// SPDX-License-Identifier: GPL-2.0-or-later /* * Copyright (C) 2018-2023 Oracle. All Rights Reserved. * Author: Darrick J. Wong */ #include "xfs.h" #include "xfs_fs.h" #include "xfs_shared.h" #include "xfs_format.h" #include "xfs_trans_resv.h" #include "xfs_mount.h" #include "xfs_btree.h" #include "xfs_log_format.h" #include "xfs_trans.h" #include "xfs_sb.h" #include "xfs_alloc.h" #include "xfs_alloc_btree.h" #include "xfs_ialloc.h" #include "xfs_ialloc_btree.h" #include "xfs_rmap.h" #include "xfs_rmap_btree.h" #include "xfs_refcount_btree.h" #include "xfs_ag.h" #include "xfs_inode.h" #include "xfs_iunlink_item.h" #include "scrub/scrub.h" #include "scrub/common.h" #include "scrub/trace.h" #include "scrub/repair.h" #include "scrub/bitmap.h" #include "scrub/agb_bitmap.h" #include "scrub/agino_bitmap.h" #include "scrub/reap.h" #include "scrub/xfile.h" #include "scrub/xfarray.h" /* Superblock */ /* Repair the superblock. */ int xrep_superblock( struct xfs_scrub *sc) { struct xfs_mount *mp = sc->mp; struct xfs_buf *bp; xfs_agnumber_t agno; int error; /* Don't try to repair AG 0's sb; let xfs_repair deal with it. */ agno = sc->sm->sm_agno; if (agno == 0) return -EOPNOTSUPP; error = xfs_sb_get_secondary(mp, sc->tp, agno, &bp); if (error) return error; /* Last chance to abort before we start committing fixes. */ if (xchk_should_terminate(sc, &error)) return error; /* Copy AG 0's superblock to this one. */ xfs_buf_zero(bp, 0, BBTOB(bp->b_length)); xfs_sb_to_disk(bp->b_addr, &mp->m_sb); /* * Don't write out a secondary super with NEEDSREPAIR or log incompat * features set, since both are ignored when set on a secondary. */ if (xfs_has_crc(mp)) { struct xfs_dsb *sb = bp->b_addr; sb->sb_features_incompat &= ~cpu_to_be32(XFS_SB_FEAT_INCOMPAT_NEEDSREPAIR); sb->sb_features_log_incompat = 0; } /* Write this to disk. */ xfs_trans_buf_set_type(sc->tp, bp, XFS_BLFT_SB_BUF); xfs_trans_log_buf(sc->tp, bp, 0, BBTOB(bp->b_length) - 1); return 0; } /* AGF */ struct xrep_agf_allocbt { struct xfs_scrub *sc; xfs_agblock_t freeblks; xfs_agblock_t longest; }; /* Record free space shape information. */ STATIC int xrep_agf_walk_allocbt( struct xfs_btree_cur *cur, const struct xfs_alloc_rec_incore *rec, void *priv) { struct xrep_agf_allocbt *raa = priv; int error = 0; if (xchk_should_terminate(raa->sc, &error)) return error; raa->freeblks += rec->ar_blockcount; if (rec->ar_blockcount > raa->longest) raa->longest = rec->ar_blockcount; return error; } /* Does this AGFL block look sane? */ STATIC int xrep_agf_check_agfl_block( struct xfs_mount *mp, xfs_agblock_t agbno, void *priv) { struct xfs_scrub *sc = priv; if (!xfs_verify_agbno(sc->sa.pag, agbno)) return -EFSCORRUPTED; return 0; } /* * Offset within the xrep_find_ag_btree array for each btree type. Avoid the * XFS_BTNUM_ names here to avoid creating a sparse array. */ enum { XREP_AGF_BNOBT = 0, XREP_AGF_CNTBT, XREP_AGF_RMAPBT, XREP_AGF_REFCOUNTBT, XREP_AGF_END, XREP_AGF_MAX }; /* Check a btree root candidate. */ static inline bool xrep_check_btree_root( struct xfs_scrub *sc, struct xrep_find_ag_btree *fab) { return xfs_verify_agbno(sc->sa.pag, fab->root) && fab->height <= fab->maxlevels; } /* * Given the btree roots described by *fab, find the roots, check them for * sanity, and pass the root data back out via *fab. * * This is /also/ a chicken and egg problem because we have to use the rmapbt * (rooted in the AGF) to find the btrees rooted in the AGF. We also have no * idea if the btrees make any sense. If we hit obvious corruptions in those * btrees we'll bail out. */ STATIC int xrep_agf_find_btrees( struct xfs_scrub *sc, struct xfs_buf *agf_bp, struct xrep_find_ag_btree *fab, struct xfs_buf *agfl_bp) { struct xfs_agf *old_agf = agf_bp->b_addr; int error; /* Go find the root data. */ error = xrep_find_ag_btree_roots(sc, agf_bp, fab, agfl_bp); if (error) return error; /* We must find the bnobt, cntbt, and rmapbt roots. */ if (!xrep_check_btree_root(sc, &fab[XREP_AGF_BNOBT]) || !xrep_check_btree_root(sc, &fab[XREP_AGF_CNTBT]) || !xrep_check_btree_root(sc, &fab[XREP_AGF_RMAPBT])) return -EFSCORRUPTED; /* * We relied on the rmapbt to reconstruct the AGF. If we get a * different root then something's seriously wrong. */ if (fab[XREP_AGF_RMAPBT].root != be32_to_cpu(old_agf->agf_rmap_root)) return -EFSCORRUPTED; /* We must find the refcountbt root if that feature is enabled. */ if (xfs_has_reflink(sc->mp) && !xrep_check_btree_root(sc, &fab[XREP_AGF_REFCOUNTBT])) return -EFSCORRUPTED; return 0; } /* * Reinitialize the AGF header, making an in-core copy of the old contents so * that we know which in-core state needs to be reinitialized. */ STATIC void xrep_agf_init_header( struct xfs_scrub *sc, struct xfs_buf *agf_bp, struct xfs_agf *old_agf) { struct xfs_mount *mp = sc->mp; struct xfs_perag *pag = sc->sa.pag; struct xfs_agf *agf = agf_bp->b_addr; memcpy(old_agf, agf, sizeof(*old_agf)); memset(agf, 0, BBTOB(agf_bp->b_length)); agf->agf_magicnum = cpu_to_be32(XFS_AGF_MAGIC); agf->agf_versionnum = cpu_to_be32(XFS_AGF_VERSION); agf->agf_seqno = cpu_to_be32(pag->pag_agno); agf->agf_length = cpu_to_be32(pag->block_count); agf->agf_flfirst = old_agf->agf_flfirst; agf->agf_fllast = old_agf->agf_fllast; agf->agf_flcount = old_agf->agf_flcount; if (xfs_has_crc(mp)) uuid_copy(&agf->agf_uuid, &mp->m_sb.sb_meta_uuid); /* Mark the incore AGF data stale until we're done fixing things. */ ASSERT(xfs_perag_initialised_agf(pag)); clear_bit(XFS_AGSTATE_AGF_INIT, &pag->pag_opstate); } /* Set btree root information in an AGF. */ STATIC void xrep_agf_set_roots( struct xfs_scrub *sc, struct xfs_agf *agf, struct xrep_find_ag_btree *fab) { agf->agf_bno_root = cpu_to_be32(fab[XREP_AGF_BNOBT].root); agf->agf_bno_level = cpu_to_be32(fab[XREP_AGF_BNOBT].height); agf->agf_cnt_root = cpu_to_be32(fab[XREP_AGF_CNTBT].root); agf->agf_cnt_level = cpu_to_be32(fab[XREP_AGF_CNTBT].height); agf->agf_rmap_root = cpu_to_be32(fab[XREP_AGF_RMAPBT].root); agf->agf_rmap_level = cpu_to_be32(fab[XREP_AGF_RMAPBT].height); if (xfs_has_reflink(sc->mp)) { agf->agf_refcount_root = cpu_to_be32(fab[XREP_AGF_REFCOUNTBT].root); agf->agf_refcount_level = cpu_to_be32(fab[XREP_AGF_REFCOUNTBT].height); } } /* Update all AGF fields which derive from btree contents. */ STATIC int xrep_agf_calc_from_btrees( struct xfs_scrub *sc, struct xfs_buf *agf_bp) { struct xrep_agf_allocbt raa = { .sc = sc }; struct xfs_btree_cur *cur = NULL; struct xfs_agf *agf = agf_bp->b_addr; struct xfs_mount *mp = sc->mp; xfs_agblock_t btreeblks; xfs_agblock_t blocks; int error; /* Update the AGF counters from the bnobt. */ cur = xfs_bnobt_init_cursor(mp, sc->tp, agf_bp, sc->sa.pag); error = xfs_alloc_query_all(cur, xrep_agf_walk_allocbt, &raa); if (error) goto err; error = xfs_btree_count_blocks(cur, &blocks); if (error) goto err; xfs_btree_del_cursor(cur, error); btreeblks = blocks - 1; agf->agf_freeblks = cpu_to_be32(raa.freeblks); agf->agf_longest = cpu_to_be32(raa.longest); /* Update the AGF counters from the cntbt. */ cur = xfs_cntbt_init_cursor(mp, sc->tp, agf_bp, sc->sa.pag); error = xfs_btree_count_blocks(cur, &blocks); if (error) goto err; xfs_btree_del_cursor(cur, error); btreeblks += blocks - 1; /* Update the AGF counters from the rmapbt. */ cur = xfs_rmapbt_init_cursor(mp, sc->tp, agf_bp, sc->sa.pag); error = xfs_btree_count_blocks(cur, &blocks); if (error) goto err; xfs_btree_del_cursor(cur, error); agf->agf_rmap_blocks = cpu_to_be32(blocks); btreeblks += blocks - 1; agf->agf_btreeblks = cpu_to_be32(btreeblks); /* Update the AGF counters from the refcountbt. */ if (xfs_has_reflink(mp)) { cur = xfs_refcountbt_init_cursor(mp, sc->tp, agf_bp, sc->sa.pag); error = xfs_btree_count_blocks(cur, &blocks); if (error) goto err; xfs_btree_del_cursor(cur, error); agf->agf_refcount_blocks = cpu_to_be32(blocks); } return 0; err: xfs_btree_del_cursor(cur, error); return error; } /* Commit the new AGF and reinitialize the incore state. */ STATIC int xrep_agf_commit_new( struct xfs_scrub *sc, struct xfs_buf *agf_bp) { struct xfs_perag *pag; struct xfs_agf *agf = agf_bp->b_addr; /* Trigger fdblocks recalculation */ xfs_force_summary_recalc(sc->mp); /* Write this to disk. */ xfs_trans_buf_set_type(sc->tp, agf_bp, XFS_BLFT_AGF_BUF); xfs_trans_log_buf(sc->tp, agf_bp, 0, BBTOB(agf_bp->b_length) - 1); /* Now reinitialize the in-core counters we changed. */ pag = sc->sa.pag; pag->pagf_btreeblks = be32_to_cpu(agf->agf_btreeblks); pag->pagf_freeblks = be32_to_cpu(agf->agf_freeblks); pag->pagf_longest = be32_to_cpu(agf->agf_longest); pag->pagf_bno_level = be32_to_cpu(agf->agf_bno_level); pag->pagf_cnt_level = be32_to_cpu(agf->agf_cnt_level); pag->pagf_rmap_level = be32_to_cpu(agf->agf_rmap_level); pag->pagf_refcount_level = be32_to_cpu(agf->agf_refcount_level); set_bit(XFS_AGSTATE_AGF_INIT, &pag->pag_opstate); return xrep_roll_ag_trans(sc); } /* Repair the AGF. v5 filesystems only. */ int xrep_agf( struct xfs_scrub *sc) { struct xrep_find_ag_btree fab[XREP_AGF_MAX] = { [XREP_AGF_BNOBT] = { .rmap_owner = XFS_RMAP_OWN_AG, .buf_ops = &xfs_bnobt_buf_ops, .maxlevels = sc->mp->m_alloc_maxlevels, }, [XREP_AGF_CNTBT] = { .rmap_owner = XFS_RMAP_OWN_AG, .buf_ops = &xfs_cntbt_buf_ops, .maxlevels = sc->mp->m_alloc_maxlevels, }, [XREP_AGF_RMAPBT] = { .rmap_owner = XFS_RMAP_OWN_AG, .buf_ops = &xfs_rmapbt_buf_ops, .maxlevels = sc->mp->m_rmap_maxlevels, }, [XREP_AGF_REFCOUNTBT] = { .rmap_owner = XFS_RMAP_OWN_REFC, .buf_ops = &xfs_refcountbt_buf_ops, .maxlevels = sc->mp->m_refc_maxlevels, }, [XREP_AGF_END] = { .buf_ops = NULL, }, }; struct xfs_agf old_agf; struct xfs_mount *mp = sc->mp; struct xfs_buf *agf_bp; struct xfs_buf *agfl_bp; struct xfs_agf *agf; int error; /* We require the rmapbt to rebuild anything. */ if (!xfs_has_rmapbt(mp)) return -EOPNOTSUPP; /* * Make sure we have the AGF buffer, as scrub might have decided it * was corrupt after xfs_alloc_read_agf failed with -EFSCORRUPTED. */ error = xfs_trans_read_buf(mp, sc->tp, mp->m_ddev_targp, XFS_AG_DADDR(mp, sc->sa.pag->pag_agno, XFS_AGF_DADDR(mp)), XFS_FSS_TO_BB(mp, 1), 0, &agf_bp, NULL); if (error) return error; agf_bp->b_ops = &xfs_agf_buf_ops; agf = agf_bp->b_addr; /* * Load the AGFL so that we can screen out OWN_AG blocks that are on * the AGFL now; these blocks might have once been part of the * bno/cnt/rmap btrees but are not now. This is a chicken and egg * problem: the AGF is corrupt, so we have to trust the AGFL contents * because we can't do any serious cross-referencing with any of the * btrees rooted in the AGF. If the AGFL contents are obviously bad * then we'll bail out. */ error = xfs_alloc_read_agfl(sc->sa.pag, sc->tp, &agfl_bp); if (error) return error; /* * Spot-check the AGFL blocks; if they're obviously corrupt then * there's nothing we can do but bail out. */ error = xfs_agfl_walk(sc->mp, agf_bp->b_addr, agfl_bp, xrep_agf_check_agfl_block, sc); if (error) return error; /* * Find the AGF btree roots. This is also a chicken-and-egg situation; * see the function for more details. */ error = xrep_agf_find_btrees(sc, agf_bp, fab, agfl_bp); if (error) return error; /* Last chance to abort before we start committing fixes. */ if (xchk_should_terminate(sc, &error)) return error; /* Start rewriting the header and implant the btrees we found. */ xrep_agf_init_header(sc, agf_bp, &old_agf); xrep_agf_set_roots(sc, agf, fab); error = xrep_agf_calc_from_btrees(sc, agf_bp); if (error) goto out_revert; /* Commit the changes and reinitialize incore state. */ return xrep_agf_commit_new(sc, agf_bp); out_revert: /* Mark the incore AGF state stale and revert the AGF. */ clear_bit(XFS_AGSTATE_AGF_INIT, &sc->sa.pag->pag_opstate); memcpy(agf, &old_agf, sizeof(old_agf)); return error; } /* AGFL */ struct xrep_agfl { /* Bitmap of alleged AGFL blocks that we're not going to add. */ struct xagb_bitmap crossed; /* Bitmap of other OWN_AG metadata blocks. */ struct xagb_bitmap agmetablocks; /* Bitmap of free space. */ struct xagb_bitmap *freesp; /* rmapbt cursor for finding crosslinked blocks */ struct xfs_btree_cur *rmap_cur; struct xfs_scrub *sc; }; /* Record all OWN_AG (free space btree) information from the rmap data. */ STATIC int xrep_agfl_walk_rmap( struct xfs_btree_cur *cur, const struct xfs_rmap_irec *rec, void *priv) { struct xrep_agfl *ra = priv; int error = 0; if (xchk_should_terminate(ra->sc, &error)) return error; /* Record all the OWN_AG blocks. */ if (rec->rm_owner == XFS_RMAP_OWN_AG) { error = xagb_bitmap_set(ra->freesp, rec->rm_startblock, rec->rm_blockcount); if (error) return error; } return xagb_bitmap_set_btcur_path(&ra->agmetablocks, cur); } /* Strike out the blocks that are cross-linked according to the rmapbt. */ STATIC int xrep_agfl_check_extent( uint32_t agbno, uint32_t len, void *priv) { struct xrep_agfl *ra = priv; xfs_agblock_t last_agbno = agbno + len - 1; int error; while (agbno <= last_agbno) { bool other_owners; error = xfs_rmap_has_other_keys(ra->rmap_cur, agbno, 1, &XFS_RMAP_OINFO_AG, &other_owners); if (error) return error; if (other_owners) { error = xagb_bitmap_set(&ra->crossed, agbno, 1); if (error) return error; } if (xchk_should_terminate(ra->sc, &error)) return error; agbno++; } return 0; } /* * Map out all the non-AGFL OWN_AG space in this AG so that we can deduce * which blocks belong to the AGFL. * * Compute the set of old AGFL blocks by subtracting from the list of OWN_AG * blocks the list of blocks owned by all other OWN_AG metadata (bnobt, cntbt, * rmapbt). These are the old AGFL blocks, so return that list and the number * of blocks we're actually going to put back on the AGFL. */ STATIC int xrep_agfl_collect_blocks( struct xfs_scrub *sc, struct xfs_buf *agf_bp, struct xagb_bitmap *agfl_extents, xfs_agblock_t *flcount) { struct xrep_agfl ra; struct xfs_mount *mp = sc->mp; struct xfs_btree_cur *cur; int error; ra.sc = sc; ra.freesp = agfl_extents; xagb_bitmap_init(&ra.agmetablocks); xagb_bitmap_init(&ra.crossed); /* Find all space used by the free space btrees & rmapbt. */ cur = xfs_rmapbt_init_cursor(mp, sc->tp, agf_bp, sc->sa.pag); error = xfs_rmap_query_all(cur, xrep_agfl_walk_rmap, &ra); xfs_btree_del_cursor(cur, error); if (error) goto out_bmp; /* Find all blocks currently being used by the bnobt. */ cur = xfs_bnobt_init_cursor(mp, sc->tp, agf_bp, sc->sa.pag); error = xagb_bitmap_set_btblocks(&ra.agmetablocks, cur); xfs_btree_del_cursor(cur, error); if (error) goto out_bmp; /* Find all blocks currently being used by the cntbt. */ cur = xfs_cntbt_init_cursor(mp, sc->tp, agf_bp, sc->sa.pag); error = xagb_bitmap_set_btblocks(&ra.agmetablocks, cur); xfs_btree_del_cursor(cur, error); if (error) goto out_bmp; /* * Drop the freesp meta blocks that are in use by btrees. * The remaining blocks /should/ be AGFL blocks. */ error = xagb_bitmap_disunion(agfl_extents, &ra.agmetablocks); if (error) goto out_bmp; /* Strike out the blocks that are cross-linked. */ ra.rmap_cur = xfs_rmapbt_init_cursor(mp, sc->tp, agf_bp, sc->sa.pag); error = xagb_bitmap_walk(agfl_extents, xrep_agfl_check_extent, &ra); xfs_btree_del_cursor(ra.rmap_cur, error); if (error) goto out_bmp; error = xagb_bitmap_disunion(agfl_extents, &ra.crossed); if (error) goto out_bmp; /* * Calculate the new AGFL size. If we found more blocks than fit in * the AGFL we'll free them later. */ *flcount = min_t(uint64_t, xagb_bitmap_hweight(agfl_extents), xfs_agfl_size(mp)); out_bmp: xagb_bitmap_destroy(&ra.crossed); xagb_bitmap_destroy(&ra.agmetablocks); return error; } /* Update the AGF and reset the in-core state. */ STATIC void xrep_agfl_update_agf( struct xfs_scrub *sc, struct xfs_buf *agf_bp, xfs_agblock_t flcount) { struct xfs_agf *agf = agf_bp->b_addr; ASSERT(flcount <= xfs_agfl_size(sc->mp)); /* Trigger fdblocks recalculation */ xfs_force_summary_recalc(sc->mp); /* Update the AGF counters. */ if (xfs_perag_initialised_agf(sc->sa.pag)) { sc->sa.pag->pagf_flcount = flcount; clear_bit(XFS_AGSTATE_AGFL_NEEDS_RESET, &sc->sa.pag->pag_opstate); } agf->agf_flfirst = cpu_to_be32(0); agf->agf_flcount = cpu_to_be32(flcount); if (flcount) agf->agf_fllast = cpu_to_be32(flcount - 1); else agf->agf_fllast = cpu_to_be32(xfs_agfl_size(sc->mp) - 1); xfs_alloc_log_agf(sc->tp, agf_bp, XFS_AGF_FLFIRST | XFS_AGF_FLLAST | XFS_AGF_FLCOUNT); } struct xrep_agfl_fill { struct xagb_bitmap used_extents; struct xfs_scrub *sc; __be32 *agfl_bno; xfs_agblock_t flcount; unsigned int fl_off; }; /* Fill the AGFL with whatever blocks are in this extent. */ static int xrep_agfl_fill( uint32_t start, uint32_t len, void *priv) { struct xrep_agfl_fill *af = priv; struct xfs_scrub *sc = af->sc; xfs_agblock_t agbno = start; int error; trace_xrep_agfl_insert(sc->sa.pag, agbno, len); while (agbno < start + len && af->fl_off < af->flcount) af->agfl_bno[af->fl_off++] = cpu_to_be32(agbno++); error = xagb_bitmap_set(&af->used_extents, start, agbno - 1); if (error) return error; if (af->fl_off == af->flcount) return -ECANCELED; return 0; } /* Write out a totally new AGFL. */ STATIC int xrep_agfl_init_header( struct xfs_scrub *sc, struct xfs_buf *agfl_bp, struct xagb_bitmap *agfl_extents, xfs_agblock_t flcount) { struct xrep_agfl_fill af = { .sc = sc, .flcount = flcount, }; struct xfs_mount *mp = sc->mp; struct xfs_agfl *agfl; int error; ASSERT(flcount <= xfs_agfl_size(mp)); /* * Start rewriting the header by setting the bno[] array to * NULLAGBLOCK, then setting AGFL header fields. */ agfl = XFS_BUF_TO_AGFL(agfl_bp); memset(agfl, 0xFF, BBTOB(agfl_bp->b_length)); agfl->agfl_magicnum = cpu_to_be32(XFS_AGFL_MAGIC); agfl->agfl_seqno = cpu_to_be32(sc->sa.pag->pag_agno); uuid_copy(&agfl->agfl_uuid, &mp->m_sb.sb_meta_uuid); /* * Fill the AGFL with the remaining blocks. If agfl_extents has more * blocks than fit in the AGFL, they will be freed in a subsequent * step. */ xagb_bitmap_init(&af.used_extents); af.agfl_bno = xfs_buf_to_agfl_bno(agfl_bp), xagb_bitmap_walk(agfl_extents, xrep_agfl_fill, &af); error = xagb_bitmap_disunion(agfl_extents, &af.used_extents); if (error) return error; /* Write new AGFL to disk. */ xfs_trans_buf_set_type(sc->tp, agfl_bp, XFS_BLFT_AGFL_BUF); xfs_trans_log_buf(sc->tp, agfl_bp, 0, BBTOB(agfl_bp->b_length) - 1); xagb_bitmap_destroy(&af.used_extents); return 0; } /* Repair the AGFL. */ int xrep_agfl( struct xfs_scrub *sc) { struct xagb_bitmap agfl_extents; struct xfs_mount *mp = sc->mp; struct xfs_buf *agf_bp; struct xfs_buf *agfl_bp; xfs_agblock_t flcount; int error; /* We require the rmapbt to rebuild anything. */ if (!xfs_has_rmapbt(mp)) return -EOPNOTSUPP; xagb_bitmap_init(&agfl_extents); /* * Read the AGF so that we can query the rmapbt. We hope that there's * nothing wrong with the AGF, but all the AG header repair functions * have this chicken-and-egg problem. */ error = xfs_alloc_read_agf(sc->sa.pag, sc->tp, 0, &agf_bp); if (error) return error; /* * Make sure we have the AGFL buffer, as scrub might have decided it * was corrupt after xfs_alloc_read_agfl failed with -EFSCORRUPTED. */ error = xfs_trans_read_buf(mp, sc->tp, mp->m_ddev_targp, XFS_AG_DADDR(mp, sc->sa.pag->pag_agno, XFS_AGFL_DADDR(mp)), XFS_FSS_TO_BB(mp, 1), 0, &agfl_bp, NULL); if (error) return error; agfl_bp->b_ops = &xfs_agfl_buf_ops; /* Gather all the extents we're going to put on the new AGFL. */ error = xrep_agfl_collect_blocks(sc, agf_bp, &agfl_extents, &flcount); if (error) goto err; /* Last chance to abort before we start committing fixes. */ if (xchk_should_terminate(sc, &error)) goto err; /* * Update AGF and AGFL. We reset the global free block counter when * we adjust the AGF flcount (which can fail) so avoid updating any * buffers until we know that part works. */ xrep_agfl_update_agf(sc, agf_bp, flcount); error = xrep_agfl_init_header(sc, agfl_bp, &agfl_extents, flcount); if (error) goto err; /* * Ok, the AGFL should be ready to go now. Roll the transaction to * make the new AGFL permanent before we start using it to return * freespace overflow to the freespace btrees. */ sc->sa.agf_bp = agf_bp; error = xrep_roll_ag_trans(sc); if (error) goto err; /* Dump any AGFL overflow. */ error = xrep_reap_agblocks(sc, &agfl_extents, &XFS_RMAP_OINFO_AG, XFS_AG_RESV_AGFL); if (error) goto err; err: xagb_bitmap_destroy(&agfl_extents); return error; } /* AGI */ /* * Offset within the xrep_find_ag_btree array for each btree type. Avoid the * XFS_BTNUM_ names here to avoid creating a sparse array. */ enum { XREP_AGI_INOBT = 0, XREP_AGI_FINOBT, XREP_AGI_END, XREP_AGI_MAX }; #define XREP_AGI_LOOKUP_BATCH 32 struct xrep_agi { struct xfs_scrub *sc; /* AGI buffer, tracked separately */ struct xfs_buf *agi_bp; /* context for finding btree roots */ struct xrep_find_ag_btree fab[XREP_AGI_MAX]; /* old AGI contents in case we have to revert */ struct xfs_agi old_agi; /* bitmap of which inodes are unlinked */ struct xagino_bitmap iunlink_bmp; /* heads of the unlinked inode bucket lists */ xfs_agino_t iunlink_heads[XFS_AGI_UNLINKED_BUCKETS]; /* scratchpad for batched lookups of the radix tree */ struct xfs_inode *lookup_batch[XREP_AGI_LOOKUP_BATCH]; /* Map of ino -> next_ino for unlinked inode processing. */ struct xfarray *iunlink_next; /* Map of ino -> prev_ino for unlinked inode processing. */ struct xfarray *iunlink_prev; }; static void xrep_agi_buf_cleanup( void *buf) { struct xrep_agi *ragi = buf; xfarray_destroy(ragi->iunlink_prev); xfarray_destroy(ragi->iunlink_next); xagino_bitmap_destroy(&ragi->iunlink_bmp); } /* * Given the inode btree roots described by *fab, find the roots, check them * for sanity, and pass the root data back out via *fab. */ STATIC int xrep_agi_find_btrees( struct xrep_agi *ragi) { struct xfs_scrub *sc = ragi->sc; struct xrep_find_ag_btree *fab = ragi->fab; struct xfs_buf *agf_bp; struct xfs_mount *mp = sc->mp; int error; /* Read the AGF. */ error = xfs_alloc_read_agf(sc->sa.pag, sc->tp, 0, &agf_bp); if (error) return error; /* Find the btree roots. */ error = xrep_find_ag_btree_roots(sc, agf_bp, fab, NULL); if (error) return error; /* We must find the inobt root. */ if (!xrep_check_btree_root(sc, &fab[XREP_AGI_INOBT])) return -EFSCORRUPTED; /* We must find the finobt root if that feature is enabled. */ if (xfs_has_finobt(mp) && !xrep_check_btree_root(sc, &fab[XREP_AGI_FINOBT])) return -EFSCORRUPTED; return 0; } /* * Reinitialize the AGI header, making an in-core copy of the old contents so * that we know which in-core state needs to be reinitialized. */ STATIC void xrep_agi_init_header( struct xrep_agi *ragi) { struct xfs_scrub *sc = ragi->sc; struct xfs_buf *agi_bp = ragi->agi_bp; struct xfs_agi *old_agi = &ragi->old_agi; struct xfs_agi *agi = agi_bp->b_addr; struct xfs_perag *pag = sc->sa.pag; struct xfs_mount *mp = sc->mp; memcpy(old_agi, agi, sizeof(*old_agi)); memset(agi, 0, BBTOB(agi_bp->b_length)); agi->agi_magicnum = cpu_to_be32(XFS_AGI_MAGIC); agi->agi_versionnum = cpu_to_be32(XFS_AGI_VERSION); agi->agi_seqno = cpu_to_be32(pag->pag_agno); agi->agi_length = cpu_to_be32(pag->block_count); agi->agi_newino = cpu_to_be32(NULLAGINO); agi->agi_dirino = cpu_to_be32(NULLAGINO); if (xfs_has_crc(mp)) uuid_copy(&agi->agi_uuid, &mp->m_sb.sb_meta_uuid); /* Mark the incore AGF data stale until we're done fixing things. */ ASSERT(xfs_perag_initialised_agi(pag)); clear_bit(XFS_AGSTATE_AGI_INIT, &pag->pag_opstate); } /* Set btree root information in an AGI. */ STATIC void xrep_agi_set_roots( struct xrep_agi *ragi) { struct xfs_scrub *sc = ragi->sc; struct xfs_agi *agi = ragi->agi_bp->b_addr; struct xrep_find_ag_btree *fab = ragi->fab; agi->agi_root = cpu_to_be32(fab[XREP_AGI_INOBT].root); agi->agi_level = cpu_to_be32(fab[XREP_AGI_INOBT].height); if (xfs_has_finobt(sc->mp)) { agi->agi_free_root = cpu_to_be32(fab[XREP_AGI_FINOBT].root); agi->agi_free_level = cpu_to_be32(fab[XREP_AGI_FINOBT].height); } } /* Update the AGI counters. */ STATIC int xrep_agi_calc_from_btrees( struct xrep_agi *ragi) { struct xfs_scrub *sc = ragi->sc; struct xfs_buf *agi_bp = ragi->agi_bp; struct xfs_btree_cur *cur; struct xfs_agi *agi = agi_bp->b_addr; struct xfs_mount *mp = sc->mp; xfs_agino_t count; xfs_agino_t freecount; int error; cur = xfs_inobt_init_cursor(sc->sa.pag, sc->tp, agi_bp); error = xfs_ialloc_count_inodes(cur, &count, &freecount); if (error) goto err; if (xfs_has_inobtcounts(mp)) { xfs_agblock_t blocks; error = xfs_btree_count_blocks(cur, &blocks); if (error) goto err; agi->agi_iblocks = cpu_to_be32(blocks); } xfs_btree_del_cursor(cur, error); agi->agi_count = cpu_to_be32(count); agi->agi_freecount = cpu_to_be32(freecount); if (xfs_has_finobt(mp) && xfs_has_inobtcounts(mp)) { xfs_agblock_t blocks; cur = xfs_finobt_init_cursor(sc->sa.pag, sc->tp, agi_bp); error = xfs_btree_count_blocks(cur, &blocks); if (error) goto err; xfs_btree_del_cursor(cur, error); agi->agi_fblocks = cpu_to_be32(blocks); } return 0; err: xfs_btree_del_cursor(cur, error); return error; } /* * Record a forwards unlinked chain pointer from agino -> next_agino in our * staging information. */ static inline int xrep_iunlink_store_next( struct xrep_agi *ragi, xfs_agino_t agino, xfs_agino_t next_agino) { ASSERT(next_agino != 0); return xfarray_store(ragi->iunlink_next, agino, &next_agino); } /* * Record a backwards unlinked chain pointer from prev_ino <- agino in our * staging information. */ static inline int xrep_iunlink_store_prev( struct xrep_agi *ragi, xfs_agino_t agino, xfs_agino_t prev_agino) { ASSERT(prev_agino != 0); return xfarray_store(ragi->iunlink_prev, agino, &prev_agino); } /* * Given an @agino, look up the next inode in the iunlink bucket. Returns * NULLAGINO if we're at the end of the chain, 0 if @agino is not in memory * like it should be, or a per-AG inode number. */ static inline xfs_agino_t xrep_iunlink_next( struct xfs_scrub *sc, xfs_agino_t agino) { struct xfs_inode *ip; ip = xfs_iunlink_lookup(sc->sa.pag, agino); if (!ip) return 0; return ip->i_next_unlinked; } /* * Load the inode @agino into memory, set its i_prev_unlinked, and drop the * inode so it can be inactivated. Returns NULLAGINO if we're at the end of * the chain or if we should stop walking the chain due to corruption; or a * per-AG inode number. */ STATIC xfs_agino_t xrep_iunlink_reload_next( struct xrep_agi *ragi, xfs_agino_t prev_agino, xfs_agino_t agino) { struct xfs_scrub *sc = ragi->sc; struct xfs_inode *ip; xfs_ino_t ino; xfs_agino_t ret = NULLAGINO; int error; ino = XFS_AGINO_TO_INO(sc->mp, sc->sa.pag->pag_agno, agino); error = xchk_iget(ragi->sc, ino, &ip); if (error) return ret; trace_xrep_iunlink_reload_next(ip, prev_agino); /* If this is a linked inode, stop processing the chain. */ if (VFS_I(ip)->i_nlink != 0) { xrep_iunlink_store_next(ragi, agino, NULLAGINO); goto rele; } ip->i_prev_unlinked = prev_agino; ret = ip->i_next_unlinked; /* * Drop the inode reference that we just took. We hold the AGI, so * this inode cannot move off the unlinked list and hence cannot be * reclaimed. */ rele: xchk_irele(sc, ip); return ret; } /* * Walk an AGI unlinked bucket's list to load incore any unlinked inodes that * still existed at mount time. This can happen if iunlink processing fails * during log recovery. */ STATIC int xrep_iunlink_walk_ondisk_bucket( struct xrep_agi *ragi, unsigned int bucket) { struct xfs_scrub *sc = ragi->sc; struct xfs_agi *agi = sc->sa.agi_bp->b_addr; xfs_agino_t prev_agino = NULLAGINO; xfs_agino_t next_agino; int error = 0; next_agino = be32_to_cpu(agi->agi_unlinked[bucket]); while (next_agino != NULLAGINO) { xfs_agino_t agino = next_agino; if (xchk_should_terminate(ragi->sc, &error)) return error; trace_xrep_iunlink_walk_ondisk_bucket(sc->sa.pag, bucket, prev_agino, agino); if (bucket != agino % XFS_AGI_UNLINKED_BUCKETS) break; next_agino = xrep_iunlink_next(sc, agino); if (!next_agino) next_agino = xrep_iunlink_reload_next(ragi, prev_agino, agino); prev_agino = agino; } return 0; } /* Decide if this is an unlinked inode in this AG. */ STATIC bool xrep_iunlink_igrab( struct xfs_perag *pag, struct xfs_inode *ip) { struct xfs_mount *mp = pag->pag_mount; if (XFS_INO_TO_AGNO(mp, ip->i_ino) != pag->pag_agno) return false; if (!xfs_inode_on_unlinked_list(ip)) return false; return true; } /* * Mark the given inode in the lookup batch in our unlinked inode bitmap, and * remember if this inode is the start of the unlinked chain. */ STATIC int xrep_iunlink_visit( struct xrep_agi *ragi, unsigned int batch_idx) { struct xfs_mount *mp = ragi->sc->mp; struct xfs_inode *ip = ragi->lookup_batch[batch_idx]; xfs_agino_t agino; unsigned int bucket; int error; ASSERT(XFS_INO_TO_AGNO(mp, ip->i_ino) == ragi->sc->sa.pag->pag_agno); ASSERT(xfs_inode_on_unlinked_list(ip)); agino = XFS_INO_TO_AGINO(mp, ip->i_ino); bucket = agino % XFS_AGI_UNLINKED_BUCKETS; trace_xrep_iunlink_visit(ragi->sc->sa.pag, bucket, ragi->iunlink_heads[bucket], ip); error = xagino_bitmap_set(&ragi->iunlink_bmp, agino, 1); if (error) return error; if (ip->i_prev_unlinked == NULLAGINO) { if (ragi->iunlink_heads[bucket] == NULLAGINO) ragi->iunlink_heads[bucket] = agino; } return 0; } /* * Find all incore unlinked inodes so that we can rebuild the unlinked buckets. * We hold the AGI so there should not be any modifications to the unlinked * list. */ STATIC int xrep_iunlink_mark_incore( struct xrep_agi *ragi) { struct xfs_perag *pag = ragi->sc->sa.pag; struct xfs_mount *mp = pag->pag_mount; uint32_t first_index = 0; bool done = false; unsigned int nr_found = 0; do { unsigned int i; int error = 0; if (xchk_should_terminate(ragi->sc, &error)) return error; rcu_read_lock(); nr_found = radix_tree_gang_lookup(&pag->pag_ici_root, (void **)&ragi->lookup_batch, first_index, XREP_AGI_LOOKUP_BATCH); if (!nr_found) { rcu_read_unlock(); return 0; } for (i = 0; i < nr_found; i++) { struct xfs_inode *ip = ragi->lookup_batch[i]; if (done || !xrep_iunlink_igrab(pag, ip)) ragi->lookup_batch[i] = NULL; /* * Update the index for the next lookup. Catch * overflows into the next AG range which can occur if * we have inodes in the last block of the AG and we * are currently pointing to the last inode. * * Because we may see inodes that are from the wrong AG * due to RCU freeing and reallocation, only update the * index if it lies in this AG. It was a race that lead * us to see this inode, so another lookup from the * same index will not find it again. */ if (XFS_INO_TO_AGNO(mp, ip->i_ino) != pag->pag_agno) continue; first_index = XFS_INO_TO_AGINO(mp, ip->i_ino + 1); if (first_index < XFS_INO_TO_AGINO(mp, ip->i_ino)) done = true; } /* unlock now we've grabbed the inodes. */ rcu_read_unlock(); for (i = 0; i < nr_found; i++) { if (!ragi->lookup_batch[i]) continue; error = xrep_iunlink_visit(ragi, i); if (error) return error; } } while (!done); return 0; } /* Mark all the unlinked ondisk inodes in this inobt record in iunlink_bmp. */ STATIC int xrep_iunlink_mark_ondisk_rec( struct xfs_btree_cur *cur, const union xfs_btree_rec *rec, void *priv) { struct xfs_inobt_rec_incore irec; struct xrep_agi *ragi = priv; struct xfs_scrub *sc = ragi->sc; struct xfs_mount *mp = cur->bc_mp; xfs_agino_t agino; unsigned int i; int error = 0; xfs_inobt_btrec_to_irec(mp, rec, &irec); for (i = 0, agino = irec.ir_startino; i < XFS_INODES_PER_CHUNK; i++, agino++) { struct xfs_inode *ip; unsigned int len = 1; /* Skip free inodes */ if (XFS_INOBT_MASK(i) & irec.ir_free) continue; /* Skip inodes we've seen before */ if (xagino_bitmap_test(&ragi->iunlink_bmp, agino, &len)) continue; /* * Skip incore inodes; these were already picked up by * the _mark_incore step. */ rcu_read_lock(); ip = radix_tree_lookup(&sc->sa.pag->pag_ici_root, agino); rcu_read_unlock(); if (ip) continue; /* * Try to look up this inode. If we can't get it, just move * on because we haven't actually scrubbed the inobt or the * inodes yet. */ error = xchk_iget(ragi->sc, XFS_AGINO_TO_INO(mp, sc->sa.pag->pag_agno, agino), &ip); if (error) continue; trace_xrep_iunlink_reload_ondisk(ip); if (VFS_I(ip)->i_nlink == 0) error = xagino_bitmap_set(&ragi->iunlink_bmp, agino, 1); xchk_irele(sc, ip); if (error) break; } return error; } /* * Find ondisk inodes that are unlinked and not in cache, and mark them in * iunlink_bmp. We haven't checked the inobt yet, so we don't error out if * the btree is corrupt. */ STATIC void xrep_iunlink_mark_ondisk( struct xrep_agi *ragi) { struct xfs_scrub *sc = ragi->sc; struct xfs_buf *agi_bp = ragi->agi_bp; struct xfs_btree_cur *cur; int error; cur = xfs_inobt_init_cursor(sc->sa.pag, sc->tp, agi_bp); error = xfs_btree_query_all(cur, xrep_iunlink_mark_ondisk_rec, ragi); xfs_btree_del_cursor(cur, error); } /* * Walk an iunlink bucket's inode list. For each inode that should be on this * chain, clear its entry in in iunlink_bmp because it's ok and we don't need * to touch it further. */ STATIC int xrep_iunlink_resolve_bucket( struct xrep_agi *ragi, unsigned int bucket) { struct xfs_scrub *sc = ragi->sc; struct xfs_inode *ip; xfs_agino_t prev_agino = NULLAGINO; xfs_agino_t next_agino = ragi->iunlink_heads[bucket]; int error = 0; while (next_agino != NULLAGINO) { if (xchk_should_terminate(ragi->sc, &error)) return error; /* Find the next inode in the chain. */ ip = xfs_iunlink_lookup(sc->sa.pag, next_agino); if (!ip) { /* Inode not incore? Terminate the chain. */ trace_xrep_iunlink_resolve_uncached(sc->sa.pag, bucket, prev_agino, next_agino); next_agino = NULLAGINO; break; } if (next_agino % XFS_AGI_UNLINKED_BUCKETS != bucket) { /* * Inode is in the wrong bucket. Advance the list, * but pretend we didn't see this inode. */ trace_xrep_iunlink_resolve_wronglist(sc->sa.pag, bucket, prev_agino, next_agino); next_agino = ip->i_next_unlinked; continue; } if (!xfs_inode_on_unlinked_list(ip)) { /* * Incore inode doesn't think this inode is on an * unlinked list. This is probably because we reloaded * it from disk. Advance the list, but pretend we * didn't see this inode; we'll fix that later. */ trace_xrep_iunlink_resolve_nolist(sc->sa.pag, bucket, prev_agino, next_agino); next_agino = ip->i_next_unlinked; continue; } trace_xrep_iunlink_resolve_ok(sc->sa.pag, bucket, prev_agino, next_agino); /* * Otherwise, this inode's unlinked pointers are ok. Clear it * from the unlinked bitmap since we're done with it, and make * sure the chain is still correct. */ error = xagino_bitmap_clear(&ragi->iunlink_bmp, next_agino, 1); if (error) return error; /* Remember the previous inode's next pointer. */ if (prev_agino != NULLAGINO) { error = xrep_iunlink_store_next(ragi, prev_agino, next_agino); if (error) return error; } /* Remember this inode's previous pointer. */ error = xrep_iunlink_store_prev(ragi, next_agino, prev_agino); if (error) return error; /* Advance the list and remember this inode. */ prev_agino = next_agino; next_agino = ip->i_next_unlinked; } /* Update the previous inode's next pointer. */ if (prev_agino != NULLAGINO) { error = xrep_iunlink_store_next(ragi, prev_agino, next_agino); if (error) return error; } return 0; } /* Reinsert this unlinked inode into the head of the staged bucket list. */ STATIC int xrep_iunlink_add_to_bucket( struct xrep_agi *ragi, xfs_agino_t agino) { xfs_agino_t current_head; unsigned int bucket; int error; bucket = agino % XFS_AGI_UNLINKED_BUCKETS; /* Point this inode at the current head of the bucket list. */ current_head = ragi->iunlink_heads[bucket]; trace_xrep_iunlink_add_to_bucket(ragi->sc->sa.pag, bucket, agino, current_head); error = xrep_iunlink_store_next(ragi, agino, current_head); if (error) return error; /* Remember the head inode's previous pointer. */ if (current_head != NULLAGINO) { error = xrep_iunlink_store_prev(ragi, current_head, agino); if (error) return error; } ragi->iunlink_heads[bucket] = agino; return 0; } /* Reinsert unlinked inodes into the staged iunlink buckets. */ STATIC int xrep_iunlink_add_lost_inodes( uint32_t start, uint32_t len, void *priv) { struct xrep_agi *ragi = priv; int error; for (; len > 0; start++, len--) { error = xrep_iunlink_add_to_bucket(ragi, start); if (error) return error; } return 0; } /* * Figure out the iunlink bucket values and find inodes that need to be * reinserted into the list. */ STATIC int xrep_iunlink_rebuild_buckets( struct xrep_agi *ragi) { unsigned int i; int error; /* * Walk the ondisk AGI unlinked list to find inodes that are on the * list but aren't in memory. This can happen if a past log recovery * tried to clear the iunlinked list but failed. Our scan rebuilds the * unlinked list using incore inodes, so we must load and link them * properly. */ for (i = 0; i < XFS_AGI_UNLINKED_BUCKETS; i++) { error = xrep_iunlink_walk_ondisk_bucket(ragi, i); if (error) return error; } /* * Record all the incore unlinked inodes in iunlink_bmp that we didn't * find by walking the ondisk iunlink buckets. This shouldn't happen, * but we can't risk forgetting an inode somewhere. */ error = xrep_iunlink_mark_incore(ragi); if (error) return error; /* * If there are ondisk inodes that are unlinked and are not been loaded * into cache, record them in iunlink_bmp. */ xrep_iunlink_mark_ondisk(ragi); /* * Walk each iunlink bucket to (re)construct as much of the incore list * as would be correct. For each inode that survives this step, mark * it clear in iunlink_bmp; we're done with those inodes. */ for (i = 0; i < XFS_AGI_UNLINKED_BUCKETS; i++) { error = xrep_iunlink_resolve_bucket(ragi, i); if (error) return error; } /* * Any unlinked inodes that we didn't find through the bucket list * walk (or was ignored by the walk) must be inserted into the bucket * list. Stage this in memory for now. */ return xagino_bitmap_walk(&ragi->iunlink_bmp, xrep_iunlink_add_lost_inodes, ragi); } /* Update i_next_iunlinked for the inode @agino. */ STATIC int xrep_iunlink_relink_next( struct xrep_agi *ragi, xfarray_idx_t idx, xfs_agino_t next_agino) { struct xfs_scrub *sc = ragi->sc; struct xfs_perag *pag = sc->sa.pag; struct xfs_inode *ip; xfarray_idx_t agino = idx - 1; bool want_rele = false; int error = 0; ip = xfs_iunlink_lookup(pag, agino); if (!ip) { xfs_ino_t ino; xfs_agino_t prev_agino; /* * No inode exists in cache. Load it off the disk so that we * can reinsert it into the incore unlinked list. */ ino = XFS_AGINO_TO_INO(sc->mp, pag->pag_agno, agino); error = xchk_iget(sc, ino, &ip); if (error) return -EFSCORRUPTED; want_rele = true; /* Set the backward pointer since this just came off disk. */ error = xfarray_load(ragi->iunlink_prev, agino, &prev_agino); if (error) goto out_rele; trace_xrep_iunlink_relink_prev(ip, prev_agino); ip->i_prev_unlinked = prev_agino; } /* Update the forward pointer. */ if (ip->i_next_unlinked != next_agino) { error = xfs_iunlink_log_inode(sc->tp, ip, pag, next_agino); if (error) goto out_rele; trace_xrep_iunlink_relink_next(ip, next_agino); ip->i_next_unlinked = next_agino; } out_rele: /* * The iunlink lookup doesn't igrab because we hold the AGI buffer lock * and the inode cannot be reclaimed. However, if we used iget to load * a missing inode, we must irele it here. */ if (want_rele) xchk_irele(sc, ip); return error; } /* Update i_prev_iunlinked for the inode @agino. */ STATIC int xrep_iunlink_relink_prev( struct xrep_agi *ragi, xfarray_idx_t idx, xfs_agino_t prev_agino) { struct xfs_scrub *sc = ragi->sc; struct xfs_perag *pag = sc->sa.pag; struct xfs_inode *ip; xfarray_idx_t agino = idx - 1; bool want_rele = false; int error = 0; ASSERT(prev_agino != 0); ip = xfs_iunlink_lookup(pag, agino); if (!ip) { xfs_ino_t ino; xfs_agino_t next_agino; /* * No inode exists in cache. Load it off the disk so that we * can reinsert it into the incore unlinked list. */ ino = XFS_AGINO_TO_INO(sc->mp, pag->pag_agno, agino); error = xchk_iget(sc, ino, &ip); if (error) return -EFSCORRUPTED; want_rele = true; /* Set the forward pointer since this just came off disk. */ error = xfarray_load(ragi->iunlink_prev, agino, &next_agino); if (error) goto out_rele; error = xfs_iunlink_log_inode(sc->tp, ip, pag, next_agino); if (error) goto out_rele; trace_xrep_iunlink_relink_next(ip, next_agino); ip->i_next_unlinked = next_agino; } /* Update the backward pointer. */ if (ip->i_prev_unlinked != prev_agino) { trace_xrep_iunlink_relink_prev(ip, prev_agino); ip->i_prev_unlinked = prev_agino; } out_rele: /* * The iunlink lookup doesn't igrab because we hold the AGI buffer lock * and the inode cannot be reclaimed. However, if we used iget to load * a missing inode, we must irele it here. */ if (want_rele) xchk_irele(sc, ip); return error; } /* Log all the iunlink updates we need to finish regenerating the AGI. */ STATIC int xrep_iunlink_commit( struct xrep_agi *ragi) { struct xfs_agi *agi = ragi->agi_bp->b_addr; xfarray_idx_t idx = XFARRAY_CURSOR_INIT; xfs_agino_t agino; unsigned int i; int error; /* Fix all the forward links */ while ((error = xfarray_iter(ragi->iunlink_next, &idx, &agino)) == 1) { error = xrep_iunlink_relink_next(ragi, idx, agino); if (error) return error; } /* Fix all the back links */ idx = XFARRAY_CURSOR_INIT; while ((error = xfarray_iter(ragi->iunlink_prev, &idx, &agino)) == 1) { error = xrep_iunlink_relink_prev(ragi, idx, agino); if (error) return error; } /* Copy the staged iunlink buckets to the new AGI. */ for (i = 0; i < XFS_AGI_UNLINKED_BUCKETS; i++) { trace_xrep_iunlink_commit_bucket(ragi->sc->sa.pag, i, be32_to_cpu(ragi->old_agi.agi_unlinked[i]), ragi->iunlink_heads[i]); agi->agi_unlinked[i] = cpu_to_be32(ragi->iunlink_heads[i]); } return 0; } /* Trigger reinitialization of the in-core data. */ STATIC int xrep_agi_commit_new( struct xrep_agi *ragi) { struct xfs_scrub *sc = ragi->sc; struct xfs_buf *agi_bp = ragi->agi_bp; struct xfs_perag *pag; struct xfs_agi *agi = agi_bp->b_addr; /* Trigger inode count recalculation */ xfs_force_summary_recalc(sc->mp); /* Write this to disk. */ xfs_trans_buf_set_type(sc->tp, agi_bp, XFS_BLFT_AGI_BUF); xfs_trans_log_buf(sc->tp, agi_bp, 0, BBTOB(agi_bp->b_length) - 1); /* Now reinitialize the in-core counters if necessary. */ pag = sc->sa.pag; pag->pagi_count = be32_to_cpu(agi->agi_count); pag->pagi_freecount = be32_to_cpu(agi->agi_freecount); set_bit(XFS_AGSTATE_AGI_INIT, &pag->pag_opstate); return xrep_roll_ag_trans(sc); } /* Repair the AGI. */ int xrep_agi( struct xfs_scrub *sc) { struct xrep_agi *ragi; struct xfs_mount *mp = sc->mp; char *descr; unsigned int i; int error; /* We require the rmapbt to rebuild anything. */ if (!xfs_has_rmapbt(mp)) return -EOPNOTSUPP; sc->buf = kzalloc(sizeof(struct xrep_agi), XCHK_GFP_FLAGS); if (!sc->buf) return -ENOMEM; ragi = sc->buf; ragi->sc = sc; ragi->fab[XREP_AGI_INOBT] = (struct xrep_find_ag_btree){ .rmap_owner = XFS_RMAP_OWN_INOBT, .buf_ops = &xfs_inobt_buf_ops, .maxlevels = M_IGEO(sc->mp)->inobt_maxlevels, }; ragi->fab[XREP_AGI_FINOBT] = (struct xrep_find_ag_btree){ .rmap_owner = XFS_RMAP_OWN_INOBT, .buf_ops = &xfs_finobt_buf_ops, .maxlevels = M_IGEO(sc->mp)->inobt_maxlevels, }; ragi->fab[XREP_AGI_END] = (struct xrep_find_ag_btree){ .buf_ops = NULL, }; for (i = 0; i < XFS_AGI_UNLINKED_BUCKETS; i++) ragi->iunlink_heads[i] = NULLAGINO; xagino_bitmap_init(&ragi->iunlink_bmp); sc->buf_cleanup = xrep_agi_buf_cleanup; descr = xchk_xfile_ag_descr(sc, "iunlinked next pointers"); error = xfarray_create(descr, 0, sizeof(xfs_agino_t), &ragi->iunlink_next); kfree(descr); if (error) return error; descr = xchk_xfile_ag_descr(sc, "iunlinked prev pointers"); error = xfarray_create(descr, 0, sizeof(xfs_agino_t), &ragi->iunlink_prev); kfree(descr); if (error) return error; /* * Make sure we have the AGI buffer, as scrub might have decided it * was corrupt after xfs_ialloc_read_agi failed with -EFSCORRUPTED. */ error = xfs_trans_read_buf(mp, sc->tp, mp->m_ddev_targp, XFS_AG_DADDR(mp, sc->sa.pag->pag_agno, XFS_AGI_DADDR(mp)), XFS_FSS_TO_BB(mp, 1), 0, &ragi->agi_bp, NULL); if (error) return error; ragi->agi_bp->b_ops = &xfs_agi_buf_ops; /* Find the AGI btree roots. */ error = xrep_agi_find_btrees(ragi); if (error) return error; error = xrep_iunlink_rebuild_buckets(ragi); if (error) return error; /* Last chance to abort before we start committing fixes. */ if (xchk_should_terminate(sc, &error)) return error; /* Start rewriting the header and implant the btrees we found. */ xrep_agi_init_header(ragi); xrep_agi_set_roots(ragi); error = xrep_agi_calc_from_btrees(ragi); if (error) goto out_revert; error = xrep_iunlink_commit(ragi); if (error) goto out_revert; /* Reinitialize in-core state. */ return xrep_agi_commit_new(ragi); out_revert: /* Mark the incore AGI state stale and revert the AGI. */ clear_bit(XFS_AGSTATE_AGI_INIT, &sc->sa.pag->pag_opstate); memcpy(ragi->agi_bp->b_addr, &ragi->old_agi, sizeof(struct xfs_agi)); return error; }