// SPDX-License-Identifier: GPL-2.0-or-later /* * Copyright (C) 2018-2023 Oracle. All Rights Reserved. * Author: Darrick J. Wong */ #include "xfs.h" #include "xfs_fs.h" #include "xfs_shared.h" #include "xfs_format.h" #include "xfs_trans_resv.h" #include "xfs_mount.h" #include "xfs_defer.h" #include "xfs_btree.h" #include "xfs_btree_staging.h" #include "xfs_bit.h" #include "xfs_log_format.h" #include "xfs_trans.h" #include "xfs_sb.h" #include "xfs_alloc.h" #include "xfs_alloc_btree.h" #include "xfs_rmap.h" #include "xfs_rmap_btree.h" #include "xfs_inode.h" #include "xfs_refcount.h" #include "xfs_extent_busy.h" #include "xfs_health.h" #include "xfs_bmap.h" #include "xfs_ialloc.h" #include "xfs_ag.h" #include "scrub/xfs_scrub.h" #include "scrub/scrub.h" #include "scrub/common.h" #include "scrub/btree.h" #include "scrub/trace.h" #include "scrub/repair.h" #include "scrub/bitmap.h" #include "scrub/agb_bitmap.h" #include "scrub/xfile.h" #include "scrub/xfarray.h" #include "scrub/newbt.h" #include "scrub/reap.h" /* * Free Space Btree Repair * ======================= * * The reverse mappings are supposed to record all space usage for the entire * AG. Therefore, we can recreate the free extent records in an AG by looking * for gaps in the physical extents recorded in the rmapbt. These records are * staged in @free_records. Identifying the gaps is more difficult on a * reflink filesystem because rmap records are allowed to overlap. * * Because the final step of building a new index is to free the space used by * the old index, repair needs to find that space. Unfortunately, all * structures that live in the free space (bnobt, cntbt, rmapbt, agfl) share * the same rmapbt owner code (OWN_AG), so this is not straightforward. * * The scan of the reverse mapping information records the space used by OWN_AG * in @old_allocbt_blocks, which (at this stage) is somewhat misnamed. While * walking the rmapbt records, we create a second bitmap @not_allocbt_blocks to * record all visited rmap btree blocks and all blocks owned by the AGFL. * * After that is where the definitions of old_allocbt_blocks shifts. This * expression identifies possible former bnobt/cntbt blocks: * * (OWN_AG blocks) & ~(rmapbt blocks | agfl blocks); * * Substituting from above definitions, that becomes: * * old_allocbt_blocks & ~not_allocbt_blocks * * The OWN_AG bitmap itself isn't needed after this point, so what we really do * instead is: * * old_allocbt_blocks &= ~not_allocbt_blocks; * * After this point, @old_allocbt_blocks is a bitmap of alleged former * bnobt/cntbt blocks. The xagb_bitmap_disunion operation modifies its first * parameter in place to avoid copying records around. * * Next, some of the space described by @free_records are diverted to the newbt * reservation and used to format new btree blocks. The remaining records are * written to the new btree indices. We reconstruct both bnobt and cntbt at * the same time since we've already done all the work. * * We use the prefix 'xrep_abt' here because we regenerate both free space * allocation btrees at the same time. */ struct xrep_abt { /* Blocks owned by the rmapbt or the agfl. */ struct xagb_bitmap not_allocbt_blocks; /* All OWN_AG blocks. */ struct xagb_bitmap old_allocbt_blocks; /* * New bnobt information. All btree block reservations are added to * the reservation list in new_bnobt. */ struct xrep_newbt new_bnobt; /* new cntbt information */ struct xrep_newbt new_cntbt; /* Free space extents. */ struct xfarray *free_records; struct xfs_scrub *sc; /* Number of non-null records in @free_records. */ uint64_t nr_real_records; /* get_records()'s position in the free space record array. */ xfarray_idx_t array_cur; /* * Next block we anticipate seeing in the rmap records. If the next * rmap record is greater than next_agbno, we have found unused space. */ xfs_agblock_t next_agbno; /* Number of free blocks in this AG. */ xfs_agblock_t nr_blocks; /* Longest free extent we found in the AG. */ xfs_agblock_t longest; }; /* Set up to repair AG free space btrees. */ int xrep_setup_ag_allocbt( struct xfs_scrub *sc) { unsigned int busy_gen; /* * Make sure the busy extent list is clear because we can't put extents * on there twice. */ busy_gen = READ_ONCE(sc->sa.pag->pagb_gen); if (xfs_extent_busy_list_empty(sc->sa.pag)) return 0; return xfs_extent_busy_flush(sc->tp, sc->sa.pag, busy_gen, 0); } /* Check for any obvious conflicts in the free extent. */ STATIC int xrep_abt_check_free_ext( struct xfs_scrub *sc, const struct xfs_alloc_rec_incore *rec) { enum xbtree_recpacking outcome; int error; if (xfs_alloc_check_irec(sc->sa.pag, rec) != NULL) return -EFSCORRUPTED; /* Must not be an inode chunk. */ error = xfs_ialloc_has_inodes_at_extent(sc->sa.ino_cur, rec->ar_startblock, rec->ar_blockcount, &outcome); if (error) return error; if (outcome != XBTREE_RECPACKING_EMPTY) return -EFSCORRUPTED; /* Must not be shared or CoW staging. */ if (sc->sa.refc_cur) { error = xfs_refcount_has_records(sc->sa.refc_cur, XFS_REFC_DOMAIN_SHARED, rec->ar_startblock, rec->ar_blockcount, &outcome); if (error) return error; if (outcome != XBTREE_RECPACKING_EMPTY) return -EFSCORRUPTED; error = xfs_refcount_has_records(sc->sa.refc_cur, XFS_REFC_DOMAIN_COW, rec->ar_startblock, rec->ar_blockcount, &outcome); if (error) return error; if (outcome != XBTREE_RECPACKING_EMPTY) return -EFSCORRUPTED; } return 0; } /* * Stash a free space record for all the space since the last bno we found * all the way up to @end. */ static int xrep_abt_stash( struct xrep_abt *ra, xfs_agblock_t end) { struct xfs_alloc_rec_incore arec = { .ar_startblock = ra->next_agbno, .ar_blockcount = end - ra->next_agbno, }; struct xfs_scrub *sc = ra->sc; int error = 0; if (xchk_should_terminate(sc, &error)) return error; error = xrep_abt_check_free_ext(ra->sc, &arec); if (error) return error; trace_xrep_abt_found(sc->mp, sc->sa.pag->pag_agno, &arec); error = xfarray_append(ra->free_records, &arec); if (error) return error; ra->nr_blocks += arec.ar_blockcount; return 0; } /* Record extents that aren't in use from gaps in the rmap records. */ STATIC int xrep_abt_walk_rmap( struct xfs_btree_cur *cur, const struct xfs_rmap_irec *rec, void *priv) { struct xrep_abt *ra = priv; int error; /* Record all the OWN_AG blocks... */ if (rec->rm_owner == XFS_RMAP_OWN_AG) { error = xagb_bitmap_set(&ra->old_allocbt_blocks, rec->rm_startblock, rec->rm_blockcount); if (error) return error; } /* ...and all the rmapbt blocks... */ error = xagb_bitmap_set_btcur_path(&ra->not_allocbt_blocks, cur); if (error) return error; /* ...and all the free space. */ if (rec->rm_startblock > ra->next_agbno) { error = xrep_abt_stash(ra, rec->rm_startblock); if (error) return error; } /* * rmap records can overlap on reflink filesystems, so project * next_agbno as far out into the AG space as we currently know about. */ ra->next_agbno = max_t(xfs_agblock_t, ra->next_agbno, rec->rm_startblock + rec->rm_blockcount); return 0; } /* Collect an AGFL block for the not-to-release list. */ static int xrep_abt_walk_agfl( struct xfs_mount *mp, xfs_agblock_t agbno, void *priv) { struct xrep_abt *ra = priv; return xagb_bitmap_set(&ra->not_allocbt_blocks, agbno, 1); } /* * Compare two free space extents by block number. We want to sort in order of * increasing block number. */ static int xrep_bnobt_extent_cmp( const void *a, const void *b) { const struct xfs_alloc_rec_incore *ap = a; const struct xfs_alloc_rec_incore *bp = b; if (ap->ar_startblock > bp->ar_startblock) return 1; else if (ap->ar_startblock < bp->ar_startblock) return -1; return 0; } /* * Re-sort the free extents by block number so that we can put the records into * the bnobt in the correct order. Make sure the records do not overlap in * physical space. */ STATIC int xrep_bnobt_sort_records( struct xrep_abt *ra) { struct xfs_alloc_rec_incore arec; xfarray_idx_t cur = XFARRAY_CURSOR_INIT; xfs_agblock_t next_agbno = 0; int error; error = xfarray_sort(ra->free_records, xrep_bnobt_extent_cmp, 0); if (error) return error; while ((error = xfarray_iter(ra->free_records, &cur, &arec)) == 1) { if (arec.ar_startblock < next_agbno) return -EFSCORRUPTED; next_agbno = arec.ar_startblock + arec.ar_blockcount; } return error; } /* * Compare two free space extents by length and then block number. We want * to sort first in order of increasing length and then in order of increasing * block number. */ static int xrep_cntbt_extent_cmp( const void *a, const void *b) { const struct xfs_alloc_rec_incore *ap = a; const struct xfs_alloc_rec_incore *bp = b; if (ap->ar_blockcount > bp->ar_blockcount) return 1; else if (ap->ar_blockcount < bp->ar_blockcount) return -1; return xrep_bnobt_extent_cmp(a, b); } /* * Sort the free extents by length so so that we can put the records into the * cntbt in the correct order. Don't let userspace kill us if we're resorting * after allocating btree blocks. */ STATIC int xrep_cntbt_sort_records( struct xrep_abt *ra, bool is_resort) { return xfarray_sort(ra->free_records, xrep_cntbt_extent_cmp, is_resort ? 0 : XFARRAY_SORT_KILLABLE); } /* * Iterate all reverse mappings to find (1) the gaps between rmap records (all * unowned space), (2) the OWN_AG extents (which encompass the free space * btrees, the rmapbt, and the agfl), (3) the rmapbt blocks, and (4) the AGFL * blocks. The free space is (1) + (2) - (3) - (4). */ STATIC int xrep_abt_find_freespace( struct xrep_abt *ra) { struct xfs_scrub *sc = ra->sc; struct xfs_mount *mp = sc->mp; struct xfs_agf *agf = sc->sa.agf_bp->b_addr; struct xfs_buf *agfl_bp; xfs_agblock_t agend; int error; xagb_bitmap_init(&ra->not_allocbt_blocks); xrep_ag_btcur_init(sc, &sc->sa); /* * Iterate all the reverse mappings to find gaps in the physical * mappings, all the OWN_AG blocks, and all the rmapbt extents. */ error = xfs_rmap_query_all(sc->sa.rmap_cur, xrep_abt_walk_rmap, ra); if (error) goto err; /* Insert a record for space between the last rmap and EOAG. */ agend = be32_to_cpu(agf->agf_length); if (ra->next_agbno < agend) { error = xrep_abt_stash(ra, agend); if (error) goto err; } /* Collect all the AGFL blocks. */ error = xfs_alloc_read_agfl(sc->sa.pag, sc->tp, &agfl_bp); if (error) goto err; error = xfs_agfl_walk(mp, agf, agfl_bp, xrep_abt_walk_agfl, ra); if (error) goto err_agfl; /* Compute the old bnobt/cntbt blocks. */ error = xagb_bitmap_disunion(&ra->old_allocbt_blocks, &ra->not_allocbt_blocks); if (error) goto err_agfl; ra->nr_real_records = xfarray_length(ra->free_records); err_agfl: xfs_trans_brelse(sc->tp, agfl_bp); err: xchk_ag_btcur_free(&sc->sa); xagb_bitmap_destroy(&ra->not_allocbt_blocks); return error; } /* * We're going to use the observed free space records to reserve blocks for the * new free space btrees, so we play an iterative game where we try to converge * on the number of blocks we need: * * 1. Estimate how many blocks we'll need to store the records. * 2. If the first free record has more blocks than we need, we're done. * We will have to re-sort the records prior to building the cntbt. * 3. If that record has exactly the number of blocks we need, null out the * record. We're done. * 4. Otherwise, we still need more blocks. Null out the record, subtract its * length from the number of blocks we need, and go back to step 1. * * Fortunately, we don't have to do any transaction work to play this game, so * we don't have to tear down the staging cursors. */ STATIC int xrep_abt_reserve_space( struct xrep_abt *ra, struct xfs_btree_cur *bno_cur, struct xfs_btree_cur *cnt_cur, bool *needs_resort) { struct xfs_scrub *sc = ra->sc; xfarray_idx_t record_nr; unsigned int allocated = 0; int error = 0; record_nr = xfarray_length(ra->free_records) - 1; do { struct xfs_alloc_rec_incore arec; uint64_t required; unsigned int desired; unsigned int len; /* Compute how many blocks we'll need. */ error = xfs_btree_bload_compute_geometry(cnt_cur, &ra->new_cntbt.bload, ra->nr_real_records); if (error) break; error = xfs_btree_bload_compute_geometry(bno_cur, &ra->new_bnobt.bload, ra->nr_real_records); if (error) break; /* How many btree blocks do we need to store all records? */ required = ra->new_bnobt.bload.nr_blocks + ra->new_cntbt.bload.nr_blocks; ASSERT(required < INT_MAX); /* If we've reserved enough blocks, we're done. */ if (allocated >= required) break; desired = required - allocated; /* We need space but there's none left; bye! */ if (ra->nr_real_records == 0) { error = -ENOSPC; break; } /* Grab the first record from the list. */ error = xfarray_load(ra->free_records, record_nr, &arec); if (error) break; ASSERT(arec.ar_blockcount <= UINT_MAX); len = min_t(unsigned int, arec.ar_blockcount, desired); trace_xrep_newbt_alloc_ag_blocks(sc->mp, sc->sa.pag->pag_agno, arec.ar_startblock, len, XFS_RMAP_OWN_AG); error = xrep_newbt_add_extent(&ra->new_bnobt, sc->sa.pag, arec.ar_startblock, len); if (error) break; allocated += len; ra->nr_blocks -= len; if (arec.ar_blockcount > desired) { /* * Record has more space than we need. The number of * free records doesn't change, so shrink the free * record, inform the caller that the records are no * longer sorted by length, and exit. */ arec.ar_startblock += desired; arec.ar_blockcount -= desired; error = xfarray_store(ra->free_records, record_nr, &arec); if (error) break; *needs_resort = true; return 0; } /* * We're going to use up the entire record, so unset it and * move on to the next one. This changes the number of free * records (but doesn't break the sorting order), so we must * go around the loop once more to re-run _bload_init. */ error = xfarray_unset(ra->free_records, record_nr); if (error) break; ra->nr_real_records--; record_nr--; } while (1); return error; } STATIC int xrep_abt_dispose_one( struct xrep_abt *ra, struct xrep_newbt_resv *resv) { struct xfs_scrub *sc = ra->sc; struct xfs_perag *pag = sc->sa.pag; xfs_agblock_t free_agbno = resv->agbno + resv->used; xfs_extlen_t free_aglen = resv->len - resv->used; int error; ASSERT(pag == resv->pag); /* Add a deferred rmap for each extent we used. */ if (resv->used > 0) xfs_rmap_alloc_extent(sc->tp, pag->pag_agno, resv->agbno, resv->used, XFS_RMAP_OWN_AG); /* * For each reserved btree block we didn't use, add it to the free * space btree. We didn't touch fdblocks when we reserved them, so * we don't touch it now. */ if (free_aglen == 0) return 0; trace_xrep_newbt_free_blocks(sc->mp, resv->pag->pag_agno, free_agbno, free_aglen, ra->new_bnobt.oinfo.oi_owner); error = __xfs_free_extent(sc->tp, resv->pag, free_agbno, free_aglen, &ra->new_bnobt.oinfo, XFS_AG_RESV_IGNORE, true); if (error) return error; return xrep_defer_finish(sc); } /* * Deal with all the space we reserved. Blocks that were allocated for the * free space btrees need to have a (deferred) rmap added for the OWN_AG * allocation, and blocks that didn't get used can be freed via the usual * (deferred) means. */ STATIC void xrep_abt_dispose_reservations( struct xrep_abt *ra, int error) { struct xrep_newbt_resv *resv, *n; if (error) goto junkit; list_for_each_entry_safe(resv, n, &ra->new_bnobt.resv_list, list) { error = xrep_abt_dispose_one(ra, resv); if (error) goto junkit; } junkit: list_for_each_entry_safe(resv, n, &ra->new_bnobt.resv_list, list) { xfs_perag_put(resv->pag); list_del(&resv->list); kfree(resv); } xrep_newbt_cancel(&ra->new_bnobt); xrep_newbt_cancel(&ra->new_cntbt); } /* Retrieve free space data for bulk load. */ STATIC int xrep_abt_get_records( struct xfs_btree_cur *cur, unsigned int idx, struct xfs_btree_block *block, unsigned int nr_wanted, void *priv) { struct xfs_alloc_rec_incore *arec = &cur->bc_rec.a; struct xrep_abt *ra = priv; union xfs_btree_rec *block_rec; unsigned int loaded; int error; for (loaded = 0; loaded < nr_wanted; loaded++, idx++) { error = xfarray_load_next(ra->free_records, &ra->array_cur, arec); if (error) return error; ra->longest = max(ra->longest, arec->ar_blockcount); block_rec = xfs_btree_rec_addr(cur, idx, block); cur->bc_ops->init_rec_from_cur(cur, block_rec); } return loaded; } /* Feed one of the new btree blocks to the bulk loader. */ STATIC int xrep_abt_claim_block( struct xfs_btree_cur *cur, union xfs_btree_ptr *ptr, void *priv) { struct xrep_abt *ra = priv; return xrep_newbt_claim_block(cur, &ra->new_bnobt, ptr); } /* * Reset the AGF counters to reflect the free space btrees that we just * rebuilt, then reinitialize the per-AG data. */ STATIC int xrep_abt_reset_counters( struct xrep_abt *ra) { struct xfs_scrub *sc = ra->sc; struct xfs_perag *pag = sc->sa.pag; struct xfs_agf *agf = sc->sa.agf_bp->b_addr; unsigned int freesp_btreeblks = 0; /* * Compute the contribution to agf_btreeblks for the new free space * btrees. This is the computed btree size minus anything we didn't * use. */ freesp_btreeblks += ra->new_bnobt.bload.nr_blocks - 1; freesp_btreeblks += ra->new_cntbt.bload.nr_blocks - 1; freesp_btreeblks -= xrep_newbt_unused_blocks(&ra->new_bnobt); freesp_btreeblks -= xrep_newbt_unused_blocks(&ra->new_cntbt); /* * The AGF header contains extra information related to the free space * btrees, so we must update those fields here. */ agf->agf_btreeblks = cpu_to_be32(freesp_btreeblks + (be32_to_cpu(agf->agf_rmap_blocks) - 1)); agf->agf_freeblks = cpu_to_be32(ra->nr_blocks); agf->agf_longest = cpu_to_be32(ra->longest); xfs_alloc_log_agf(sc->tp, sc->sa.agf_bp, XFS_AGF_BTREEBLKS | XFS_AGF_LONGEST | XFS_AGF_FREEBLKS); /* * After we commit the new btree to disk, it is possible that the * process to reap the old btree blocks will race with the AIL trying * to checkpoint the old btree blocks into the filesystem. If the new * tree is shorter than the old one, the allocbt write verifier will * fail and the AIL will shut down the filesystem. * * To avoid this, save the old incore btree height values as the alt * height values before re-initializing the perag info from the updated * AGF to capture all the new values. */ pag->pagf_repair_levels[XFS_BTNUM_BNOi] = pag->pagf_levels[XFS_BTNUM_BNOi]; pag->pagf_repair_levels[XFS_BTNUM_CNTi] = pag->pagf_levels[XFS_BTNUM_CNTi]; /* Reinitialize with the values we just logged. */ return xrep_reinit_pagf(sc); } /* * Use the collected free space information to stage new free space btrees. * If this is successful we'll return with the new btree root * information logged to the repair transaction but not yet committed. */ STATIC int xrep_abt_build_new_trees( struct xrep_abt *ra) { struct xfs_scrub *sc = ra->sc; struct xfs_btree_cur *bno_cur; struct xfs_btree_cur *cnt_cur; struct xfs_perag *pag = sc->sa.pag; bool needs_resort = false; int error; /* * Sort the free extents by length so that we can set up the free space * btrees in as few extents as possible. This reduces the amount of * deferred rmap / free work we have to do at the end. */ error = xrep_cntbt_sort_records(ra, false); if (error) return error; /* * Prepare to construct the new btree by reserving disk space for the * new btree and setting up all the accounting information we'll need * to root the new btree while it's under construction and before we * attach it to the AG header. */ xrep_newbt_init_bare(&ra->new_bnobt, sc); xrep_newbt_init_bare(&ra->new_cntbt, sc); ra->new_bnobt.bload.get_records = xrep_abt_get_records; ra->new_cntbt.bload.get_records = xrep_abt_get_records; ra->new_bnobt.bload.claim_block = xrep_abt_claim_block; ra->new_cntbt.bload.claim_block = xrep_abt_claim_block; /* Allocate cursors for the staged btrees. */ bno_cur = xfs_allocbt_stage_cursor(sc->mp, &ra->new_bnobt.afake, pag, XFS_BTNUM_BNO); cnt_cur = xfs_allocbt_stage_cursor(sc->mp, &ra->new_cntbt.afake, pag, XFS_BTNUM_CNT); /* Last chance to abort before we start committing fixes. */ if (xchk_should_terminate(sc, &error)) goto err_cur; /* Reserve the space we'll need for the new btrees. */ error = xrep_abt_reserve_space(ra, bno_cur, cnt_cur, &needs_resort); if (error) goto err_cur; /* * If we need to re-sort the free extents by length, do so so that we * can put the records into the cntbt in the correct order. */ if (needs_resort) { error = xrep_cntbt_sort_records(ra, needs_resort); if (error) goto err_cur; } /* * Due to btree slack factors, it's possible for a new btree to be one * level taller than the old btree. Update the alternate incore btree * height so that we don't trip the verifiers when writing the new * btree blocks to disk. */ pag->pagf_repair_levels[XFS_BTNUM_BNOi] = ra->new_bnobt.bload.btree_height; pag->pagf_repair_levels[XFS_BTNUM_CNTi] = ra->new_cntbt.bload.btree_height; /* Load the free space by length tree. */ ra->array_cur = XFARRAY_CURSOR_INIT; ra->longest = 0; error = xfs_btree_bload(cnt_cur, &ra->new_cntbt.bload, ra); if (error) goto err_levels; error = xrep_bnobt_sort_records(ra); if (error) return error; /* Load the free space by block number tree. */ ra->array_cur = XFARRAY_CURSOR_INIT; error = xfs_btree_bload(bno_cur, &ra->new_bnobt.bload, ra); if (error) goto err_levels; /* * Install the new btrees in the AG header. After this point the old * btrees are no longer accessible and the new trees are live. */ xfs_allocbt_commit_staged_btree(bno_cur, sc->tp, sc->sa.agf_bp); xfs_btree_del_cursor(bno_cur, 0); xfs_allocbt_commit_staged_btree(cnt_cur, sc->tp, sc->sa.agf_bp); xfs_btree_del_cursor(cnt_cur, 0); /* Reset the AGF counters now that we've changed the btree shape. */ error = xrep_abt_reset_counters(ra); if (error) goto err_newbt; /* Dispose of any unused blocks and the accounting information. */ xrep_abt_dispose_reservations(ra, error); return xrep_roll_ag_trans(sc); err_levels: pag->pagf_repair_levels[XFS_BTNUM_BNOi] = 0; pag->pagf_repair_levels[XFS_BTNUM_CNTi] = 0; err_cur: xfs_btree_del_cursor(cnt_cur, error); xfs_btree_del_cursor(bno_cur, error); err_newbt: xrep_abt_dispose_reservations(ra, error); return error; } /* * Now that we've logged the roots of the new btrees, invalidate all of the * old blocks and free them. */ STATIC int xrep_abt_remove_old_trees( struct xrep_abt *ra) { struct xfs_perag *pag = ra->sc->sa.pag; int error; /* Free the old btree blocks if they're not in use. */ error = xrep_reap_agblocks(ra->sc, &ra->old_allocbt_blocks, &XFS_RMAP_OINFO_AG, XFS_AG_RESV_IGNORE); if (error) return error; /* * Now that we've zapped all the old allocbt blocks we can turn off * the alternate height mechanism. */ pag->pagf_repair_levels[XFS_BTNUM_BNOi] = 0; pag->pagf_repair_levels[XFS_BTNUM_CNTi] = 0; return 0; } /* Repair the freespace btrees for some AG. */ int xrep_allocbt( struct xfs_scrub *sc) { struct xrep_abt *ra; struct xfs_mount *mp = sc->mp; char *descr; int error; /* We require the rmapbt to rebuild anything. */ if (!xfs_has_rmapbt(mp)) return -EOPNOTSUPP; ra = kzalloc(sizeof(struct xrep_abt), XCHK_GFP_FLAGS); if (!ra) return -ENOMEM; ra->sc = sc; /* We rebuild both data structures. */ sc->sick_mask = XFS_SICK_AG_BNOBT | XFS_SICK_AG_CNTBT; /* * Make sure the busy extent list is clear because we can't put extents * on there twice. In theory we cleared this before we started, but * let's not risk the filesystem. */ if (!xfs_extent_busy_list_empty(sc->sa.pag)) { error = -EDEADLOCK; goto out_ra; } /* Set up enough storage to handle maximally fragmented free space. */ descr = xchk_xfile_ag_descr(sc, "free space records"); error = xfarray_create(descr, mp->m_sb.sb_agblocks / 2, sizeof(struct xfs_alloc_rec_incore), &ra->free_records); kfree(descr); if (error) goto out_ra; /* Collect the free space data and find the old btree blocks. */ xagb_bitmap_init(&ra->old_allocbt_blocks); error = xrep_abt_find_freespace(ra); if (error) goto out_bitmap; /* Rebuild the free space information. */ error = xrep_abt_build_new_trees(ra); if (error) goto out_bitmap; /* Kill the old trees. */ error = xrep_abt_remove_old_trees(ra); if (error) goto out_bitmap; out_bitmap: xagb_bitmap_destroy(&ra->old_allocbt_blocks); xfarray_destroy(ra->free_records); out_ra: kfree(ra); return error; } /* Make sure both btrees are ok after we've rebuilt them. */ int xrep_revalidate_allocbt( struct xfs_scrub *sc) { __u32 old_type = sc->sm->sm_type; int error; /* * We must update sm_type temporarily so that the tree-to-tree cross * reference checks will work in the correct direction, and also so * that tracing will report correctly if there are more errors. */ sc->sm->sm_type = XFS_SCRUB_TYPE_BNOBT; error = xchk_allocbt(sc); if (error) goto out; sc->sm->sm_type = XFS_SCRUB_TYPE_CNTBT; error = xchk_allocbt(sc); out: sc->sm->sm_type = old_type; return error; }