// SPDX-License-Identifier: GPL-2.0-or-later /* * (Tentative) USB Audio Driver for ALSA * * Mixer control part * * Copyright (c) 2002 by Takashi Iwai * * Many codes borrowed from audio.c by * Alan Cox (alan@lxorguk.ukuu.org.uk) * Thomas Sailer (sailer@ife.ee.ethz.ch) */ /* * TODOs, for both the mixer and the streaming interfaces: * * - support for UAC2 effect units * - support for graphical equalizers * - RANGE and MEM set commands (UAC2) * - RANGE and MEM interrupt dispatchers (UAC2) * - audio channel clustering (UAC2) * - audio sample rate converter units (UAC2) * - proper handling of clock multipliers (UAC2) * - dispatch clock change notifications (UAC2) * - stop PCM streams which use a clock that became invalid * - stop PCM streams which use a clock selector that has changed * - parse available sample rates again when clock sources changed */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include "usbaudio.h" #include "mixer.h" #include "helper.h" #include "mixer_quirks.h" #include "power.h" #define MAX_ID_ELEMS 256 struct usb_audio_term { int id; int type; int channels; unsigned int chconfig; int name; }; struct usbmix_name_map; struct mixer_build { struct snd_usb_audio *chip; struct usb_mixer_interface *mixer; unsigned char *buffer; unsigned int buflen; DECLARE_BITMAP(unitbitmap, MAX_ID_ELEMS); DECLARE_BITMAP(termbitmap, MAX_ID_ELEMS); struct usb_audio_term oterm; const struct usbmix_name_map *map; const struct usbmix_selector_map *selector_map; }; /*E-mu 0202/0404/0204 eXtension Unit(XU) control*/ enum { USB_XU_CLOCK_RATE = 0xe301, USB_XU_CLOCK_SOURCE = 0xe302, USB_XU_DIGITAL_IO_STATUS = 0xe303, USB_XU_DEVICE_OPTIONS = 0xe304, USB_XU_DIRECT_MONITORING = 0xe305, USB_XU_METERING = 0xe306 }; enum { USB_XU_CLOCK_SOURCE_SELECTOR = 0x02, /* clock source*/ USB_XU_CLOCK_RATE_SELECTOR = 0x03, /* clock rate */ USB_XU_DIGITAL_FORMAT_SELECTOR = 0x01, /* the spdif format */ USB_XU_SOFT_LIMIT_SELECTOR = 0x03 /* soft limiter */ }; /* * manual mapping of mixer names * if the mixer topology is too complicated and the parsed names are * ambiguous, add the entries in usbmixer_maps.c. */ #include "mixer_maps.c" static const struct usbmix_name_map * find_map(const struct usbmix_name_map *p, int unitid, int control) { if (!p) return NULL; for (; p->id; p++) { if (p->id == unitid && (!control || !p->control || control == p->control)) return p; } return NULL; } /* get the mapped name if the unit matches */ static int check_mapped_name(const struct usbmix_name_map *p, char *buf, int buflen) { int len; if (!p || !p->name) return 0; buflen--; len = strscpy(buf, p->name, buflen); return len < 0 ? buflen : len; } /* ignore the error value if ignore_ctl_error flag is set */ #define filter_error(cval, err) \ ((cval)->head.mixer->ignore_ctl_error ? 0 : (err)) /* check whether the control should be ignored */ static inline int check_ignored_ctl(const struct usbmix_name_map *p) { if (!p || p->name || p->dB) return 0; return 1; } /* dB mapping */ static inline void check_mapped_dB(const struct usbmix_name_map *p, struct usb_mixer_elem_info *cval) { if (p && p->dB) { cval->dBmin = p->dB->min; cval->dBmax = p->dB->max; cval->min_mute = p->dB->min_mute; cval->initialized = 1; } } /* get the mapped selector source name */ static int check_mapped_selector_name(struct mixer_build *state, int unitid, int index, char *buf, int buflen) { const struct usbmix_selector_map *p; int len; if (!state->selector_map) return 0; for (p = state->selector_map; p->id; p++) { if (p->id == unitid && index < p->count) { len = strscpy(buf, p->names[index], buflen); return len < 0 ? buflen : len; } } return 0; } /* * find an audio control unit with the given unit id */ static void *find_audio_control_unit(struct mixer_build *state, unsigned char unit) { /* we just parse the header */ struct uac_feature_unit_descriptor *hdr = NULL; while ((hdr = snd_usb_find_desc(state->buffer, state->buflen, hdr, USB_DT_CS_INTERFACE)) != NULL) { if (hdr->bLength >= 4 && hdr->bDescriptorSubtype >= UAC_INPUT_TERMINAL && hdr->bDescriptorSubtype <= UAC3_SAMPLE_RATE_CONVERTER && hdr->bUnitID == unit) return hdr; } return NULL; } /* * copy a string with the given id */ static int snd_usb_copy_string_desc(struct snd_usb_audio *chip, int index, char *buf, int maxlen) { int len = usb_string(chip->dev, index, buf, maxlen - 1); if (len < 0) return 0; buf[len] = 0; return len; } /* * convert from the byte/word on usb descriptor to the zero-based integer */ static int convert_signed_value(struct usb_mixer_elem_info *cval, int val) { switch (cval->val_type) { case USB_MIXER_BOOLEAN: return !!val; case USB_MIXER_INV_BOOLEAN: return !val; case USB_MIXER_U8: val &= 0xff; break; case USB_MIXER_S8: val &= 0xff; if (val >= 0x80) val -= 0x100; break; case USB_MIXER_U16: val &= 0xffff; break; case USB_MIXER_S16: val &= 0xffff; if (val >= 0x8000) val -= 0x10000; break; } return val; } /* * convert from the zero-based int to the byte/word for usb descriptor */ static int convert_bytes_value(struct usb_mixer_elem_info *cval, int val) { switch (cval->val_type) { case USB_MIXER_BOOLEAN: return !!val; case USB_MIXER_INV_BOOLEAN: return !val; case USB_MIXER_S8: case USB_MIXER_U8: return val & 0xff; case USB_MIXER_S16: case USB_MIXER_U16: return val & 0xffff; } return 0; /* not reached */ } static int get_relative_value(struct usb_mixer_elem_info *cval, int val) { if (!cval->res) cval->res = 1; if (val < cval->min) return 0; else if (val >= cval->max) return DIV_ROUND_UP(cval->max - cval->min, cval->res); else return (val - cval->min) / cval->res; } static int get_abs_value(struct usb_mixer_elem_info *cval, int val) { if (val < 0) return cval->min; if (!cval->res) cval->res = 1; val *= cval->res; val += cval->min; if (val > cval->max) return cval->max; return val; } static int uac2_ctl_value_size(int val_type) { switch (val_type) { case USB_MIXER_S32: case USB_MIXER_U32: return 4; case USB_MIXER_S16: case USB_MIXER_U16: return 2; default: return 1; } return 0; /* unreachable */ } /* * retrieve a mixer value */ static inline int mixer_ctrl_intf(struct usb_mixer_interface *mixer) { return get_iface_desc(mixer->hostif)->bInterfaceNumber; } static int get_ctl_value_v1(struct usb_mixer_elem_info *cval, int request, int validx, int *value_ret) { struct snd_usb_audio *chip = cval->head.mixer->chip; unsigned char buf[2]; int val_len = cval->val_type >= USB_MIXER_S16 ? 2 : 1; int timeout = 10; int idx = 0, err; err = snd_usb_lock_shutdown(chip); if (err < 0) return -EIO; while (timeout-- > 0) { idx = mixer_ctrl_intf(cval->head.mixer) | (cval->head.id << 8); err = snd_usb_ctl_msg(chip->dev, usb_rcvctrlpipe(chip->dev, 0), request, USB_RECIP_INTERFACE | USB_TYPE_CLASS | USB_DIR_IN, validx, idx, buf, val_len); if (err >= val_len) { *value_ret = convert_signed_value(cval, snd_usb_combine_bytes(buf, val_len)); err = 0; goto out; } else if (err == -ETIMEDOUT) { goto out; } } usb_audio_dbg(chip, "cannot get ctl value: req = %#x, wValue = %#x, wIndex = %#x, type = %d\n", request, validx, idx, cval->val_type); err = -EINVAL; out: snd_usb_unlock_shutdown(chip); return err; } static int get_ctl_value_v2(struct usb_mixer_elem_info *cval, int request, int validx, int *value_ret) { struct snd_usb_audio *chip = cval->head.mixer->chip; /* enough space for one range */ unsigned char buf[sizeof(__u16) + 3 * sizeof(__u32)]; unsigned char *val; int idx = 0, ret, val_size, size; __u8 bRequest; val_size = uac2_ctl_value_size(cval->val_type); if (request == UAC_GET_CUR) { bRequest = UAC2_CS_CUR; size = val_size; } else { bRequest = UAC2_CS_RANGE; size = sizeof(__u16) + 3 * val_size; } memset(buf, 0, sizeof(buf)); if (snd_usb_lock_shutdown(chip)) return -EIO; idx = mixer_ctrl_intf(cval->head.mixer) | (cval->head.id << 8); ret = snd_usb_ctl_msg(chip->dev, usb_rcvctrlpipe(chip->dev, 0), bRequest, USB_RECIP_INTERFACE | USB_TYPE_CLASS | USB_DIR_IN, validx, idx, buf, size); snd_usb_unlock_shutdown(chip); if (ret < 0) { usb_audio_dbg(chip, "cannot get ctl value: req = %#x, wValue = %#x, wIndex = %#x, type = %d\n", request, validx, idx, cval->val_type); return ret; } /* FIXME: how should we handle multiple triplets here? */ switch (request) { case UAC_GET_CUR: val = buf; break; case UAC_GET_MIN: val = buf + sizeof(__u16); break; case UAC_GET_MAX: val = buf + sizeof(__u16) + val_size; break; case UAC_GET_RES: val = buf + sizeof(__u16) + val_size * 2; break; default: return -EINVAL; } *value_ret = convert_signed_value(cval, snd_usb_combine_bytes(val, val_size)); return 0; } static int get_ctl_value(struct usb_mixer_elem_info *cval, int request, int validx, int *value_ret) { validx += cval->idx_off; return (cval->head.mixer->protocol == UAC_VERSION_1) ? get_ctl_value_v1(cval, request, validx, value_ret) : get_ctl_value_v2(cval, request, validx, value_ret); } static int get_cur_ctl_value(struct usb_mixer_elem_info *cval, int validx, int *value) { return get_ctl_value(cval, UAC_GET_CUR, validx, value); } /* channel = 0: master, 1 = first channel */ static inline int get_cur_mix_raw(struct usb_mixer_elem_info *cval, int channel, int *value) { return get_ctl_value(cval, UAC_GET_CUR, (cval->control << 8) | channel, value); } int snd_usb_get_cur_mix_value(struct usb_mixer_elem_info *cval, int channel, int index, int *value) { int err; if (cval->cached & (1 << channel)) { *value = cval->cache_val[index]; return 0; } err = get_cur_mix_raw(cval, channel, value); if (err < 0) { if (!cval->head.mixer->ignore_ctl_error) usb_audio_dbg(cval->head.mixer->chip, "cannot get current value for control %d ch %d: err = %d\n", cval->control, channel, err); return err; } cval->cached |= 1 << channel; cval->cache_val[index] = *value; return 0; } /* * set a mixer value */ int snd_usb_mixer_set_ctl_value(struct usb_mixer_elem_info *cval, int request, int validx, int value_set) { struct snd_usb_audio *chip = cval->head.mixer->chip; unsigned char buf[4]; int idx = 0, val_len, err, timeout = 10; validx += cval->idx_off; if (cval->head.mixer->protocol == UAC_VERSION_1) { val_len = cval->val_type >= USB_MIXER_S16 ? 2 : 1; } else { /* UAC_VERSION_2/3 */ val_len = uac2_ctl_value_size(cval->val_type); /* FIXME */ if (request != UAC_SET_CUR) { usb_audio_dbg(chip, "RANGE setting not yet supported\n"); return -EINVAL; } request = UAC2_CS_CUR; } value_set = convert_bytes_value(cval, value_set); buf[0] = value_set & 0xff; buf[1] = (value_set >> 8) & 0xff; buf[2] = (value_set >> 16) & 0xff; buf[3] = (value_set >> 24) & 0xff; err = snd_usb_lock_shutdown(chip); if (err < 0) return -EIO; while (timeout-- > 0) { idx = mixer_ctrl_intf(cval->head.mixer) | (cval->head.id << 8); err = snd_usb_ctl_msg(chip->dev, usb_sndctrlpipe(chip->dev, 0), request, USB_RECIP_INTERFACE | USB_TYPE_CLASS | USB_DIR_OUT, validx, idx, buf, val_len); if (err >= 0) { err = 0; goto out; } else if (err == -ETIMEDOUT) { goto out; } } usb_audio_dbg(chip, "cannot set ctl value: req = %#x, wValue = %#x, wIndex = %#x, type = %d, data = %#x/%#x\n", request, validx, idx, cval->val_type, buf[0], buf[1]); err = -EINVAL; out: snd_usb_unlock_shutdown(chip); return err; } static int set_cur_ctl_value(struct usb_mixer_elem_info *cval, int validx, int value) { return snd_usb_mixer_set_ctl_value(cval, UAC_SET_CUR, validx, value); } int snd_usb_set_cur_mix_value(struct usb_mixer_elem_info *cval, int channel, int index, int value) { int err; unsigned int read_only = (channel == 0) ? cval->master_readonly : cval->ch_readonly & (1 << (channel - 1)); if (read_only) { usb_audio_dbg(cval->head.mixer->chip, "%s(): channel %d of control %d is read_only\n", __func__, channel, cval->control); return 0; } err = snd_usb_mixer_set_ctl_value(cval, UAC_SET_CUR, (cval->control << 8) | channel, value); if (err < 0) return err; cval->cached |= 1 << channel; cval->cache_val[index] = value; return 0; } /* * TLV callback for mixer volume controls */ int snd_usb_mixer_vol_tlv(struct snd_kcontrol *kcontrol, int op_flag, unsigned int size, unsigned int __user *_tlv) { struct usb_mixer_elem_info *cval = kcontrol->private_data; DECLARE_TLV_DB_MINMAX(scale, 0, 0); if (size < sizeof(scale)) return -ENOMEM; if (cval->min_mute) scale[0] = SNDRV_CTL_TLVT_DB_MINMAX_MUTE; scale[2] = cval->dBmin; scale[3] = cval->dBmax; if (copy_to_user(_tlv, scale, sizeof(scale))) return -EFAULT; return 0; } /* * parser routines begin here... */ static int parse_audio_unit(struct mixer_build *state, int unitid); /* * check if the input/output channel routing is enabled on the given bitmap. * used for mixer unit parser */ static int check_matrix_bitmap(unsigned char *bmap, int ich, int och, int num_outs) { int idx = ich * num_outs + och; return bmap[idx >> 3] & (0x80 >> (idx & 7)); } /* * add an alsa control element * search and increment the index until an empty slot is found. * * if failed, give up and free the control instance. */ int snd_usb_mixer_add_list(struct usb_mixer_elem_list *list, struct snd_kcontrol *kctl, bool is_std_info) { struct usb_mixer_interface *mixer = list->mixer; int err; while (snd_ctl_find_id(mixer->chip->card, &kctl->id)) kctl->id.index++; err = snd_ctl_add(mixer->chip->card, kctl); if (err < 0) { usb_audio_dbg(mixer->chip, "cannot add control (err = %d)\n", err); return err; } list->kctl = kctl; list->is_std_info = is_std_info; list->next_id_elem = mixer->id_elems[list->id]; mixer->id_elems[list->id] = list; return 0; } /* * get a terminal name string */ static struct iterm_name_combo { int type; char *name; } iterm_names[] = { { 0x0300, "Output" }, { 0x0301, "Speaker" }, { 0x0302, "Headphone" }, { 0x0303, "HMD Audio" }, { 0x0304, "Desktop Speaker" }, { 0x0305, "Room Speaker" }, { 0x0306, "Com Speaker" }, { 0x0307, "LFE" }, { 0x0600, "External In" }, { 0x0601, "Analog In" }, { 0x0602, "Digital In" }, { 0x0603, "Line" }, { 0x0604, "Legacy In" }, { 0x0605, "IEC958 In" }, { 0x0606, "1394 DA Stream" }, { 0x0607, "1394 DV Stream" }, { 0x0700, "Embedded" }, { 0x0701, "Noise Source" }, { 0x0702, "Equalization Noise" }, { 0x0703, "CD" }, { 0x0704, "DAT" }, { 0x0705, "DCC" }, { 0x0706, "MiniDisk" }, { 0x0707, "Analog Tape" }, { 0x0708, "Phonograph" }, { 0x0709, "VCR Audio" }, { 0x070a, "Video Disk Audio" }, { 0x070b, "DVD Audio" }, { 0x070c, "TV Tuner Audio" }, { 0x070d, "Satellite Rec Audio" }, { 0x070e, "Cable Tuner Audio" }, { 0x070f, "DSS Audio" }, { 0x0710, "Radio Receiver" }, { 0x0711, "Radio Transmitter" }, { 0x0712, "Multi-Track Recorder" }, { 0x0713, "Synthesizer" }, { 0 }, }; static int get_term_name(struct snd_usb_audio *chip, struct usb_audio_term *iterm, unsigned char *name, int maxlen, int term_only) { struct iterm_name_combo *names; int len; if (iterm->name) { len = snd_usb_copy_string_desc(chip, iterm->name, name, maxlen); if (len) return len; } /* virtual type - not a real terminal */ if (iterm->type >> 16) { if (term_only) return 0; switch (iterm->type >> 16) { case UAC3_SELECTOR_UNIT: strcpy(name, "Selector"); return 8; case UAC3_PROCESSING_UNIT: strcpy(name, "Process Unit"); return 12; case UAC3_EXTENSION_UNIT: strcpy(name, "Ext Unit"); return 8; case UAC3_MIXER_UNIT: strcpy(name, "Mixer"); return 5; default: return sprintf(name, "Unit %d", iterm->id); } } switch (iterm->type & 0xff00) { case 0x0100: strcpy(name, "PCM"); return 3; case 0x0200: strcpy(name, "Mic"); return 3; case 0x0400: strcpy(name, "Headset"); return 7; case 0x0500: strcpy(name, "Phone"); return 5; } for (names = iterm_names; names->type; names++) { if (names->type == iterm->type) { strcpy(name, names->name); return strlen(names->name); } } return 0; } /* * Get logical cluster information for UAC3 devices. */ static int get_cluster_channels_v3(struct mixer_build *state, unsigned int cluster_id) { struct uac3_cluster_header_descriptor c_header; int err; err = snd_usb_ctl_msg(state->chip->dev, usb_rcvctrlpipe(state->chip->dev, 0), UAC3_CS_REQ_HIGH_CAPABILITY_DESCRIPTOR, USB_RECIP_INTERFACE | USB_TYPE_CLASS | USB_DIR_IN, cluster_id, snd_usb_ctrl_intf(state->chip), &c_header, sizeof(c_header)); if (err < 0) goto error; if (err != sizeof(c_header)) { err = -EIO; goto error; } return c_header.bNrChannels; error: usb_audio_err(state->chip, "cannot request logical cluster ID: %d (err: %d)\n", cluster_id, err); return err; } /* * Get number of channels for a Mixer Unit. */ static int uac_mixer_unit_get_channels(struct mixer_build *state, struct uac_mixer_unit_descriptor *desc) { int mu_channels; switch (state->mixer->protocol) { case UAC_VERSION_1: case UAC_VERSION_2: default: if (desc->bLength < sizeof(*desc) + desc->bNrInPins + 1) return 0; /* no bmControls -> skip */ mu_channels = uac_mixer_unit_bNrChannels(desc); break; case UAC_VERSION_3: mu_channels = get_cluster_channels_v3(state, uac3_mixer_unit_wClusterDescrID(desc)); break; } return mu_channels; } /* * Parse Input Terminal Unit */ static int __check_input_term(struct mixer_build *state, int id, struct usb_audio_term *term); static int parse_term_uac1_iterm_unit(struct mixer_build *state, struct usb_audio_term *term, void *p1, int id) { struct uac_input_terminal_descriptor *d = p1; term->type = le16_to_cpu(d->wTerminalType); term->channels = d->bNrChannels; term->chconfig = le16_to_cpu(d->wChannelConfig); term->name = d->iTerminal; return 0; } static int parse_term_uac2_iterm_unit(struct mixer_build *state, struct usb_audio_term *term, void *p1, int id) { struct uac2_input_terminal_descriptor *d = p1; int err; /* call recursively to verify the referenced clock entity */ err = __check_input_term(state, d->bCSourceID, term); if (err < 0) return err; /* save input term properties after recursion, * to ensure they are not overriden by the recursion calls */ term->id = id; term->type = le16_to_cpu(d->wTerminalType); term->channels = d->bNrChannels; term->chconfig = le32_to_cpu(d->bmChannelConfig); term->name = d->iTerminal; return 0; } static int parse_term_uac3_iterm_unit(struct mixer_build *state, struct usb_audio_term *term, void *p1, int id) { struct uac3_input_terminal_descriptor *d = p1; int err; /* call recursively to verify the referenced clock entity */ err = __check_input_term(state, d->bCSourceID, term); if (err < 0) return err; /* save input term properties after recursion, * to ensure they are not overriden by the recursion calls */ term->id = id; term->type = le16_to_cpu(d->wTerminalType); err = get_cluster_channels_v3(state, le16_to_cpu(d->wClusterDescrID)); if (err < 0) return err; term->channels = err; /* REVISIT: UAC3 IT doesn't have channels cfg */ term->chconfig = 0; term->name = le16_to_cpu(d->wTerminalDescrStr); return 0; } static int parse_term_mixer_unit(struct mixer_build *state, struct usb_audio_term *term, void *p1, int id) { struct uac_mixer_unit_descriptor *d = p1; int protocol = state->mixer->protocol; int err; err = uac_mixer_unit_get_channels(state, d); if (err <= 0) return err; term->type = UAC3_MIXER_UNIT << 16; /* virtual type */ term->channels = err; if (protocol != UAC_VERSION_3) { term->chconfig = uac_mixer_unit_wChannelConfig(d, protocol); term->name = uac_mixer_unit_iMixer(d); } return 0; } static int parse_term_selector_unit(struct mixer_build *state, struct usb_audio_term *term, void *p1, int id) { struct uac_selector_unit_descriptor *d = p1; int err; /* call recursively to retrieve the channel info */ err = __check_input_term(state, d->baSourceID[0], term); if (err < 0) return err; term->type = UAC3_SELECTOR_UNIT << 16; /* virtual type */ term->id = id; if (state->mixer->protocol != UAC_VERSION_3) term->name = uac_selector_unit_iSelector(d); return 0; } static int parse_term_proc_unit(struct mixer_build *state, struct usb_audio_term *term, void *p1, int id, int vtype) { struct uac_processing_unit_descriptor *d = p1; int protocol = state->mixer->protocol; int err; if (d->bNrInPins) { /* call recursively to retrieve the channel info */ err = __check_input_term(state, d->baSourceID[0], term); if (err < 0) return err; } term->type = vtype << 16; /* virtual type */ term->id = id; if (protocol == UAC_VERSION_3) return 0; if (!term->channels) { term->channels = uac_processing_unit_bNrChannels(d); term->chconfig = uac_processing_unit_wChannelConfig(d, protocol); } term->name = uac_processing_unit_iProcessing(d, protocol); return 0; } static int parse_term_effect_unit(struct mixer_build *state, struct usb_audio_term *term, void *p1, int id) { struct uac2_effect_unit_descriptor *d = p1; int err; err = __check_input_term(state, d->bSourceID, term); if (err < 0) return err; term->type = UAC3_EFFECT_UNIT << 16; /* virtual type */ term->id = id; return 0; } static int parse_term_uac2_clock_source(struct mixer_build *state, struct usb_audio_term *term, void *p1, int id) { struct uac_clock_source_descriptor *d = p1; term->type = UAC3_CLOCK_SOURCE << 16; /* virtual type */ term->id = id; term->name = d->iClockSource; return 0; } static int parse_term_uac3_clock_source(struct mixer_build *state, struct usb_audio_term *term, void *p1, int id) { struct uac3_clock_source_descriptor *d = p1; term->type = UAC3_CLOCK_SOURCE << 16; /* virtual type */ term->id = id; term->name = le16_to_cpu(d->wClockSourceStr); return 0; } #define PTYPE(a, b) ((a) << 8 | (b)) /* * parse the source unit recursively until it reaches to a terminal * or a branched unit. */ static int __check_input_term(struct mixer_build *state, int id, struct usb_audio_term *term) { int protocol = state->mixer->protocol; void *p1; unsigned char *hdr; for (;;) { /* a loop in the terminal chain? */ if (test_and_set_bit(id, state->termbitmap)) return -EINVAL; p1 = find_audio_control_unit(state, id); if (!p1) break; if (!snd_usb_validate_audio_desc(p1, protocol)) break; /* bad descriptor */ hdr = p1; term->id = id; switch (PTYPE(protocol, hdr[2])) { case PTYPE(UAC_VERSION_1, UAC_FEATURE_UNIT): case PTYPE(UAC_VERSION_2, UAC_FEATURE_UNIT): case PTYPE(UAC_VERSION_3, UAC3_FEATURE_UNIT): { /* the header is the same for all versions */ struct uac_feature_unit_descriptor *d = p1; id = d->bSourceID; break; /* continue to parse */ } case PTYPE(UAC_VERSION_1, UAC_INPUT_TERMINAL): return parse_term_uac1_iterm_unit(state, term, p1, id); case PTYPE(UAC_VERSION_2, UAC_INPUT_TERMINAL): return parse_term_uac2_iterm_unit(state, term, p1, id); case PTYPE(UAC_VERSION_3, UAC_INPUT_TERMINAL): return parse_term_uac3_iterm_unit(state, term, p1, id); case PTYPE(UAC_VERSION_1, UAC_MIXER_UNIT): case PTYPE(UAC_VERSION_2, UAC_MIXER_UNIT): case PTYPE(UAC_VERSION_3, UAC3_MIXER_UNIT): return parse_term_mixer_unit(state, term, p1, id); case PTYPE(UAC_VERSION_1, UAC_SELECTOR_UNIT): case PTYPE(UAC_VERSION_2, UAC_SELECTOR_UNIT): case PTYPE(UAC_VERSION_2, UAC2_CLOCK_SELECTOR): case PTYPE(UAC_VERSION_3, UAC3_SELECTOR_UNIT): case PTYPE(UAC_VERSION_3, UAC3_CLOCK_SELECTOR): return parse_term_selector_unit(state, term, p1, id); case PTYPE(UAC_VERSION_1, UAC1_PROCESSING_UNIT): case PTYPE(UAC_VERSION_2, UAC2_PROCESSING_UNIT_V2): case PTYPE(UAC_VERSION_3, UAC3_PROCESSING_UNIT): return parse_term_proc_unit(state, term, p1, id, UAC3_PROCESSING_UNIT); case PTYPE(UAC_VERSION_2, UAC2_EFFECT_UNIT): case PTYPE(UAC_VERSION_3, UAC3_EFFECT_UNIT): return parse_term_effect_unit(state, term, p1, id); case PTYPE(UAC_VERSION_1, UAC1_EXTENSION_UNIT): case PTYPE(UAC_VERSION_2, UAC2_EXTENSION_UNIT_V2): case PTYPE(UAC_VERSION_3, UAC3_EXTENSION_UNIT): return parse_term_proc_unit(state, term, p1, id, UAC3_EXTENSION_UNIT); case PTYPE(UAC_VERSION_2, UAC2_CLOCK_SOURCE): return parse_term_uac2_clock_source(state, term, p1, id); case PTYPE(UAC_VERSION_3, UAC3_CLOCK_SOURCE): return parse_term_uac3_clock_source(state, term, p1, id); default: return -ENODEV; } } return -ENODEV; } static int check_input_term(struct mixer_build *state, int id, struct usb_audio_term *term) { memset(term, 0, sizeof(*term)); memset(state->termbitmap, 0, sizeof(state->termbitmap)); return __check_input_term(state, id, term); } /* * Feature Unit */ /* feature unit control information */ struct usb_feature_control_info { int control; const char *name; int type; /* data type for uac1 */ int type_uac2; /* data type for uac2 if different from uac1, else -1 */ }; static const struct usb_feature_control_info audio_feature_info[] = { { UAC_FU_MUTE, "Mute", USB_MIXER_INV_BOOLEAN, -1 }, { UAC_FU_VOLUME, "Volume", USB_MIXER_S16, -1 }, { UAC_FU_BASS, "Tone Control - Bass", USB_MIXER_S8, -1 }, { UAC_FU_MID, "Tone Control - Mid", USB_MIXER_S8, -1 }, { UAC_FU_TREBLE, "Tone Control - Treble", USB_MIXER_S8, -1 }, { UAC_FU_GRAPHIC_EQUALIZER, "Graphic Equalizer", USB_MIXER_S8, -1 }, /* FIXME: not implemented yet */ { UAC_FU_AUTOMATIC_GAIN, "Auto Gain Control", USB_MIXER_BOOLEAN, -1 }, { UAC_FU_DELAY, "Delay Control", USB_MIXER_U16, USB_MIXER_U32 }, { UAC_FU_BASS_BOOST, "Bass Boost", USB_MIXER_BOOLEAN, -1 }, { UAC_FU_LOUDNESS, "Loudness", USB_MIXER_BOOLEAN, -1 }, /* UAC2 specific */ { UAC2_FU_INPUT_GAIN, "Input Gain Control", USB_MIXER_S16, -1 }, { UAC2_FU_INPUT_GAIN_PAD, "Input Gain Pad Control", USB_MIXER_S16, -1 }, { UAC2_FU_PHASE_INVERTER, "Phase Inverter Control", USB_MIXER_BOOLEAN, -1 }, }; static void usb_mixer_elem_info_free(struct usb_mixer_elem_info *cval) { kfree(cval); } /* private_free callback */ void snd_usb_mixer_elem_free(struct snd_kcontrol *kctl) { usb_mixer_elem_info_free(kctl->private_data); kctl->private_data = NULL; } /* * interface to ALSA control for feature/mixer units */ /* volume control quirks */ static void volume_control_quirks(struct usb_mixer_elem_info *cval, struct snd_kcontrol *kctl) { struct snd_usb_audio *chip = cval->head.mixer->chip; switch (chip->usb_id) { case USB_ID(0x0763, 0x2030): /* M-Audio Fast Track C400 */ case USB_ID(0x0763, 0x2031): /* M-Audio Fast Track C600 */ if (strcmp(kctl->id.name, "Effect Duration") == 0) { cval->min = 0x0000; cval->max = 0xffff; cval->res = 0x00e6; break; } if (strcmp(kctl->id.name, "Effect Volume") == 0 || strcmp(kctl->id.name, "Effect Feedback Volume") == 0) { cval->min = 0x00; cval->max = 0xff; break; } if (strstr(kctl->id.name, "Effect Return") != NULL) { cval->min = 0xb706; cval->max = 0xff7b; cval->res = 0x0073; break; } if ((strstr(kctl->id.name, "Playback Volume") != NULL) || (strstr(kctl->id.name, "Effect Send") != NULL)) { cval->min = 0xb5fb; /* -73 dB = 0xb6ff */ cval->max = 0xfcfe; cval->res = 0x0073; } break; case USB_ID(0x0763, 0x2081): /* M-Audio Fast Track Ultra 8R */ case USB_ID(0x0763, 0x2080): /* M-Audio Fast Track Ultra */ if (strcmp(kctl->id.name, "Effect Duration") == 0) { usb_audio_info(chip, "set quirk for FTU Effect Duration\n"); cval->min = 0x0000; cval->max = 0x7f00; cval->res = 0x0100; break; } if (strcmp(kctl->id.name, "Effect Volume") == 0 || strcmp(kctl->id.name, "Effect Feedback Volume") == 0) { usb_audio_info(chip, "set quirks for FTU Effect Feedback/Volume\n"); cval->min = 0x00; cval->max = 0x7f; break; } break; case USB_ID(0x0d8c, 0x0103): if (!strcmp(kctl->id.name, "PCM Playback Volume")) { usb_audio_info(chip, "set volume quirk for CM102-A+/102S+\n"); cval->min = -256; } break; case USB_ID(0x0471, 0x0101): case USB_ID(0x0471, 0x0104): case USB_ID(0x0471, 0x0105): case USB_ID(0x0672, 0x1041): /* quirk for UDA1321/N101. * note that detection between firmware 2.1.1.7 (N101) * and later 2.1.1.21 is not very clear from datasheets. * I hope that the min value is -15360 for newer firmware --jk */ if (!strcmp(kctl->id.name, "PCM Playback Volume") && cval->min == -15616) { usb_audio_info(chip, "set volume quirk for UDA1321/N101 chip\n"); cval->max = -256; } break; case USB_ID(0x046d, 0x09a4): if (!strcmp(kctl->id.name, "Mic Capture Volume")) { usb_audio_info(chip, "set volume quirk for QuickCam E3500\n"); cval->min = 6080; cval->max = 8768; cval->res = 192; } break; case USB_ID(0x046d, 0x0807): /* Logitech Webcam C500 */ case USB_ID(0x046d, 0x0808): case USB_ID(0x046d, 0x0809): case USB_ID(0x046d, 0x0819): /* Logitech Webcam C210 */ case USB_ID(0x046d, 0x081b): /* HD Webcam c310 */ case USB_ID(0x046d, 0x081d): /* HD Webcam c510 */ case USB_ID(0x046d, 0x0825): /* HD Webcam c270 */ case USB_ID(0x046d, 0x0826): /* HD Webcam c525 */ case USB_ID(0x046d, 0x08ca): /* Logitech Quickcam Fusion */ case USB_ID(0x046d, 0x0991): case USB_ID(0x046d, 0x09a2): /* QuickCam Communicate Deluxe/S7500 */ /* Most audio usb devices lie about volume resolution. * Most Logitech webcams have res = 384. * Probably there is some logitech magic behind this number --fishor */ if (!strcmp(kctl->id.name, "Mic Capture Volume")) { usb_audio_info(chip, "set resolution quirk: cval->res = 384\n"); cval->res = 384; } break; case USB_ID(0x0495, 0x3042): /* ESS Technology Asus USB DAC */ if ((strstr(kctl->id.name, "Playback Volume") != NULL) || strstr(kctl->id.name, "Capture Volume") != NULL) { cval->min >>= 8; cval->max = 0; cval->res = 1; } break; case USB_ID(0x1224, 0x2a25): /* Jieli Technology USB PHY 2.0 */ if (!strcmp(kctl->id.name, "Mic Capture Volume")) { usb_audio_info(chip, "set resolution quirk: cval->res = 16\n"); cval->res = 16; } break; case USB_ID(0x1bcf, 0x2283): /* NexiGo N930AF FHD Webcam */ if (!strcmp(kctl->id.name, "Mic Capture Volume")) { usb_audio_info(chip, "set resolution quirk: cval->res = 16\n"); cval->res = 16; } break; case USB_ID(0x1bcf, 0x2281): /* HD Webcam */ if (!strcmp(kctl->id.name, "Mic Capture Volume")) { usb_audio_info(chip, "set resolution quirk: cval->res = 16\n"); cval->res = 16; } break; } } /* forcibly initialize the current mixer value; if GET_CUR fails, set to * the minimum as default */ static void init_cur_mix_raw(struct usb_mixer_elem_info *cval, int ch, int idx) { int val, err; err = snd_usb_get_cur_mix_value(cval, ch, idx, &val); if (!err) return; if (!cval->head.mixer->ignore_ctl_error) usb_audio_warn(cval->head.mixer->chip, "%d:%d: failed to get current value for ch %d (%d)\n", cval->head.id, mixer_ctrl_intf(cval->head.mixer), ch, err); snd_usb_set_cur_mix_value(cval, ch, idx, cval->min); } /* * retrieve the minimum and maximum values for the specified control */ static int get_min_max_with_quirks(struct usb_mixer_elem_info *cval, int default_min, struct snd_kcontrol *kctl) { int i, idx; /* for failsafe */ cval->min = default_min; cval->max = cval->min + 1; cval->res = 1; cval->dBmin = cval->dBmax = 0; if (cval->val_type == USB_MIXER_BOOLEAN || cval->val_type == USB_MIXER_INV_BOOLEAN) { cval->initialized = 1; } else { int minchn = 0; if (cval->cmask) { for (i = 0; i < MAX_CHANNELS; i++) if (cval->cmask & (1 << i)) { minchn = i + 1; break; } } if (get_ctl_value(cval, UAC_GET_MAX, (cval->control << 8) | minchn, &cval->max) < 0 || get_ctl_value(cval, UAC_GET_MIN, (cval->control << 8) | minchn, &cval->min) < 0) { usb_audio_err(cval->head.mixer->chip, "%d:%d: cannot get min/max values for control %d (id %d)\n", cval->head.id, mixer_ctrl_intf(cval->head.mixer), cval->control, cval->head.id); return -EINVAL; } if (get_ctl_value(cval, UAC_GET_RES, (cval->control << 8) | minchn, &cval->res) < 0) { cval->res = 1; } else if (cval->head.mixer->protocol == UAC_VERSION_1) { int last_valid_res = cval->res; while (cval->res > 1) { if (snd_usb_mixer_set_ctl_value(cval, UAC_SET_RES, (cval->control << 8) | minchn, cval->res / 2) < 0) break; cval->res /= 2; } if (get_ctl_value(cval, UAC_GET_RES, (cval->control << 8) | minchn, &cval->res) < 0) cval->res = last_valid_res; } if (cval->res == 0) cval->res = 1; /* Additional checks for the proper resolution * * Some devices report smaller resolutions than actually * reacting. They don't return errors but simply clip * to the lower aligned value. */ if (cval->min + cval->res < cval->max) { int last_valid_res = cval->res; int saved, test, check; if (get_cur_mix_raw(cval, minchn, &saved) < 0) goto no_res_check; for (;;) { test = saved; if (test < cval->max) test += cval->res; else test -= cval->res; if (test < cval->min || test > cval->max || snd_usb_set_cur_mix_value(cval, minchn, 0, test) || get_cur_mix_raw(cval, minchn, &check)) { cval->res = last_valid_res; break; } if (test == check) break; cval->res *= 2; } snd_usb_set_cur_mix_value(cval, minchn, 0, saved); } no_res_check: cval->initialized = 1; } if (kctl) volume_control_quirks(cval, kctl); /* USB descriptions contain the dB scale in 1/256 dB unit * while ALSA TLV contains in 1/100 dB unit */ cval->dBmin = (convert_signed_value(cval, cval->min) * 100) / 256; cval->dBmax = (convert_signed_value(cval, cval->max) * 100) / 256; if (cval->dBmin > cval->dBmax) { /* something is wrong; assume it's either from/to 0dB */ if (cval->dBmin < 0) cval->dBmax = 0; else if (cval->dBmin > 0) cval->dBmin = 0; if (cval->dBmin > cval->dBmax) { /* totally crap, return an error */ return -EINVAL; } } else { /* if the max volume is too low, it's likely a bogus range; * here we use -96dB as the threshold */ if (cval->dBmax <= -9600) { usb_audio_info(cval->head.mixer->chip, "%d:%d: bogus dB values (%d/%d), disabling dB reporting\n", cval->head.id, mixer_ctrl_intf(cval->head.mixer), cval->dBmin, cval->dBmax); cval->dBmin = cval->dBmax = 0; } } /* initialize all elements */ if (!cval->cmask) { init_cur_mix_raw(cval, 0, 0); } else { idx = 0; for (i = 0; i < MAX_CHANNELS; i++) { if (cval->cmask & (1 << i)) { init_cur_mix_raw(cval, i + 1, idx); idx++; } } } return 0; } #define get_min_max(cval, def) get_min_max_with_quirks(cval, def, NULL) /* get a feature/mixer unit info */ static int mixer_ctl_feature_info(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_info *uinfo) { struct usb_mixer_elem_info *cval = kcontrol->private_data; if (cval->val_type == USB_MIXER_BOOLEAN || cval->val_type == USB_MIXER_INV_BOOLEAN) uinfo->type = SNDRV_CTL_ELEM_TYPE_BOOLEAN; else uinfo->type = SNDRV_CTL_ELEM_TYPE_INTEGER; uinfo->count = cval->channels; if (cval->val_type == USB_MIXER_BOOLEAN || cval->val_type == USB_MIXER_INV_BOOLEAN) { uinfo->value.integer.min = 0; uinfo->value.integer.max = 1; } else { if (!cval->initialized) { get_min_max_with_quirks(cval, 0, kcontrol); if (cval->initialized && cval->dBmin >= cval->dBmax) { kcontrol->vd[0].access &= ~(SNDRV_CTL_ELEM_ACCESS_TLV_READ | SNDRV_CTL_ELEM_ACCESS_TLV_CALLBACK); snd_ctl_notify(cval->head.mixer->chip->card, SNDRV_CTL_EVENT_MASK_INFO, &kcontrol->id); } } uinfo->value.integer.min = 0; uinfo->value.integer.max = DIV_ROUND_UP(cval->max - cval->min, cval->res); } return 0; } /* get the current value from feature/mixer unit */ static int mixer_ctl_feature_get(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol) { struct usb_mixer_elem_info *cval = kcontrol->private_data; int c, cnt, val, err; ucontrol->value.integer.value[0] = cval->min; if (cval->cmask) { cnt = 0; for (c = 0; c < MAX_CHANNELS; c++) { if (!(cval->cmask & (1 << c))) continue; err = snd_usb_get_cur_mix_value(cval, c + 1, cnt, &val); if (err < 0) return filter_error(cval, err); val = get_relative_value(cval, val); ucontrol->value.integer.value[cnt] = val; cnt++; } return 0; } else { /* master channel */ err = snd_usb_get_cur_mix_value(cval, 0, 0, &val); if (err < 0) return filter_error(cval, err); val = get_relative_value(cval, val); ucontrol->value.integer.value[0] = val; } return 0; } /* put the current value to feature/mixer unit */ static int mixer_ctl_feature_put(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol) { struct usb_mixer_elem_info *cval = kcontrol->private_data; int c, cnt, val, oval, err; int changed = 0; if (cval->cmask) { cnt = 0; for (c = 0; c < MAX_CHANNELS; c++) { if (!(cval->cmask & (1 << c))) continue; err = snd_usb_get_cur_mix_value(cval, c + 1, cnt, &oval); if (err < 0) return filter_error(cval, err); val = ucontrol->value.integer.value[cnt]; val = get_abs_value(cval, val); if (oval != val) { snd_usb_set_cur_mix_value(cval, c + 1, cnt, val); changed = 1; } cnt++; } } else { /* master channel */ err = snd_usb_get_cur_mix_value(cval, 0, 0, &oval); if (err < 0) return filter_error(cval, err); val = ucontrol->value.integer.value[0]; val = get_abs_value(cval, val); if (val != oval) { snd_usb_set_cur_mix_value(cval, 0, 0, val); changed = 1; } } return changed; } /* get the boolean value from the master channel of a UAC control */ static int mixer_ctl_master_bool_get(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol) { struct usb_mixer_elem_info *cval = kcontrol->private_data; int val, err; err = snd_usb_get_cur_mix_value(cval, 0, 0, &val); if (err < 0) return filter_error(cval, err); val = (val != 0); ucontrol->value.integer.value[0] = val; return 0; } static int get_connector_value(struct usb_mixer_elem_info *cval, char *name, int *val) { struct snd_usb_audio *chip = cval->head.mixer->chip; int idx = 0, validx, ret; validx = cval->control << 8 | 0; ret = snd_usb_lock_shutdown(chip) ? -EIO : 0; if (ret) goto error; idx = mixer_ctrl_intf(cval->head.mixer) | (cval->head.id << 8); if (cval->head.mixer->protocol == UAC_VERSION_2) { struct uac2_connectors_ctl_blk uac2_conn; ret = snd_usb_ctl_msg(chip->dev, usb_rcvctrlpipe(chip->dev, 0), UAC2_CS_CUR, USB_RECIP_INTERFACE | USB_TYPE_CLASS | USB_DIR_IN, validx, idx, &uac2_conn, sizeof(uac2_conn)); if (val) *val = !!uac2_conn.bNrChannels; } else { /* UAC_VERSION_3 */ struct uac3_insertion_ctl_blk uac3_conn; ret = snd_usb_ctl_msg(chip->dev, usb_rcvctrlpipe(chip->dev, 0), UAC2_CS_CUR, USB_RECIP_INTERFACE | USB_TYPE_CLASS | USB_DIR_IN, validx, idx, &uac3_conn, sizeof(uac3_conn)); if (val) *val = !!uac3_conn.bmConInserted; } snd_usb_unlock_shutdown(chip); if (ret < 0) { if (name && strstr(name, "Speaker")) { if (val) *val = 1; return 0; } error: usb_audio_err(chip, "cannot get connectors status: req = %#x, wValue = %#x, wIndex = %#x, type = %d\n", UAC_GET_CUR, validx, idx, cval->val_type); if (val) *val = 0; return filter_error(cval, ret); } return ret; } /* get the connectors status and report it as boolean type */ static int mixer_ctl_connector_get(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol) { struct usb_mixer_elem_info *cval = kcontrol->private_data; int ret, val; ret = get_connector_value(cval, kcontrol->id.name, &val); if (ret < 0) return ret; ucontrol->value.integer.value[0] = val; return 0; } static const struct snd_kcontrol_new usb_feature_unit_ctl = { .iface = SNDRV_CTL_ELEM_IFACE_MIXER, .name = "", /* will be filled later manually */ .info = mixer_ctl_feature_info, .get = mixer_ctl_feature_get, .put = mixer_ctl_feature_put, }; /* the read-only variant */ static const struct snd_kcontrol_new usb_feature_unit_ctl_ro = { .iface = SNDRV_CTL_ELEM_IFACE_MIXER, .name = "", /* will be filled later manually */ .info = mixer_ctl_feature_info, .get = mixer_ctl_feature_get, .put = NULL, }; /* * A control which shows the boolean value from reading a UAC control on * the master channel. */ static const struct snd_kcontrol_new usb_bool_master_control_ctl_ro = { .iface = SNDRV_CTL_ELEM_IFACE_CARD, .name = "", /* will be filled later manually */ .access = SNDRV_CTL_ELEM_ACCESS_READ, .info = snd_ctl_boolean_mono_info, .get = mixer_ctl_master_bool_get, .put = NULL, }; static const struct snd_kcontrol_new usb_connector_ctl_ro = { .iface = SNDRV_CTL_ELEM_IFACE_CARD, .name = "", /* will be filled later manually */ .access = SNDRV_CTL_ELEM_ACCESS_READ, .info = snd_ctl_boolean_mono_info, .get = mixer_ctl_connector_get, .put = NULL, }; /* * This symbol is exported in order to allow the mixer quirks to * hook up to the standard feature unit control mechanism */ const struct snd_kcontrol_new *snd_usb_feature_unit_ctl = &usb_feature_unit_ctl; /* * build a feature control */ static size_t append_ctl_name(struct snd_kcontrol *kctl, const char *str) { return strlcat(kctl->id.name, str, sizeof(kctl->id.name)); } /* * A lot of headsets/headphones have a "Speaker" mixer. Make sure we * rename it to "Headphone". We determine if something is a headphone * similar to how udev determines form factor. */ static void check_no_speaker_on_headset(struct snd_kcontrol *kctl, struct snd_card *card) { static const char * const names_to_check[] = { "Headset", "headset", "Headphone", "headphone", NULL}; const char * const *s; bool found = false; if (strcmp("Speaker", kctl->id.name)) return; for (s = names_to_check; *s; s++) if (strstr(card->shortname, *s)) { found = true; break; } if (!found) return; snd_ctl_rename(card, kctl, "Headphone"); } static const struct usb_feature_control_info *get_feature_control_info(int control) { int i; for (i = 0; i < ARRAY_SIZE(audio_feature_info); ++i) { if (audio_feature_info[i].control == control) return &audio_feature_info[i]; } return NULL; } static void __build_feature_ctl(struct usb_mixer_interface *mixer, const struct usbmix_name_map *imap, unsigned int ctl_mask, int control, struct usb_audio_term *iterm, struct usb_audio_term *oterm, int unitid, int nameid, int readonly_mask) { const struct usb_feature_control_info *ctl_info; unsigned int len = 0; int mapped_name = 0; struct snd_kcontrol *kctl; struct usb_mixer_elem_info *cval; const struct usbmix_name_map *map; unsigned int range; if (control == UAC_FU_GRAPHIC_EQUALIZER) { /* FIXME: not supported yet */ return; } map = find_map(imap, unitid, control); if (check_ignored_ctl(map)) return; cval = kzalloc(sizeof(*cval), GFP_KERNEL); if (!cval) return; snd_usb_mixer_elem_init_std(&cval->head, mixer, unitid); cval->control = control; cval->cmask = ctl_mask; ctl_info = get_feature_control_info(control); if (!ctl_info) { usb_mixer_elem_info_free(cval); return; } if (mixer->protocol == UAC_VERSION_1) cval->val_type = ctl_info->type; else /* UAC_VERSION_2 */ cval->val_type = ctl_info->type_uac2 >= 0 ? ctl_info->type_uac2 : ctl_info->type; if (ctl_mask == 0) { cval->channels = 1; /* master channel */ cval->master_readonly = readonly_mask; } else { int i, c = 0; for (i = 0; i < 16; i++) if (ctl_mask & (1 << i)) c++; cval->channels = c; cval->ch_readonly = readonly_mask; } /* * If all channels in the mask are marked read-only, make the control * read-only. snd_usb_set_cur_mix_value() will check the mask again and won't * issue write commands to read-only channels. */ if (cval->channels == readonly_mask) kctl = snd_ctl_new1(&usb_feature_unit_ctl_ro, cval); else kctl = snd_ctl_new1(&usb_feature_unit_ctl, cval); if (!kctl) { usb_audio_err(mixer->chip, "cannot malloc kcontrol\n"); usb_mixer_elem_info_free(cval); return; } kctl->private_free = snd_usb_mixer_elem_free; len = check_mapped_name(map, kctl->id.name, sizeof(kctl->id.name)); mapped_name = len != 0; if (!len && nameid) len = snd_usb_copy_string_desc(mixer->chip, nameid, kctl->id.name, sizeof(kctl->id.name)); switch (control) { case UAC_FU_MUTE: case UAC_FU_VOLUME: /* * determine the control name. the rule is: * - if a name id is given in descriptor, use it. * - if the connected input can be determined, then use the name * of terminal type. * - if the connected output can be determined, use it. * - otherwise, anonymous name. */ if (!len) { if (iterm) len = get_term_name(mixer->chip, iterm, kctl->id.name, sizeof(kctl->id.name), 1); if (!len && oterm) len = get_term_name(mixer->chip, oterm, kctl->id.name, sizeof(kctl->id.name), 1); if (!len) snprintf(kctl->id.name, sizeof(kctl->id.name), "Feature %d", unitid); } if (!mapped_name) check_no_speaker_on_headset(kctl, mixer->chip->card); /* * determine the stream direction: * if the connected output is USB stream, then it's likely a * capture stream. otherwise it should be playback (hopefully :) */ if (!mapped_name && oterm && !(oterm->type >> 16)) { if ((oterm->type & 0xff00) == 0x0100) append_ctl_name(kctl, " Capture"); else append_ctl_name(kctl, " Playback"); } append_ctl_name(kctl, control == UAC_FU_MUTE ? " Switch" : " Volume"); break; default: if (!len) strscpy(kctl->id.name, audio_feature_info[control-1].name, sizeof(kctl->id.name)); break; } /* get min/max values */ get_min_max_with_quirks(cval, 0, kctl); /* skip a bogus volume range */ if (cval->max <= cval->min) { usb_audio_dbg(mixer->chip, "[%d] FU [%s] skipped due to invalid volume\n", cval->head.id, kctl->id.name); snd_ctl_free_one(kctl); return; } if (control == UAC_FU_VOLUME) { check_mapped_dB(map, cval); if (cval->dBmin < cval->dBmax || !cval->initialized) { kctl->tlv.c = snd_usb_mixer_vol_tlv; kctl->vd[0].access |= SNDRV_CTL_ELEM_ACCESS_TLV_READ | SNDRV_CTL_ELEM_ACCESS_TLV_CALLBACK; } } snd_usb_mixer_fu_apply_quirk(mixer, cval, unitid, kctl); range = (cval->max - cval->min) / cval->res; /* * Are there devices with volume range more than 255? I use a bit more * to be sure. 384 is a resolution magic number found on Logitech * devices. It will definitively catch all buggy Logitech devices. */ if (range > 384) { usb_audio_warn(mixer->chip, "Warning! Unlikely big volume range (=%u), cval->res is probably wrong.", range); usb_audio_warn(mixer->chip, "[%d] FU [%s] ch = %d, val = %d/%d/%d", cval->head.id, kctl->id.name, cval->channels, cval->min, cval->max, cval->res); } usb_audio_dbg(mixer->chip, "[%d] FU [%s] ch = %d, val = %d/%d/%d\n", cval->head.id, kctl->id.name, cval->channels, cval->min, cval->max, cval->res); snd_usb_mixer_add_control(&cval->head, kctl); } static void build_feature_ctl(struct mixer_build *state, void *raw_desc, unsigned int ctl_mask, int control, struct usb_audio_term *iterm, int unitid, int readonly_mask) { struct uac_feature_unit_descriptor *desc = raw_desc; int nameid = uac_feature_unit_iFeature(desc); __build_feature_ctl(state->mixer, state->map, ctl_mask, control, iterm, &state->oterm, unitid, nameid, readonly_mask); } static void build_feature_ctl_badd(struct usb_mixer_interface *mixer, unsigned int ctl_mask, int control, int unitid, const struct usbmix_name_map *badd_map) { __build_feature_ctl(mixer, badd_map, ctl_mask, control, NULL, NULL, unitid, 0, 0); } static void get_connector_control_name(struct usb_mixer_interface *mixer, struct usb_audio_term *term, bool is_input, char *name, int name_size) { int name_len = get_term_name(mixer->chip, term, name, name_size, 0); if (name_len == 0) strscpy(name, "Unknown", name_size); /* * sound/core/ctljack.c has a convention of naming jack controls * by ending in " Jack". Make it slightly more useful by * indicating Input or Output after the terminal name. */ if (is_input) strlcat(name, " - Input Jack", name_size); else strlcat(name, " - Output Jack", name_size); } /* get connector value to "wake up" the USB audio */ static int connector_mixer_resume(struct usb_mixer_elem_list *list) { struct usb_mixer_elem_info *cval = mixer_elem_list_to_info(list); get_connector_value(cval, NULL, NULL); return 0; } /* Build a mixer control for a UAC connector control (jack-detect) */ static void build_connector_control(struct usb_mixer_interface *mixer, const struct usbmix_name_map *imap, struct usb_audio_term *term, bool is_input) { struct snd_kcontrol *kctl; struct usb_mixer_elem_info *cval; const struct usbmix_name_map *map; map = find_map(imap, term->id, 0); if (check_ignored_ctl(map)) return; cval = kzalloc(sizeof(*cval), GFP_KERNEL); if (!cval) return; snd_usb_mixer_elem_init_std(&cval->head, mixer, term->id); /* set up a specific resume callback */ cval->head.resume = connector_mixer_resume; /* * UAC2: The first byte from reading the UAC2_TE_CONNECTOR control returns the * number of channels connected. * * UAC3: The first byte specifies size of bitmap for the inserted controls. The * following byte(s) specifies which connectors are inserted. * * This boolean ctl will simply report if any channels are connected * or not. */ if (mixer->protocol == UAC_VERSION_2) cval->control = UAC2_TE_CONNECTOR; else /* UAC_VERSION_3 */ cval->control = UAC3_TE_INSERTION; cval->val_type = USB_MIXER_BOOLEAN; cval->channels = 1; /* report true if any channel is connected */ cval->min = 0; cval->max = 1; kctl = snd_ctl_new1(&usb_connector_ctl_ro, cval); if (!kctl) { usb_audio_err(mixer->chip, "cannot malloc kcontrol\n"); usb_mixer_elem_info_free(cval); return; } if (check_mapped_name(map, kctl->id.name, sizeof(kctl->id.name))) strlcat(kctl->id.name, " Jack", sizeof(kctl->id.name)); else get_connector_control_name(mixer, term, is_input, kctl->id.name, sizeof(kctl->id.name)); kctl->private_free = snd_usb_mixer_elem_free; snd_usb_mixer_add_control(&cval->head, kctl); } static int parse_clock_source_unit(struct mixer_build *state, int unitid, void *_ftr) { struct uac_clock_source_descriptor *hdr = _ftr; struct usb_mixer_elem_info *cval; struct snd_kcontrol *kctl; int ret; if (state->mixer->protocol != UAC_VERSION_2) return -EINVAL; /* * The only property of this unit we are interested in is the * clock source validity. If that isn't readable, just bail out. */ if (!uac_v2v3_control_is_readable(hdr->bmControls, UAC2_CS_CONTROL_CLOCK_VALID)) return 0; cval = kzalloc(sizeof(*cval), GFP_KERNEL); if (!cval) return -ENOMEM; snd_usb_mixer_elem_init_std(&cval->head, state->mixer, hdr->bClockID); cval->min = 0; cval->max = 1; cval->channels = 1; cval->val_type = USB_MIXER_BOOLEAN; cval->control = UAC2_CS_CONTROL_CLOCK_VALID; cval->master_readonly = 1; /* From UAC2 5.2.5.1.2 "Only the get request is supported." */ kctl = snd_ctl_new1(&usb_bool_master_control_ctl_ro, cval); if (!kctl) { usb_mixer_elem_info_free(cval); return -ENOMEM; } kctl->private_free = snd_usb_mixer_elem_free; ret = snd_usb_copy_string_desc(state->chip, hdr->iClockSource, kctl->id.name, sizeof(kctl->id.name)); if (ret > 0) append_ctl_name(kctl, " Validity"); else snprintf(kctl->id.name, sizeof(kctl->id.name), "Clock Source %d Validity", hdr->bClockID); return snd_usb_mixer_add_control(&cval->head, kctl); } /* * parse a feature unit * * most of controls are defined here. */ static int parse_audio_feature_unit(struct mixer_build *state, int unitid, void *_ftr) { int channels, i, j; struct usb_audio_term iterm; unsigned int master_bits; int err, csize; struct uac_feature_unit_descriptor *hdr = _ftr; __u8 *bmaControls; if (state->mixer->protocol == UAC_VERSION_1) { csize = hdr->bControlSize; channels = (hdr->bLength - 7) / csize - 1; bmaControls = hdr->bmaControls; } else if (state->mixer->protocol == UAC_VERSION_2) { struct uac2_feature_unit_descriptor *ftr = _ftr; csize = 4; channels = (hdr->bLength - 6) / 4 - 1; bmaControls = ftr->bmaControls; } else { /* UAC_VERSION_3 */ struct uac3_feature_unit_descriptor *ftr = _ftr; csize = 4; channels = (ftr->bLength - 7) / 4 - 1; bmaControls = ftr->bmaControls; } if (channels > 32) { usb_audio_info(state->chip, "usbmixer: too many channels (%d) in unit %d\n", channels, unitid); return -EINVAL; } /* parse the source unit */ err = parse_audio_unit(state, hdr->bSourceID); if (err < 0) return err; /* determine the input source type and name */ err = check_input_term(state, hdr->bSourceID, &iterm); if (err < 0) return err; master_bits = snd_usb_combine_bytes(bmaControls, csize); /* master configuration quirks */ switch (state->chip->usb_id) { case USB_ID(0x08bb, 0x2702): usb_audio_info(state->chip, "usbmixer: master volume quirk for PCM2702 chip\n"); /* disable non-functional volume control */ master_bits &= ~UAC_CONTROL_BIT(UAC_FU_VOLUME); break; case USB_ID(0x1130, 0xf211): usb_audio_info(state->chip, "usbmixer: volume control quirk for Tenx TP6911 Audio Headset\n"); /* disable non-functional volume control */ channels = 0; break; } if (state->mixer->protocol == UAC_VERSION_1) { /* check all control types */ for (i = 0; i < 10; i++) { unsigned int ch_bits = 0; int control = audio_feature_info[i].control; for (j = 0; j < channels; j++) { unsigned int mask; mask = snd_usb_combine_bytes(bmaControls + csize * (j+1), csize); if (mask & (1 << i)) ch_bits |= (1 << j); } /* audio class v1 controls are never read-only */ /* * The first channel must be set * (for ease of programming). */ if (ch_bits & 1) build_feature_ctl(state, _ftr, ch_bits, control, &iterm, unitid, 0); if (master_bits & (1 << i)) build_feature_ctl(state, _ftr, 0, control, &iterm, unitid, 0); } } else { /* UAC_VERSION_2/3 */ for (i = 0; i < ARRAY_SIZE(audio_feature_info); i++) { unsigned int ch_bits = 0; unsigned int ch_read_only = 0; int control = audio_feature_info[i].control; for (j = 0; j < channels; j++) { unsigned int mask; mask = snd_usb_combine_bytes(bmaControls + csize * (j+1), csize); if (uac_v2v3_control_is_readable(mask, control)) { ch_bits |= (1 << j); if (!uac_v2v3_control_is_writeable(mask, control)) ch_read_only |= (1 << j); } } /* * NOTE: build_feature_ctl() will mark the control * read-only if all channels are marked read-only in * the descriptors. Otherwise, the control will be * reported as writeable, but the driver will not * actually issue a write command for read-only * channels. */ /* * The first channel must be set * (for ease of programming). */ if (ch_bits & 1) build_feature_ctl(state, _ftr, ch_bits, control, &iterm, unitid, ch_read_only); if (uac_v2v3_control_is_readable(master_bits, control)) build_feature_ctl(state, _ftr, 0, control, &iterm, unitid, !uac_v2v3_control_is_writeable(master_bits, control)); } } return 0; } /* * Mixer Unit */ /* check whether the given in/out overflows bmMixerControls matrix */ static bool mixer_bitmap_overflow(struct uac_mixer_unit_descriptor *desc, int protocol, int num_ins, int num_outs) { u8 *hdr = (u8 *)desc; u8 *c = uac_mixer_unit_bmControls(desc, protocol); size_t rest; /* remaining bytes after bmMixerControls */ switch (protocol) { case UAC_VERSION_1: default: rest = 1; /* iMixer */ break; case UAC_VERSION_2: rest = 2; /* bmControls + iMixer */ break; case UAC_VERSION_3: rest = 6; /* bmControls + wMixerDescrStr */ break; } /* overflow? */ return c + (num_ins * num_outs + 7) / 8 + rest > hdr + hdr[0]; } /* * build a mixer unit control * * the callbacks are identical with feature unit. * input channel number (zero based) is given in control field instead. */ static void build_mixer_unit_ctl(struct mixer_build *state, struct uac_mixer_unit_descriptor *desc, int in_pin, int in_ch, int num_outs, int unitid, struct usb_audio_term *iterm) { struct usb_mixer_elem_info *cval; unsigned int i, len; struct snd_kcontrol *kctl; const struct usbmix_name_map *map; map = find_map(state->map, unitid, 0); if (check_ignored_ctl(map)) return; cval = kzalloc(sizeof(*cval), GFP_KERNEL); if (!cval) return; snd_usb_mixer_elem_init_std(&cval->head, state->mixer, unitid); cval->control = in_ch + 1; /* based on 1 */ cval->val_type = USB_MIXER_S16; for (i = 0; i < num_outs; i++) { __u8 *c = uac_mixer_unit_bmControls(desc, state->mixer->protocol); if (check_matrix_bitmap(c, in_ch, i, num_outs)) { cval->cmask |= (1 << i); cval->channels++; } } /* get min/max values */ get_min_max(cval, 0); kctl = snd_ctl_new1(&usb_feature_unit_ctl, cval); if (!kctl) { usb_audio_err(state->chip, "cannot malloc kcontrol\n"); usb_mixer_elem_info_free(cval); return; } kctl->private_free = snd_usb_mixer_elem_free; len = check_mapped_name(map, kctl->id.name, sizeof(kctl->id.name)); if (!len) len = get_term_name(state->chip, iterm, kctl->id.name, sizeof(kctl->id.name), 0); if (!len) len = sprintf(kctl->id.name, "Mixer Source %d", in_ch + 1); append_ctl_name(kctl, " Volume"); usb_audio_dbg(state->chip, "[%d] MU [%s] ch = %d, val = %d/%d\n", cval->head.id, kctl->id.name, cval->channels, cval->min, cval->max); snd_usb_mixer_add_control(&cval->head, kctl); } static int parse_audio_input_terminal(struct mixer_build *state, int unitid, void *raw_desc) { struct usb_audio_term iterm; unsigned int control, bmctls, term_id; if (state->mixer->protocol == UAC_VERSION_2) { struct uac2_input_terminal_descriptor *d_v2 = raw_desc; control = UAC2_TE_CONNECTOR; term_id = d_v2->bTerminalID; bmctls = le16_to_cpu(d_v2->bmControls); } else if (state->mixer->protocol == UAC_VERSION_3) { struct uac3_input_terminal_descriptor *d_v3 = raw_desc; control = UAC3_TE_INSERTION; term_id = d_v3->bTerminalID; bmctls = le32_to_cpu(d_v3->bmControls); } else { return 0; /* UAC1. No Insertion control */ } check_input_term(state, term_id, &iterm); /* Check for jack detection. */ if ((iterm.type & 0xff00) != 0x0100 && uac_v2v3_control_is_readable(bmctls, control)) build_connector_control(state->mixer, state->map, &iterm, true); return 0; } /* * parse a mixer unit */ static int parse_audio_mixer_unit(struct mixer_build *state, int unitid, void *raw_desc) { struct uac_mixer_unit_descriptor *desc = raw_desc; struct usb_audio_term iterm; int input_pins, num_ins, num_outs; int pin, ich, err; err = uac_mixer_unit_get_channels(state, desc); if (err < 0) { usb_audio_err(state->chip, "invalid MIXER UNIT descriptor %d\n", unitid); return err; } num_outs = err; input_pins = desc->bNrInPins; num_ins = 0; ich = 0; for (pin = 0; pin < input_pins; pin++) { err = parse_audio_unit(state, desc->baSourceID[pin]); if (err < 0) continue; /* no bmControls field (e.g. Maya44) -> ignore */ if (!num_outs) continue; err = check_input_term(state, desc->baSourceID[pin], &iterm); if (err < 0) return err; num_ins += iterm.channels; if (mixer_bitmap_overflow(desc, state->mixer->protocol, num_ins, num_outs)) break; for (; ich < num_ins; ich++) { int och, ich_has_controls = 0; for (och = 0; och < num_outs; och++) { __u8 *c = uac_mixer_unit_bmControls(desc, state->mixer->protocol); if (check_matrix_bitmap(c, ich, och, num_outs)) { ich_has_controls = 1; break; } } if (ich_has_controls) build_mixer_unit_ctl(state, desc, pin, ich, num_outs, unitid, &iterm); } } return 0; } /* * Processing Unit / Extension Unit */ /* get callback for processing/extension unit */ static int mixer_ctl_procunit_get(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol) { struct usb_mixer_elem_info *cval = kcontrol->private_data; int err, val; err = get_cur_ctl_value(cval, cval->control << 8, &val); if (err < 0) { ucontrol->value.integer.value[0] = cval->min; return filter_error(cval, err); } val = get_relative_value(cval, val); ucontrol->value.integer.value[0] = val; return 0; } /* put callback for processing/extension unit */ static int mixer_ctl_procunit_put(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol) { struct usb_mixer_elem_info *cval = kcontrol->private_data; int val, oval, err; err = get_cur_ctl_value(cval, cval->control << 8, &oval); if (err < 0) return filter_error(cval, err); val = ucontrol->value.integer.value[0]; val = get_abs_value(cval, val); if (val != oval) { set_cur_ctl_value(cval, cval->control << 8, val); return 1; } return 0; } /* alsa control interface for processing/extension unit */ static const struct snd_kcontrol_new mixer_procunit_ctl = { .iface = SNDRV_CTL_ELEM_IFACE_MIXER, .name = "", /* will be filled later */ .info = mixer_ctl_feature_info, .get = mixer_ctl_procunit_get, .put = mixer_ctl_procunit_put, }; /* * predefined data for processing units */ struct procunit_value_info { int control; const char *suffix; int val_type; int min_value; }; struct procunit_info { int type; char *name; const struct procunit_value_info *values; }; static const struct procunit_value_info undefined_proc_info[] = { { 0x00, "Control Undefined", 0 }, { 0 } }; static const struct procunit_value_info updown_proc_info[] = { { UAC_UD_ENABLE, "Switch", USB_MIXER_BOOLEAN }, { UAC_UD_MODE_SELECT, "Mode Select", USB_MIXER_U8, 1 }, { 0 } }; static const struct procunit_value_info prologic_proc_info[] = { { UAC_DP_ENABLE, "Switch", USB_MIXER_BOOLEAN }, { UAC_DP_MODE_SELECT, "Mode Select", USB_MIXER_U8, 1 }, { 0 } }; static const struct procunit_value_info threed_enh_proc_info[] = { { UAC_3D_ENABLE, "Switch", USB_MIXER_BOOLEAN }, { UAC_3D_SPACE, "Spaciousness", USB_MIXER_U8 }, { 0 } }; static const struct procunit_value_info reverb_proc_info[] = { { UAC_REVERB_ENABLE, "Switch", USB_MIXER_BOOLEAN }, { UAC_REVERB_LEVEL, "Level", USB_MIXER_U8 }, { UAC_REVERB_TIME, "Time", USB_MIXER_U16 }, { UAC_REVERB_FEEDBACK, "Feedback", USB_MIXER_U8 }, { 0 } }; static const struct procunit_value_info chorus_proc_info[] = { { UAC_CHORUS_ENABLE, "Switch", USB_MIXER_BOOLEAN }, { UAC_CHORUS_LEVEL, "Level", USB_MIXER_U8 }, { UAC_CHORUS_RATE, "Rate", USB_MIXER_U16 }, { UAC_CHORUS_DEPTH, "Depth", USB_MIXER_U16 }, { 0 } }; static const struct procunit_value_info dcr_proc_info[] = { { UAC_DCR_ENABLE, "Switch", USB_MIXER_BOOLEAN }, { UAC_DCR_RATE, "Ratio", USB_MIXER_U16 }, { UAC_DCR_MAXAMPL, "Max Amp", USB_MIXER_S16 }, { UAC_DCR_THRESHOLD, "Threshold", USB_MIXER_S16 }, { UAC_DCR_ATTACK_TIME, "Attack Time", USB_MIXER_U16 }, { UAC_DCR_RELEASE_TIME, "Release Time", USB_MIXER_U16 }, { 0 } }; static const struct procunit_info procunits[] = { { UAC_PROCESS_UP_DOWNMIX, "Up Down", updown_proc_info }, { UAC_PROCESS_DOLBY_PROLOGIC, "Dolby Prologic", prologic_proc_info }, { UAC_PROCESS_STEREO_EXTENDER, "3D Stereo Extender", threed_enh_proc_info }, { UAC_PROCESS_REVERB, "Reverb", reverb_proc_info }, { UAC_PROCESS_CHORUS, "Chorus", chorus_proc_info }, { UAC_PROCESS_DYN_RANGE_COMP, "DCR", dcr_proc_info }, { 0 }, }; static const struct procunit_value_info uac3_updown_proc_info[] = { { UAC3_UD_MODE_SELECT, "Mode Select", USB_MIXER_U8, 1 }, { 0 } }; static const struct procunit_value_info uac3_stereo_ext_proc_info[] = { { UAC3_EXT_WIDTH_CONTROL, "Width Control", USB_MIXER_U8 }, { 0 } }; static const struct procunit_info uac3_procunits[] = { { UAC3_PROCESS_UP_DOWNMIX, "Up Down", uac3_updown_proc_info }, { UAC3_PROCESS_STEREO_EXTENDER, "3D Stereo Extender", uac3_stereo_ext_proc_info }, { UAC3_PROCESS_MULTI_FUNCTION, "Multi-Function", undefined_proc_info }, { 0 }, }; /* * predefined data for extension units */ static const struct procunit_value_info clock_rate_xu_info[] = { { USB_XU_CLOCK_RATE_SELECTOR, "Selector", USB_MIXER_U8, 0 }, { 0 } }; static const struct procunit_value_info clock_source_xu_info[] = { { USB_XU_CLOCK_SOURCE_SELECTOR, "External", USB_MIXER_BOOLEAN }, { 0 } }; static const struct procunit_value_info spdif_format_xu_info[] = { { USB_XU_DIGITAL_FORMAT_SELECTOR, "SPDIF/AC3", USB_MIXER_BOOLEAN }, { 0 } }; static const struct procunit_value_info soft_limit_xu_info[] = { { USB_XU_SOFT_LIMIT_SELECTOR, " ", USB_MIXER_BOOLEAN }, { 0 } }; static const struct procunit_info extunits[] = { { USB_XU_CLOCK_RATE, "Clock rate", clock_rate_xu_info }, { USB_XU_CLOCK_SOURCE, "DigitalIn CLK source", clock_source_xu_info }, { USB_XU_DIGITAL_IO_STATUS, "DigitalOut format:", spdif_format_xu_info }, { USB_XU_DEVICE_OPTIONS, "AnalogueIn Soft Limit", soft_limit_xu_info }, { 0 } }; /* * build a processing/extension unit */ static int build_audio_procunit(struct mixer_build *state, int unitid, void *raw_desc, const struct procunit_info *list, bool extension_unit) { struct uac_processing_unit_descriptor *desc = raw_desc; int num_ins; struct usb_mixer_elem_info *cval; struct snd_kcontrol *kctl; int i, err, nameid, type, len, val; const struct procunit_info *info; const struct procunit_value_info *valinfo; const struct usbmix_name_map *map; static const struct procunit_value_info default_value_info[] = { { 0x01, "Switch", USB_MIXER_BOOLEAN }, { 0 } }; static const struct procunit_info default_info = { 0, NULL, default_value_info }; const char *name = extension_unit ? "Extension Unit" : "Processing Unit"; num_ins = desc->bNrInPins; for (i = 0; i < num_ins; i++) { err = parse_audio_unit(state, desc->baSourceID[i]); if (err < 0) return err; } type = le16_to_cpu(desc->wProcessType); for (info = list; info && info->type; info++) if (info->type == type) break; if (!info || !info->type) info = &default_info; for (valinfo = info->values; valinfo->control; valinfo++) { __u8 *controls = uac_processing_unit_bmControls(desc, state->mixer->protocol); if (state->mixer->protocol == UAC_VERSION_1) { if (!(controls[valinfo->control / 8] & (1 << ((valinfo->control % 8) - 1)))) continue; } else { /* UAC_VERSION_2/3 */ if (!uac_v2v3_control_is_readable(controls[valinfo->control / 8], valinfo->control)) continue; } map = find_map(state->map, unitid, valinfo->control); if (check_ignored_ctl(map)) continue; cval = kzalloc(sizeof(*cval), GFP_KERNEL); if (!cval) return -ENOMEM; snd_usb_mixer_elem_init_std(&cval->head, state->mixer, unitid); cval->control = valinfo->control; cval->val_type = valinfo->val_type; cval->channels = 1; if (state->mixer->protocol > UAC_VERSION_1 && !uac_v2v3_control_is_writeable(controls[valinfo->control / 8], valinfo->control)) cval->master_readonly = 1; /* get min/max values */ switch (type) { case UAC_PROCESS_UP_DOWNMIX: { bool mode_sel = false; switch (state->mixer->protocol) { case UAC_VERSION_1: case UAC_VERSION_2: default: if (cval->control == UAC_UD_MODE_SELECT) mode_sel = true; break; case UAC_VERSION_3: if (cval->control == UAC3_UD_MODE_SELECT) mode_sel = true; break; } if (mode_sel) { __u8 *control_spec = uac_processing_unit_specific(desc, state->mixer->protocol); cval->min = 1; cval->max = control_spec[0]; cval->res = 1; cval->initialized = 1; break; } get_min_max(cval, valinfo->min_value); break; } case USB_XU_CLOCK_RATE: /* * E-Mu USB 0404/0202/TrackerPre/0204 * samplerate control quirk */ cval->min = 0; cval->max = 5; cval->res = 1; cval->initialized = 1; break; default: get_min_max(cval, valinfo->min_value); break; } err = get_cur_ctl_value(cval, cval->control << 8, &val); if (err < 0) { usb_mixer_elem_info_free(cval); return -EINVAL; } kctl = snd_ctl_new1(&mixer_procunit_ctl, cval); if (!kctl) { usb_mixer_elem_info_free(cval); return -ENOMEM; } kctl->private_free = snd_usb_mixer_elem_free; if (check_mapped_name(map, kctl->id.name, sizeof(kctl->id.name))) { /* nothing */ ; } else if (info->name) { strscpy(kctl->id.name, info->name, sizeof(kctl->id.name)); } else { if (extension_unit) nameid = uac_extension_unit_iExtension(desc, state->mixer->protocol); else nameid = uac_processing_unit_iProcessing(desc, state->mixer->protocol); len = 0; if (nameid) len = snd_usb_copy_string_desc(state->chip, nameid, kctl->id.name, sizeof(kctl->id.name)); if (!len) strscpy(kctl->id.name, name, sizeof(kctl->id.name)); } append_ctl_name(kctl, " "); append_ctl_name(kctl, valinfo->suffix); usb_audio_dbg(state->chip, "[%d] PU [%s] ch = %d, val = %d/%d\n", cval->head.id, kctl->id.name, cval->channels, cval->min, cval->max); err = snd_usb_mixer_add_control(&cval->head, kctl); if (err < 0) return err; } return 0; } static int parse_audio_processing_unit(struct mixer_build *state, int unitid, void *raw_desc) { switch (state->mixer->protocol) { case UAC_VERSION_1: case UAC_VERSION_2: default: return build_audio_procunit(state, unitid, raw_desc, procunits, false); case UAC_VERSION_3: return build_audio_procunit(state, unitid, raw_desc, uac3_procunits, false); } } static int parse_audio_extension_unit(struct mixer_build *state, int unitid, void *raw_desc) { /* * Note that we parse extension units with processing unit descriptors. * That's ok as the layout is the same. */ return build_audio_procunit(state, unitid, raw_desc, extunits, true); } /* * Selector Unit */ /* * info callback for selector unit * use an enumerator type for routing */ static int mixer_ctl_selector_info(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_info *uinfo) { struct usb_mixer_elem_info *cval = kcontrol->private_data; const char **itemlist = (const char **)kcontrol->private_value; if (snd_BUG_ON(!itemlist)) return -EINVAL; return snd_ctl_enum_info(uinfo, 1, cval->max, itemlist); } /* get callback for selector unit */ static int mixer_ctl_selector_get(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol) { struct usb_mixer_elem_info *cval = kcontrol->private_data; int val, err; err = get_cur_ctl_value(cval, cval->control << 8, &val); if (err < 0) { ucontrol->value.enumerated.item[0] = 0; return filter_error(cval, err); } val = get_relative_value(cval, val); ucontrol->value.enumerated.item[0] = val; return 0; } /* put callback for selector unit */ static int mixer_ctl_selector_put(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol) { struct usb_mixer_elem_info *cval = kcontrol->private_data; int val, oval, err; err = get_cur_ctl_value(cval, cval->control << 8, &oval); if (err < 0) return filter_error(cval, err); val = ucontrol->value.enumerated.item[0]; val = get_abs_value(cval, val); if (val != oval) { set_cur_ctl_value(cval, cval->control << 8, val); return 1; } return 0; } /* alsa control interface for selector unit */ static const struct snd_kcontrol_new mixer_selectunit_ctl = { .iface = SNDRV_CTL_ELEM_IFACE_MIXER, .name = "", /* will be filled later */ .info = mixer_ctl_selector_info, .get = mixer_ctl_selector_get, .put = mixer_ctl_selector_put, }; /* * private free callback. * free both private_data and private_value */ static void usb_mixer_selector_elem_free(struct snd_kcontrol *kctl) { int i, num_ins = 0; if (kctl->private_data) { struct usb_mixer_elem_info *cval = kctl->private_data; num_ins = cval->max; usb_mixer_elem_info_free(cval); kctl->private_data = NULL; } if (kctl->private_value) { char **itemlist = (char **)kctl->private_value; for (i = 0; i < num_ins; i++) kfree(itemlist[i]); kfree(itemlist); kctl->private_value = 0; } } /* * parse a selector unit */ static int parse_audio_selector_unit(struct mixer_build *state, int unitid, void *raw_desc) { struct uac_selector_unit_descriptor *desc = raw_desc; unsigned int i, nameid, len; int err; struct usb_mixer_elem_info *cval; struct snd_kcontrol *kctl; const struct usbmix_name_map *map; char **namelist; for (i = 0; i < desc->bNrInPins; i++) { err = parse_audio_unit(state, desc->baSourceID[i]); if (err < 0) return err; } if (desc->bNrInPins == 1) /* only one ? nonsense! */ return 0; map = find_map(state->map, unitid, 0); if (check_ignored_ctl(map)) return 0; cval = kzalloc(sizeof(*cval), GFP_KERNEL); if (!cval) return -ENOMEM; snd_usb_mixer_elem_init_std(&cval->head, state->mixer, unitid); cval->val_type = USB_MIXER_U8; cval->channels = 1; cval->min = 1; cval->max = desc->bNrInPins; cval->res = 1; cval->initialized = 1; switch (state->mixer->protocol) { case UAC_VERSION_1: default: cval->control = 0; break; case UAC_VERSION_2: case UAC_VERSION_3: if (desc->bDescriptorSubtype == UAC2_CLOCK_SELECTOR || desc->bDescriptorSubtype == UAC3_CLOCK_SELECTOR) cval->control = UAC2_CX_CLOCK_SELECTOR; else /* UAC2/3_SELECTOR_UNIT */ cval->control = UAC2_SU_SELECTOR; break; } namelist = kcalloc(desc->bNrInPins, sizeof(char *), GFP_KERNEL); if (!namelist) { err = -ENOMEM; goto error_cval; } #define MAX_ITEM_NAME_LEN 64 for (i = 0; i < desc->bNrInPins; i++) { struct usb_audio_term iterm; namelist[i] = kmalloc(MAX_ITEM_NAME_LEN, GFP_KERNEL); if (!namelist[i]) { err = -ENOMEM; goto error_name; } len = check_mapped_selector_name(state, unitid, i, namelist[i], MAX_ITEM_NAME_LEN); if (! len && check_input_term(state, desc->baSourceID[i], &iterm) >= 0) len = get_term_name(state->chip, &iterm, namelist[i], MAX_ITEM_NAME_LEN, 0); if (! len) sprintf(namelist[i], "Input %u", i); } kctl = snd_ctl_new1(&mixer_selectunit_ctl, cval); if (! kctl) { usb_audio_err(state->chip, "cannot malloc kcontrol\n"); err = -ENOMEM; goto error_name; } kctl->private_value = (unsigned long)namelist; kctl->private_free = usb_mixer_selector_elem_free; /* check the static mapping table at first */ len = check_mapped_name(map, kctl->id.name, sizeof(kctl->id.name)); if (!len) { /* no mapping ? */ switch (state->mixer->protocol) { case UAC_VERSION_1: case UAC_VERSION_2: default: /* if iSelector is given, use it */ nameid = uac_selector_unit_iSelector(desc); if (nameid) len = snd_usb_copy_string_desc(state->chip, nameid, kctl->id.name, sizeof(kctl->id.name)); break; case UAC_VERSION_3: /* TODO: Class-Specific strings not yet supported */ break; } /* ... or pick up the terminal name at next */ if (!len) len = get_term_name(state->chip, &state->oterm, kctl->id.name, sizeof(kctl->id.name), 0); /* ... or use the fixed string "USB" as the last resort */ if (!len) strscpy(kctl->id.name, "USB", sizeof(kctl->id.name)); /* and add the proper suffix */ if (desc->bDescriptorSubtype == UAC2_CLOCK_SELECTOR || desc->bDescriptorSubtype == UAC3_CLOCK_SELECTOR) append_ctl_name(kctl, " Clock Source"); else if ((state->oterm.type & 0xff00) == 0x0100) append_ctl_name(kctl, " Capture Source"); else append_ctl_name(kctl, " Playback Source"); } usb_audio_dbg(state->chip, "[%d] SU [%s] items = %d\n", cval->head.id, kctl->id.name, desc->bNrInPins); return snd_usb_mixer_add_control(&cval->head, kctl); error_name: for (i = 0; i < desc->bNrInPins; i++) kfree(namelist[i]); kfree(namelist); error_cval: usb_mixer_elem_info_free(cval); return err; } /* * parse an audio unit recursively */ static int parse_audio_unit(struct mixer_build *state, int unitid) { unsigned char *p1; int protocol = state->mixer->protocol; if (test_and_set_bit(unitid, state->unitbitmap)) return 0; /* the unit already visited */ p1 = find_audio_control_unit(state, unitid); if (!p1) { usb_audio_err(state->chip, "unit %d not found!\n", unitid); return -EINVAL; } if (!snd_usb_validate_audio_desc(p1, protocol)) { usb_audio_dbg(state->chip, "invalid unit %d\n", unitid); return 0; /* skip invalid unit */ } switch (PTYPE(protocol, p1[2])) { case PTYPE(UAC_VERSION_1, UAC_INPUT_TERMINAL): case PTYPE(UAC_VERSION_2, UAC_INPUT_TERMINAL): case PTYPE(UAC_VERSION_3, UAC_INPUT_TERMINAL): return parse_audio_input_terminal(state, unitid, p1); case PTYPE(UAC_VERSION_1, UAC_MIXER_UNIT): case PTYPE(UAC_VERSION_2, UAC_MIXER_UNIT): case PTYPE(UAC_VERSION_3, UAC3_MIXER_UNIT): return parse_audio_mixer_unit(state, unitid, p1); case PTYPE(UAC_VERSION_2, UAC2_CLOCK_SOURCE): case PTYPE(UAC_VERSION_3, UAC3_CLOCK_SOURCE): return parse_clock_source_unit(state, unitid, p1); case PTYPE(UAC_VERSION_1, UAC_SELECTOR_UNIT): case PTYPE(UAC_VERSION_2, UAC_SELECTOR_UNIT): case PTYPE(UAC_VERSION_3, UAC3_SELECTOR_UNIT): case PTYPE(UAC_VERSION_2, UAC2_CLOCK_SELECTOR): case PTYPE(UAC_VERSION_3, UAC3_CLOCK_SELECTOR): return parse_audio_selector_unit(state, unitid, p1); case PTYPE(UAC_VERSION_1, UAC_FEATURE_UNIT): case PTYPE(UAC_VERSION_2, UAC_FEATURE_UNIT): case PTYPE(UAC_VERSION_3, UAC3_FEATURE_UNIT): return parse_audio_feature_unit(state, unitid, p1); case PTYPE(UAC_VERSION_1, UAC1_PROCESSING_UNIT): case PTYPE(UAC_VERSION_2, UAC2_PROCESSING_UNIT_V2): case PTYPE(UAC_VERSION_3, UAC3_PROCESSING_UNIT): return parse_audio_processing_unit(state, unitid, p1); case PTYPE(UAC_VERSION_1, UAC1_EXTENSION_UNIT): case PTYPE(UAC_VERSION_2, UAC2_EXTENSION_UNIT_V2): case PTYPE(UAC_VERSION_3, UAC3_EXTENSION_UNIT): return parse_audio_extension_unit(state, unitid, p1); case PTYPE(UAC_VERSION_2, UAC2_EFFECT_UNIT): case PTYPE(UAC_VERSION_3, UAC3_EFFECT_UNIT): return 0; /* FIXME - effect units not implemented yet */ default: usb_audio_err(state->chip, "unit %u: unexpected type 0x%02x\n", unitid, p1[2]); return -EINVAL; } } static void snd_usb_mixer_free(struct usb_mixer_interface *mixer) { /* kill pending URBs */ snd_usb_mixer_disconnect(mixer); kfree(mixer->id_elems); if (mixer->urb) { kfree(mixer->urb->transfer_buffer); usb_free_urb(mixer->urb); } usb_free_urb(mixer->rc_urb); kfree(mixer->rc_setup_packet); kfree(mixer); } static int snd_usb_mixer_dev_free(struct snd_device *device) { struct usb_mixer_interface *mixer = device->device_data; snd_usb_mixer_free(mixer); return 0; } /* UAC3 predefined channels configuration */ struct uac3_badd_profile { int subclass; const char *name; int c_chmask; /* capture channels mask */ int p_chmask; /* playback channels mask */ int st_chmask; /* side tone mixing channel mask */ }; static const struct uac3_badd_profile uac3_badd_profiles[] = { { /* * BAIF, BAOF or combination of both * IN: Mono or Stereo cfg, Mono alt possible * OUT: Mono or Stereo cfg, Mono alt possible */ .subclass = UAC3_FUNCTION_SUBCLASS_GENERIC_IO, .name = "GENERIC IO", .c_chmask = -1, /* dynamic channels */ .p_chmask = -1, /* dynamic channels */ }, { /* BAOF; Stereo only cfg, Mono alt possible */ .subclass = UAC3_FUNCTION_SUBCLASS_HEADPHONE, .name = "HEADPHONE", .p_chmask = 3, }, { /* BAOF; Mono or Stereo cfg, Mono alt possible */ .subclass = UAC3_FUNCTION_SUBCLASS_SPEAKER, .name = "SPEAKER", .p_chmask = -1, /* dynamic channels */ }, { /* BAIF; Mono or Stereo cfg, Mono alt possible */ .subclass = UAC3_FUNCTION_SUBCLASS_MICROPHONE, .name = "MICROPHONE", .c_chmask = -1, /* dynamic channels */ }, { /* * BAIOF topology * IN: Mono only * OUT: Mono or Stereo cfg, Mono alt possible */ .subclass = UAC3_FUNCTION_SUBCLASS_HEADSET, .name = "HEADSET", .c_chmask = 1, .p_chmask = -1, /* dynamic channels */ .st_chmask = 1, }, { /* BAIOF; IN: Mono only; OUT: Stereo only, Mono alt possible */ .subclass = UAC3_FUNCTION_SUBCLASS_HEADSET_ADAPTER, .name = "HEADSET ADAPTER", .c_chmask = 1, .p_chmask = 3, .st_chmask = 1, }, { /* BAIF + BAOF; IN: Mono only; OUT: Mono only */ .subclass = UAC3_FUNCTION_SUBCLASS_SPEAKERPHONE, .name = "SPEAKERPHONE", .c_chmask = 1, .p_chmask = 1, }, { 0 } /* terminator */ }; static bool uac3_badd_func_has_valid_channels(struct usb_mixer_interface *mixer, const struct uac3_badd_profile *f, int c_chmask, int p_chmask) { /* * If both playback/capture channels are dynamic, make sure * at least one channel is present */ if (f->c_chmask < 0 && f->p_chmask < 0) { if (!c_chmask && !p_chmask) { usb_audio_warn(mixer->chip, "BAAD %s: no channels?", f->name); return false; } return true; } if ((f->c_chmask < 0 && !c_chmask) || (f->c_chmask >= 0 && f->c_chmask != c_chmask)) { usb_audio_warn(mixer->chip, "BAAD %s c_chmask mismatch", f->name); return false; } if ((f->p_chmask < 0 && !p_chmask) || (f->p_chmask >= 0 && f->p_chmask != p_chmask)) { usb_audio_warn(mixer->chip, "BAAD %s p_chmask mismatch", f->name); return false; } return true; } /* * create mixer controls for UAC3 BADD profiles * * UAC3 BADD device doesn't contain CS descriptors thus we will guess everything * * BADD device may contain Mixer Unit, which doesn't have any controls, skip it */ static int snd_usb_mixer_controls_badd(struct usb_mixer_interface *mixer, int ctrlif) { struct usb_device *dev = mixer->chip->dev; struct usb_interface_assoc_descriptor *assoc; int badd_profile = mixer->chip->badd_profile; const struct uac3_badd_profile *f; const struct usbmix_ctl_map *map; int p_chmask = 0, c_chmask = 0, st_chmask = 0; int i; assoc = usb_ifnum_to_if(dev, ctrlif)->intf_assoc; /* Detect BADD capture/playback channels from AS EP descriptors */ for (i = 0; i < assoc->bInterfaceCount; i++) { int intf = assoc->bFirstInterface + i; struct usb_interface *iface; struct usb_host_interface *alts; struct usb_interface_descriptor *altsd; unsigned int maxpacksize; char dir_in; int chmask, num; if (intf == ctrlif) continue; iface = usb_ifnum_to_if(dev, intf); if (!iface) continue; num = iface->num_altsetting; if (num < 2) return -EINVAL; /* * The number of Channels in an AudioStreaming interface * and the audio sample bit resolution (16 bits or 24 * bits) can be derived from the wMaxPacketSize field in * the Standard AS Audio Data Endpoint descriptor in * Alternate Setting 1 */ alts = &iface->altsetting[1]; altsd = get_iface_desc(alts); if (altsd->bNumEndpoints < 1) return -EINVAL; /* check direction */ dir_in = (get_endpoint(alts, 0)->bEndpointAddress & USB_DIR_IN); maxpacksize = le16_to_cpu(get_endpoint(alts, 0)->wMaxPacketSize); switch (maxpacksize) { default: usb_audio_err(mixer->chip, "incorrect wMaxPacketSize 0x%x for BADD profile\n", maxpacksize); return -EINVAL; case UAC3_BADD_EP_MAXPSIZE_SYNC_MONO_16: case UAC3_BADD_EP_MAXPSIZE_ASYNC_MONO_16: case UAC3_BADD_EP_MAXPSIZE_SYNC_MONO_24: case UAC3_BADD_EP_MAXPSIZE_ASYNC_MONO_24: chmask = 1; break; case UAC3_BADD_EP_MAXPSIZE_SYNC_STEREO_16: case UAC3_BADD_EP_MAXPSIZE_ASYNC_STEREO_16: case UAC3_BADD_EP_MAXPSIZE_SYNC_STEREO_24: case UAC3_BADD_EP_MAXPSIZE_ASYNC_STEREO_24: chmask = 3; break; } if (dir_in) c_chmask = chmask; else p_chmask = chmask; } usb_audio_dbg(mixer->chip, "UAC3 BADD profile 0x%x: detected c_chmask=%d p_chmask=%d\n", badd_profile, c_chmask, p_chmask); /* check the mapping table */ for (map = uac3_badd_usbmix_ctl_maps; map->id; map++) { if (map->id == badd_profile) break; } if (!map->id) return -EINVAL; for (f = uac3_badd_profiles; f->name; f++) { if (badd_profile == f->subclass) break; } if (!f->name) return -EINVAL; if (!uac3_badd_func_has_valid_channels(mixer, f, c_chmask, p_chmask)) return -EINVAL; st_chmask = f->st_chmask; /* Playback */ if (p_chmask) { /* Master channel, always writable */ build_feature_ctl_badd(mixer, 0, UAC_FU_MUTE, UAC3_BADD_FU_ID2, map->map); /* Mono/Stereo volume channels, always writable */ build_feature_ctl_badd(mixer, p_chmask, UAC_FU_VOLUME, UAC3_BADD_FU_ID2, map->map); } /* Capture */ if (c_chmask) { /* Master channel, always writable */ build_feature_ctl_badd(mixer, 0, UAC_FU_MUTE, UAC3_BADD_FU_ID5, map->map); /* Mono/Stereo volume channels, always writable */ build_feature_ctl_badd(mixer, c_chmask, UAC_FU_VOLUME, UAC3_BADD_FU_ID5, map->map); } /* Side tone-mixing */ if (st_chmask) { /* Master channel, always writable */ build_feature_ctl_badd(mixer, 0, UAC_FU_MUTE, UAC3_BADD_FU_ID7, map->map); /* Mono volume channel, always writable */ build_feature_ctl_badd(mixer, 1, UAC_FU_VOLUME, UAC3_BADD_FU_ID7, map->map); } /* Insertion Control */ if (f->subclass == UAC3_FUNCTION_SUBCLASS_HEADSET_ADAPTER) { struct usb_audio_term iterm, oterm; /* Input Term - Insertion control */ memset(&iterm, 0, sizeof(iterm)); iterm.id = UAC3_BADD_IT_ID4; iterm.type = UAC_BIDIR_TERMINAL_HEADSET; build_connector_control(mixer, map->map, &iterm, true); /* Output Term - Insertion control */ memset(&oterm, 0, sizeof(oterm)); oterm.id = UAC3_BADD_OT_ID3; oterm.type = UAC_BIDIR_TERMINAL_HEADSET; build_connector_control(mixer, map->map, &oterm, false); } return 0; } /* * create mixer controls * * walk through all UAC_OUTPUT_TERMINAL descriptors to search for mixers */ static int snd_usb_mixer_controls(struct usb_mixer_interface *mixer) { struct mixer_build state; int err; const struct usbmix_ctl_map *map; void *p; memset(&state, 0, sizeof(state)); state.chip = mixer->chip; state.mixer = mixer; state.buffer = mixer->hostif->extra; state.buflen = mixer->hostif->extralen; /* check the mapping table */ for (map = usbmix_ctl_maps; map->id; map++) { if (map->id == state.chip->usb_id) { state.map = map->map; state.selector_map = map->selector_map; mixer->connector_map = map->connector_map; break; } } p = NULL; while ((p = snd_usb_find_csint_desc(mixer->hostif->extra, mixer->hostif->extralen, p, UAC_OUTPUT_TERMINAL)) != NULL) { if (!snd_usb_validate_audio_desc(p, mixer->protocol)) continue; /* skip invalid descriptor */ if (mixer->protocol == UAC_VERSION_1) { struct uac1_output_terminal_descriptor *desc = p; /* mark terminal ID as visited */ set_bit(desc->bTerminalID, state.unitbitmap); state.oterm.id = desc->bTerminalID; state.oterm.type = le16_to_cpu(desc->wTerminalType); state.oterm.name = desc->iTerminal; err = parse_audio_unit(&state, desc->bSourceID); if (err < 0 && err != -EINVAL) return err; } else if (mixer->protocol == UAC_VERSION_2) { struct uac2_output_terminal_descriptor *desc = p; /* mark terminal ID as visited */ set_bit(desc->bTerminalID, state.unitbitmap); state.oterm.id = desc->bTerminalID; state.oterm.type = le16_to_cpu(desc->wTerminalType); state.oterm.name = desc->iTerminal; err = parse_audio_unit(&state, desc->bSourceID); if (err < 0 && err != -EINVAL) return err; /* * For UAC2, use the same approach to also add the * clock selectors */ err = parse_audio_unit(&state, desc->bCSourceID); if (err < 0 && err != -EINVAL) return err; if ((state.oterm.type & 0xff00) != 0x0100 && uac_v2v3_control_is_readable(le16_to_cpu(desc->bmControls), UAC2_TE_CONNECTOR)) { build_connector_control(state.mixer, state.map, &state.oterm, false); } } else { /* UAC_VERSION_3 */ struct uac3_output_terminal_descriptor *desc = p; /* mark terminal ID as visited */ set_bit(desc->bTerminalID, state.unitbitmap); state.oterm.id = desc->bTerminalID; state.oterm.type = le16_to_cpu(desc->wTerminalType); state.oterm.name = le16_to_cpu(desc->wTerminalDescrStr); err = parse_audio_unit(&state, desc->bSourceID); if (err < 0 && err != -EINVAL) return err; /* * For UAC3, use the same approach to also add the * clock selectors */ err = parse_audio_unit(&state, desc->bCSourceID); if (err < 0 && err != -EINVAL) return err; if ((state.oterm.type & 0xff00) != 0x0100 && uac_v2v3_control_is_readable(le32_to_cpu(desc->bmControls), UAC3_TE_INSERTION)) { build_connector_control(state.mixer, state.map, &state.oterm, false); } } } return 0; } static int delegate_notify(struct usb_mixer_interface *mixer, int unitid, u8 *control, u8 *channel) { const struct usbmix_connector_map *map = mixer->connector_map; if (!map) return unitid; for (; map->id; map++) { if (map->id == unitid) { if (control && map->control) *control = map->control; if (channel && map->channel) *channel = map->channel; return map->delegated_id; } } return unitid; } void snd_usb_mixer_notify_id(struct usb_mixer_interface *mixer, int unitid) { struct usb_mixer_elem_list *list; unitid = delegate_notify(mixer, unitid, NULL, NULL); for_each_mixer_elem(list, mixer, unitid) { struct usb_mixer_elem_info *info; if (!list->is_std_info) continue; info = mixer_elem_list_to_info(list); /* invalidate cache, so the value is read from the device */ info->cached = 0; snd_ctl_notify(mixer->chip->card, SNDRV_CTL_EVENT_MASK_VALUE, &list->kctl->id); } } static void snd_usb_mixer_dump_cval(struct snd_info_buffer *buffer, struct usb_mixer_elem_list *list) { struct usb_mixer_elem_info *cval = mixer_elem_list_to_info(list); static const char * const val_types[] = { [USB_MIXER_BOOLEAN] = "BOOLEAN", [USB_MIXER_INV_BOOLEAN] = "INV_BOOLEAN", [USB_MIXER_S8] = "S8", [USB_MIXER_U8] = "U8", [USB_MIXER_S16] = "S16", [USB_MIXER_U16] = "U16", [USB_MIXER_S32] = "S32", [USB_MIXER_U32] = "U32", [USB_MIXER_BESPOKEN] = "BESPOKEN", }; snd_iprintf(buffer, " Info: id=%i, control=%i, cmask=0x%x, " "channels=%i, type=\"%s\"\n", cval->head.id, cval->control, cval->cmask, cval->channels, val_types[cval->val_type]); snd_iprintf(buffer, " Volume: min=%i, max=%i, dBmin=%i, dBmax=%i\n", cval->min, cval->max, cval->dBmin, cval->dBmax); } static void snd_usb_mixer_proc_read(struct snd_info_entry *entry, struct snd_info_buffer *buffer) { struct snd_usb_audio *chip = entry->private_data; struct usb_mixer_interface *mixer; struct usb_mixer_elem_list *list; int unitid; list_for_each_entry(mixer, &chip->mixer_list, list) { snd_iprintf(buffer, "USB Mixer: usb_id=0x%08x, ctrlif=%i, ctlerr=%i\n", chip->usb_id, mixer_ctrl_intf(mixer), mixer->ignore_ctl_error); snd_iprintf(buffer, "Card: %s\n", chip->card->longname); for (unitid = 0; unitid < MAX_ID_ELEMS; unitid++) { for_each_mixer_elem(list, mixer, unitid) { snd_iprintf(buffer, " Unit: %i\n", list->id); if (list->kctl) snd_iprintf(buffer, " Control: name=\"%s\", index=%i\n", list->kctl->id.name, list->kctl->id.index); if (list->dump) list->dump(buffer, list); } } } } static void snd_usb_mixer_interrupt_v2(struct usb_mixer_interface *mixer, int attribute, int value, int index) { struct usb_mixer_elem_list *list; __u8 unitid = (index >> 8) & 0xff; __u8 control = (value >> 8) & 0xff; __u8 channel = value & 0xff; unsigned int count = 0; if (channel >= MAX_CHANNELS) { usb_audio_dbg(mixer->chip, "%s(): bogus channel number %d\n", __func__, channel); return; } unitid = delegate_notify(mixer, unitid, &control, &channel); for_each_mixer_elem(list, mixer, unitid) count++; if (count == 0) return; for_each_mixer_elem(list, mixer, unitid) { struct usb_mixer_elem_info *info; if (!list->kctl) continue; if (!list->is_std_info) continue; info = mixer_elem_list_to_info(list); if (count > 1 && info->control != control) continue; switch (attribute) { case UAC2_CS_CUR: /* invalidate cache, so the value is read from the device */ if (channel) info->cached &= ~(1 << channel); else /* master channel */ info->cached = 0; snd_ctl_notify(mixer->chip->card, SNDRV_CTL_EVENT_MASK_VALUE, &info->head.kctl->id); break; case UAC2_CS_RANGE: /* TODO */ break; case UAC2_CS_MEM: /* TODO */ break; default: usb_audio_dbg(mixer->chip, "unknown attribute %d in interrupt\n", attribute); break; } /* switch */ } } static void snd_usb_mixer_interrupt(struct urb *urb) { struct usb_mixer_interface *mixer = urb->context; int len = urb->actual_length; int ustatus = urb->status; if (ustatus != 0) goto requeue; if (mixer->protocol == UAC_VERSION_1) { struct uac1_status_word *status; for (status = urb->transfer_buffer; len >= sizeof(*status); len -= sizeof(*status), status++) { dev_dbg(&urb->dev->dev, "status interrupt: %02x %02x\n", status->bStatusType, status->bOriginator); /* ignore any notifications not from the control interface */ if ((status->bStatusType & UAC1_STATUS_TYPE_ORIG_MASK) != UAC1_STATUS_TYPE_ORIG_AUDIO_CONTROL_IF) continue; if (status->bStatusType & UAC1_STATUS_TYPE_MEM_CHANGED) snd_usb_mixer_rc_memory_change(mixer, status->bOriginator); else snd_usb_mixer_notify_id(mixer, status->bOriginator); } } else { /* UAC_VERSION_2 */ struct uac2_interrupt_data_msg *msg; for (msg = urb->transfer_buffer; len >= sizeof(*msg); len -= sizeof(*msg), msg++) { /* drop vendor specific and endpoint requests */ if ((msg->bInfo & UAC2_INTERRUPT_DATA_MSG_VENDOR) || (msg->bInfo & UAC2_INTERRUPT_DATA_MSG_EP)) continue; snd_usb_mixer_interrupt_v2(mixer, msg->bAttribute, le16_to_cpu(msg->wValue), le16_to_cpu(msg->wIndex)); } } requeue: if (ustatus != -ENOENT && ustatus != -ECONNRESET && ustatus != -ESHUTDOWN) { urb->dev = mixer->chip->dev; usb_submit_urb(urb, GFP_ATOMIC); } } /* create the handler for the optional status interrupt endpoint */ static int snd_usb_mixer_status_create(struct usb_mixer_interface *mixer) { struct usb_endpoint_descriptor *ep; void *transfer_buffer; int buffer_length; unsigned int epnum; /* we need one interrupt input endpoint */ if (get_iface_desc(mixer->hostif)->bNumEndpoints < 1) return 0; ep = get_endpoint(mixer->hostif, 0); if (!usb_endpoint_dir_in(ep) || !usb_endpoint_xfer_int(ep)) return 0; epnum = usb_endpoint_num(ep); buffer_length = le16_to_cpu(ep->wMaxPacketSize); transfer_buffer = kmalloc(buffer_length, GFP_KERNEL); if (!transfer_buffer) return -ENOMEM; mixer->urb = usb_alloc_urb(0, GFP_KERNEL); if (!mixer->urb) { kfree(transfer_buffer); return -ENOMEM; } usb_fill_int_urb(mixer->urb, mixer->chip->dev, usb_rcvintpipe(mixer->chip->dev, epnum), transfer_buffer, buffer_length, snd_usb_mixer_interrupt, mixer, ep->bInterval); usb_submit_urb(mixer->urb, GFP_KERNEL); return 0; } int snd_usb_create_mixer(struct snd_usb_audio *chip, int ctrlif) { static const struct snd_device_ops dev_ops = { .dev_free = snd_usb_mixer_dev_free }; struct usb_mixer_interface *mixer; int err; strcpy(chip->card->mixername, "USB Mixer"); mixer = kzalloc(sizeof(*mixer), GFP_KERNEL); if (!mixer) return -ENOMEM; mixer->chip = chip; mixer->ignore_ctl_error = !!(chip->quirk_flags & QUIRK_FLAG_IGNORE_CTL_ERROR); mixer->id_elems = kcalloc(MAX_ID_ELEMS, sizeof(*mixer->id_elems), GFP_KERNEL); if (!mixer->id_elems) { kfree(mixer); return -ENOMEM; } mixer->hostif = &usb_ifnum_to_if(chip->dev, ctrlif)->altsetting[0]; switch (get_iface_desc(mixer->hostif)->bInterfaceProtocol) { case UAC_VERSION_1: default: mixer->protocol = UAC_VERSION_1; break; case UAC_VERSION_2: mixer->protocol = UAC_VERSION_2; break; case UAC_VERSION_3: mixer->protocol = UAC_VERSION_3; break; } if (mixer->protocol == UAC_VERSION_3 && chip->badd_profile >= UAC3_FUNCTION_SUBCLASS_GENERIC_IO) { err = snd_usb_mixer_controls_badd(mixer, ctrlif); if (err < 0) goto _error; } else { err = snd_usb_mixer_controls(mixer); if (err < 0) goto _error; } err = snd_usb_mixer_status_create(mixer); if (err < 0) goto _error; err = snd_usb_mixer_apply_create_quirk(mixer); if (err < 0) goto _error; err = snd_device_new(chip->card, SNDRV_DEV_CODEC, mixer, &dev_ops); if (err < 0) goto _error; if (list_empty(&chip->mixer_list)) snd_card_ro_proc_new(chip->card, "usbmixer", chip, snd_usb_mixer_proc_read); list_add(&mixer->list, &chip->mixer_list); return 0; _error: snd_usb_mixer_free(mixer); return err; } void snd_usb_mixer_disconnect(struct usb_mixer_interface *mixer) { if (mixer->disconnected) return; if (mixer->urb) usb_kill_urb(mixer->urb); if (mixer->rc_urb) usb_kill_urb(mixer->rc_urb); if (mixer->private_free) mixer->private_free(mixer); mixer->disconnected = true; } /* stop any bus activity of a mixer */ static void snd_usb_mixer_inactivate(struct usb_mixer_interface *mixer) { usb_kill_urb(mixer->urb); usb_kill_urb(mixer->rc_urb); } static int snd_usb_mixer_activate(struct usb_mixer_interface *mixer) { int err; if (mixer->urb) { err = usb_submit_urb(mixer->urb, GFP_NOIO); if (err < 0) return err; } return 0; } int snd_usb_mixer_suspend(struct usb_mixer_interface *mixer) { snd_usb_mixer_inactivate(mixer); if (mixer->private_suspend) mixer->private_suspend(mixer); return 0; } static int restore_mixer_value(struct usb_mixer_elem_list *list) { struct usb_mixer_elem_info *cval = mixer_elem_list_to_info(list); int c, err, idx; if (cval->val_type == USB_MIXER_BESPOKEN) return 0; if (cval->cmask) { idx = 0; for (c = 0; c < MAX_CHANNELS; c++) { if (!(cval->cmask & (1 << c))) continue; if (cval->cached & (1 << (c + 1))) { err = snd_usb_set_cur_mix_value(cval, c + 1, idx, cval->cache_val[idx]); if (err < 0) break; } idx++; } } else { /* master */ if (cval->cached) snd_usb_set_cur_mix_value(cval, 0, 0, *cval->cache_val); } return 0; } int snd_usb_mixer_resume(struct usb_mixer_interface *mixer) { struct usb_mixer_elem_list *list; int id, err; /* restore cached mixer values */ for (id = 0; id < MAX_ID_ELEMS; id++) { for_each_mixer_elem(list, mixer, id) { if (list->resume) { err = list->resume(list); if (err < 0) return err; } } } snd_usb_mixer_resume_quirk(mixer); return snd_usb_mixer_activate(mixer); } void snd_usb_mixer_elem_init_std(struct usb_mixer_elem_list *list, struct usb_mixer_interface *mixer, int unitid) { list->mixer = mixer; list->id = unitid; list->dump = snd_usb_mixer_dump_cval; list->resume = restore_mixer_value; }