent_cache */ /* The threshold used for hot and warm data seperation*/ unsigned int hot_data_age_threshold; unsigned int warm_data_age_threshold; unsigned int last_age_weight; /* basic filesystem units */ unsigned int log_sectors_per_block; /* log2 sectors per block */ unsigned int log_blocksize; /* log2 block size */ unsigned int blocksize; /* block size */ unsigned int root_ino_num; /* root inode number*/ unsigned int node_ino_num; /* node inode number*/ unsigned int meta_ino_num; /* meta inode number*/ unsigned int log_blocks_per_seg; /* log2 blocks per segment */ unsigned int blocks_per_seg; /* blocks per segment */ unsigned int unusable_blocks_per_sec; /* unusable blocks per section */ unsigned int segs_per_sec; /* segments per section */ unsigned int secs_per_zone; /* sections per zone */ unsigned int total_sections; /* total section count */ unsigned int total_node_count; /* total node block count */ unsigned int total_valid_node_count; /* valid node block count */ int dir_level; /* directory level */ bool readdir_ra; /* readahead inode in readdir */ u64 max_io_bytes; /* max io bytes to merge IOs */ block_t user_block_count; /* # of user blocks */ block_t total_valid_block_count; /* # of valid blocks */ block_t discard_blks; /* discard command candidats */ block_t last_valid_block_count; /* for recovery */ block_t reserved_blocks; /* configurable reserved blocks */ block_t current_reserved_blocks; /* current reserved blocks */ /* Additional tracking for no checkpoint mode */ block_t unusable_block_count; /* # of blocks saved by last cp */ unsigned int nquota_files; /* # of quota sysfile */ struct f2fs_rwsem quota_sem; /* blocking cp for flags */ /* # of pages, see count_type */ atomic_t nr_pages[NR_COUNT_TYPE]; /* # of allocated blocks */ struct percpu_counter alloc_valid_block_count; /* # of node block writes as roll forward recovery */ struct percpu_counter rf_node_block_count; /* writeback control */ atomic_t wb_sync_req[META]; /* count # of WB_SYNC threads */ /* valid inode count */ struct percpu_counter total_valid_inode_count; struct f2fs_mount_info mount_opt; /* mount options */ /* for cleaning operations */ struct f2fs_rwsem gc_lock; /* * semaphore for GC, avoid * race between GC and GC or CP */ struct f2fs_gc_kthread *gc_thread; /* GC thread */ struct atgc_management am; /* atgc management */ unsigned int cur_victim_sec; /* current victim section num */ unsigned int gc_mode; /* current GC state */ unsigned int next_victim_seg[2]; /* next segment in victim section */ spinlock_t gc_remaining_trials_lock; /* remaining trial count for GC_URGENT_* and GC_IDLE_* */ unsigned int gc_remaining_trials; /* for skip statistic */ unsigned long long skipped_gc_rwsem; /* FG_GC only */ /* threshold for gc trials on pinned files */ unsigned short gc_pin_file_threshold; struct f2fs_rwsem pin_sem; /* maximum # of trials to find a victim segment for SSR and GC */ unsigned int max_victim_search; /* migration granularity of garbage collection, unit: segment */ unsigned int migration_granularity; /* * for stat information. * one is for the LFS mode, and the other is for the SSR mode. */ #ifdef CONFIG_F2FS_STAT_FS struct f2fs_stat_info *stat_info; /* FS status information */ atomic_t meta_count[META_MAX]; /* # of meta blocks */ unsigned int segment_count[2]; /* # of allocated segments */ unsigned int block_count[2]; /* # of allocated blocks */ atomic_t inplace_count; /* # of inplace update */ /* # of lookup extent cache */ atomic64_t total_hit_ext[NR_EXTENT_CACHES]; /* # of hit rbtree extent node */ atomic64_t read_hit_rbtree[NR_EXTENT_CACHES]; /* # of hit cached extent node */ atomic64_t read_hit_cached[NR_EXTENT_CACHES]; /* # of hit largest extent node in read extent cache */ atomic64_t read_hit_largest; atomic_t inline_xattr; /* # of inline_xattr inodes */ atomic_t inline_inode; /* # of inline_data inodes */ atomic_t inline_dir; /* # of inline_dentry inodes */ atomic_t compr_inode; /* # of compressed inodes */ atomic64_t compr_blocks; /* # of compressed blocks */ atomic_t swapfile_inode; /* # of swapfile inodes */ atomic_t atomic_files; /* # of opened atomic file */ atomic_t max_aw_cnt; /* max # of atomic writes */ unsigned int io_skip_bggc; /* skip background gc for in-flight IO */ unsigned int other_skip_bggc; /* skip background gc for other reasons */ unsigned int ndirty_inode[NR_INODE_TYPE]; /* # of dirty inodes */ atomic_t cp_call_count[MAX_CALL_TYPE]; /* # of cp call */ #endif spinlock_t stat_lock; /* lock for stat operations */ /* to attach REQ_META|REQ_FUA flags */ unsigned int data_io_flag; unsigned int node_io_flag; /* For sysfs support */ struct kobject s_kobj; /* /sys/fs/f2fs/ */ struct completion s_kobj_unregister; struct kobject s_stat_kobj; /* /sys/fs/f2fs//stat */ struct completion s_stat_kobj_unregister; struct kobject s_feature_list_kobj; /* /sys/fs/f2fs//feature_list */ struct completion s_feature_list_kobj_unregister; /* For shrinker support */ struct list_head s_list; struct mutex umount_mutex; unsigned int shrinker_run_no; /* For multi devices */ int s_ndevs; /* number of devices */ struct f2fs_dev_info *devs; /* for device list */ unsigned int dirty_device; /* for checkpoint data flush */ spinlock_t dev_lock; /* protect dirty_device */ bool aligned_blksize; /* all devices has the same logical blksize */ /* For write statistics */ u64 sectors_written_start; u64 kbytes_written; /* Reference to checksum algorithm driver via cryptoapi */ struct crypto_shash *s_chksum_driver; /* Precomputed FS UUID checksum for seeding other checksums */ __u32 s_chksum_seed; struct workqueue_struct *post_read_wq; /* post read workqueue */ /* * If we are in irq context, let's update error information into * on-disk superblock in the work. */ struct work_struct s_error_work; unsigned char errors[MAX_F2FS_ERRORS]; /* error flags */ unsigned char stop_reason[MAX_STOP_REASON]; /* stop reason */ spinlock_t error_lock; /* protect errors/stop_reason array */ bool error_dirty; /* errors of sb is dirty */ struct kmem_cache *inline_xattr_slab; /* inline xattr entry */ unsigned int inline_xattr_slab_size; /* default inline xattr slab size */ /* For reclaimed segs statistics per each GC mode */ unsigned int gc_segment_mode; /* GC state for reclaimed segments */ unsigned int gc_reclaimed_segs[MAX_GC_MODE]; /* Reclaimed segs for each mode */ unsigned long seq_file_ra_mul; /* multiplier for ra_pages of seq. files in fadvise */ int max_fragment_chunk; /* max chunk size for block fragmentation mode */ int max_fragment_hole; /* max hole size for block fragmentation mode */ /* For atomic write statistics */ atomic64_t current_atomic_write; s64 peak_atomic_write; u64 committed_atomic_block; u64 revoked_atomic_block; #ifdef CONFIG_F2FS_FS_COMPRESSION struct kmem_cache *page_array_slab; /* page array entry */ unsigned int page_array_slab_size; /* default page array slab size */ /* For runtime compression statistics */ u64 compr_written_block; u64 compr_saved_block; u32 compr_new_inode; /* For compressed block cache */ struct inode *compress_inode; /* cache compressed blocks */ unsigned int compress_percent; /* cache page percentage */ unsigned int compress_watermark; /* cache page watermark */ atomic_t compress_page_hit; /* cache hit count */ #endif #ifdef CONFIG_F2FS_IOSTAT /* For app/fs IO statistics */ spinlock_t iostat_lock; unsigned long long iostat_count[NR_IO_TYPE]; unsigned long long iostat_bytes[NR_IO_TYPE]; unsigned long long prev_iostat_bytes[NR_IO_TYPE]; bool iostat_enable; unsigned long iostat_next_period; unsigned int iostat_period_ms; /* For io latency related statistics info in one iostat period */ spinlock_t iostat_lat_lock; struct iostat_lat_info *iostat_io_lat; #endif }; /* Definitions to access f2fs_sb_info */ #define SEGS_TO_BLKS(sbi, segs) \ ((segs) << (sbi)->log_blocks_per_seg) #define BLKS_TO_SEGS(sbi, blks) \ ((blks) >> (sbi)->log_blocks_per_seg) #define BLKS_PER_SEG(sbi) ((sbi)->blocks_per_seg) #define BLKS_PER_SEC(sbi) (SEGS_TO_BLKS(sbi, (sbi)->segs_per_sec)) #define SEGS_PER_SEC(sbi) ((sbi)->segs_per_sec) __printf(3, 4) void f2fs_printk(struct f2fs_sb_info *sbi, bool limit_rate, const char *fmt, ...); #define f2fs_err(sbi, fmt, ...) \ f2fs_printk(sbi, false, KERN_ERR fmt, ##__VA_ARGS__) #define f2fs_warn(sbi, fmt, ...) \ f2fs_printk(sbi, false, KERN_WARNING fmt, ##__VA_ARGS__) #define f2fs_notice(sbi, fmt, ...) \ f2fs_printk(sbi, false, KERN_NOTICE fmt, ##__VA_ARGS__) #define f2fs_info(sbi, fmt, ...) \ f2fs_printk(sbi, false, KERN_INFO fmt, ##__VA_ARGS__) #define f2fs_debug(sbi, fmt, ...) \ f2fs_printk(sbi, false, KERN_DEBUG fmt, ##__VA_ARGS__) #define f2fs_err_ratelimited(sbi, fmt, ...) \ f2fs_printk(sbi, true, KERN_ERR fmt, ##__VA_ARGS__) #define f2fs_warn_ratelimited(sbi, fmt, ...) \ f2fs_printk(sbi, true, KERN_WARNING fmt, ##__VA_ARGS__) #define f2fs_info_ratelimited(sbi, fmt, ...) \ f2fs_printk(sbi, true, KERN_INFO fmt, ##__VA_ARGS__) #ifdef CONFIG_F2FS_FAULT_INJECTION #define time_to_inject(sbi, type) __time_to_inject(sbi, type, __func__, \ __builtin_return_address(0)) static inline bool __time_to_inject(struct f2fs_sb_info *sbi, int type, const char *func, const char *parent_func) { struct f2fs_fault_info *ffi = &F2FS_OPTION(sbi).fault_info; if (!ffi->inject_rate) return false; if (!IS_FAULT_SET(ffi, type)) return false; atomic_inc(&ffi->inject_ops); if (atomic_read(&ffi->inject_ops) >= ffi->inject_rate) { atomic_set(&ffi->inject_ops, 0); f2fs_info_ratelimited(sbi, "inject %s in %s of %pS", f2fs_fault_name[type], func, parent_func); return true; } return false; } #else static inline bool time_to_inject(struct f2fs_sb_info *sbi, int type) { return false; } #endif /* * Test if the mounted volume is a multi-device volume. * - For a single regular disk volume, sbi->s_ndevs is 0. * - For a single zoned disk volume, sbi->s_ndevs is 1. * - For a multi-device volume, sbi->s_ndevs is always 2 or more. */ static inline bool f2fs_is_multi_device(struct f2fs_sb_info *sbi) { return sbi->s_ndevs > 1; } static inline void f2fs_update_time(struct f2fs_sb_info *sbi, int type) { unsigned long now = jiffies; sbi->last_time[type] = now; /* DISCARD_TIME and GC_TIME are based on REQ_TIME */ if (type == REQ_TIME) { sbi->last_time[DISCARD_TIME] = now; sbi->last_time[GC_TIME] = now; } } static inline bool f2fs_time_over(struct f2fs_sb_info *sbi, int type) { unsigned long interval = sbi->interval_time[type] * HZ; return time_after(jiffies, sbi->last_time[type] + interval); } static inline unsigned int f2fs_time_to_wait(struct f2fs_sb_info *sbi, int type) { unsigned long interval = sbi->interval_time[type] * HZ; unsigned int wait_ms = 0; long delta; delta = (sbi->last_time[type] + interval) - jiffies; if (delta > 0) wait_ms = jiffies_to_msecs(delta); return wait_ms; } /* * Inline functions */ static inline u32 __f2fs_crc32(struct f2fs_sb_info *sbi, u32 crc, const void *address, unsigned int length) { struct { struct shash_desc shash; char ctx[4]; } desc; int err; BUG_ON(crypto_shash_descsize(sbi->s_chksum_driver) != sizeof(desc.ctx)); desc.shash.tfm = sbi->s_chksum_driver; *(u32 *)desc.ctx = crc; err = crypto_shash_update(&desc.shash, address, length); BUG_ON(err); return *(u32 *)desc.ctx; } static inline u32 f2fs_crc32(struct f2fs_sb_info *sbi, const void *address, unsigned int length) { return __f2fs_crc32(sbi, F2FS_SUPER_MAGIC, address, length); } static inline bool f2fs_crc_valid(struct f2fs_sb_info *sbi, __u32 blk_crc, void *buf, size_t buf_size) { return f2fs_crc32(sbi, buf, buf_size) == blk_crc; } static inline u32 f2fs_chksum(struct f2fs_sb_info *sbi, u32 crc, const void *address, unsigned int length) { return __f2fs_crc32(sbi, crc, address, length); } static inline struct f2fs_inode_info *F2FS_I(struct inode *inode) { return container_of(inode, struct f2fs_inode_info, vfs_inode); } static inline struct f2fs_sb_info *F2FS_SB(struct super_block *sb) { return sb->s_fs_info; } static inline struct f2fs_sb_info *F2FS_I_SB(struct inode *inode) { return F2FS_SB(inode->i_sb); } static inline struct f2fs_sb_info *F2FS_M_SB(struct address_space *mapping) { return F2FS_I_SB(mapping->host); } static inline struct f2fs_sb_info *F2FS_P_SB(struct page *page) { return F2FS_M_SB(page_file_mapping(page)); } static inline struct f2fs_super_block *F2FS_RAW_SUPER(struct f2fs_sb_info *sbi) { return (struct f2fs_super_block *)(sbi->raw_super); } static inline struct f2fs_checkpoint *F2FS_CKPT(struct f2fs_sb_info *sbi) { return (struct f2fs_checkpoint *)(sbi->ckpt); } static inline struct f2fs_node *F2FS_NODE(struct page *page) { return (struct f2fs_node *)page_address(page); } static inline struct f2fs_inode *F2FS_INODE(struct page *page) { return &((struct f2fs_node *)page_address(page))->i; } static inline struct f2fs_nm_info *NM_I(struct f2fs_sb_info *sbi) { return (struct f2fs_nm_info *)(sbi->nm_info); } static inline struct f2fs_sm_info *SM_I(struct f2fs_sb_info *sbi) { return (struct f2fs_sm_info *)(sbi->sm_info); } static inline struct sit_info *SIT_I(struct f2fs_sb_info *sbi) { return (struct sit_info *)(SM_I(sbi)->sit_info); } static inline struct free_segmap_info *FREE_I(struct f2fs_sb_info *sbi) { return (struct free_segmap_info *)(SM_I(sbi)->free_info); } static inline struct dirty_seglist_info *DIRTY_I(struct f2fs_sb_info *sbi) { return (struct dirty_seglist_info *)(SM_I(sbi)->dirty_info); } static inline struct address_space *META_MAPPING(struct f2fs_sb_info *sbi) { return sbi->meta_inode->i_mapping; } static inline struct address_space *NODE_MAPPING(struct f2fs_sb_info *sbi) { return sbi->node_inode->i_mapping; } static inline bool is_sbi_flag_set(struct f2fs_sb_info *sbi, unsigned int type) { return test_bit(type, &sbi->s_flag); } static inline void set_sbi_flag(struct f2fs_sb_info *sbi, unsigned int type) { set_bit(type, &sbi->s_flag); } static inline void clear_sbi_flag(struct f2fs_sb_info *sbi, unsigned int type) { clear_bit(type, &sbi->s_flag); } static inline unsigned long long cur_cp_version(struct f2fs_checkpoint *cp) { return le64_to_cpu(cp->checkpoint_ver); } static inline unsigned long f2fs_qf_ino(struct super_block *sb, int type) { if (type < F2FS_MAX_QUOTAS) return le32_to_cpu(F2FS_SB(sb)->raw_super->qf_ino[type]); return 0; } static inline __u64 cur_cp_crc(struct f2fs_checkpoint *cp) { size_t crc_offset = le32_to_cpu(cp->checksum_offset); return le32_to_cpu(*((__le32 *)((unsigned char *)cp + crc_offset))); } static inline bool __is_set_ckpt_flags(struct f2fs_checkpoint *cp, unsigned int f) { unsigned int ckpt_flags = le32_to_cpu(cp->ckpt_flags); return ckpt_flags & f; } static inline bool is_set_ckpt_flags(struct f2fs_sb_info *sbi, unsigned int f) { return __is_set_ckpt_flags(F2FS_CKPT(sbi), f); } static inline void __set_ckpt_flags(struct f2fs_checkpoint *cp, unsigned int f) { unsigned int ckpt_flags; ckpt_flags = le32_to_cpu(cp->ckpt_flags); ckpt_flags |= f; cp->ckpt_flags = cpu_to_le32(ckpt_flags); } static inline void set_ckpt_flags(struct f2fs_sb_info *sbi, unsigned int f) { unsigned long flags; spin_lock_irqsave(&sbi->cp_lock, flags); __set_ckpt_flags(F2FS_CKPT(sbi), f); spin_unlock_irqrestore(&sbi->cp_lock, flags); } static inline void __clear_ckpt_flags(struct f2fs_checkpoint *cp, unsigned int f) { unsigned int ckpt_flags; ckpt_flags = le32_to_cpu(cp->ckpt_flags); ckpt_flags &= (~f); cp->ckpt_flags = cpu_to_le32(ckpt_flags); } static inline void clear_ckpt_flags(struct f2fs_sb_info *sbi, unsigned int f) { unsigned long flags; spin_lock_irqsave(&sbi->cp_lock, flags); __clear_ckpt_flags(F2FS_CKPT(sbi), f); spin_unlock_irqrestore(&sbi->cp_lock, flags); } #define init_f2fs_rwsem(sem) \ do { \ static struct lock_class_key __key; \ \ __init_f2fs_rwsem((sem), #sem, &__key); \ } while (0) static inline void __init_f2fs_rwsem(struct f2fs_rwsem *sem, const char *sem_name, struct lock_class_key *key) { __init_rwsem(&sem->internal_rwsem, sem_name, key); #ifdef CONFIG_F2FS_UNFAIR_RWSEM init_waitqueue_head(&sem->read_waiters); #endif } static inline int f2fs_rwsem_is_locked(struct f2fs_rwsem *sem) { return rwsem_is_locked(&sem->internal_rwsem); } static inline int f2fs_rwsem_is_contended(struct f2fs_rwsem *sem) { return rwsem_is_contended(&sem->internal_rwsem); } static inline void f2fs_down_read(struct f2fs_rwsem *sem) { #ifdef CONFIG_F2FS_UNFAIR_RWSEM wait_event(sem->read_waiters, down_read_trylock(&sem->internal_rwsem)); #else down_read(&sem->internal_rwsem); #endif } static inline int f2fs_down_read_trylock(struct f2fs_rwsem *sem) { return down_read_trylock(&sem->internal_rwsem); } static inline void f2fs_up_read(struct f2fs_rwsem *sem) { up_read(&sem->internal_rwsem); } static inline void f2fs_down_write(struct f2fs_rwsem *sem) { down_write(&sem->internal_rwsem); } #ifdef CONFIG_DEBUG_LOCK_ALLOC static inline void f2fs_down_read_nested(struct f2fs_rwsem *sem, int subclass) { down_read_nested(&sem->internal_rwsem, subclass); } static inline void f2fs_down_write_nested(struct f2fs_rwsem *sem, int subclass) { down_write_nested(&sem->internal_rwsem, subclass); } #else #define f2fs_down_read_nested(sem, subclass) f2fs_down_read(sem) #define f2fs_down_write_nested(sem, subclass) f2fs_down_write(sem) #endif static inline int f2fs_down_write_trylock(struct f2fs_rwsem *sem) { return down_write_trylock(&sem->internal_rwsem); } static inline void f2fs_up_write(struct f2fs_rwsem *sem) { up_write(&sem->internal_rwsem); #ifdef CONFIG_F2FS_UNFAIR_RWSEM wake_up_all(&sem->read_waiters); #endif } static inline void f2fs_lock_op(struct f2fs_sb_info *sbi) { f2fs_down_read(&sbi->cp_rwsem); } static inline int f2fs_trylock_op(struct f2fs_sb_info *sbi) { if (time_to_inject(sbi, FAULT_LOCK_OP)) return 0; return f2fs_down_read_trylock(&sbi->cp_rwsem); } static inline void f2fs_unlock_op(struct f2fs_sb_info *sbi) { f2fs_up_read(&sbi->cp_rwsem); } static inline void f2fs_lock_all(struct f2fs_sb_info *sbi) { f2fs_down_write(&sbi->cp_rwsem); } static inline void f2fs_unlock_all(struct f2fs_sb_info *sbi) { f2fs_up_write(&sbi->cp_rwsem); } static inline int __get_cp_reason(struct f2fs_sb_info *sbi) { int reason = CP_SYNC; if (test_opt(sbi, FASTBOOT)) reason = CP_FASTBOOT; if (is_sbi_flag_set(sbi, SBI_IS_CLOSE)) reason = CP_UMOUNT; return reason; } static inline bool __remain_node_summaries(int reason) { return (reason & (CP_UMOUNT | CP_FASTBOOT)); } static inline bool __exist_node_summaries(struct f2fs_sb_info *sbi) { return (is_set_ckpt_flags(sbi, CP_UMOUNT_FLAG) || is_set_ckpt_flags(sbi, CP_FASTBOOT_FLAG)); } /* * Check whether the inode has blocks or not */ static inline int F2FS_HAS_BLOCKS(struct inode *inode) { block_t xattr_block = F2FS_I(inode)->i_xattr_nid ? 1 : 0; return (inode->i_blocks >> F2FS_LOG_SECTORS_PER_BLOCK) > xattr_block; } static inline bool f2fs_has_xattr_block(unsigned int ofs) { return ofs == XATTR_NODE_OFFSET; } static inline bool __allow_reserved_blocks(struct f2fs_sb_info *sbi, struct inode *inode, bool cap) { if (!inode) return true; if (!test_opt(sbi, RESERVE_ROOT)) return false; if (IS_NOQUOTA(inode)) return true; if (uid_eq(F2FS_OPTION(sbi).s_resuid, current_fsuid())) return true; if (!gid_eq(F2FS_OPTION(sbi).s_resgid, GLOBAL_ROOT_GID) && in_group_p(F2FS_OPTION(sbi).s_resgid)) return true; if (cap && capable(CAP_SYS_RESOURCE)) return true; return false; } static inline unsigned int get_available_block_count(struct f2fs_sb_info *sbi, struct inode *inode, bool cap) { block_t avail_user_block_count; avail_user_block_count = sbi->user_block_count - sbi->current_reserved_blocks; if (!__allow_reserved_blocks(sbi, inode, cap)) avail_user_block_count -= F2FS_OPTION(sbi).root_reserved_blocks; if (unlikely(is_sbi_flag_set(sbi, SBI_CP_DISABLED))) { if (avail_user_block_count > sbi->unusable_block_count) avail_user_block_count -= sbi->unusable_block_count; else avail_user_block_count = 0; } return avail_user_block_count; } static inline void f2fs_i_blocks_write(struct inode *, block_t, bool, bool); static inline int inc_valid_block_count(struct f2fs_sb_info *sbi, struct inode *inode, blkcnt_t *count, bool partial) { long long diff = 0, release = 0; block_t avail_user_block_count; int ret; ret = dquot_reserve_block(inode, *count); if (ret) return ret; if (time_to_inject(sbi, FAULT_BLOCK)) { release = *count; goto release_quota; } /* * let's increase this in prior to actual block count change in order * for f2fs_sync_file to avoid data races when deciding checkpoint. */ percpu_counter_add(&sbi->alloc_valid_block_count, (*count)); spin_lock(&sbi->stat_lock); avail_user_block_count = get_available_block_count(sbi, inode, true); diff = (long long)sbi->total_valid_block_count + *count - avail_user_block_count; if (unlikely(diff > 0)) { if (!partial) { spin_unlock(&sbi->stat_lock); release = *count; goto enospc; } if (diff > *count) diff = *count; *count -= diff; release = diff; if (!*count) { spin_unlock(&sbi->stat_lock); goto enospc; } } sbi->total_valid_block_count += (block_t)(*count); spin_unlock(&sbi->stat_lock); if (unlikely(release)) { percpu_counter_sub(&sbi->alloc_valid_block_count, release); dquot_release_reservation_block(inode, release); } f2fs_i_blocks_write(inode, *count, true, true); return 0; enospc: percpu_counter_sub(&sbi->alloc_valid_block_count, release); release_quota: dquot_release_reservation_block(inode, release); return -ENOSPC; } #define PAGE_PRIVATE_GET_FUNC(name, flagname) \ static inline bool page_private_##name(struct page *page) \ { \ return PagePrivate(page) && \ test_bit(PAGE_PRIVATE_NOT_POINTER, &page_private(page)) && \ test_bit(PAGE_PRIVATE_##flagname, &page_private(page)); \ } #define PAGE_PRIVATE_SET_FUNC(name, flagname) \ static inline void set_page_private_##name(struct page *page) \ { \ if (!PagePrivate(page)) \ attach_page_private(page, (void *)0); \ set_bit(PAGE_PRIVATE_NOT_POINTER, &page_private(page)); \ set_bit(PAGE_PRIVATE_##flagname, &page_private(page)); \ } #define PAGE_PRIVATE_CLEAR_FUNC(name, flagname) \ static inline void clear_page_private_##name(struct page *page) \ { \ clear_bit(PAGE_PRIVATE_##flagname, &page_private(page)); \ if (page_private(page) == BIT(PAGE_PRIVATE_NOT_POINTER)) \ detach_page_private(page); \ } PAGE_PRIVATE_GET_FUNC(nonpointer, NOT_POINTER); PAGE_PRIVATE_GET_FUNC(inline, INLINE_INODE); PAGE_PRIVATE_GET_FUNC(gcing, ONGOING_MIGRATION); PAGE_PRIVATE_SET_FUNC(reference, REF_RESOURCE); PAGE_PRIVATE_SET_FUNC(inline, INLINE_INODE); PAGE_PRIVATE_SET_FUNC(gcing, ONGOING_MIGRATION); PAGE_PRIVATE_CLEAR_FUNC(reference, REF_RESOURCE); PAGE_PRIVATE_CLEAR_FUNC(inline, INLINE_INODE); PAGE_PRIVATE_CLEAR_FUNC(gcing, ONGOING_MIGRATION); static inline unsigned long get_page_private_data(struct page *page) { unsigned long data = page_private(page); if (!test_bit(PAGE_PRIVATE_NOT_POINTER, &data)) return 0; return data >> PAGE_PRIVATE_MAX; } static inline void set_page_private_data(struct page *page, unsigned long data) { if (!PagePrivate(page)) attach_page_private(page, (void *)0); set_bit(PAGE_PRIVATE_NOT_POINTER, &page_private(page)); page_private(page) |= data << PAGE_PRIVATE_MAX; } static inline void clear_page_private_data(struct page *page) { page_private(page) &= GENMASK(PAGE_PRIVATE_MAX - 1, 0); if (page_private(page) == BIT(PAGE_PRIVATE_NOT_POINTER)) detach_page_private(page); } static inline void clear_page_private_all(struct page *page) { clear_page_private_data(page); clear_page_private_reference(page); clear_page_private_gcing(page); clear_page_private_inline(page); f2fs_bug_on(F2FS_P_SB(page), page_private(page)); } static inline void dec_valid_block_count(struct f2fs_sb_info *sbi, struct inode *inode, block_t count) { blkcnt_t sectors = count << F2FS_LOG_SECTORS_PER_BLOCK; spin_lock(&sbi->stat_lock); f2fs_bug_on(sbi, sbi->total_valid_block_count < (block_t) count); sbi->total_valid_block_count -= (block_t)count; if (sbi->reserved_blocks && sbi->current_reserved_blocks < sbi->reserved_blocks) sbi->current_reserved_blocks = min(sbi->reserved_blocks, sbi->current_reserved_blocks + count); spin_unlock(&sbi->stat_lock); if (unlikely(inode->i_blocks < sectors)) { f2fs_warn(sbi, "Inconsistent i_blocks, ino:%lu, iblocks:%llu, sectors:%llu", inode->i_ino, (unsigned long long)inode->i_blocks, (unsigned long long)sectors); set_sbi_flag(sbi, SBI_NEED_FSCK); return; } f2fs_i_blocks_write(inode, count, false, true); } static inline void inc_page_count(struct f2fs_sb_info *sbi, int count_type) { atomic_inc(&sbi->nr_pages[count_type]); if (count_type == F2FS_DIRTY_DENTS || count_type == F2FS_DIRTY_NODES || count_type == F2FS_DIRTY_META || count_type == F2FS_DIRTY_QDATA || count_type == F2FS_DIRTY_IMETA) set_sbi_flag(sbi, SBI_IS_DIRTY); } static inline void inode_inc_dirty_pages(struct inode *inode) { atomic_inc(&F2FS_I(inode)->dirty_pages); inc_page_count(F2FS_I_SB(inode), S_ISDIR(inode->i_mode) ? F2FS_DIRTY_DENTS : F2FS_DIRTY_DATA); if (IS_NOQUOTA(inode)) inc_page_count(F2FS_I_SB(inode), F2FS_DIRTY_QDATA); } static inline void dec_page_count(struct f2fs_sb_info *sbi, int count_type) { atomic_dec(&sbi->nr_pages[count_type]); } static inline void inode_dec_dirty_pages(struct inode *inode) { if (!S_ISDIR(inode->i_mode) && !S_ISREG(inode->i_mode) && !S_ISLNK(inode->i_mode)) return; atomic_dec(&F2FS_I(inode)->dirty_pages); dec_page_count(F2FS_I_SB(inode), S_ISDIR(inode->i_mode) ? F2FS_DIRTY_DENTS : F2FS_DIRTY_DATA); if (IS_NOQUOTA(inode)) dec_page_count(F2FS_I_SB(inode), F2FS_DIRTY_QDATA); } static inline void inc_atomic_write_cnt(struct inode *inode) { struct f2fs_sb_info *sbi = F2FS_I_SB(inode); struct f2fs_inode_info *fi = F2FS_I(inode); u64 current_write; fi->atomic_write_cnt++; atomic64_inc(&sbi->current_atomic_write); current_write = atomic64_read(&sbi->current_atomic_write); if (current_write > sbi->peak_atomic_write) sbi->peak_atomic_write = current_write; } static inline void release_atomic_write_cnt(struct inode *inode) { struct f2fs_sb_info *sbi = F2FS_I_SB(inode); struct f2fs_inode_info *fi = F2FS_I(inode); atomic64_sub(fi->atomic_write_cnt, &sbi->current_atomic_write); fi->atomic_write_cnt = 0; } static inline s64 get_pages(struct f2fs_sb_info *sbi, int count_type) { return atomic_read(&sbi->nr_pages[count_type]); } static inline int get_dirty_pages(struct inode *inode) { return atomic_read(&F2FS_I(inode)->dirty_pages); } static inline int get_blocktype_secs(struct f2fs_sb_info *sbi, int block_type) { return div_u64(get_pages(sbi, block_type) + BLKS_PER_SEC(sbi) - 1, BLKS_PER_SEC(sbi)); } static inline block_t valid_user_blocks(struct f2fs_sb_info *sbi) { return sbi->total_valid_block_count; } static inline block_t discard_blocks(struct f2fs_sb_info *sbi) { return sbi->discard_blks; } static inline unsigned long __bitmap_size(struct f2fs_sb_info *sbi, int flag) { struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi); /* return NAT or SIT bitmap */ if (flag == NAT_BITMAP) return le32_to_cpu(ckpt->nat_ver_bitmap_bytesize); else if (flag == SIT_BITMAP) return le32_to_cpu(ckpt->sit_ver_bitmap_bytesize); return 0; } static inline block_t __cp_payload(struct f2fs_sb_info *sbi) { return le32_to_cpu(F2FS_RAW_SUPER(sbi)->cp_payload); } static inline void *__bitmap_ptr(struct f2fs_sb_info *sbi, int flag) { struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi); void *tmp_ptr = &ckpt->sit_nat_version_bitmap; int offset; if (is_set_ckpt_flags(sbi, CP_LARGE_NAT_BITMAP_FLAG)) { offset = (flag == SIT_BITMAP) ? le32_to_cpu(ckpt->nat_ver_bitmap_bytesize) : 0; /* * if large_nat_bitmap feature is enabled, leave checksum * protection for all nat/sit bitmaps. */ return tmp_ptr + offset + sizeof(__le32); } if (__cp_payload(sbi) > 0) { if (flag == NAT_BITMAP) return tmp_ptr; else return (unsigned char *)ckpt + F2FS_BLKSIZE; } else { offset = (flag == NAT_BITMAP) ? le32_to_cpu(ckpt->sit_ver_bitmap_bytesize) : 0; return tmp_ptr + offset; } } static inline block_t __start_cp_addr(struct f2fs_sb_info *sbi) { block_t start_addr = le32_to_cpu(F2FS_RAW_SUPER(sbi)->cp_blkaddr); if (sbi->cur_cp_pack == 2) start_addr += BLKS_PER_SEG(sbi); return start_addr; } static inline block_t __start_cp_next_addr(struct f2fs_sb_info *sbi) { block_t start_addr = le32_to_cpu(F2FS_RAW_SUPER(sbi)->cp_blkaddr); if (sbi->cur_cp_pack == 1) start_addr += BLKS_PER_SEG(sbi); return start_addr; } static inline void __set_cp_next_pack(struct f2fs_sb_info *sbi) { sbi->cur_cp_pack = (sbi->cur_cp_pack == 1) ? 2 : 1; } static inline block_t __start_sum_addr(struct f2fs_sb_info *sbi) { return le32_to_cpu(F2FS_CKPT(sbi)->cp_pack_start_sum); } extern void f2fs_mark_inode_dirty_sync(struct inode *inode, bool sync); static inline int inc_valid_node_count(struct f2fs_sb_info *sbi, struct inode *inode, bool is_inode) { block_t valid_block_count; unsigned int valid_node_count; unsigned int avail_user_block_count; int err; if (is_inode) { if (inode) { err = dquot_alloc_inode(inode); if (err) return err; } } else { err = dquot_reserve_block(inode, 1); if (err) return err; } if (time_to_inject(sbi, FAULT_BLOCK)) goto enospc; spin_lock(&sbi->stat_lock); valid_block_count = sbi->total_valid_block_count + 1; avail_user_block_count = get_available_block_count(sbi, inode, false); if (unlikely(valid_block_count > avail_user_block_count)) { spin_unlock(&sbi->stat_lock); goto enospc; } valid_node_count = sbi->total_valid_node_count + 1; if (unlikely(valid_node_count > sbi->total_node_count)) { spin_unlock(&sbi->stat_lock); goto enospc; } sbi->total_valid_node_count++; sbi->total_valid_block_count++; spin_unlock(&sbi->stat_lock); if (inode) { if (is_inode) f2fs_mark_inode_dirty_sync(inode, true); else f2fs_i_blocks_write(inode, 1, true, true); } percpu_counter_inc(&sbi->alloc_valid_block_count); return 0; enospc: if (is_inode) { if (inode) dquot_free_inode(inode); } else { dquot_release_reservation_block(inode, 1); } return -ENOSPC; } static inline void dec_valid_node_count(struct f2fs_sb_info *sbi, struct inode *inode, bool is_inode) { spin_lock(&sbi->stat_lock); if (unlikely(!sbi->total_valid_block_count || !sbi->total_valid_node_count)) { f2fs_warn(sbi, "dec_valid_node_count: inconsistent block counts, total_valid_block:%u, total_valid_node:%u", sbi->total_valid_block_count, sbi->total_valid_node_count); set_sbi_flag(sbi, SBI_NEED_FSCK); } else { sbi->total_valid_block_count--; sbi->total_valid_node_count--; } if (sbi->reserved_blocks && sbi->current_reserved_blocks < sbi->reserved_blocks) sbi->current_reserved_blocks++; spin_unlock(&sbi->stat_lock); if (is_inode) { dquot_free_inode(inode); } else { if (unlikely(inode->i_blocks == 0)) { f2fs_warn(sbi, "dec_valid_node_count: inconsistent i_blocks, ino:%lu, iblocks:%llu", inode->i_ino, (unsigned long long)inode->i_blocks); set_sbi_flag(sbi, SBI_NEED_FSCK); return; } f2fs_i_blocks_write(inode, 1, false, true); } } static inline unsigned int valid_node_count(struct f2fs_sb_info *sbi) { return sbi->total_valid_node_count; } static inline void inc_valid_inode_count(struct f2fs_sb_info *sbi) { percpu_counter_inc(&sbi->total_valid_inode_count); } static inline void dec_valid_inode_count(struct f2fs_sb_info *sbi) { percpu_counter_dec(&sbi->total_valid_inode_count); } static inline s64 valid_inode_count(struct f2fs_sb_info *sbi) { return percpu_counter_sum_positive(&sbi->total_valid_inode_count); } static inline struct page *f2fs_grab_cache_page(struct address_space *mapping, pgoff_t index, bool for_write) { struct page *page; unsigned int flags; if (IS_ENABLED(CONFIG_F2FS_FAULT_INJECTION)) { if (!for_write) page = find_get_page_flags(mapping, index, FGP_LOCK | FGP_ACCESSED); else page = find_lock_page(mapping, index); if (page) return page; if (time_to_inject(F2FS_M_SB(mapping), FAULT_PAGE_ALLOC)) return NULL; } if (!for_write) return grab_cache_page(mapping, index); flags = memalloc_nofs_save(); page = grab_cache_page_write_begin(mapping, index); memalloc_nofs_restore(flags); return page; } static inline struct page *f2fs_pagecache_get_page( struct address_space *mapping, pgoff_t index, fgf_t fgp_flags, gfp_t gfp_mask) { if (time_to_inject(F2FS_M_SB(mapping), FAULT_PAGE_GET)) return NULL; return pagecache_get_page(mapping, index, fgp_flags, gfp_mask); } static inline void f2fs_put_page(struct page *page, int unlock) { if (!page) return; if (unlock) { f2fs_bug_on(F2FS_P_SB(page), !PageLocked(page)); unlock_page(page); } put_page(page); } static inline void f2fs_put_dnode(struct dnode_of_data *dn) { if (dn->node_page) f2fs_put_page(dn->node_page, 1); if (dn->inode_page && dn->node_page != dn->inode_page) f2fs_put_page(dn->inode_page, 0); dn->node_page = NULL; dn->inode_page = NULL; } static inline struct kmem_cache *f2fs_kmem_cache_create(const char *name, size_t size) { return kmem_cache_create(name, size, 0, SLAB_RECLAIM_ACCOUNT, NULL); } static inline void *f2fs_kmem_cache_alloc_nofail(struct kmem_cache *cachep, gfp_t flags) { void *entry; entry = kmem_cache_alloc(cachep, flags); if (!entry) entry = kmem_cache_alloc(cachep, flags | __GFP_NOFAIL); return entry; } static inline void *f2fs_kmem_cache_alloc(struct kmem_cache *cachep, gfp_t flags, bool nofail, struct f2fs_sb_info *sbi) { if (nofail) return f2fs_kmem_cache_alloc_nofail(cachep, flags); if (time_to_inject(sbi, FAULT_SLAB_ALLOC)) return NULL; return kmem_cache_alloc(cachep, flags); } static inline bool is_inflight_io(struct f2fs_sb_info *sbi, int type) { if (get_pages(sbi, F2FS_RD_DATA) || get_pages(sbi, F2FS_RD_NODE) || get_pages(sbi, F2FS_RD_META) || get_pages(sbi, F2FS_WB_DATA) || get_pages(sbi, F2FS_WB_CP_DATA) || get_pages(sbi, F2FS_DIO_READ) || get_pages(sbi, F2FS_DIO_WRITE)) return true; if (type != DISCARD_TIME && SM_I(sbi) && SM_I(sbi)->dcc_info && atomic_read(&SM_I(sbi)->dcc_info->queued_discard)) return true; if (SM_I(sbi) && SM_I(sbi)->fcc_info && atomic_read(&SM_I(sbi)->fcc_info->queued_flush)) return true; return false; } static inline bool is_idle(struct f2fs_sb_info *sbi, int type) { if (sbi->gc_mode == GC_URGENT_HIGH) return true; if (is_inflight_io(sbi, type)) return false; if (sbi->gc_mode == GC_URGENT_MID) return true; if (sbi->gc_mode == GC_URGENT_LOW && (type == DISCARD_TIME || type == GC_TIME)) return true; return f2fs_time_over(sbi, type); } static inline void f2fs_radix_tree_insert(struct radix_tree_root *root, unsigned long index, void *item) { while (radix_tree_insert(root, index, item)) cond_resched(); } #define RAW_IS_INODE(p) ((p)->footer.nid == (p)->footer.ino) static inline bool IS_INODE(struct page *page) { struct f2fs_node *p = F2FS_NODE(page); return RAW_IS_INODE(p); } static inline int offset_in_addr(struct f2fs_inode *i) { return (i->i_inline & F2FS_EXTRA_ATTR) ? (le16_to_cpu(i->i_extra_isize) / sizeof(__le32)) : 0; } static inline __le32 *blkaddr_in_node(struct f2fs_node *node) { return RAW_IS_INODE(node) ? node->i.i_addr : node->dn.addr; } static inline int f2fs_has_extra_attr(struct inode *inode); static inline block_t data_blkaddr(struct inode *inode, struct page *node_page, unsigned int offset) { struct f2fs_node *raw_node; __le32 *addr_array; int base = 0; bool is_inode = IS_INODE(node_page); raw_node = F2FS_NODE(node_page); if (is_inode) { if (!inode) /* from GC path only */ base = offset_in_addr(&raw_node->i); else if (f2fs_has_extra_attr(inode)) base = get_extra_isize(inode); } addr_array = blkaddr_in_node(raw_node); return le32_to_cpu(addr_array[base + offset]); } static inline block_t f2fs_data_blkaddr(struct dnode_of_data *dn) { return data_blkaddr(dn->inode, dn->node_page, dn->ofs_in_node); } static inline int f2fs_test_bit(unsigned int nr, char *addr) { int mask; addr += (nr >> 3); mask = BIT(7 - (nr & 0x07)); return mask & *addr; } static inline void f2fs_set_bit(unsigned int nr, char *addr) { int mask; addr += (nr >> 3); mask = BIT(7 - (nr & 0x07)); *addr |= mask; } static inline void f2fs_clear_bit(unsigned int nr, char *addr) { int mask; addr += (nr >> 3); mask = BIT(7 - (nr & 0x07)); *addr &= ~mask; } static inline int f2fs_test_and_set_bit(unsigned int nr, char *addr) { int mask; int ret; addr += (nr >> 3); mask = BIT(7 - (nr & 0x07)); ret = mask & *addr; *addr |= mask; return ret; } static inline int f2fs_test_and_clear_bit(unsigned int nr, char *addr) { int mask; int ret; addr += (nr >> 3); mask = BIT(7 - (nr & 0x07)); ret = mask & *addr; *addr &= ~mask; return ret; } static inline void f2fs_change_bit(unsigned int nr, char *addr) { int mask; addr += (nr >> 3); mask = BIT(7 - (nr & 0x07)); *addr ^= mask; } /* * On-disk inode flags (f2fs_inode::i_flags) */ #define F2FS_COMPR_FL 0x00000004 /* Compress file */ #define F2FS_SYNC_FL 0x00000008 /* Synchronous updates */ #define F2FS_IMMUTABLE_FL 0x00000010 /* Immutable file */ #define F2FS_APPEND_FL 0x00000020 /* writes to file may only append */ #define F2FS_NODUMP_FL 0x00000040 /* do not dump file */ #define F2FS_NOATIME_FL 0x00000080 /* do not update atime */ #define F2FS_NOCOMP_FL 0x00000400 /* Don't compress */ #define F2FS_INDEX_FL 0x00001000 /* hash-indexed directory */ #define F2FS_DIRSYNC_FL 0x00010000 /* dirsync behaviour (directories only) */ #define F2FS_PROJINHERIT_FL 0x20000000 /* Create with parents projid */ #define F2FS_CASEFOLD_FL 0x40000000 /* Casefolded file */ #define F2FS_QUOTA_DEFAULT_FL (F2FS_NOATIME_FL | F2FS_IMMUTABLE_FL) /* Flags that should be inherited by new inodes from their parent. */ #define F2FS_FL_INHERITED (F2FS_SYNC_FL | F2FS_NODUMP_FL | F2FS_NOATIME_FL | \ F2FS_DIRSYNC_FL | F2FS_PROJINHERIT_FL | \ F2FS_CASEFOLD_FL) /* Flags that are appropriate for regular files (all but dir-specific ones). */ #define F2FS_REG_FLMASK (~(F2FS_DIRSYNC_FL | F2FS_PROJINHERIT_FL | \ F2FS_CASEFOLD_FL)) /* Flags that are appropriate for non-directories/regular files. */ #define F2FS_OTHER_FLMASK (F2FS_NODUMP_FL | F2FS_NOATIME_FL) static inline __u32 f2fs_mask_flags(umode_t mode, __u32 flags) { if (S_ISDIR(mode)) return flags; else if (S_ISREG(mode)) return flags & F2FS_REG_FLMASK; else return flags & F2FS_OTHER_FLMASK; } static inline void __mark_inode_dirty_flag(struct inode *inode, int flag, bool set) { switch (flag) { case FI_INLINE_XATTR: case FI_INLINE_DATA: case FI_INLINE_DENTRY: case FI_NEW_INODE: if (set) return; fallthrough; case FI_DATA_EXIST: case FI_INLINE_DOTS: case FI_PIN_FILE: case FI_COMPRESS_RELEASED: case FI_ATOMIC_COMMITTED: f2fs_mark_inode_dirty_sync(inode, true); } } static inline void set_inode_flag(struct inode *inode, int flag) { set_bit(flag, F2FS_I(inode)->flags); __mark_inode_dirty_flag(inode, flag, true); } static inline int is_inode_flag_set(struct inode *inode, int flag) { return test_bit(flag, F2FS_I(inode)->flags); } static inline void clear_inode_flag(struct inode *inode, int flag) { clear_bit(flag, F2FS_I(inode)->flags); __mark_inode_dirty_flag(inode, flag, false); } static inline bool f2fs_verity_in_progress(struct inode *inode) { return IS_ENABLED(CONFIG_FS_VERITY) && is_inode_flag_set(inode, FI_VERITY_IN_PROGRESS); } static inline void set_acl_inode(struct inode *inode, umode_t mode) { F2FS_I(inode)->i_acl_mode = mode; set_inode_flag(inode, FI_ACL_MODE); f2fs_mark_inode_dirty_sync(inode, false); } static inline void f2fs_i_links_write(struct inode *inode, bool inc) { if (inc) inc_nlink(inode); else drop_nlink(inode); f2fs_mark_inode_dirty_sync(inode, true); } static inline void f2fs_i_blocks_write(struct inode *inode, block_t diff, bool add, bool claim) { bool clean = !is_inode_flag_set(inode, FI_DIRTY_INODE); bool recover = is_inode_flag_set(inode, FI_AUTO_RECOVER); /* add = 1, claim = 1 should be dquot_reserve_block in pair */ if (add) { if (claim) dquot_claim_block(inode, diff); else dquot_alloc_block_nofail(inode, diff); } else { dquot_free_block(inode, diff); } f2fs_mark_inode_dirty_sync(inode, true); if (clean || recover) set_inode_flag(inode, FI_AUTO_RECOVER); } static inline bool f2fs_is_atomic_file(struct inode *inode); static inline void f2fs_i_size_write(struct inode *inode, loff_t i_size) { bool clean = !is_inode_flag_set(inode, FI_DIRTY_INODE); bool recover = is_inode_flag_set(inode, FI_AUTO_RECOVER); if (i_size_read(inode) == i_size) return; i_size_write(inode, i_size); if (f2fs_is_atomic_file(inode)) return; f2fs_mark_inode_dirty_sync(inode, true); if (clean || recover) set_inode_flag(inode, FI_AUTO_RECOVER); } static inline void f2fs_i_depth_write(struct inode *inode, unsigned int depth) { F2FS_I(inode)->i_current_depth = depth; f2fs_mark_inode_dirty_sync(inode, true); } static inline void f2fs_i_gc_failures_write(struct inode *inode, unsigned int count) { F2FS_I(inode)->i_gc_failures = count; f2fs_mark_inode_dirty_sync(inode, true); } static inline void f2fs_i_xnid_write(struct inode *inode, nid_t xnid) { F2FS_I(inode)->i_xattr_nid = xnid; f2fs_mark_inode_dirty_sync(inode, true); } static inline void f2fs_i_pino_write(struct inode *inode, nid_t pino) { F2FS_I(inode)->i_pino = pino; f2fs_mark_inode_dirty_sync(inode, true); } static inline void get_inline_info(struct inode *inode, struct f2fs_inode *ri) { struct f2fs_inode_info *fi = F2FS_I(inode); if (ri->i_inline & F2FS_INLINE_XATTR) set_bit(FI_INLINE_XATTR, fi->flags); if (ri->i_inline & F2FS_INLINE_DATA) set_bit(FI_INLINE_DATA, fi->flags); if (ri->i_inline & F2FS_INLINE_DENTRY) set_bit(FI_INLINE_DENTRY, fi->flags); if (ri->i_inline & F2FS_DATA_EXIST) set_bit(FI_DATA_EXIST, fi->flags); if (ri->i_inline & F2FS_INLINE_DOTS) set_bit(FI_INLINE_DOTS, fi->flags); if (ri->i_inline & F2FS_EXTRA_ATTR) set_bit(FI_EXTRA_ATTR, fi->flags); if (ri->i_inline & F2FS_PIN_FILE) set_bit(FI_PIN_FILE, fi->flags); if (ri->i_inline & F2FS_COMPRESS_RELEASED) set_bit(FI_COMPRESS_RELEASED, fi->flags); } static inline void set_raw_inline(struct inode *inode, struct f2fs_inode *ri) { ri->i_inline = 0; if (is_inode_flag_set(inode, FI_INLINE_XATTR)) ri->i_inline |= F2FS_INLINE_XATTR; if (is_inode_flag_set(inode, FI_INLINE_DATA)) ri->i_inline |= F2FS_INLINE_DATA; if (is_inode_flag_set(inode, FI_INLINE_DENTRY)) ri->i_inline |= F2FS_INLINE_DENTRY; if (is_inode_flag_set(inode, FI_DATA_EXIST)) ri->i_inline |= F2FS_DATA_EXIST; if (is_inode_flag_set(inode, FI_INLINE_DOTS)) ri->i_inline |= F2FS_INLINE_DOTS; if (is_inode_flag_set(inode, FI_EXTRA_ATTR)) ri->i_inline |= F2FS_EXTRA_ATTR; if (is_inode_flag_set(inode, FI_PIN_FILE)) ri->i_inline |= F2FS_PIN_FILE; if (is_inode_flag_set(inode, FI_COMPRESS_RELEASED)) ri->i_inline |= F2FS_COMPRESS_RELEASED; } static inline int f2fs_has_extra_attr(struct inode *inode) { return is_inode_flag_set(inode, FI_EXTRA_ATTR); } static inline int f2fs_has_inline_xattr(struct inode *inode) { return is_inode_flag_set(inode, FI_INLINE_XATTR); } static inline int f2fs_compressed_file(struct inode *inode) { return S_ISREG(inode->i_mode) && is_inode_flag_set(inode, FI_COMPRESSED_FILE); } static inline bool f2fs_need_compress_data(struct inode *inode) { int compress_mode = F2FS_OPTION(F2FS_I_SB(inode)).compress_mode; if (!f2fs_compressed_file(inode)) return false; if (compress_mode == COMPR_MODE_FS) return true; else if (compress_mode == COMPR_MODE_USER && is_inode_flag_set(inode, FI_ENABLE_COMPRESS)) return true; return false; } static inline unsigned int addrs_per_inode(struct inode *inode) { unsigned int addrs = CUR_ADDRS_PER_INODE(inode) - get_inline_xattr_addrs(inode); if (!f2fs_compressed_file(inode)) return addrs; return ALIGN_DOWN(addrs, F2FS_I(inode)->i_cluster_size); } static inline unsigned int addrs_per_block(struct inode *inode) { if (!f2fs_compressed_file(inode)) return DEF_ADDRS_PER_BLOCK; return ALIGN_DOWN(DEF_ADDRS_PER_BLOCK, F2FS_I(inode)->i_cluster_size); } static inline void *inline_xattr_addr(struct inode *inode, struct page *page) { struct f2fs_inode *ri = F2FS_INODE(page); return (void *)&(ri->i_addr[DEF_ADDRS_PER_INODE - get_inline_xattr_addrs(inode)]); } static inline int inline_xattr_size(struct inode *inode) { if (f2fs_has_inline_xattr(inode)) return get_inline_xattr_addrs(inode) * sizeof(__le32); return 0; } /* * Notice: check inline_data flag without inode page lock is unsafe. * It could change at any time by f2fs_convert_inline_page(). */ static inline int f2fs_has_inline_data(struct inode *inode) { return is_inode_flag_set(inode, FI_INLINE_DATA); } static inline int f2fs_exist_data(struct inode *inode) { return is_inode_flag_set(inode, FI_DATA_EXIST); } static inline int f2fs_has_inline_dots(struct inode *inode) { return is_inode_flag_set(inode, FI_INLINE_DOTS); } static inline int f2fs_is_mmap_file(struct inode *inode) { return is_inode_flag_set(inode, FI_MMAP_FILE); } static inline bool f2fs_is_pinned_file(struct inode *inode) { return is_inode_flag_set(inode, FI_PIN_FILE); } static inline bool f2fs_is_atomic_file(struct inode *inode) { return is_inode_flag_set(inode, FI_ATOMIC_FILE); } static inline bool f2fs_is_cow_file(struct inode *inode) { return is_inode_flag_set(inode, FI_COW_FILE); } static inline __le32 *get_dnode_addr(struct inode *inode, struct page *node_page); static inline void *inline_data_addr(struct inode *inode, struct page *page) { __le32 *addr = get_dnode_addr(inode, page); return (void *)(addr + DEF_INLINE_RESERVED_SIZE); } static inline int f2fs_has_inline_dentry(struct inode *inode) { return is_inode_flag_set(inode, FI_INLINE_DENTRY); } static inline int is_file(struct inode *inode, int type) { return F2FS_I(inode)->i_advise & type; } static inline void set_file(struct inode *inode, int type) { if (is_file(inode, type)) return; F2FS_I(inode)->i_advise |= type; f2fs_mark_inode_dirty_sync(inode, true); } static inline void clear_file(struct inode *inode, int type) { if (!is_file(inode, type)) return; F2FS_I(inode)->i_advise &= ~type; f2fs_mark_inode_dirty_sync(inode, true); } static inline bool f2fs_is_time_consistent(struct inode *inode) { struct timespec64 ts = inode_get_atime(inode); if (!timespec64_equal(F2FS_I(inode)->i_disk_time, &ts)) return false; ts = inode_get_ctime(inode); if (!timespec64_equal(F2FS_I(inode)->i_disk_time + 1, &ts)) return false; ts = inode_get_mtime(inode); if (!timespec64_equal(F2FS_I(inode)->i_disk_time + 2, &ts)) return false; return true; } static inline bool f2fs_skip_inode_update(struct inode *inode, int dsync) { bool ret; if (dsync) { struct f2fs_sb_info *sbi = F2FS_I_SB(inode); spin_lock(&sbi->inode_lock[DIRTY_META]); ret = list_empty(&F2FS_I(inode)->gdirty_list); spin_unlock(&sbi->inode_lock[DIRTY_META]); return ret; } if (!is_inode_flag_set(inode, FI_AUTO_RECOVER) || file_keep_isize(inode) || i_size_read(inode) & ~PAGE_MASK) return false; if (!f2fs_is_time_consistent(inode)) return false; spin_lock(&F2FS_I(inode)->i_size_lock); ret = F2FS_I(inode)->last_disk_size == i_size_read(inode); spin_unlock(&F2FS_I(inode)->i_size_lock); return ret; } static inline bool f2fs_readonly(struct super_block *sb) { return sb_rdonly(sb); } static inline bool f2fs_cp_error(struct f2fs_sb_info *sbi) { return is_set_ckpt_flags(sbi, CP_ERROR_FLAG); } static inline void *f2fs_kmalloc(struct f2fs_sb_info *sbi, size_t size, gfp_t flags) { if (time_to_inject(sbi, FAULT_KMALLOC)) return NULL; return kmalloc(size, flags); } static inline void *f2fs_getname(struct f2fs_sb_info *sbi) { if (time_to_inject(sbi, FAULT_KMALLOC)) return NULL; return __getname(); } static inline void f2fs_putname(char *buf) { __putname(buf); } static inline void *f2fs_kzalloc(struct f2fs_sb_info *sbi, size_t size, gfp_t flags) { return f2fs_kmalloc(sbi, size, flags | __GFP_ZERO); } static inline void *f2fs_kvmalloc(struct f2fs_sb_info *sbi, size_t size, gfp_t flags) { if (time_to_inject(sbi, FAULT_KVMALLOC)) return NULL; return kvmalloc(size, flags); } static inline void *f2fs_kvzalloc(struct f2fs_sb_info *sbi, size_t size, gfp_t flags) { return f2fs_kvmalloc(sbi, size, flags | __GFP_ZERO); } static inline int get_extra_isize(struct inode *inode) { return F2FS_I(inode)->i_extra_isize / sizeof(__le32); } static inline int get_inline_xattr_addrs(struct inode *inode) { return F2FS_I(inode)->i_inline_xattr_size; } static inline __le32 *get_dnode_addr(struct inode *inode, struct page *node_page) { int base = 0; if (IS_INODE(node_page) && f2fs_has_extra_attr(inode)) base = get_extra_isize(inode); return blkaddr_in_node(F2FS_NODE(node_page)) + base; } #define f2fs_get_inode_mode(i) \ ((is_inode_flag_set(i, FI_ACL_MODE)) ? \ (F2FS_I(i)->i_acl_mode) : ((i)->i_mode)) #define F2FS_MIN_EXTRA_ATTR_SIZE (sizeof(__le32)) #define F2FS_TOTAL_EXTRA_ATTR_SIZE \ (offsetof(struct f2fs_inode, i_extra_end) - \ offsetof(struct f2fs_inode, i_extra_isize)) \ #define F2FS_OLD_ATTRIBUTE_SIZE (offsetof(struct f2fs_inode, i_addr)) #define F2FS_FITS_IN_INODE(f2fs_inode, extra_isize, field) \ ((offsetof(typeof(*(f2fs_inode)), field) + \ sizeof((f2fs_inode)->field)) \ <= (F2FS_OLD_ATTRIBUTE_SIZE + (extra_isize))) \ #define __is_large_section(sbi) (SEGS_PER_SEC(sbi) > 1) #define __is_meta_io(fio) (PAGE_TYPE_OF_BIO((fio)->type) == META) bool f2fs_is_valid_blkaddr(struct f2fs_sb_info *sbi, block_t blkaddr, int type); static inline void verify_blkaddr(struct f2fs_sb_info *sbi, block_t blkaddr, int type) { if (!f2fs_is_valid_blkaddr(sbi, blkaddr, type)) f2fs_err(sbi, "invalid blkaddr: %u, type: %d, run fsck to fix.", blkaddr, type); } static inline bool __is_valid_data_blkaddr(block_t blkaddr) { if (blkaddr == NEW_ADDR || blkaddr == NULL_ADDR || blkaddr == COMPRESS_ADDR) return false; return true; } /* * file.c */ int f2fs_sync_file(struct file *file, loff_t start, loff_t end, int datasync); int f2fs_do_truncate_blocks(struct inode *inode, u64 from, bool lock); int f2fs_truncate_blocks(struct inode *inode, u64 from, bool lock); int f2fs_truncate(struct inode *inode); int f2fs_getattr(struct mnt_idmap *idmap, const struct path *path, struct kstat *stat, u32 request_mask, unsigned int flags); int f2fs_setattr(struct mnt_idmap *idmap, struct dentry *dentry, struct iattr *attr); int f2fs_truncate_hole(struct inode *inode, pgoff_t pg_start, pgoff_t pg_end); void f2fs_truncate_data_blocks_range(struct dnode_of_data *dn, int count); int f2fs_do_shutdown(struct f2fs_sb_info *sbi, unsigned int flag, bool readonly); int f2fs_precache_extents(struct inode *inode); int f2fs_fileattr_get(struct dentry *dentry, struct fileattr *fa); int f2fs_fileattr_set(struct mnt_idmap *idmap, struct dentry *dentry, struct fileattr *fa); long f2fs_ioctl(struct file *filp, unsigned int cmd, unsigned long arg); long f2fs_compat_ioctl(struct file *file, unsigned int cmd, unsigned long arg); int f2fs_transfer_project_quota(struct inode *inode, kprojid_t kprojid); int f2fs_pin_file_control(struct inode *inode, bool inc); /* * inode.c */ void f2fs_set_inode_flags(struct inode *inode); bool f2fs_inode_chksum_verify(struct f2fs_sb_info *sbi, struct page *page); void f2fs_inode_chksum_set(struct f2fs_sb_info *sbi, struct page *page); struct inode *f2fs_iget(struct super_block *sb, unsigned long ino); struct inode *f2fs_iget_retry(struct super_block *sb, unsigned long ino); int f2fs_try_to_free_nats(struct f2fs_sb_info *sbi, int nr_shrink); void f2fs_update_inode(struct inode *inode, struct page *node_page); void f2fs_update_inode_page(struct inode *inode); int f2fs_write_inode(struct inode *inode, struct writeback_control *wbc); void f2fs_evict_inode(struct inode *inode); void f2fs_handle_failed_inode(struct inode *inode); /* * namei.c */ int f2fs_update_extension_list(struct f2fs_sb_info *sbi, const char *name, bool hot, bool set); struct dentry *f2fs_get_parent(struct dentry *child); int f2fs_get_tmpfile(struct mnt_idmap *idmap, struct inode *dir, struct inode **new_inode); /* * dir.c */ int f2fs_init_casefolded_name(const struct inode *dir, struct f2fs_filename *fname); int f2fs_setup_filename(struct inode *dir, const struct qstr *iname, int lookup, struct f2fs_filename *fname); int f2fs_prepare_lookup(struct inode *dir, struct dentry *dentry, struct f2fs_filename *fname); void f2fs_free_filename(struct f2fs_filename *fname); struct f2fs_dir_entry *f2fs_find_target_dentry(const struct f2fs_dentry_ptr *d, const struct f2fs_filename *fname, int *max_slots); int f2fs_fill_dentries(struct dir_context *ctx, struct f2fs_dentry_ptr *d, unsigned int start_pos, struct fscrypt_str *fstr); void f2fs_do_make_empty_dir(struct inode *inode, struct inode *parent, struct f2fs_dentry_ptr *d); struct page *f2fs_init_inode_metadata(struct inode *inode, struct inode *dir, const struct f2fs_filename *fname, struct page *dpage); void f2fs_update_parent_metadata(struct inode *dir, struct inode *inode, unsigned int current_depth); int f2fs_room_for_filename(const void *bitmap, int slots, int max_slots); void f2fs_drop_nlink(struct inode *dir, struct inode *inode); struct f2fs_dir_entry *__f2fs_find_entry(struct inode *dir, const struct f2fs_filename *fname, struct page **res_page); struct f2fs_dir_entry *f2fs_find_entry(struct inode *dir, const struct qstr *child, struct page **res_page); struct f2fs_dir_entry *f2fs_parent_dir(struct inode *dir, struct page **p); ino_t f2fs_inode_by_name(struct inode *dir, const struct qstr *qstr, struct page **page); void f2fs_set_link(struct inode *dir, struct f2fs_dir_entry *de, struct page *page, struct inode *inode); bool f2fs_has_enough_room(struct inode *dir, struct page *ipage, const struct f2fs_filename *fname); void f2fs_update_dentry(nid_t ino, umode_t mode, struct f2fs_dentry_ptr *d, const struct fscrypt_str *name, f2fs_hash_t name_hash, unsigned int bit_pos); int f2fs_add_regular_entry(struct inode *dir, const struct f2fs_filename *fname, struct inode *inode, nid_t ino, umode_t mode); int f2fs_add_dentry(struct inode *dir, const struct f2fs_filename *fname, struct inode *inode, nid_t ino, umode_t mode); int f2fs_do_add_link(struct inode *dir, const struct qstr *name, struct inode *inode, nid_t ino, umode_t mode); void f2fs_delete_entry(struct f2fs_dir_entry *dentry, struct page *page, struct inode *dir, struct inode *inode); int f2fs_do_tmpfile(struct inode *inode, struct inode *dir, struct f2fs_filename *fname); bool f2fs_empty_dir(struct inode *dir); static inline int f2fs_add_link(struct dentry *dentry, struct inode *inode) { if (fscrypt_is_nokey_name(dentry)) return -ENOKEY; return f2fs_do_add_link(d_inode(dentry->d_parent), &dentry->d_name, inode, inode->i_ino, inode->i_mode); } /* * super.c */ int f2fs_inode_dirtied(struct inode *inode, bool sync); void f2fs_inode_synced(struct inode *inode); int f2fs_dquot_initialize(struct inode *inode); int f2fs_enable_quota_files(struct f2fs_sb_info *sbi, bool rdonly); int f2fs_quota_sync(struct super_block *sb, int type); loff_t max_file_blocks(struct inode *inode); void f2fs_quota_off_umount(struct super_block *sb); void f2fs_save_errors(struct f2fs_sb_info *sbi, unsigned char flag); void f2fs_handle_critical_error(struct f2fs_sb_info *sbi, unsigned char reason, bool irq_context); void f2fs_handle_error(struct f2fs_sb_info *sbi, unsigned char error); void f2fs_handle_error_async(struct f2fs_sb_info *sbi, unsigned char error); int f2fs_commit_super(struct f2fs_sb_info *sbi, bool recover); int f2fs_sync_fs(struct super_block *sb, int sync); int f2fs_sanity_check_ckpt(struct f2fs_sb_info *sbi); /* * hash.c */ void f2fs_hash_filename(const struct inode *dir, struct f2fs_filename *fname); /* * node.c */ struct node_info; int f2fs_check_nid_range(struct f2fs_sb_info *sbi, nid_t nid); bool f2fs_available_free_memory(struct f2fs_sb_info *sbi, int type); bool f2fs_in_warm_node_list(struct f2fs_sb_info *sbi, struct page *page); void f2fs_init_fsync_node_info(struct f2fs_sb_info *sbi); void f2fs_del_fsync_node_entry(struct f2fs_sb_info *sbi, struct page *page); void f2fs_reset_fsync_node_info(struct f2fs_sb_info *sbi); int f2fs_need_dentry_mark(struct f2fs_sb_info *sbi, nid_t nid); bool f2fs_is_checkpointed_node(struct f2fs_sb_info *sbi, nid_t nid); bool f2fs_need_inode_block_update(struct f2fs_sb_info *sbi, nid_t ino); int f2fs_get_node_info(struct f2fs_sb_info *sbi, nid_t nid, struct node_info *ni, bool checkpoint_context); pgoff_t f2fs_get_next_page_offset(struct dnode_of_data *dn, pgoff_t pgofs); int f2fs_get_dnode_of_data(struct dnode_of_data *dn, pgoff_t index, int mode); int f2fs_truncate_inode_blocks(struct inode *inode, pgoff_t from); int f2fs_truncate_xattr_node(struct inode *inode); int f2fs_wait_on_node_pages_writeback(struct f2fs_sb_info *sbi, unsigned int seq_id); bool f2fs_nat_bitmap_enabled(struct f2fs_sb_info *sbi); int f2fs_remove_inode_page(struct inode *inode); struct page *f2fs_new_inode_page(struct inode *inode); struct page *f2fs_new_node_page(struct dnode_of_data *dn, unsigned int ofs); void f2fs_ra_node_page(struct f2fs_sb_info *sbi, nid_t nid); struct page *f2fs_get_node_page(struct f2fs_sb_info *sbi, pgoff_t nid); struct page *f2fs_get_node_page_ra(struct page *parent, int start); int f2fs_move_node_page(struct page *node_page, int gc_type); void f2fs_flush_inline_data(struct f2fs_sb_info *sbi); int f2fs_fsync_node_pages(struct f2fs_sb_info *sbi, struct inode *inode, struct writeback_control *wbc, bool atomic, unsigned int *seq_id); int f2fs_sync_node_pages(struct f2fs_sb_info *sbi, struct writeback_control *wbc, bool do_balance, enum iostat_type io_type); int f2fs_build_free_nids(struct f2fs_sb_info *sbi, bool sync, bool mount); bool f2fs_alloc_nid(struct f2fs_sb_info *sbi, nid_t *nid); void f2fs_alloc_nid_done(struct f2fs_sb_info *sbi, nid_t nid); void f2fs_alloc_nid_failed(struct f2fs_sb_info *sbi, nid_t nid); int f2fs_try_to_free_nids(struct f2fs_sb_info *sbi, int nr_shrink); int f2fs_recover_inline_xattr(struct inode *inode, struct page *page); int f2fs_recover_xattr_data(struct inode *inode, struct page *page); int f2fs_recover_inode_page(struct f2fs_sb_info *sbi, struct page *page); int f2fs_restore_node_summary(struct f2fs_sb_info *sbi, unsigned int segno, struct f2fs_summary_block *sum); void f2fs_enable_nat_bits(struct f2fs_sb_info *sbi); int f2fs_flush_nat_entries(struct f2fs_sb_info *sbi, struct cp_control *cpc); int f2fs_build_node_manager(struct f2fs_sb_info *sbi); void f2fs_destroy_node_manager(struct f2fs_sb_info *sbi); int __init f2fs_create_node_manager_caches(void); void f2fs_destroy_node_manager_caches(void); /* * segment.c */ bool f2fs_need_SSR(struct f2fs_sb_info *sbi); int f2fs_commit_atomic_write(struct inode *inode); void f2fs_abort_atomic_write(struct inode *inode, bool clean); void f2fs_balance_fs(struct f2fs_sb_info *sbi, bool need); void f2fs_balance_fs_bg(struct f2fs_sb_info *sbi, bool from_bg); int f2fs_issue_flush(struct f2fs_sb_info *sbi, nid_t ino); int f2fs_create_flush_cmd_control(struct f2fs_sb_info *sbi); int f2fs_flush_device_cache(struct f2fs_sb_info *sbi); void f2fs_destroy_flush_cmd_control(struct f2fs_sb_info *sbi, bool free); void f2fs_invalidate_blocks(struct f2fs_sb_info *sbi, block_t addr); bool f2fs_is_checkpointed_data(struct f2fs_sb_info *sbi, block_t blkaddr); int f2fs_start_discard_thread(struct f2fs_sb_info *sbi); void f2fs_drop_discard_cmd(struct f2fs_sb_info *sbi); void f2fs_stop_discard_thread(struct f2fs_sb_info *sbi); bool f2fs_issue_discard_timeout(struct f2fs_sb_info *sbi); void f2fs_clear_prefree_segments(struct f2fs_sb_info *sbi, struct cp_control *cpc); void f2fs_dirty_to_prefree(struct f2fs_sb_info *sbi); block_t f2fs_get_unusable_blocks(struct f2fs_sb_info *sbi); int f2fs_disable_cp_again(struct f2fs_sb_info *sbi, block_t unusable); void f2fs_release_discard_addrs(struct f2fs_sb_info *sbi); int f2fs_npages_for_summary_flush(struct f2fs_sb_info *sbi, bool for_ra); bool f2fs_segment_has_free_slot(struct f2fs_sb_info *sbi, int segno); int f2fs_init_inmem_curseg(struct f2fs_sb_info *sbi); void f2fs_save_inmem_curseg(struct f2fs_sb_info *sbi); void f2fs_restore_inmem_curseg(struct f2fs_sb_info *sbi); int f2fs_allocate_segment_for_resize(struct f2fs_sb_info *sbi, int type, unsigned int start, unsigned int end); int f2fs_allocate_new_section(struct f2fs_sb_info *sbi, int type, bool force); int f2fs_allocate_pinning_section(struct f2fs_sb_info *sbi); int f2fs_allocate_new_segments(struct f2fs_sb_info *sbi); int f2fs_trim_fs(struct f2fs_sb_info *sbi, struct fstrim_range *range); bool f2fs_exist_trim_candidates(struct f2fs_sb_info *sbi, struct cp_control *cpc); struct page *f2fs_get_sum_page(struct f2fs_sb_info *sbi, unsigned int segno); void f2fs_update_meta_page(struct f2fs_sb_info *sbi, void *src, block_t blk_addr); void f2fs_do_write_meta_page(struct f2fs_sb_info *sbi, struct page *page, enum iostat_type io_type); void f2fs_do_write_node_page(unsigned int nid, struct f2fs_io_info *fio); void f2fs_outplace_write_data(struct dnode_of_data *dn, struct f2fs_io_info *fio); int f2fs_inplace_write_data(struct f2fs_io_info *fio); void f2fs_do_replace_block(struct f2fs_sb_info *sbi, struct f2fs_summary *sum, block_t old_blkaddr, block_t new_blkaddr, bool recover_curseg, bool recover_newaddr, bool from_gc); void f2fs_replace_block(struct f2fs_sb_info *sbi, struct dnode_of_data *dn, block_t old_addr, block_t new_addr, unsigned char version, bool recover_curseg, bool recover_newaddr); int f2fs_get_segment_temp(int seg_type); int f2fs_allocate_data_block(struct f2fs_sb_info *sbi, struct page *page, block_t old_blkaddr, block_t *new_blkaddr, struct f2fs_summary *sum, int type, struct f2fs_io_info *fio); void f2fs_update_device_state(struct f2fs_sb_info *sbi, nid_t ino, block_t blkaddr, unsigned int blkcnt); void f2fs_wait_on_page_writeback(struct page *page, enum page_type type, bool ordered, bool locked); void f2fs_wait_on_block_writeback(struct inode *inode, block_t blkaddr); void f2fs_wait_on_block_writeback_range(struct inode *inode, block_t blkaddr, block_t len); void f2fs_write_data_summaries(struct f2fs_sb_info *sbi, block_t start_blk); void f2fs_write_node_summaries(struct f2fs_sb_info *sbi, block_t start_blk); int f2fs_lookup_journal_in_cursum(struct f2fs_journal *journal, int type, unsigned int val, int alloc); void f2fs_flush_sit_entries(struct f2fs_sb_info *sbi, struct cp_control *cpc); int f2fs_fix_curseg_write_pointer(struct f2fs_sb_info *sbi); int f2fs_check_write_pointer(struct f2fs_sb_info *sbi); int f2fs_build_segment_manager(struct f2fs_sb_info *sbi); void f2fs_destroy_segment_manager(struct f2fs_sb_info *sbi); int __init f2fs_create_segment_manager_caches(void); void f2fs_destroy_segment_manager_caches(void); int f2fs_rw_hint_to_seg_type(struct f2fs_sb_info *sbi, enum rw_hint hint); enum rw_hint f2fs_io_type_to_rw_hint(struct f2fs_sb_info *sbi, enum page_type type, enum temp_type temp); unsigned int f2fs_usable_segs_in_sec(struct f2fs_sb_info *sbi, unsigned int segno); unsigned int f2fs_usable_blks_in_seg(struct f2fs_sb_info *sbi, unsigned int segno); #define DEF_FRAGMENT_SIZE 4 #define MIN_FRAGMENT_SIZE 1 #define MAX_FRAGMENT_SIZE 512 static inline bool f2fs_need_rand_seg(struct f2fs_sb_info *sbi) { return F2FS_OPTION(sbi).fs_mode == FS_MODE_FRAGMENT_SEG || F2FS_OPTION(sbi).fs_mode == FS_MODE_FRAGMENT_BLK; } /* * checkpoint.c */ void f2fs_stop_checkpoint(struct f2fs_sb_info *sbi, bool end_io, unsigned char reason); void f2fs_flush_ckpt_thread(struct f2fs_sb_info *sbi); struct page *f2fs_grab_meta_page(struct f2fs_sb_info *sbi, pgoff_t index); struct page *f2fs_get_meta_page(struct f2fs_sb_info *sbi, pgoff_t index); struct page *f2fs_get_meta_page_retry(struct f2fs_sb_info *sbi, pgoff_t index); struct page *f2fs_get_tmp_page(struct f2fs_sb_info *sbi, pgoff_t index); bool f2fs_is_valid_blkaddr(struct f2fs_sb_info *sbi, block_t blkaddr, int type); bool f2fs_is_valid_blkaddr_raw(struct f2fs_sb_info *sbi, block_t blkaddr, int type); int f2fs_ra_meta_pages(struct f2fs_sb_info *sbi, block_t start, int nrpages, int type, bool sync); void f2fs_ra_meta_pages_cond(struct f2fs_sb_info *sbi, pgoff_t index, unsigned int ra_blocks); long f2fs_sync_meta_pages(struct f2fs_sb_info *sbi, enum page_type type, long nr_to_write, enum iostat_type io_type); void f2fs_add_ino_entry(struct f2fs_sb_info *sbi, nid_t ino, int type); void f2fs_remove_ino_entry(struct f2fs_sb_info *sbi, nid_t ino, int type); void f2fs_release_ino_entry(struct f2fs_sb_info *sbi, bool all); bool f2fs_exist_written_data(struct f2fs_sb_info *sbi, nid_t ino, int mode); void f2fs_set_dirty_device(struct f2fs_sb_info *sbi, nid_t ino, unsigned int devidx, int type); bool f2fs_is_dirty_device(struct f2fs_sb_info *sbi, nid_t ino, unsigned int devidx, int type); int f2fs_acquire_orphan_inode(struct f2fs_sb_info *sbi); void f2fs_release_orphan_inode(struct f2fs_sb_info *sbi); void f2fs_add_orphan_inode(struct inode *inode); void f2fs_remove_orphan_inode(struct f2fs_sb_info *sbi, nid_t ino); int f2fs_recover_orphan_inodes(struct f2fs_sb_info *sbi); int f2fs_get_valid_checkpoint(struct f2fs_sb_info *sbi); void f2fs_update_dirty_folio(struct inode *inode, struct folio *folio); void f2fs_remove_dirty_inode(struct inode *inode); int f2fs_sync_dirty_inodes(struct f2fs_sb_info *sbi, enum inode_type type, bool from_cp); void f2fs_wait_on_all_pages(struct f2fs_sb_info *sbi, int type); u64 f2fs_get_sectors_written(struct f2fs_sb_info *sbi); int f2fs_write_checkpoint(struct f2fs_sb_info *sbi, struct cp_control *cpc); void f2fs_init_ino_entry_info(struct f2fs_sb_info *sbi); int __init f2fs_create_checkpoint_caches(void); void f2fs_destroy_checkpoint_caches(void); int f2fs_issue_checkpoint(struct f2fs_sb_info *sbi); int f2fs_start_ckpt_thread(struct f2fs_sb_info *sbi); void f2fs_stop_ckpt_thread(struct f2fs_sb_info *sbi); void f2fs_init_ckpt_req_control(struct f2fs_sb_info *sbi); /* * data.c */ int __init f2fs_init_bioset(void); void f2fs_destroy_bioset(void); bool f2fs_is_cp_guaranteed(struct page *page); int f2fs_init_bio_entry_cache(void); void f2fs_destroy_bio_entry_cache(void); void f2fs_submit_read_bio(struct f2fs_sb_info *sbi, struct bio *bio, enum page_type type); int f2fs_init_write_merge_io(struct f2fs_sb_info *sbi); void f2fs_submit_merged_write(struct f2fs_sb_info *sbi, enum page_type type); void f2fs_submit_merged_write_cond(struct f2fs_sb_info *sbi, struct inode *inode, struct page *page, nid_t ino, enum page_type type); void f2fs_submit_merged_ipu_write(struct f2fs_sb_info *sbi, struct bio **bio, struct page *page); void f2fs_flush_merged_writes(struct f2fs_sb_info *sbi); int f2fs_submit_page_bio(struct f2fs_io_info *fio); int f2fs_merge_page_bio(struct f2fs_io_info *fio); void f2fs_submit_page_write(struct f2fs_io_info *fio); struct block_device *f2fs_target_device(struct f2fs_sb_info *sbi, block_t blk_addr, sector_t *sector); int f2fs_target_device_index(struct f2fs_sb_info *sbi, block_t blkaddr); void f2fs_set_data_blkaddr(struct dnode_of_data *dn, block_t blkaddr); void f2fs_update_data_blkaddr(struct dnode_of_data *dn, block_t blkaddr); int f2fs_reserve_new_blocks(struct dnode_of_data *dn, blkcnt_t count); int f2fs_reserve_new_block(struct dnode_of_data *dn); int f2fs_get_block_locked(struct dnode_of_data *dn, pgoff_t index); int f2fs_reserve_block(struct dnode_of_data *dn, pgoff_t index); struct page *f2fs_get_read_data_page(struct inode *inode, pgoff_t index, blk_opf_t op_flags, bool for_write, pgoff_t *next_pgofs); struct page *f2fs_find_data_page(struct inode *inode, pgoff_t index, pgoff_t *next_pgofs); struct page *f2fs_get_lock_data_page(struct inode *inode, pgoff_t index, bool for_write); struct page *f2fs_get_new_data_page(struct inode *inode, struct page *ipage, pgoff_t index, bool new_i_size); int f2fs_do_write_data_page(struct f2fs_io_info *fio); int f2fs_map_blocks(struct inode *inode, struct f2fs_map_blocks *map, int flag); int f2fs_fiemap(struct inode *inode, struct fiemap_extent_info *fieinfo, u64 start, u64 len); int f2fs_encrypt_one_page(struct f2fs_io_info *fio); bool f2fs_should_update_inplace(struct inode *inode, struct f2fs_io_info *fio); bool f2fs_should_update_outplace(struct inode *inode, struct f2fs_io_info *fio); int f2fs_write_single_data_page(struct page *page, int *submitted, struct bio **bio, sector_t *last_block, struct writeback_control *wbc, enum iostat_type io_type, int compr_blocks, bool allow_balance); void f2fs_write_failed(struct inode *inode, loff_t to); void f2fs_invalidate_folio(struct folio *folio, size_t offset, size_t length); bool f2fs_release_folio(struct folio *folio, gfp_t wait); bool f2fs_overwrite_io(struct inode *inode, loff_t pos, size_t len); void f2fs_clear_page_cache_dirty_tag(struct page *page); int f2fs_init_post_read_processing(void); void f2fs_destroy_post_read_processing(void); int f2fs_init_post_read_wq(struct f2fs_sb_info *sbi); void f2fs_destroy_post_read_wq(struct f2fs_sb_info *sbi); extern const struct iomap_ops f2fs_iomap_ops; /* * gc.c */ int f2fs_start_gc_thread(struct f2fs_sb_info *sbi); void f2fs_stop_gc_thread(struct f2fs_sb_info *sbi); block_t f2fs_start_bidx_of_node(unsigned int node_ofs, struct inode *inode); int f2fs_gc(struct f2fs_sb_info *sbi, struct f2fs_gc_control *gc_control); void f2fs_build_gc_manager(struct f2fs_sb_info *sbi); int f2fs_gc_range(struct f2fs_sb_info *sbi, unsigned int start_seg, unsigned int end_seg, bool dry_run, unsigned int dry_run_sections); int f2fs_resize_fs(struct file *filp, __u64 block_count); int __init f2fs_create_garbage_collection_cache(void); void f2fs_destroy_garbage_collection_cache(void); /* victim selection function for cleaning and SSR */ int f2fs_get_victim(struct f2fs_sb_info *sbi, unsigned int *result, int gc_type, int type, char alloc_mode, unsigned long long age); /* * recovery.c */ int f2fs_recover_fsync_data(struct f2fs_sb_info *sbi, bool check_only); bool f2fs_space_for_roll_forward(struct f2fs_sb_info *sbi); int __init f2fs_create_recovery_cache(void); void f2fs_destroy_recovery_cache(void); /* * debug.c */ #ifdef CONFIG_F2FS_STAT_FS struct f2fs_stat_info { struct list_head stat_list; struct f2fs_sb_info *sbi; int all_area_segs, sit_area_segs, nat_area_segs, ssa_area_segs; int main_area_segs, main_area_sections, main_area_zones; unsigned long long hit_cached[NR_EXTENT_CACHES]; unsigned long long hit_rbtree[NR_EXTENT_CACHES]; unsigned long long total_ext[NR_EXTENT_CACHES]; unsigned long long hit_total[NR_EXTENT_CACHES]; int ext_tree[NR_EXTENT_CACHES]; int zombie_tree[NR_EXTENT_CACHES]; int ext_node[NR_EXTENT_CACHES]; /* to count memory footprint */ unsigned long long ext_mem[NR_EXTENT_CACHES]; /* for read extent cache */ unsigned long long hit_largest; /* for block age extent cache */ unsigned long long allocated_data_blocks; int ndirty_node, ndirty_dent, ndirty_meta, ndirty_imeta; int ndirty_data, ndirty_qdata; unsigned int ndirty_dirs, ndirty_files, nquota_files, ndirty_all; int nats, dirty_nats, sits, dirty_sits; int free_nids, avail_nids, alloc_nids; int total_count, utilization; int nr_wb_cp_data, nr_wb_data; int nr_rd_data, nr_rd_node, nr_rd_meta; int nr_dio_read, nr_dio_write; unsigned int io_skip_bggc, other_skip_bggc; int nr_flushing, nr_flushed, flush_list_empty; int nr_discarding, nr_discarded; int nr_discard_cmd; unsigned int undiscard_blks; int nr_issued_ckpt, nr_total_ckpt, nr_queued_ckpt; unsigned int cur_ckpt_time, peak_ckpt_time; int inline_xattr, inline_inode, inline_dir, append, update, orphans; int compr_inode, swapfile_inode; unsigned long long compr_blocks; int aw_cnt, max_aw_cnt; unsigned int valid_count, valid_node_count, valid_inode_count, discard_blks; unsigned int bimodal, avg_vblocks; int util_free, util_valid, util_invalid; int rsvd_segs, overp_segs; int dirty_count, node_pages, meta_pages, compress_pages; int compress_page_hit; int prefree_count, free_segs, free_secs; int cp_call_count[MAX_CALL_TYPE], cp_count; int gc_call_count[MAX_CALL_TYPE]; int gc_segs[2][2]; int gc_secs[2][2]; int tot_blks, data_blks, node_blks; int bg_data_blks, bg_node_blks; int curseg[NR_CURSEG_TYPE]; int cursec[NR_CURSEG_TYPE]; int curzone[NR_CURSEG_TYPE]; unsigned int dirty_seg[NR_CURSEG_TYPE]; unsigned int full_seg[NR_CURSEG_TYPE]; unsigned int valid_blks[NR_CURSEG_TYPE]; unsigned int meta_count[META_MAX]; unsigned int segment_count[2]; unsigned int block_count[2]; unsigned int inplace_count; unsigned long long base_mem, cache_mem, page_mem; }; static inline struct f2fs_stat_info *F2FS_STAT(struct f2fs_sb_info *sbi) { return (struct f2fs_stat_info *)sbi->stat_info; } #define stat_inc_cp_call_count(sbi, foreground) \ atomic_inc(&sbi->cp_call_count[(foreground)]) #define stat_inc_cp_count(si) (F2FS_STAT(sbi)->cp_count++) #define stat_io_skip_bggc_count(sbi) ((sbi)->io_skip_bggc++) #define stat_other_skip_bggc_count(sbi) ((sbi)->other_skip_bggc++) #define stat_inc_dirty_inode(sbi, type) ((sbi)->ndirty_inode[type]++) #define stat_dec_dirty_inode(sbi, type) ((sbi)->ndirty_inode[type]--) #define stat_inc_total_hit(sbi, type) (atomic64_inc(&(sbi)->total_hit_ext[type])) #define stat_inc_rbtree_node_hit(sbi, type) (atomic64_inc(&(sbi)->read_hit_rbtree[type])) #define stat_inc_largest_node_hit(sbi) (atomic64_inc(&(sbi)->read_hit_largest)) #define stat_inc_cached_node_hit(sbi, type) (atomic64_inc(&(sbi)->read_hit_cached[type])) #define stat_inc_inline_xattr(inode) \ do { \ if (f2fs_has_inline_xattr(inode)) \ (atomic_inc(&F2FS_I_SB(inode)->inline_xattr)); \ } while (0) #define stat_dec_inline_xattr(inode) \ do { \ if (f2fs_has_inline_xattr(inode)) \ (atomic_dec(&F2FS_I_SB(inode)->inline_xattr)); \ } while (0) #define stat_inc_inline_inode(inode) \ do { \ if (f2fs_has_inline_data(inode)) \ (atomic_inc(&F2FS_I_SB(inode)->inline_inode)); \ } while (0) #define stat_dec_inline_inode(inode) \ do { \ if (f2fs_has_inline_data(inode)) \ (atomic_dec(&F2FS_I_SB(inode)->inline_inode)); \ } while (0) #define stat_inc_inline_dir(inode) \ do { \ if (f2fs_has_inline_dentry(inode)) \ (atomic_inc(&F2FS_I_SB(inode)->inline_dir)); \ } while (0) #define stat_dec_inline_dir(inode) \ do { \ if (f2fs_has_inline_dentry(inode)) \ (atomic_dec(&F2FS_I_SB(inode)->inline_dir)); \ } while (0) #define stat_inc_compr_inode(inode) \ do { \ if (f2fs_compressed_file(inode)) \ (atomic_inc(&F2FS_I_SB(inode)->compr_inode)); \ } while (0) #define stat_dec_compr_inode(inode) \ do { \ if (f2fs_compressed_file(inode)) \ (atomic_dec(&F2FS_I_SB(inode)->compr_inode)); \ } while (0) #define stat_add_compr_blocks(inode, blocks) \ (atomic64_add(blocks, &F2FS_I_SB(inode)->compr_blocks)) #define stat_sub_compr_blocks(inode, blocks) \ (atomic64_sub(blocks, &F2FS_I_SB(inode)->compr_blocks)) #define stat_inc_swapfile_inode(inode) \ (atomic_inc(&F2FS_I_SB(inode)->swapfile_inode)) #define stat_dec_swapfile_inode(inode) \ (atomic_dec(&F2FS_I_SB(inode)->swapfile_inode)) #define stat_inc_atomic_inode(inode) \ (atomic_inc(&F2FS_I_SB(inode)->atomic_files)) #define stat_dec_atomic_inode(inode) \ (atomic_dec(&F2FS_I_SB(inode)->atomic_files)) #define stat_inc_meta_count(sbi, blkaddr) \ do { \ if (blkaddr < SIT_I(sbi)->sit_base_addr) \ atomic_inc(&(sbi)->meta_count[META_CP]); \ else if (blkaddr < NM_I(sbi)->nat_blkaddr) \ atomic_inc(&(sbi)->meta_count[META_SIT]); \ else if (blkaddr < SM_I(sbi)->ssa_blkaddr) \ atomic_inc(&(sbi)->meta_count[META_NAT]); \ else if (blkaddr < SM_I(sbi)->main_blkaddr) \ atomic_inc(&(sbi)->meta_count[META_SSA]); \ } while (0) #define stat_inc_seg_type(sbi, curseg) \ ((sbi)->segment_count[(curseg)->alloc_type]++) #define stat_inc_block_count(sbi, curseg) \ ((sbi)->block_count[(curseg)->alloc_type]++) #define stat_inc_inplace_blocks(sbi) \ (atomic_inc(&(sbi)->inplace_count)) #define stat_update_max_atomic_write(inode) \ do { \ int cur = atomic_read(&F2FS_I_SB(inode)->atomic_files); \ int max = atomic_read(&F2FS_I_SB(inode)->max_aw_cnt); \ if (cur > max) \ atomic_set(&F2FS_I_SB(inode)->max_aw_cnt, cur); \ } while (0) #define stat_inc_gc_call_count(sbi, foreground) \ (F2FS_STAT(sbi)->gc_call_count[(foreground)]++) #define stat_inc_gc_sec_count(sbi, type, gc_type) \ (F2FS_STAT(sbi)->gc_secs[(type)][(gc_type)]++) #define stat_inc_gc_seg_count(sbi, type, gc_type) \ (F2FS_STAT(sbi)->gc_segs[(type)][(gc_type)]++) #define stat_inc_tot_blk_count(si, blks) \ ((si)->tot_blks += (blks)) #define stat_inc_data_blk_count(sbi, blks, gc_type) \ do { \ struct f2fs_stat_info *si = F2FS_STAT(sbi); \ stat_inc_tot_blk_count(si, blks); \ si->data_blks += (blks); \ si->bg_data_blks += ((gc_type) == BG_GC) ? (blks) : 0; \ } while (0) #define stat_inc_node_blk_count(sbi, blks, gc_type) \ do { \ struct f2fs_stat_info *si = F2FS_STAT(sbi); \ stat_inc_tot_blk_count(si, blks); \ si->node_blks += (blks); \ si->bg_node_blks += ((gc_type) == BG_GC) ? (blks) : 0; \ } while (0) int f2fs_build_stats(struct f2fs_sb_info *sbi); void f2fs_destroy_stats(struct f2fs_sb_info *sbi); void __init f2fs_create_root_stats(void); void f2fs_destroy_root_stats(void); void f2fs_update_sit_info(struct f2fs_sb_info *sbi); #else #define stat_inc_cp_call_count(sbi, foreground) do { } while (0) #define stat_inc_cp_count(sbi) do { } while (0) #define stat_io_skip_bggc_count(sbi) do { } while (0) #define stat_other_skip_bggc_count(sbi) do { } while (0) #define stat_inc_dirty_inode(sbi, type) do { } while (0) #define stat_dec_dirty_inode(sbi, type) do { } while (0) #define stat_inc_total_hit(sbi, type) do { } while (0) #define stat_inc_rbtree_node_hit(sbi, type) do { } while (0) #define stat_inc_largest_node_hit(sbi) do { } while (0) #define stat_inc_cached_node_hit(sbi, type) do { } while (0) #define stat_inc_inline_xattr(inode) do { } while (0) #define stat_dec_inline_xattr(inode) do { } while (0) #define stat_inc_inline_inode(inode) do { } while (0) #define stat_dec_inline_inode(inode) do { } while (0) #define stat_inc_inline_dir(inode) do { } while (0) #define stat_dec_inline_dir(inode) do { } while (0) #define stat_inc_compr_inode(inode) do { } while (0) #define stat_dec_compr_inode(inode) do { } while (0) #define stat_add_compr_blocks(inode, blocks) do { } while (0) #define stat_sub_compr_blocks(inode, blocks) do { } while (0) #define stat_inc_swapfile_inode(inode) do { } while (0) #define stat_dec_swapfile_inode(inode) do { } while (0) #define stat_inc_atomic_inode(inode) do { } while (0) #define stat_dec_atomic_inode(inode) do { } while (0) #define stat_update_max_atomic_write(inode) do { } while (0) #define stat_inc_meta_count(sbi, blkaddr) do { } while (0) #define stat_inc_seg_type(sbi, curseg) do { } while (0) #define stat_inc_block_count(sbi, curseg) do { } while (0) #define stat_inc_inplace_blocks(sbi) do { } while (0) #define stat_inc_gc_call_count(sbi, foreground) do { } while (0) #define stat_inc_gc_sec_count(sbi, type, gc_type) do { } while (0) #define stat_inc_gc_seg_count(sbi, type, gc_type) do { } while (0) #define stat_inc_tot_blk_count(si, blks) do { } while (0) #define stat_inc_data_blk_count(sbi, blks, gc_type) do { } while (0) #define stat_inc_node_blk_count(sbi, blks, gc_type) do { } while (0) static inline int f2fs_build_stats(struct f2fs_sb_info *sbi) { return 0; } static inline void f2fs_destroy_stats(struct f2fs_sb_info *sbi) { } static inline void __init f2fs_create_root_stats(void) { } static inline void f2fs_destroy_root_stats(void) { } static inline void f2fs_update_sit_info(struct f2fs_sb_info *sbi) {} #endif extern const struct file_operations f2fs_dir_operations; extern const struct file_operations f2fs_file_operations; extern const struct inode_operations f2fs_file_inode_operations; extern const struct address_space_operations f2fs_dblock_aops; extern const struct address_space_operations f2fs_node_aops; extern const struct address_space_operations f2fs_meta_aops; extern const struct inode_operations f2fs_dir_inode_operations; extern const struct inode_operations f2fs_symlink_inode_operations; extern const struct inode_operations f2fs_encrypted_symlink_inode_operations; extern const struct inode_operations f2fs_special_inode_operations; extern struct kmem_cache *f2fs_inode_entry_slab; /* * inline.c */ bool f2fs_may_inline_data(struct inode *inode); bool f2fs_sanity_check_inline_data(struct inode *inode); bool f2fs_may_inline_dentry(struct inode *inode); void f2fs_do_read_inline_data(struct folio *folio, struct page *ipage); void f2fs_truncate_inline_inode(struct inode *inode, struct page *ipage, u64 from); int f2fs_read_inline_data(struct inode *inode, struct folio *folio); int f2fs_convert_inline_page(struct dnode_of_data *dn, struct page *page); int f2fs_convert_inline_inode(struct inode *inode); int f2fs_try_convert_inline_dir(struct inode *dir, struct dentry *dentry); int f2fs_write_inline_data(struct inode *inode, struct page *page); int f2fs_recover_inline_data(struct inode *inode, struct page *npage); struct f2fs_dir_entry *f2fs_find_in_inline_dir(struct inode *dir, const struct f2fs_filename *fname, struct page **res_page); int f2fs_make_empty_inline_dir(struct inode *inode, struct inode *parent, struct page *ipage); int f2fs_add_inline_entry(struct inode *dir, const struct f2fs_filename *fname, struct inode *inode, nid_t ino, umode_t mode); void f2fs_delete_inline_entry(struct f2fs_dir_entry *dentry, struct page *page, struct inode *dir, struct inode *inode); bool f2fs_empty_inline_dir(struct inode *dir); int f2fs_read_inline_dir(struct file *file, struct dir_context *ctx, struct fscrypt_str *fstr); int f2fs_inline_data_fiemap(struct inode *inode, struct fiemap_extent_info *fieinfo, __u64 start, __u64 len); /* * shrinker.c */ unsigned long f2fs_shrink_count(struct shrinker *shrink, struct shrink_control *sc); unsigned long f2fs_shrink_scan(struct shrinker *shrink, struct shrink_control *sc); void f2fs_join_shrinker(struct f2fs_sb_info *sbi); void f2fs_leave_shrinker(struct f2fs_sb_info *sbi); /* * extent_cache.c */ bool sanity_check_extent_cache(struct inode *inode); void f2fs_init_extent_tree(struct inode *inode); void f2fs_drop_extent_tree(struct inode *inode); void f2fs_destroy_extent_node(struct inode *inode); void f2fs_destroy_extent_tree(struct inode *inode); void f2fs_init_extent_cache_info(struct f2fs_sb_info *sbi); int __init f2fs_create_extent_cache(void); void f2fs_destroy_extent_cache(void); /* read extent cache ops */ void f2fs_init_read_extent_tree(struct inode *inode, struct page *ipage); bool f2fs_lookup_read_extent_cache(struct inode *inode, pgoff_t pgofs, struct extent_info *ei); bool f2fs_lookup_read_extent_cache_block(struct inode *inode, pgoff_t index, block_t *blkaddr); void f2fs_update_read_extent_cache(struct dnode_of_data *dn); void f2fs_update_read_extent_cache_range(struct dnode_of_data *dn, pgoff_t fofs, block_t blkaddr, unsigned int len); unsigned int f2fs_shrink_read_extent_tree(struct f2fs_sb_info *sbi, int nr_shrink); /* block age extent cache ops */ void f2fs_init_age_extent_tree(struct inode *inode); bool f2fs_lookup_age_extent_cache(struct inode *inode, pgoff_t pgofs, struct extent_info *ei); void f2fs_update_age_extent_cache(struct dnode_of_data *dn); void f2fs_update_age_extent_cache_range(struct dnode_of_data *dn, pgoff_t fofs, unsigned int len); unsigned int f2fs_shrink_age_extent_tree(struct f2fs_sb_info *sbi, int nr_shrink); /* * sysfs.c */ #define MIN_RA_MUL 2 #define MAX_RA_MUL 256 int __init f2fs_init_sysfs(void); void f2fs_exit_sysfs(void); int f2fs_register_sysfs(struct f2fs_sb_info *sbi); void f2fs_unregister_sysfs(struct f2fs_sb_info *sbi); /* verity.c */ extern const struct fsverity_operations f2fs_verityops; /* * crypto support */ static inline bool f2fs_encrypted_file(struct inode *inode) { return IS_ENCRYPTED(inode) && S_ISREG(inode->i_mode); } static inline void f2fs_set_encrypted_inode(struct inode *inode) { #ifdef CONFIG_FS_ENCRYPTION file_set_encrypt(inode); f2fs_set_inode_flags(inode); #endif } /* * Returns true if the reads of the inode's data need to undergo some * postprocessing step, like decryption or authenticity verification. */ static inline bool f2fs_post_read_required(struct inode *inode) { return f2fs_encrypted_file(inode) || fsverity_active(inode) || f2fs_compressed_file(inode); } static inline bool f2fs_used_in_atomic_write(struct inode *inode) { return f2fs_is_atomic_file(inode) || f2fs_is_cow_file(inode); } static inline bool f2fs_meta_inode_gc_required(struct inode *inode) { return f2fs_post_read_required(inode) || f2fs_used_in_atomic_write(inode); } /* * compress.c */ #ifdef CONFIG_F2FS_FS_COMPRESSION bool f2fs_is_compressed_page(struct page *page); struct page *f2fs_compress_control_page(struct page *page); int f2fs_prepare_compress_overwrite(struct inode *inode, struct page **pagep, pgoff_t index, void **fsdata); bool f2fs_compress_write_end(struct inode *inode, void *fsdata, pgoff_t index, unsigned copied); int f2fs_truncate_partial_cluster(struct inode *inode, u64 from, bool lock); void f2fs_compress_write_end_io(struct bio *bio, struct page *page); bool f2fs_is_compress_backend_ready(struct inode *inode); bool f2fs_is_compress_level_valid(int alg, int lvl); int __init f2fs_init_compress_mempool(void); void f2fs_destroy_compress_mempool(void); void f2fs_decompress_cluster(struct decompress_io_ctx *dic, bool in_task); void f2fs_end_read_compressed_page(struct page *page, bool failed, block_t blkaddr, bool in_task); bool f2fs_cluster_is_empty(struct compress_ctx *cc); bool f2fs_cluster_can_merge_page(struct compress_ctx *cc, pgoff_t index); bool f2fs_all_cluster_page_ready(struct compress_ctx *cc, struct page **pages, int index, int nr_pages, bool uptodate); bool f2fs_sanity_check_cluster(struct dnode_of_data *dn); void f2fs_compress_ctx_add_page(struct compress_ctx *cc, struct page *page); int f2fs_write_multi_pages(struct compress_ctx *cc, int *submitted, struct writeback_control *wbc, enum iostat_type io_type); int f2fs_is_compressed_cluster(struct inode *inode, pgoff_t index); void f2fs_update_read_extent_tree_range_compressed(struct inode *inode, pgoff_t fofs, block_t blkaddr, unsigned int llen, unsigned int c_len); int f2fs_read_multi_pages(struct compress_ctx *cc, struct bio **bio_ret, unsigned nr_pages, sector_t *last_block_in_bio, bool is_readahead, bool for_write); struct decompress_io_ctx *f2fs_alloc_dic(struct compress_ctx *cc); void f2fs_decompress_end_io(struct decompress_io_ctx *dic, bool failed, bool in_task); void f2fs_put_page_dic(struct page *page, bool in_task); unsigned int f2fs_cluster_blocks_are_contiguous(struct dnode_of_data *dn, unsigned int ofs_in_node); int f2fs_init_compress_ctx(struct compress_ctx *cc); void f2fs_destroy_compress_ctx(struct compress_ctx *cc, bool reuse); void f2fs_init_compress_info(struct f2fs_sb_info *sbi); int f2fs_init_compress_inode(struct f2fs_sb_info *sbi); void f2fs_destroy_compress_inode(struct f2fs_sb_info *sbi); int f2fs_init_page_array_cache(struct f2fs_sb_info *sbi); void f2fs_destroy_page_array_cache(struct f2fs_sb_info *sbi); int __init f2fs_init_compress_cache(void); void f2fs_destroy_compress_cache(void); struct address_space *COMPRESS_MAPPING(struct f2fs_sb_info *sbi); void f2fs_invalidate_compress_page(struct f2fs_sb_info *sbi, block_t blkaddr); void f2fs_cache_compressed_page(struct f2fs_sb_info *sbi, struct page *page, nid_t ino, block_t blkaddr); bool f2fs_load_compressed_page(struct f2fs_sb_info *sbi, struct page *page, block_t blkaddr); void f2fs_invalidate_compress_pages(struct f2fs_sb_info *sbi, nid_t ino); #define inc_compr_inode_stat(inode) \ do { \ struct f2fs_sb_info *sbi = F2FS_I_SB(inode); \ sbi->compr_new_inode++; \ } while (0) #define add_compr_block_stat(inode, blocks) \ do { \ struct f2fs_sb_info *sbi = F2FS_I_SB(inode); \ int diff = F2FS_I(inode)->i_cluster_size - blocks; \ sbi->compr_written_block += blocks; \ sbi->compr_saved_block += diff; \ } while (0) #else static inline bool f2fs_is_compressed_page(struct page *page) { return false; } static inline bool f2fs_is_compress_backend_ready(struct inode *inode) { if (!f2fs_compressed_file(inode)) return true; /* not support compression */ return false; } static inline bool f2fs_is_compress_level_valid(int alg, int lvl) { return false; } static inline struct page *f2fs_compress_control_page(struct page *page) { WARN_ON_ONCE(1); return ERR_PTR(-EINVAL); } static inline int __init f2fs_init_compress_mempool(void) { return 0; } static inline void f2fs_destroy_compress_mempool(void) { } static inline void f2fs_decompress_cluster(struct decompress_io_ctx *dic, bool in_task) { } static inline void f2fs_end_read_compressed_page(struct page *page, bool failed, block_t blkaddr, bool in_task) { WARN_ON_ONCE(1); } static inline void f2fs_put_page_dic(struct page *page, bool in_task) { WARN_ON_ONCE(1); } static inline unsigned int f2fs_cluster_blocks_are_contiguous( struct dnode_of_data *dn, unsigned int ofs_in_node) { return 0; } static inline bool f2fs_sanity_check_cluster(struct dnode_of_data *dn) { return false; } static inline int f2fs_init_compress_inode(struct f2fs_sb_info *sbi) { return 0; } static inline void f2fs_destroy_compress_inode(struct f2fs_sb_info *sbi) { } static inline int f2fs_init_page_array_cache(struct f2fs_sb_info *sbi) { return 0; } static inline void f2fs_destroy_page_array_cache(struct f2fs_sb_info *sbi) { } static inline int __init f2fs_init_compress_cache(void) { return 0; } static inline void f2fs_destroy_compress_cache(void) { } static inline void f2fs_invalidate_compress_page(struct f2fs_sb_info *sbi, block_t blkaddr) { } static inline void f2fs_cache_compressed_page(struct f2fs_sb_info *sbi, struct page *page, nid_t ino, block_t blkaddr) { } static inline bool f2fs_load_compressed_page(struct f2fs_sb_info *sbi, struct page *page, block_t blkaddr) { return false; } static inline void f2fs_invalidate_compress_pages(struct f2fs_sb_info *sbi, nid_t ino) { } #define inc_compr_inode_stat(inode) do { } while (0) static inline void f2fs_update_read_extent_tree_range_compressed( struct inode *inode, pgoff_t fofs, block_t blkaddr, unsigned int llen, unsigned int c_len) { } #endif static inline int set_compress_context(struct inode *inode) { #ifdef CONFIG_F2FS_FS_COMPRESSION struct f2fs_sb_info *sbi = F2FS_I_SB(inode); F2FS_I(inode)->i_compress_algorithm = F2FS_OPTION(sbi).compress_algorithm; F2FS_I(inode)->i_log_cluster_size = F2FS_OPTION(sbi).compress_log_size; F2FS_I(inode)->i_compress_flag = F2FS_OPTION(sbi).compress_chksum ? BIT(COMPRESS_CHKSUM) : 0; F2FS_I(inode)->i_cluster_size = BIT(F2FS_I(inode)->i_log_cluster_size); if ((F2FS_I(inode)->i_compress_algorithm == COMPRESS_LZ4 || F2FS_I(inode)->i_compress_algorithm == COMPRESS_ZSTD) && F2FS_OPTION(sbi).compress_level) F2FS_I(inode)->i_compress_level = F2FS_OPTION(sbi).compress_level; F2FS_I(inode)->i_flags |= F2FS_COMPR_FL; set_inode_flag(inode, FI_COMPRESSED_FILE); stat_inc_compr_inode(inode); inc_compr_inode_stat(inode); f2fs_mark_inode_dirty_sync(inode, true); return 0; #else return -EOPNOTSUPP; #endif } static inline bool f2fs_disable_compressed_file(struct inode *inode) { struct f2fs_inode_info *fi = F2FS_I(inode); f2fs_down_write(&F2FS_I(inode)->i_sem); if (!f2fs_compressed_file(inode)) { f2fs_up_write(&F2FS_I(inode)->i_sem); return true; } if (f2fs_is_mmap_file(inode) || (S_ISREG(inode->i_mode) && F2FS_HAS_BLOCKS(inode))) { f2fs_up_write(&F2FS_I(inode)->i_sem); return false; } fi->i_flags &= ~F2FS_COMPR_FL; stat_dec_compr_inode(inode); clear_inode_flag(inode, FI_COMPRESSED_FILE); f2fs_mark_inode_dirty_sync(inode, true); f2fs_up_write(&F2FS_I(inode)->i_sem); return true; } #define F2FS_FEATURE_FUNCS(name, flagname) \ static inline bool f2fs_sb_has_##name(struct f2fs_sb_info *sbi) \ { \ return F2FS_HAS_FEATURE(sbi, F2FS_FEATURE_##flagname); \ } F2FS_FEATURE_FUNCS(encrypt, ENCRYPT); F2FS_FEATURE_FUNCS(blkzoned, BLKZONED); F2FS_FEATURE_FUNCS(extra_attr, EXTRA_ATTR); F2FS_FEATURE_FUNCS(project_quota, PRJQUOTA); F2FS_FEATURE_FUNCS(inode_chksum, INODE_CHKSUM); F2FS_FEATURE_FUNCS(flexible_inline_xattr, FLEXIBLE_INLINE_XATTR); F2FS_FEATURE_FUNCS(quota_ino, QUOTA_INO); F2FS_FEATURE_FUNCS(inode_crtime, INODE_CRTIME); F2FS_FEATURE_FUNCS(lost_found, LOST_FOUND); F2FS_FEATURE_FUNCS(verity, VERITY); F2FS_FEATURE_FUNCS(sb_chksum, SB_CHKSUM); F2FS_FEATURE_FUNCS(casefold, CASEFOLD); F2FS_FEATURE_FUNCS(compression, COMPRESSION); F2FS_FEATURE_FUNCS(readonly, RO); #ifdef CONFIG_BLK_DEV_ZONED static inline bool f2fs_blkz_is_seq(struct f2fs_sb_info *sbi, int devi, block_t blkaddr) { unsigned int zno = blkaddr / sbi->blocks_per_blkz; return test_bit(zno, FDEV(devi).blkz_seq); } #endif static inline int f2fs_bdev_index(struct f2fs_sb_info *sbi, struct block_device *bdev) { int i; if (!f2fs_is_multi_device(sbi)) return 0; for (i = 0; i < sbi->s_ndevs; i++) if (FDEV(i).bdev == bdev) return i; WARN_ON(1); return -1; } static inline bool f2fs_hw_should_discard(struct f2fs_sb_info *sbi) { return f2fs_sb_has_blkzoned(sbi); } static inline bool f2fs_bdev_support_discard(struct block_device *bdev) { return bdev_max_discard_sectors(bdev) || bdev_is_zoned(bdev); } static inline bool f2fs_hw_support_discard(struct f2fs_sb_info *sbi) { int i; if (!f2fs_is_multi_device(sbi)) return f2fs_bdev_support_discard(sbi->sb->s_bdev); for (i = 0; i < sbi->s_ndevs; i++) if (f2fs_bdev_support_discard(FDEV(i).bdev)) return true; return false; } static inline bool f2fs_realtime_discard_enable(struct f2fs_sb_info *sbi) { return (test_opt(sbi, DISCARD) && f2fs_hw_support_discard(sbi)) || f2fs_hw_should_discard(sbi); } static inline bool f2fs_hw_is_readonly(struct f2fs_sb_info *sbi) { int i; if (!f2fs_is_multi_device(sbi)) return bdev_read_only(sbi->sb->s_bdev); for (i = 0; i < sbi->s_ndevs; i++) if (bdev_read_only(FDEV(i).bdev)) return true; return false; } static inline bool f2fs_dev_is_readonly(struct f2fs_sb_info *sbi) { return f2fs_sb_has_readonly(sbi) || f2fs_hw_is_readonly(sbi); } static inline bool f2fs_lfs_mode(struct f2fs_sb_info *sbi) { return F2FS_OPTION(sbi).fs_mode == FS_MODE_LFS; } static inline bool f2fs_valid_pinned_area(struct f2fs_sb_info *sbi, block_t blkaddr) { if (f2fs_sb_has_blkzoned(sbi)) { int devi = f2fs_target_device_index(sbi, blkaddr); return !bdev_is_zoned(FDEV(devi).bdev); } return true; } static inline bool f2fs_low_mem_mode(struct f2fs_sb_info *sbi) { return F2FS_OPTION(sbi).memory_mode == MEMORY_MODE_LOW; } static inline bool f2fs_may_compress(struct inode *inode) { if (IS_SWAPFILE(inode) || f2fs_is_pinned_file(inode) || f2fs_is_atomic_file(inode) || f2fs_has_inline_data(inode) || f2fs_is_mmap_file(inode)) return false; return S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode); } static inline void f2fs_i_compr_blocks_update(struct inode *inode, u64 blocks, bool add) { struct f2fs_inode_info *fi = F2FS_I(inode); int diff = fi->i_cluster_size - blocks; /* don't update i_compr_blocks if saved blocks were released */ if (!add && !atomic_read(&fi->i_compr_blocks)) return; if (add) { atomic_add(diff, &fi->i_compr_blocks); stat_add_compr_blocks(inode, diff); } else { atomic_sub(diff, &fi->i_compr_blocks); stat_sub_compr_blocks(inode, diff); } f2fs_mark_inode_dirty_sync(inode, true); } static inline bool f2fs_allow_multi_device_dio(struct f2fs_sb_info *sbi, int flag) { if (!f2fs_is_multi_device(sbi)) return false; if (flag != F2FS_GET_BLOCK_DIO) return false; return sbi->aligned_blksize; } static inline bool f2fs_need_verity(const struct inode *inode, pgoff_t idx) { return fsverity_active(inode) && idx < DIV_ROUND_UP(inode->i_size, PAGE_SIZE); } #ifdef CONFIG_F2FS_FAULT_INJECTION extern int f2fs_build_fault_attr(struct f2fs_sb_info *sbi, unsigned long rate, unsigned long type); #else static inline int f2fs_build_fault_attr(struct f2fs_sb_info *sbi, unsigned long rate, unsigned long type) { return 0; } #endif static inline bool is_journalled_quota(struct f2fs_sb_info *sbi) { #ifdef CONFIG_QUOTA if (f2fs_sb_has_quota_ino(sbi)) return true; if (F2FS_OPTION(sbi).s_qf_names[USRQUOTA] || F2FS_OPTION(sbi).s_qf_names[GRPQUOTA] || F2FS_OPTION(sbi).s_qf_names[PRJQUOTA]) return true; #endif return false; } static inline bool f2fs_block_unit_discard(struct f2fs_sb_info *sbi) { return F2FS_OPTION(sbi).discard_unit == DISCARD_UNIT_BLOCK; } static inline void f2fs_io_schedule_timeout(long timeout) { set_current_state(TASK_UNINTERRUPTIBLE); io_schedule_timeout(timeout); } static inline void f2fs_handle_page_eio(struct f2fs_sb_info *sbi, pgoff_t ofs, enum page_type type) { if (unlikely(f2fs_cp_error(sbi))) return; if (ofs == sbi->page_eio_ofs[type]) { if (sbi->page_eio_cnt[type]++ == MAX_RETRY_PAGE_EIO) set_ckpt_flags(sbi, CP_ERROR_FLAG); } else { sbi->page_eio_ofs[type] = ofs; sbi->page_eio_cnt[type] = 0; } } static inline bool f2fs_is_readonly(struct f2fs_sb_info *sbi) { return f2fs_sb_has_readonly(sbi) || f2fs_readonly(sbi->sb); } static inline void f2fs_truncate_meta_inode_pages(struct f2fs_sb_info *sbi, block_t blkaddr, unsigned int cnt) { bool need_submit = false; int i = 0; do { struct page *page; page = find_get_page(META_MAPPING(sbi), blkaddr + i); if (page) { if (folio_test_writeback(page_folio(page))) need_submit = true; f2fs_put_page(page, 0); } } while (++i < cnt && !need_submit); if (need_submit) f2fs_submit_merged_write_cond(sbi, sbi->meta_inode, NULL, 0, DATA); truncate_inode_pages_range(META_MAPPING(sbi), F2FS_BLK_TO_BYTES((loff_t)blkaddr), F2FS_BLK_END_BYTES((loff_t)(blkaddr + cnt - 1))); } static inline void f2fs_invalidate_internal_cache(struct f2fs_sb_info *sbi, block_t blkaddr) { f2fs_truncate_meta_inode_pages(sbi, blkaddr, 1); f2fs_invalidate_compress_page(sbi, blkaddr); } #define EFSBADCRC EBADMSG /* Bad CRC detected */ #define EFSCORRUPTED EUCLEAN /* Filesystem is corrupted */ #endif /* _LINUX_F2FS_H */