summaryrefslogtreecommitdiffstats
path: root/Documentation/userspace-api/media/v4l/vidioc-g-fbuf.rst
blob: b651e53643dd1f744145e1a90b68993a13ea2301 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
.. SPDX-License-Identifier: GFDL-1.1-no-invariants-or-later
.. c:namespace:: V4L

.. _VIDIOC_G_FBUF:

**********************************
ioctl VIDIOC_G_FBUF, VIDIOC_S_FBUF
**********************************

Name
====

VIDIOC_G_FBUF - VIDIOC_S_FBUF - Get or set frame buffer overlay parameters

Synopsis
========

.. c:macro:: VIDIOC_G_FBUF

``int ioctl(int fd, VIDIOC_G_FBUF, struct v4l2_framebuffer *argp)``

.. c:macro:: VIDIOC_S_FBUF

``int ioctl(int fd, VIDIOC_S_FBUF, const struct v4l2_framebuffer *argp)``

Arguments
=========

``fd``
    File descriptor returned by :c:func:`open()`.

``argp``
    Pointer to struct :c:type:`v4l2_framebuffer`.

Description
===========

Applications can use the :ref:`VIDIOC_G_FBUF <VIDIOC_G_FBUF>` and :ref:`VIDIOC_S_FBUF <VIDIOC_G_FBUF>` ioctl
to get and set the framebuffer parameters for a
:ref:`Video Overlay <overlay>` or :ref:`Video Output Overlay <osd>`
(OSD). The type of overlay is implied by the device type (capture or
output device) and can be determined with the
:ref:`VIDIOC_QUERYCAP` ioctl. One ``/dev/videoN``
device must not support both kinds of overlay.

The V4L2 API distinguishes destructive and non-destructive overlays. A
destructive overlay copies captured video images into the video memory
of a graphics card. A non-destructive overlay blends video images into a
VGA signal or graphics into a video signal. *Video Output Overlays* are
always non-destructive.

Destructive overlay support has been removed: with modern GPUs and CPUs
this is no longer needed, and it was always a very dangerous feature.

To get the current parameters applications call the :ref:`VIDIOC_G_FBUF <VIDIOC_G_FBUF>`
ioctl with a pointer to a struct :c:type:`v4l2_framebuffer`
structure. The driver fills all fields of the structure or returns an
EINVAL error code when overlays are not supported.

To set the parameters for a *Video Output Overlay*, applications must
initialize the ``flags`` field of a struct
:c:type:`v4l2_framebuffer`. Since the framebuffer is
implemented on the TV card all other parameters are determined by the
driver. When an application calls :ref:`VIDIOC_S_FBUF <VIDIOC_G_FBUF>` with a pointer to
this structure, the driver prepares for the overlay and returns the
framebuffer parameters as :ref:`VIDIOC_G_FBUF <VIDIOC_G_FBUF>` does, or it returns an error
code.

To set the parameters for a *Video Capture Overlay*
applications must initialize the ``flags`` field, the ``fmt``
substructure, and call :ref:`VIDIOC_S_FBUF <VIDIOC_G_FBUF>`. Again the driver prepares for
the overlay and returns the framebuffer parameters as :ref:`VIDIOC_G_FBUF <VIDIOC_G_FBUF>`
does, or it returns an error code.

.. tabularcolumns:: |p{3.5cm}|p{3.5cm}|p{3.5cm}|p{6.6cm}|

.. c:type:: v4l2_framebuffer

.. cssclass:: longtable

.. flat-table:: struct v4l2_framebuffer
    :header-rows:  0
    :stub-columns: 0
    :widths:       1 1 1 2

    * - __u32
      - ``capability``
      -
      - Overlay capability flags set by the driver, see
	:ref:`framebuffer-cap`.
    * - __u32
      - ``flags``
      -
      - Overlay control flags set by application and driver, see
	:ref:`framebuffer-flags`
    * - void *
      - ``base``
      -
      - Physical base address of the framebuffer, that is the address of
	the pixel in the top left corner of the framebuffer.
	For :ref:`VIDIOC_S_FBUF <VIDIOC_G_FBUF>` this field is no longer supported
	and the kernel will always set this to NULL.
	For *Video Output Overlays*
	the driver will return a valid base address, so applications can
	find the corresponding Linux framebuffer device (see
	:ref:`osd`). For *Video Capture Overlays* this field will always be
	NULL.
    * - struct
      - ``fmt``
      -
      - Layout of the frame buffer.
    * -
      - __u32
      - ``width``
      - Width of the frame buffer in pixels.
    * -
      - __u32
      - ``height``
      - Height of the frame buffer in pixels.
    * -
      - __u32
      - ``pixelformat``
      - The pixel format of the framebuffer.
    * -
      -
      -
      - For *non-destructive Video Overlays* this field only defines a
	format for the struct :c:type:`v4l2_window`
	``chromakey`` field.
    * -
      -
      -
      - For *Video Output Overlays* the driver must return a valid
	format.
    * -
      -
      -
      - Usually this is an RGB format (for example
	:ref:`V4L2_PIX_FMT_RGB565 <V4L2-PIX-FMT-RGB565>`) but YUV
	formats (only packed YUV formats when chroma keying is used, not
	including ``V4L2_PIX_FMT_YUYV`` and ``V4L2_PIX_FMT_UYVY``) and the
	``V4L2_PIX_FMT_PAL8`` format are also permitted. The behavior of
	the driver when an application requests a compressed format is
	undefined. See :ref:`pixfmt` for information on pixel formats.
    * -
      - enum :c:type:`v4l2_field`
      - ``field``
      - Drivers and applications shall ignore this field. If applicable,
	the field order is selected with the
	:ref:`VIDIOC_S_FMT <VIDIOC_G_FMT>` ioctl, using the ``field``
	field of struct :c:type:`v4l2_window`.
    * -
      - __u32
      - ``bytesperline``
      - Distance in bytes between the leftmost pixels in two adjacent
	lines.
    * - :cspan:`3`

	This field is irrelevant to *non-destructive Video Overlays*.

	For *Video Output Overlays* the driver must return a valid value.

	Video hardware may access padding bytes, therefore they must
	reside in accessible memory. Consider for example the case where
	padding bytes after the last line of an image cross a system page
	boundary. Capture devices may write padding bytes, the value is
	undefined. Output devices ignore the contents of padding bytes.

	When the image format is planar the ``bytesperline`` value applies
	to the first plane and is divided by the same factor as the
	``width`` field for the other planes. For example the Cb and Cr
	planes of a YUV 4:2:0 image have half as many padding bytes
	following each line as the Y plane. To avoid ambiguities drivers
	must return a ``bytesperline`` value rounded up to a multiple of
	the scale factor.
    * -
      - __u32
      - ``sizeimage``
      - This field is irrelevant to *non-destructive Video Overlays*.
	For *Video Output Overlays* the driver must return a valid
	format.

	Together with ``base`` it defines the framebuffer memory
	accessible by the driver.
    * -
      - enum :c:type:`v4l2_colorspace`
      - ``colorspace``
      - This information supplements the ``pixelformat`` and must be set
	by the driver, see :ref:`colorspaces`.
    * -
      - __u32
      - ``priv``
      - Reserved. Drivers and applications must set this field to zero.

.. tabularcolumns:: |p{7.4cm}|p{1.6cm}|p{8.3cm}|

.. _framebuffer-cap:

.. flat-table:: Frame Buffer Capability Flags
    :header-rows:  0
    :stub-columns: 0
    :widths:       3 1 4

    * - ``V4L2_FBUF_CAP_EXTERNOVERLAY``
      - 0x0001
      - The device is capable of non-destructive overlays. When the driver
	clears this flag, only destructive overlays are supported. There
	are no drivers yet which support both destructive and
	non-destructive overlays. Video Output Overlays are in practice
	always non-destructive.
    * - ``V4L2_FBUF_CAP_CHROMAKEY``
      - 0x0002
      - The device supports clipping by chroma-keying the images. That is,
	image pixels replace pixels in the VGA or video signal only where
	the latter assume a certain color. Chroma-keying makes no sense
	for destructive overlays.
    * - ``V4L2_FBUF_CAP_LIST_CLIPPING``
      - 0x0004
      - The device supports clipping using a list of clip rectangles.
        Note that this is no longer supported.
    * - ``V4L2_FBUF_CAP_BITMAP_CLIPPING``
      - 0x0008
      - The device supports clipping using a bit mask.
        Note that this is no longer supported.
    * - ``V4L2_FBUF_CAP_LOCAL_ALPHA``
      - 0x0010
      - The device supports clipping/blending using the alpha channel of
	the framebuffer or VGA signal. Alpha blending makes no sense for
	destructive overlays.
    * - ``V4L2_FBUF_CAP_GLOBAL_ALPHA``
      - 0x0020
      - The device supports alpha blending using a global alpha value.
	Alpha blending makes no sense for destructive overlays.
    * - ``V4L2_FBUF_CAP_LOCAL_INV_ALPHA``
      - 0x0040
      - The device supports clipping/blending using the inverted alpha
	channel of the framebuffer or VGA signal. Alpha blending makes no
	sense for destructive overlays.
    * - ``V4L2_FBUF_CAP_SRC_CHROMAKEY``
      - 0x0080
      - The device supports Source Chroma-keying. Video pixels with the
	chroma-key colors are replaced by framebuffer pixels, which is
	exactly opposite of ``V4L2_FBUF_CAP_CHROMAKEY``

.. tabularcolumns:: |p{7.4cm}|p{1.6cm}|p{8.3cm}|

.. _framebuffer-flags:

.. cssclass:: longtable

.. flat-table:: Frame Buffer Flags
    :header-rows:  0
    :stub-columns: 0
    :widths:       3 1 4

    * - ``V4L2_FBUF_FLAG_PRIMARY``
      - 0x0001
      - The framebuffer is the primary graphics surface. In other words,
	the overlay is destructive. This flag is typically set by any
	driver that doesn't have the ``V4L2_FBUF_CAP_EXTERNOVERLAY``
	capability and it is cleared otherwise.
    * - ``V4L2_FBUF_FLAG_OVERLAY``
      - 0x0002
      - If this flag is set for a video capture device, then the driver
	will set the initial overlay size to cover the full framebuffer
	size, otherwise the existing overlay size (as set by
	:ref:`VIDIOC_S_FMT <VIDIOC_G_FMT>`) will be used. Only one
	video capture driver (bttv) supports this flag. The use of this
	flag for capture devices is deprecated. There is no way to detect
	which drivers support this flag, so the only reliable method of
	setting the overlay size is through
	:ref:`VIDIOC_S_FMT <VIDIOC_G_FMT>`. If this flag is set for a
	video output device, then the video output overlay window is
	relative to the top-left corner of the framebuffer and restricted
	to the size of the framebuffer. If it is cleared, then the video
	output overlay window is relative to the video output display.
    * - ``V4L2_FBUF_FLAG_CHROMAKEY``
      - 0x0004
      - Use chroma-keying. The chroma-key color is determined by the
	``chromakey`` field of struct :c:type:`v4l2_window`
	and negotiated with the :ref:`VIDIOC_S_FMT <VIDIOC_G_FMT>`
	ioctl, see :ref:`overlay` and :ref:`osd`.
    * - :cspan:`2` There are no flags to enable clipping using a list of
	clip rectangles or a bitmap. These methods are negotiated with the
	:ref:`VIDIOC_S_FMT <VIDIOC_G_FMT>` ioctl, see :ref:`overlay`
	and :ref:`osd`.
    * - ``V4L2_FBUF_FLAG_LOCAL_ALPHA``
      - 0x0008
      - Use the alpha channel of the framebuffer to clip or blend
	framebuffer pixels with video images. The blend function is:
	output = framebuffer pixel * alpha + video pixel * (1 - alpha).
	The actual alpha depth depends on the framebuffer pixel format.
    * - ``V4L2_FBUF_FLAG_GLOBAL_ALPHA``
      - 0x0010
      - Use a global alpha value to blend the framebuffer with video
	images. The blend function is: output = (framebuffer pixel * alpha
	+ video pixel * (255 - alpha)) / 255. The alpha value is
	determined by the ``global_alpha`` field of struct
	:c:type:`v4l2_window` and negotiated with the
	:ref:`VIDIOC_S_FMT <VIDIOC_G_FMT>` ioctl, see :ref:`overlay`
	and :ref:`osd`.
    * - ``V4L2_FBUF_FLAG_LOCAL_INV_ALPHA``
      - 0x0020
      - Like ``V4L2_FBUF_FLAG_LOCAL_ALPHA``, use the alpha channel of the
	framebuffer to clip or blend framebuffer pixels with video images,
	but with an inverted alpha value. The blend function is: output =
	framebuffer pixel * (1 - alpha) + video pixel * alpha. The actual
	alpha depth depends on the framebuffer pixel format.
    * - ``V4L2_FBUF_FLAG_SRC_CHROMAKEY``
      - 0x0040
      - Use source chroma-keying. The source chroma-key color is
	determined by the ``chromakey`` field of struct
	:c:type:`v4l2_window` and negotiated with the
	:ref:`VIDIOC_S_FMT <VIDIOC_G_FMT>` ioctl, see :ref:`overlay`
	and :ref:`osd`. Both chroma-keying are mutual exclusive to each
	other, so same ``chromakey`` field of struct
	:c:type:`v4l2_window` is being used.

Return Value
============

On success 0 is returned, on error -1 and the ``errno`` variable is set
appropriately. The generic error codes are described at the
:ref:`Generic Error Codes <gen-errors>` chapter.

EPERM
    :ref:`VIDIOC_S_FBUF <VIDIOC_G_FBUF>` can only be called by a privileged user to
    negotiate the parameters for a destructive overlay.

EINVAL
    The :ref:`VIDIOC_S_FBUF <VIDIOC_G_FBUF>` parameters are unsuitable.