// SPDX-License-Identifier: GPL-2.0-only /* * jump label support * * Copyright (C) 2009 Jason Baron * Copyright (C) 2011 Peter Zijlstra * */ #include #include #include #include #include #include #include #include #include #include #include #include /* mutex to protect coming/going of the jump_label table */ static DEFINE_MUTEX(jump_label_mutex); void jump_label_lock(void) { mutex_lock(&jump_label_mutex); } void jump_label_unlock(void) { mutex_unlock(&jump_label_mutex); } static int jump_label_cmp(const void *a, const void *b) { const struct jump_entry *jea = a; const struct jump_entry *jeb = b; /* * Entrires are sorted by key. */ if (jump_entry_key(jea) < jump_entry_key(jeb)) return -1; if (jump_entry_key(jea) > jump_entry_key(jeb)) return 1; /* * In the batching mode, entries should also be sorted by the code * inside the already sorted list of entries, enabling a bsearch in * the vector. */ if (jump_entry_code(jea) < jump_entry_code(jeb)) return -1; if (jump_entry_code(jea) > jump_entry_code(jeb)) return 1; return 0; } static void jump_label_swap(void *a, void *b, int size) { long delta = (unsigned long)a - (unsigned long)b; struct jump_entry *jea = a; struct jump_entry *jeb = b; struct jump_entry tmp = *jea; jea->code = jeb->code - delta; jea->target = jeb->target - delta; jea->key = jeb->key - delta; jeb->code = tmp.code + delta; jeb->target = tmp.target + delta; jeb->key = tmp.key + delta; } static void jump_label_sort_entries(struct jump_entry *start, struct jump_entry *stop) { unsigned long size; void *swapfn = NULL; if (IS_ENABLED(CONFIG_HAVE_ARCH_JUMP_LABEL_RELATIVE)) swapfn = jump_label_swap; size = (((unsigned long)stop - (unsigned long)start) / sizeof(struct jump_entry)); sort(start, size, sizeof(struct jump_entry), jump_label_cmp, swapfn); } static void jump_label_update(struct static_key *key); /* * There are similar definitions for the !CONFIG_JUMP_LABEL case in jump_label.h. * The use of 'atomic_read()' requires atomic.h and its problematic for some * kernel headers such as kernel.h and others. Since static_key_count() is not * used in the branch statements as it is for the !CONFIG_JUMP_LABEL case its ok * to have it be a function here. Similarly, for 'static_key_enable()' and * 'static_key_disable()', which require bug.h. This should allow jump_label.h * to be included from most/all places for CONFIG_JUMP_LABEL. */ int static_key_count(struct static_key *key) { /* * -1 means the first static_key_slow_inc() is in progress. * static_key_enabled() must return true, so return 1 here. */ int n = atomic_read(&key->enabled); return n >= 0 ? n : 1; } EXPORT_SYMBOL_GPL(static_key_count); /* * static_key_fast_inc_not_disabled - adds a user for a static key * @key: static key that must be already enabled * * The caller must make sure that the static key can't get disabled while * in this function. It doesn't patch jump labels, only adds a user to * an already enabled static key. * * Returns true if the increment was done. Unlike refcount_t the ref counter * is not saturated, but will fail to increment on overflow. */ bool static_key_fast_inc_not_disabled(struct static_key *key) { int v; STATIC_KEY_CHECK_USE(key); /* * Negative key->enabled has a special meaning: it sends * static_key_slow_inc/dec() down the slow path, and it is non-zero * so it counts as "enabled" in jump_label_update(). Note that * atomic_inc_unless_negative() checks >= 0, so roll our own. */ v = atomic_read(&key->enabled); do { if (v <= 0 || (v + 1) < 0) return false; } while (!likely(atomic_try_cmpxchg(&key->enabled, &v, v + 1))); return true; } EXPORT_SYMBOL_GPL(static_key_fast_inc_not_disabled); bool static_key_slow_inc_cpuslocked(struct static_key *key) { lockdep_assert_cpus_held(); /* * Careful if we get concurrent static_key_slow_inc/dec() calls; * later calls must wait for the first one to _finish_ the * jump_label_update() process. At the same time, however, * the jump_label_update() call below wants to see * static_key_enabled(&key) for jumps to be updated properly. */ if (static_key_fast_inc_not_disabled(key)) return true; jump_label_lock(); if (atomic_read(&key->enabled) == 0) { atomic_set(&key->enabled, -1); jump_label_update(key); /* * Ensure that if the above cmpxchg loop observes our positive * value, it must also observe all the text changes. */ atomic_set_release(&key->enabled, 1); } else { if (WARN_ON_ONCE(!static_key_fast_inc_not_disabled(key))) { jump_label_unlock(); return false; } } jump_label_unlock(); return true; } bool static_key_slow_inc(struct static_key *key) { bool ret; cpus_read_lock(); ret = static_key_slow_inc_cpuslocked(key); cpus_read_unlock(); return ret; } EXPORT_SYMBOL_GPL(static_key_slow_inc); void static_key_enable_cpuslocked(struct static_key *key) { STATIC_KEY_CHECK_USE(key); lockdep_assert_cpus_held(); if (atomic_read(&key->enabled) > 0) { WARN_ON_ONCE(atomic_read(&key->enabled) != 1); return; } jump_label_lock(); if (atomic_read(&key->enabled) == 0) { atomic_set(&key->enabled, -1); jump_label_update(key); /* * See static_key_slow_inc(). */ atomic_set_release(&key->enabled, 1); } jump_label_unlock(); } EXPORT_SYMBOL_GPL(static_key_enable_cpuslocked); void static_key_enable(struct static_key *key) { cpus_read_lock(); static_key_enable_cpuslocked(key); cpus_read_unlock(); } EXPORT_SYMBOL_GPL(static_key_enable); void static_key_disable_cpuslocked(struct static_key *key) { STATIC_KEY_CHECK_USE(key); lockdep_assert_cpus_held(); if (atomic_read(&key->enabled) != 1) { WARN_ON_ONCE(atomic_read(&key->enabled) != 0); return; } jump_label_lock(); if (atomic_cmpxchg(&key->enabled, 1, 0) == 1) jump_label_update(key); jump_label_unlock(); } EXPORT_SYMBOL_GPL(static_key_disable_cpuslocked); void static_key_disable(struct static_key *key) { cpus_read_lock(); static_key_disable_cpuslocked(key); cpus_read_unlock(); } EXPORT_SYMBOL_GPL(static_key_disable); static bool static_key_slow_try_dec(struct static_key *key) { int v; /* * Go into the slow path if key::enabled is less than or equal than * one. One is valid to shut down the key, anything less than one * is an imbalance, which is handled at the call site. * * That includes the special case of '-1' which is set in * static_key_slow_inc_cpuslocked(), but that's harmless as it is * fully serialized in the slow path below. By the time this task * acquires the jump label lock the value is back to one and the * retry under the lock must succeed. */ v = atomic_read(&key->enabled); do { /* * Warn about the '-1' case though; since that means a * decrement is concurrent with a first (0->1) increment. IOW * people are trying to disable something that wasn't yet fully * enabled. This suggests an ordering problem on the user side. */ WARN_ON_ONCE(v < 0); if (v <= 1) return false; } while (!likely(atomic_try_cmpxchg(&key->enabled, &v, v - 1))); return true; } static void __static_key_slow_dec_cpuslocked(struct static_key *key) { lockdep_assert_cpus_held(); if (static_key_slow_try_dec(key)) return; guard(mutex)(&jump_label_mutex); if (atomic_cmpxchg(&key->enabled, 1, 0) == 1) jump_label_update(key); else WARN_ON_ONCE(!static_key_slow_try_dec(key)); } static void __static_key_slow_dec(struct static_key *key) { cpus_read_lock(); __static_key_slow_dec_cpuslocked(key); cpus_read_unlock(); } void jump_label_update_timeout(struct work_struct *work) { struct static_key_deferred *key = container_of(work, struct static_key_deferred, work.work); __static_key_slow_dec(&key->key); } EXPORT_SYMBOL_GPL(jump_label_update_timeout); void static_key_slow_dec(struct static_key *key) { STATIC_KEY_CHECK_USE(key); __static_key_slow_dec(key); } EXPORT_SYMBOL_GPL(static_key_slow_dec); void static_key_slow_dec_cpuslocked(struct static_key *key) { STATIC_KEY_CHECK_USE(key); __static_key_slow_dec_cpuslocked(key); } void __static_key_slow_dec_deferred(struct static_key *key, struct delayed_work *work, unsigned long timeout) { STATIC_KEY_CHECK_USE(key); if (static_key_slow_try_dec(key)) return; schedule_delayed_work(work, timeout); } EXPORT_SYMBOL_GPL(__static_key_slow_dec_deferred); void __static_key_deferred_flush(void *key, struct delayed_work *work) { STATIC_KEY_CHECK_USE(key); flush_delayed_work(work); } EXPORT_SYMBOL_GPL(__static_key_deferred_flush); void jump_label_rate_limit(struct static_key_deferred *key, unsigned long rl) { STATIC_KEY_CHECK_USE(key); key->timeout = rl; INIT_DELAYED_WORK(&key->work, jump_label_update_timeout); } EXPORT_SYMBOL_GPL(jump_label_rate_limit); static int addr_conflict(struct jump_entry *entry, void *start, void *end) { if (jump_entry_code(entry) <= (unsigned long)end && jump_entry_code(entry) + jump_entry_size(entry) > (unsigned long)start) return 1; return 0; } static int __jump_label_text_reserved(struct jump_entry *iter_start, struct jump_entry *iter_stop, void *start, void *end, bool init) { struct jump_entry *iter; iter = iter_start; while (iter < iter_stop) { if (init || !jump_entry_is_init(iter)) { if (addr_conflict(iter, start, end)) return 1; } iter++; } return 0; } #ifndef arch_jump_label_transform_static static void arch_jump_label_transform_static(struct jump_entry *entry, enum jump_label_type type) { /* nothing to do on most architectures */ } #endif static inline struct jump_entry *static_key_entries(struct static_key *key) { WARN_ON_ONCE(key->type & JUMP_TYPE_LINKED); return (struct jump_entry *)(key->type & ~JUMP_TYPE_MASK); } static inline bool static_key_type(struct static_key *key) { return key->type & JUMP_TYPE_TRUE; } static inline bool static_key_linked(struct static_key *key) { return key->type & JUMP_TYPE_LINKED; } static inline void static_key_clear_linked(struct static_key *key) { key->type &= ~JUMP_TYPE_LINKED; } static inline void static_key_set_linked(struct static_key *key) { key->type |= JUMP_TYPE_LINKED; } /*** * A 'struct static_key' uses a union such that it either points directly * to a table of 'struct jump_entry' or to a linked list of modules which in * turn point to 'struct jump_entry' tables. * * The two lower bits of the pointer are used to keep track of which pointer * type is in use and to store the initial branch direction, we use an access * function which preserves these bits. */ static void static_key_set_entries(struct static_key *key, struct jump_entry *entries) { unsigned long type; WARN_ON_ONCE((unsigned long)entries & JUMP_TYPE_MASK); type = key->type & JUMP_TYPE_MASK; key->entries = entries; key->type |= type; } static enum jump_label_type jump_label_type(struct jump_entry *entry) { struct static_key *key = jump_entry_key(entry); bool enabled = static_key_enabled(key); bool branch = jump_entry_is_branch(entry); /* See the comment in linux/jump_label.h */ return enabled ^ branch; } static bool jump_label_can_update(struct jump_entry *entry, bool init) { /* * Cannot update code that was in an init text area. */ if (!init && jump_entry_is_init(entry)) return false; if (!kernel_text_address(jump_entry_code(entry))) { /* * This skips patching built-in __exit, which * is part of init_section_contains() but is * not part of kernel_text_address(). * * Skipping built-in __exit is fine since it * will never be executed. */ WARN_ONCE(!jump_entry_is_init(entry), "can't patch jump_label at %pS", (void *)jump_entry_code(entry)); return false; } return true; } #ifndef HAVE_JUMP_LABEL_BATCH static void __jump_label_update(struct static_key *key, struct jump_entry *entry, struct jump_entry *stop, bool init) { for (; (entry < stop) && (jump_entry_key(entry) == key); entry++) { if (jump_label_can_update(entry, init)) arch_jump_label_transform(entry, jump_label_type(entry)); } } #else static void __jump_label_update(struct static_key *key, struct jump_entry *entry, struct jump_entry *stop, bool init) { for (; (entry < stop) && (jump_entry_key(entry) == key); entry++) { if (!jump_label_can_update(entry, init)) continue; if (!arch_jump_label_transform_queue(entry, jump_label_type(entry))) { /* * Queue is full: Apply the current queue and try again. */ arch_jump_label_transform_apply(); BUG_ON(!arch_jump_label_transform_queue(entry, jump_label_type(entry))); } } arch_jump_label_transform_apply(); } #endif void __init jump_label_init(void) { struct jump_entry *iter_start = __start___jump_table; struct jump_entry *iter_stop = __stop___jump_table; struct static_key *key = NULL; struct jump_entry *iter; /* * Since we are initializing the static_key.enabled field with * with the 'raw' int values (to avoid pulling in atomic.h) in * jump_label.h, let's make sure that is safe. There are only two * cases to check since we initialize to 0 or 1. */ BUILD_BUG_ON((int)ATOMIC_INIT(0) != 0); BUILD_BUG_ON((int)ATOMIC_INIT(1) != 1); if (static_key_initialized) return; cpus_read_lock(); jump_label_lock(); jump_label_sort_entries(iter_start, iter_stop); for (iter = iter_start; iter < iter_stop; iter++) { struct static_key *iterk; bool in_init; /* rewrite NOPs */ if (jump_label_type(iter) == JUMP_LABEL_NOP) arch_jump_label_transform_static(iter, JUMP_LABEL_NOP); in_init = init_section_contains((void *)jump_entry_code(iter), 1); jump_entry_set_init(iter, in_init); iterk = jump_entry_key(iter); if (iterk == key) continue; key = iterk; static_key_set_entries(key, iter); } static_key_initialized = true; jump_label_unlock(); cpus_read_unlock(); } static inline bool static_key_sealed(struct static_key *key) { return (key->type & JUMP_TYPE_LINKED) && !(key->type & ~JUMP_TYPE_MASK); } static inline void static_key_seal(struct static_key *key) { unsigned long type = key->type & JUMP_TYPE_TRUE; key->type = JUMP_TYPE_LINKED | type; } void jump_label_init_ro(void) { struct jump_entry *iter_start = __start___jump_table; struct jump_entry *iter_stop = __stop___jump_table; struct jump_entry *iter; if (WARN_ON_ONCE(!static_key_initialized)) return; cpus_read_lock(); jump_label_lock(); for (iter = iter_start; iter < iter_stop; iter++) { struct static_key *iterk = jump_entry_key(iter); if (!is_kernel_ro_after_init((unsigned long)iterk)) continue; if (static_key_sealed(iterk)) continue; static_key_seal(iterk); } jump_label_unlock(); cpus_read_unlock(); } #ifdef CONFIG_MODULES enum jump_label_type jump_label_init_type(struct jump_entry *entry) { struct static_key *key = jump_entry_key(entry); bool type = static_key_type(key); bool branch = jump_entry_is_branch(entry); /* See the comment in linux/jump_label.h */ return type ^ branch; } struct static_key_mod { struct static_key_mod *next; struct jump_entry *entries; struct module *mod; }; static inline struct static_key_mod *static_key_mod(struct static_key *key) { WARN_ON_ONCE(!static_key_linked(key)); return (struct static_key_mod *)(key->type & ~JUMP_TYPE_MASK); } /*** * key->type and key->next are the same via union. * This sets key->next and preserves the type bits. * * See additional comments above static_key_set_entries(). */ static void static_key_set_mod(struct static_key *key, struct static_key_mod *mod) { unsigned long type; WARN_ON_ONCE((unsigned long)mod & JUMP_TYPE_MASK); type = key->type & JUMP_TYPE_MASK; key->next = mod; key->type |= type; } static int __jump_label_mod_text_reserved(void *start, void *end) { struct module *mod; int ret; preempt_disable(); mod = __module_text_address((unsigned long)start); WARN_ON_ONCE(__module_text_address((unsigned long)end) != mod); if (!try_module_get(mod)) mod = NULL; preempt_enable(); if (!mod) return 0; ret = __jump_label_text_reserved(mod->jump_entries, mod->jump_entries + mod->num_jump_entries, start, end, mod->state == MODULE_STATE_COMING); module_put(mod); return ret; } static void __jump_label_mod_update(struct static_key *key) { struct static_key_mod *mod; for (mod = static_key_mod(key); mod; mod = mod->next) { struct jump_entry *stop; struct module *m; /* * NULL if the static_key is defined in a module * that does not use it */ if (!mod->entries) continue; m = mod->mod; if (!m) stop = __stop___jump_table; else stop = m->jump_entries + m->num_jump_entries; __jump_label_update(key, mod->entries, stop, m && m->state == MODULE_STATE_COMING); } } static int jump_label_add_module(struct module *mod) { struct jump_entry *iter_start = mod->jump_entries; struct jump_entry *iter_stop = iter_start + mod->num_jump_entries; struct jump_entry *iter; struct static_key *key = NULL; struct static_key_mod *jlm, *jlm2; /* if the module doesn't have jump label entries, just return */ if (iter_start == iter_stop) return 0; jump_label_sort_entries(iter_start, iter_stop); for (iter = iter_start; iter < iter_stop; iter++) { struct static_key *iterk; bool in_init; in_init = within_module_init(jump_entry_code(iter), mod); jump_entry_set_init(iter, in_init); iterk = jump_entry_key(iter); if (iterk == key) continue; key = iterk; if (within_module((unsigned long)key, mod)) { static_key_set_entries(key, iter); continue; } /* * If the key was sealed at init, then there's no need to keep a * reference to its module entries - just patch them now and be * done with it. */ if (static_key_sealed(key)) goto do_poke; jlm = kzalloc(sizeof(struct static_key_mod), GFP_KERNEL); if (!jlm) return -ENOMEM; if (!static_key_linked(key)) { jlm2 = kzalloc(sizeof(struct static_key_mod), GFP_KERNEL); if (!jlm2) { kfree(jlm); return -ENOMEM; } preempt_disable(); jlm2->mod = __module_address((unsigned long)key); preempt_enable(); jlm2->entries = static_key_entries(key); jlm2->next = NULL; static_key_set_mod(key, jlm2); static_key_set_linked(key); } jlm->mod = mod; jlm->entries = iter; jlm->next = static_key_mod(key); static_key_set_mod(key, jlm); static_key_set_linked(key); /* Only update if we've changed from our initial state */ do_poke: if (jump_label_type(iter) != jump_label_init_type(iter)) __jump_label_update(key, iter, iter_stop, true); } return 0; } static void jump_label_del_module(struct module *mod) { struct jump_entry *iter_start = mod->jump_entries; struct jump_entry *iter_stop = iter_start + mod->num_jump_entries; struct jump_entry *iter; struct static_key *key = NULL; struct static_key_mod *jlm, **prev; for (iter = iter_start; iter < iter_stop; iter++) { if (jump_entry_key(iter) == key) continue; key = jump_entry_key(iter); if (within_module((unsigned long)key, mod)) continue; /* No @jlm allocated because key was sealed at init. */ if (static_key_sealed(key)) continue; /* No memory during module load */ if (WARN_ON(!static_key_linked(key))) continue; prev = &key->next; jlm = static_key_mod(key); while (jlm && jlm->mod != mod) { prev = &jlm->next; jlm = jlm->next; } /* No memory during module load */ if (WARN_ON(!jlm)) continue; if (prev == &key->next) static_key_set_mod(key, jlm->next); else *prev = jlm->next; kfree(jlm); jlm = static_key_mod(key); /* if only one etry is left, fold it back into the static_key */ if (jlm->next == NULL) { static_key_set_entries(key, jlm->entries); static_key_clear_linked(key); kfree(jlm); } } } static int jump_label_module_notify(struct notifier_block *self, unsigned long val, void *data) { struct module *mod = data; int ret = 0; cpus_read_lock(); jump_label_lock(); switch (val) { case MODULE_STATE_COMING: ret = jump_label_add_module(mod); if (ret) { WARN(1, "Failed to allocate memory: jump_label may not work properly.\n"); jump_label_del_module(mod); } break; case MODULE_STATE_GOING: jump_label_del_module(mod); break; } jump_label_unlock(); cpus_read_unlock(); return notifier_from_errno(ret); } static struct notifier_block jump_label_module_nb = { .notifier_call = jump_label_module_notify, .priority = 1, /* higher than tracepoints */ }; static __init int jump_label_init_module(void) { return register_module_notifier(&jump_label_module_nb); } early_initcall(jump_label_init_module); #endif /* CONFIG_MODULES */ /*** * jump_label_text_reserved - check if addr range is reserved * @start: start text addr * @end: end text addr * * checks if the text addr located between @start and @end * overlaps with any of the jump label patch addresses. Code * that wants to modify kernel text should first verify that * it does not overlap with any of the jump label addresses. * Caller must hold jump_label_mutex. * * returns 1 if there is an overlap, 0 otherwise */ int jump_label_text_reserved(void *start, void *end) { bool init = system_state < SYSTEM_RUNNING; int ret = __jump_label_text_reserved(__start___jump_table, __stop___jump_table, start, end, init); if (ret) return ret; #ifdef CONFIG_MODULES ret = __jump_label_mod_text_reserved(start, end); #endif return ret; } static void jump_label_update(struct static_key *key) { struct jump_entry *stop = __stop___jump_table; bool init = system_state < SYSTEM_RUNNING; struct jump_entry *entry; #ifdef CONFIG_MODULES struct module *mod; if (static_key_linked(key)) { __jump_label_mod_update(key); return; } preempt_disable(); mod = __module_address((unsigned long)key); if (mod) { stop = mod->jump_entries + mod->num_jump_entries; init = mod->state == MODULE_STATE_COMING; } preempt_enable(); #endif entry = static_key_entries(key); /* if there are no users, entry can be NULL */ if (entry) __jump_label_update(key, entry, stop, init); } #ifdef CONFIG_STATIC_KEYS_SELFTEST static DEFINE_STATIC_KEY_TRUE(sk_true); static DEFINE_STATIC_KEY_FALSE(sk_false); static __init int jump_label_test(void) { int i; for (i = 0; i < 2; i++) { WARN_ON(static_key_enabled(&sk_true.key) != true); WARN_ON(static_key_enabled(&sk_false.key) != false); WARN_ON(!static_branch_likely(&sk_true)); WARN_ON(!static_branch_unlikely(&sk_true)); WARN_ON(static_branch_likely(&sk_false)); WARN_ON(static_branch_unlikely(&sk_false)); static_branch_disable(&sk_true); static_branch_enable(&sk_false); WARN_ON(static_key_enabled(&sk_true.key) == true); WARN_ON(static_key_enabled(&sk_false.key) == false); WARN_ON(static_branch_likely(&sk_true)); WARN_ON(static_branch_unlikely(&sk_true)); WARN_ON(!static_branch_likely(&sk_false)); WARN_ON(!static_branch_unlikely(&sk_false)); static_branch_enable(&sk_true); static_branch_disable(&sk_false); } return 0; } early_initcall(jump_label_test); #endif /* STATIC_KEYS_SELFTEST */