/* SPDX-License-Identifier: GPL-2.0 * * page_pool/helpers.h * Author: Jesper Dangaard Brouer * Copyright (C) 2016 Red Hat, Inc. */ /** * DOC: page_pool allocator * * The page_pool allocator is optimized for the XDP mode that * uses one frame per-page, but it can fallback on the * regular page allocator APIs. * * Basic use involves replacing alloc_pages() calls with the * page_pool_alloc_pages() call. Drivers should use * page_pool_dev_alloc_pages() replacing dev_alloc_pages(). * * The API keeps track of in-flight pages, in order to let API users know * when it is safe to free a page_pool object. Thus, API users * must call page_pool_put_page() to free the page, or attach * the page to a page_pool-aware object like skbs marked with * skb_mark_for_recycle(). * * API users must call page_pool_put_page() once on a page, as it * will either recycle the page, or in case of refcnt > 1, it will * release the DMA mapping and in-flight state accounting. */ #ifndef _NET_PAGE_POOL_HELPERS_H #define _NET_PAGE_POOL_HELPERS_H #include #ifdef CONFIG_PAGE_POOL_STATS int page_pool_ethtool_stats_get_count(void); u8 *page_pool_ethtool_stats_get_strings(u8 *data); u64 *page_pool_ethtool_stats_get(u64 *data, void *stats); /* * Drivers that wish to harvest page pool stats and report them to users * (perhaps via ethtool, debugfs, or another mechanism) can allocate a * struct page_pool_stats call page_pool_get_stats to get stats for the specified pool. */ bool page_pool_get_stats(struct page_pool *pool, struct page_pool_stats *stats); #else static inline int page_pool_ethtool_stats_get_count(void) { return 0; } static inline u8 *page_pool_ethtool_stats_get_strings(u8 *data) { return data; } static inline u64 *page_pool_ethtool_stats_get(u64 *data, void *stats) { return data; } #endif /** * page_pool_dev_alloc_pages() - allocate a page. * @pool: pool from which to allocate * * Get a page from the page allocator or page_pool caches. */ static inline struct page *page_pool_dev_alloc_pages(struct page_pool *pool) { gfp_t gfp = (GFP_ATOMIC | __GFP_NOWARN); return page_pool_alloc_pages(pool, gfp); } static inline struct page *page_pool_dev_alloc_frag(struct page_pool *pool, unsigned int *offset, unsigned int size) { gfp_t gfp = (GFP_ATOMIC | __GFP_NOWARN); return page_pool_alloc_frag(pool, offset, size, gfp); } /** * page_pool_get_dma_dir() - Retrieve the stored DMA direction. * @pool: pool from which page was allocated * * Get the stored dma direction. A driver might decide to store this locally * and avoid the extra cache line from page_pool to determine the direction. */ static inline enum dma_data_direction page_pool_get_dma_dir(struct page_pool *pool) { return pool->p.dma_dir; } /* pp_frag_count represents the number of writers who can update the page * either by updating skb->data or via DMA mappings for the device. * We can't rely on the page refcnt for that as we don't know who might be * holding page references and we can't reliably destroy or sync DMA mappings * of the fragments. * * When pp_frag_count reaches 0 we can either recycle the page if the page * refcnt is 1 or return it back to the memory allocator and destroy any * mappings we have. */ static inline void page_pool_fragment_page(struct page *page, long nr) { atomic_long_set(&page->pp_frag_count, nr); } static inline long page_pool_defrag_page(struct page *page, long nr) { long ret; /* If nr == pp_frag_count then we have cleared all remaining * references to the page. No need to actually overwrite it, instead * we can leave this to be overwritten by the calling function. * * The main advantage to doing this is that an atomic_read is * generally a much cheaper operation than an atomic update, * especially when dealing with a page that may be partitioned * into only 2 or 3 pieces. */ if (atomic_long_read(&page->pp_frag_count) == nr) return 0; ret = atomic_long_sub_return(nr, &page->pp_frag_count); WARN_ON(ret < 0); return ret; } static inline bool page_pool_is_last_frag(struct page_pool *pool, struct page *page) { /* If fragments aren't enabled or count is 0 we were the last user */ return !(pool->p.flags & PP_FLAG_PAGE_FRAG) || (page_pool_defrag_page(page, 1) == 0); } /** * page_pool_put_page() - release a reference to a page pool page * @pool: pool from which page was allocated * @page: page to release a reference on * @dma_sync_size: how much of the page may have been touched by the device * @allow_direct: released by the consumer, allow lockless caching * * The outcome of this depends on the page refcnt. If the driver bumps * the refcnt > 1 this will unmap the page. If the page refcnt is 1 * the allocator owns the page and will try to recycle it in one of the pool * caches. If PP_FLAG_DMA_SYNC_DEV is set, the page will be synced for_device * using dma_sync_single_range_for_device(). */ static inline void page_pool_put_page(struct page_pool *pool, struct page *page, unsigned int dma_sync_size, bool allow_direct) { /* When page_pool isn't compiled-in, net/core/xdp.c doesn't * allow registering MEM_TYPE_PAGE_POOL, but shield linker. */ #ifdef CONFIG_PAGE_POOL if (!page_pool_is_last_frag(pool, page)) return; page_pool_put_defragged_page(pool, page, dma_sync_size, allow_direct); #endif } /** * page_pool_put_full_page() - release a reference on a page pool page * @pool: pool from which page was allocated * @page: page to release a reference on * @allow_direct: released by the consumer, allow lockless caching * * Similar to page_pool_put_page(), but will DMA sync the entire memory area * as configured in &page_pool_params.max_len. */ static inline void page_pool_put_full_page(struct page_pool *pool, struct page *page, bool allow_direct) { page_pool_put_page(pool, page, -1, allow_direct); } /** * page_pool_recycle_direct() - release a reference on a page pool page * @pool: pool from which page was allocated * @page: page to release a reference on * * Similar to page_pool_put_full_page() but caller must guarantee safe context * (e.g NAPI), since it will recycle the page directly into the pool fast cache. */ static inline void page_pool_recycle_direct(struct page_pool *pool, struct page *page) { page_pool_put_full_page(pool, page, true); } #define PAGE_POOL_DMA_USE_PP_FRAG_COUNT \ (sizeof(dma_addr_t) > sizeof(unsigned long)) /** * page_pool_get_dma_addr() - Retrieve the stored DMA address. * @page: page allocated from a page pool * * Fetch the DMA address of the page. The page pool to which the page belongs * must had been created with PP_FLAG_DMA_MAP. */ static inline dma_addr_t page_pool_get_dma_addr(struct page *page) { dma_addr_t ret = page->dma_addr; if (PAGE_POOL_DMA_USE_PP_FRAG_COUNT) ret |= (dma_addr_t)page->dma_addr_upper << 16 << 16; return ret; } static inline void page_pool_set_dma_addr(struct page *page, dma_addr_t addr) { page->dma_addr = addr; if (PAGE_POOL_DMA_USE_PP_FRAG_COUNT) page->dma_addr_upper = upper_32_bits(addr); } static inline bool page_pool_put(struct page_pool *pool) { return refcount_dec_and_test(&pool->user_cnt); } static inline void page_pool_nid_changed(struct page_pool *pool, int new_nid) { if (unlikely(pool->p.nid != new_nid)) page_pool_update_nid(pool, new_nid); } #endif /* _NET_PAGE_POOL_HELPERS_H */