1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
|
/* SPDX-License-Identifier: GPL-2.0-only */
/*
* Copyright (C) 2012 ARM Ltd.
*/
#ifndef __ASM_PGTABLE_H
#define __ASM_PGTABLE_H
#include <asm/bug.h>
#include <asm/proc-fns.h>
#include <asm/memory.h>
#include <asm/mte.h>
#include <asm/pgtable-hwdef.h>
#include <asm/pgtable-prot.h>
#include <asm/tlbflush.h>
/*
* VMALLOC range.
*
* VMALLOC_START: beginning of the kernel vmalloc space
* VMALLOC_END: extends to the available space below vmemmap
*/
#define VMALLOC_START (MODULES_END)
#if VA_BITS == VA_BITS_MIN
#define VMALLOC_END (VMEMMAP_START - SZ_8M)
#else
#define VMEMMAP_UNUSED_NPAGES ((_PAGE_OFFSET(vabits_actual) - PAGE_OFFSET) >> PAGE_SHIFT)
#define VMALLOC_END (VMEMMAP_START + VMEMMAP_UNUSED_NPAGES * sizeof(struct page) - SZ_8M)
#endif
#define vmemmap ((struct page *)VMEMMAP_START - (memstart_addr >> PAGE_SHIFT))
#ifndef __ASSEMBLY__
#include <asm/cmpxchg.h>
#include <asm/fixmap.h>
#include <linux/mmdebug.h>
#include <linux/mm_types.h>
#include <linux/sched.h>
#include <linux/page_table_check.h>
#ifdef CONFIG_TRANSPARENT_HUGEPAGE
#define __HAVE_ARCH_FLUSH_PMD_TLB_RANGE
/* Set stride and tlb_level in flush_*_tlb_range */
#define flush_pmd_tlb_range(vma, addr, end) \
__flush_tlb_range(vma, addr, end, PMD_SIZE, false, 2)
#define flush_pud_tlb_range(vma, addr, end) \
__flush_tlb_range(vma, addr, end, PUD_SIZE, false, 1)
#endif /* CONFIG_TRANSPARENT_HUGEPAGE */
static inline bool arch_thp_swp_supported(void)
{
return !system_supports_mte();
}
#define arch_thp_swp_supported arch_thp_swp_supported
/*
* Outside of a few very special situations (e.g. hibernation), we always
* use broadcast TLB invalidation instructions, therefore a spurious page
* fault on one CPU which has been handled concurrently by another CPU
* does not need to perform additional invalidation.
*/
#define flush_tlb_fix_spurious_fault(vma, address, ptep) do { } while (0)
/*
* ZERO_PAGE is a global shared page that is always zero: used
* for zero-mapped memory areas etc..
*/
extern unsigned long empty_zero_page[PAGE_SIZE / sizeof(unsigned long)];
#define ZERO_PAGE(vaddr) phys_to_page(__pa_symbol(empty_zero_page))
#define pte_ERROR(e) \
pr_err("%s:%d: bad pte %016llx.\n", __FILE__, __LINE__, pte_val(e))
/*
* Macros to convert between a physical address and its placement in a
* page table entry, taking care of 52-bit addresses.
*/
#ifdef CONFIG_ARM64_PA_BITS_52
static inline phys_addr_t __pte_to_phys(pte_t pte)
{
pte_val(pte) &= ~PTE_MAYBE_SHARED;
return (pte_val(pte) & PTE_ADDR_LOW) |
((pte_val(pte) & PTE_ADDR_HIGH) << PTE_ADDR_HIGH_SHIFT);
}
static inline pteval_t __phys_to_pte_val(phys_addr_t phys)
{
return (phys | (phys >> PTE_ADDR_HIGH_SHIFT)) & PHYS_TO_PTE_ADDR_MASK;
}
#else
#define __pte_to_phys(pte) (pte_val(pte) & PTE_ADDR_LOW)
#define __phys_to_pte_val(phys) (phys)
#endif
#define pte_pfn(pte) (__pte_to_phys(pte) >> PAGE_SHIFT)
#define pfn_pte(pfn,prot) \
__pte(__phys_to_pte_val((phys_addr_t)(pfn) << PAGE_SHIFT) | pgprot_val(prot))
#define pte_none(pte) (!pte_val(pte))
#define __pte_clear(mm, addr, ptep) \
__set_pte(ptep, __pte(0))
#define pte_page(pte) (pfn_to_page(pte_pfn(pte)))
/*
* The following only work if pte_present(). Undefined behaviour otherwise.
*/
#define pte_present(pte) (!!(pte_val(pte) & (PTE_VALID | PTE_PROT_NONE)))
#define pte_young(pte) (!!(pte_val(pte) & PTE_AF))
#define pte_special(pte) (!!(pte_val(pte) & PTE_SPECIAL))
#define pte_write(pte) (!!(pte_val(pte) & PTE_WRITE))
#define pte_rdonly(pte) (!!(pte_val(pte) & PTE_RDONLY))
#define pte_user(pte) (!!(pte_val(pte) & PTE_USER))
#define pte_user_exec(pte) (!(pte_val(pte) & PTE_UXN))
#define pte_cont(pte) (!!(pte_val(pte) & PTE_CONT))
#define pte_devmap(pte) (!!(pte_val(pte) & PTE_DEVMAP))
#define pte_tagged(pte) ((pte_val(pte) & PTE_ATTRINDX_MASK) == \
PTE_ATTRINDX(MT_NORMAL_TAGGED))
#define pte_cont_addr_end(addr, end) \
({ unsigned long __boundary = ((addr) + CONT_PTE_SIZE) & CONT_PTE_MASK; \
(__boundary - 1 < (end) - 1) ? __boundary : (end); \
})
#define pmd_cont_addr_end(addr, end) \
({ unsigned long __boundary = ((addr) + CONT_PMD_SIZE) & CONT_PMD_MASK; \
(__boundary - 1 < (end) - 1) ? __boundary : (end); \
})
#define pte_hw_dirty(pte) (pte_write(pte) && !pte_rdonly(pte))
#define pte_sw_dirty(pte) (!!(pte_val(pte) & PTE_DIRTY))
#define pte_dirty(pte) (pte_sw_dirty(pte) || pte_hw_dirty(pte))
#define pte_valid(pte) (!!(pte_val(pte) & PTE_VALID))
/*
* Execute-only user mappings do not have the PTE_USER bit set. All valid
* kernel mappings have the PTE_UXN bit set.
*/
#define pte_valid_not_user(pte) \
((pte_val(pte) & (PTE_VALID | PTE_USER | PTE_UXN)) == (PTE_VALID | PTE_UXN))
/*
* Returns true if the pte is valid and has the contiguous bit set.
*/
#define pte_valid_cont(pte) (pte_valid(pte) && pte_cont(pte))
/*
* Could the pte be present in the TLB? We must check mm_tlb_flush_pending
* so that we don't erroneously return false for pages that have been
* remapped as PROT_NONE but are yet to be flushed from the TLB.
* Note that we can't make any assumptions based on the state of the access
* flag, since __ptep_clear_flush_young() elides a DSB when invalidating the
* TLB.
*/
#define pte_accessible(mm, pte) \
(mm_tlb_flush_pending(mm) ? pte_present(pte) : pte_valid(pte))
/*
* p??_access_permitted() is true for valid user mappings (PTE_USER
* bit set, subject to the write permission check). For execute-only
* mappings, like PROT_EXEC with EPAN (both PTE_USER and PTE_UXN bits
* not set) must return false. PROT_NONE mappings do not have the
* PTE_VALID bit set.
*/
#define pte_access_permitted(pte, write) \
(((pte_val(pte) & (PTE_VALID | PTE_USER)) == (PTE_VALID | PTE_USER)) && (!(write) || pte_write(pte)))
#define pmd_access_permitted(pmd, write) \
(pte_access_permitted(pmd_pte(pmd), (write)))
#define pud_access_permitted(pud, write) \
(pte_access_permitted(pud_pte(pud), (write)))
static inline pte_t clear_pte_bit(pte_t pte, pgprot_t prot)
{
pte_val(pte) &= ~pgprot_val(prot);
return pte;
}
static inline pte_t set_pte_bit(pte_t pte, pgprot_t prot)
{
pte_val(pte) |= pgprot_val(prot);
return pte;
}
static inline pmd_t clear_pmd_bit(pmd_t pmd, pgprot_t prot)
{
pmd_val(pmd) &= ~pgprot_val(prot);
return pmd;
}
static inline pmd_t set_pmd_bit(pmd_t pmd, pgprot_t prot)
{
pmd_val(pmd) |= pgprot_val(prot);
return pmd;
}
static inline pte_t pte_mkwrite_novma(pte_t pte)
{
pte = set_pte_bit(pte, __pgprot(PTE_WRITE));
pte = clear_pte_bit(pte, __pgprot(PTE_RDONLY));
return pte;
}
static inline pte_t pte_mkclean(pte_t pte)
{
pte = clear_pte_bit(pte, __pgprot(PTE_DIRTY));
pte = set_pte_bit(pte, __pgprot(PTE_RDONLY));
return pte;
}
static inline pte_t pte_mkdirty(pte_t pte)
{
pte = set_pte_bit(pte, __pgprot(PTE_DIRTY));
if (pte_write(pte))
pte = clear_pte_bit(pte, __pgprot(PTE_RDONLY));
return pte;
}
static inline pte_t pte_wrprotect(pte_t pte)
{
/*
* If hardware-dirty (PTE_WRITE/DBM bit set and PTE_RDONLY
* clear), set the PTE_DIRTY bit.
*/
if (pte_hw_dirty(pte))
pte = set_pte_bit(pte, __pgprot(PTE_DIRTY));
pte = clear_pte_bit(pte, __pgprot(PTE_WRITE));
pte = set_pte_bit(pte, __pgprot(PTE_RDONLY));
return pte;
}
static inline pte_t pte_mkold(pte_t pte)
{
return clear_pte_bit(pte, __pgprot(PTE_AF));
}
static inline pte_t pte_mkyoung(pte_t pte)
{
return set_pte_bit(pte, __pgprot(PTE_AF));
}
static inline pte_t pte_mkspecial(pte_t pte)
{
return set_pte_bit(pte, __pgprot(PTE_SPECIAL));
}
static inline pte_t pte_mkcont(pte_t pte)
{
pte = set_pte_bit(pte, __pgprot(PTE_CONT));
return set_pte_bit(pte, __pgprot(PTE_TYPE_PAGE));
}
static inline pte_t pte_mknoncont(pte_t pte)
{
return clear_pte_bit(pte, __pgprot(PTE_CONT));
}
static inline pte_t pte_mkpresent(pte_t pte)
{
return set_pte_bit(pte, __pgprot(PTE_VALID));
}
static inline pmd_t pmd_mkcont(pmd_t pmd)
{
return __pmd(pmd_val(pmd) | PMD_SECT_CONT);
}
static inline pte_t pte_mkdevmap(pte_t pte)
{
return set_pte_bit(pte, __pgprot(PTE_DEVMAP | PTE_SPECIAL));
}
static inline void __set_pte(pte_t *ptep, pte_t pte)
{
WRITE_ONCE(*ptep, pte);
/*
* Only if the new pte is valid and kernel, otherwise TLB maintenance
* or update_mmu_cache() have the necessary barriers.
*/
if (pte_valid_not_user(pte)) {
dsb(ishst);
isb();
}
}
static inline pte_t __ptep_get(pte_t *ptep)
{
return READ_ONCE(*ptep);
}
extern void __sync_icache_dcache(pte_t pteval);
bool pgattr_change_is_safe(u64 old, u64 new);
/*
* PTE bits configuration in the presence of hardware Dirty Bit Management
* (PTE_WRITE == PTE_DBM):
*
* Dirty Writable | PTE_RDONLY PTE_WRITE PTE_DIRTY (sw)
* 0 0 | 1 0 0
* 0 1 | 1 1 0
* 1 0 | 1 0 1
* 1 1 | 0 1 x
*
* When hardware DBM is not present, the sofware PTE_DIRTY bit is updated via
* the page fault mechanism. Checking the dirty status of a pte becomes:
*
* PTE_DIRTY || (PTE_WRITE && !PTE_RDONLY)
*/
static inline void __check_safe_pte_update(struct mm_struct *mm, pte_t *ptep,
pte_t pte)
{
pte_t old_pte;
if (!IS_ENABLED(CONFIG_DEBUG_VM))
return;
old_pte = __ptep_get(ptep);
if (!pte_valid(old_pte) || !pte_valid(pte))
return;
if (mm != current->active_mm && atomic_read(&mm->mm_users) <= 1)
return;
/*
* Check for potential race with hardware updates of the pte
* (__ptep_set_access_flags safely changes valid ptes without going
* through an invalid entry).
*/
VM_WARN_ONCE(!pte_young(pte),
"%s: racy access flag clearing: 0x%016llx -> 0x%016llx",
__func__, pte_val(old_pte), pte_val(pte));
VM_WARN_ONCE(pte_write(old_pte) && !pte_dirty(pte),
"%s: racy dirty state clearing: 0x%016llx -> 0x%016llx",
__func__, pte_val(old_pte), pte_val(pte));
VM_WARN_ONCE(!pgattr_change_is_safe(pte_val(old_pte), pte_val(pte)),
"%s: unsafe attribute change: 0x%016llx -> 0x%016llx",
__func__, pte_val(old_pte), pte_val(pte));
}
static inline void __sync_cache_and_tags(pte_t pte, unsigned int nr_pages)
{
if (pte_present(pte) && pte_user_exec(pte) && !pte_special(pte))
__sync_icache_dcache(pte);
/*
* If the PTE would provide user space access to the tags associated
* with it then ensure that the MTE tags are synchronised. Although
* pte_access_permitted() returns false for exec only mappings, they
* don't expose tags (instruction fetches don't check tags).
*/
if (system_supports_mte() && pte_access_permitted(pte, false) &&
!pte_special(pte) && pte_tagged(pte))
mte_sync_tags(pte, nr_pages);
}
/*
* Select all bits except the pfn
*/
static inline pgprot_t pte_pgprot(pte_t pte)
{
unsigned long pfn = pte_pfn(pte);
return __pgprot(pte_val(pfn_pte(pfn, __pgprot(0))) ^ pte_val(pte));
}
#define pte_advance_pfn pte_advance_pfn
static inline pte_t pte_advance_pfn(pte_t pte, unsigned long nr)
{
return pfn_pte(pte_pfn(pte) + nr, pte_pgprot(pte));
}
static inline void __set_ptes(struct mm_struct *mm,
unsigned long __always_unused addr,
pte_t *ptep, pte_t pte, unsigned int nr)
{
page_table_check_ptes_set(mm, ptep, pte, nr);
__sync_cache_and_tags(pte, nr);
for (;;) {
__check_safe_pte_update(mm, ptep, pte);
__set_pte(ptep, pte);
if (--nr == 0)
break;
ptep++;
pte = pte_advance_pfn(pte, 1);
}
}
/*
* Huge pte definitions.
*/
#define pte_mkhuge(pte) (__pte(pte_val(pte) & ~PTE_TABLE_BIT))
/*
* Hugetlb definitions.
*/
#define HUGE_MAX_HSTATE 4
#define HPAGE_SHIFT PMD_SHIFT
#define HPAGE_SIZE (_AC(1, UL) << HPAGE_SHIFT)
#define HPAGE_MASK (~(HPAGE_SIZE - 1))
#define HUGETLB_PAGE_ORDER (HPAGE_SHIFT - PAGE_SHIFT)
static inline pte_t pgd_pte(pgd_t pgd)
{
return __pte(pgd_val(pgd));
}
static inline pte_t p4d_pte(p4d_t p4d)
{
return __pte(p4d_val(p4d));
}
static inline pte_t pud_pte(pud_t pud)
{
return __pte(pud_val(pud));
}
static inline pud_t pte_pud(pte_t pte)
{
return __pud(pte_val(pte));
}
static inline pmd_t pud_pmd(pud_t pud)
{
return __pmd(pud_val(pud));
}
static inline pte_t pmd_pte(pmd_t pmd)
{
return __pte(pmd_val(pmd));
}
static inline pmd_t pte_pmd(pte_t pte)
{
return __pmd(pte_val(pte));
}
static inline pgprot_t mk_pud_sect_prot(pgprot_t prot)
{
return __pgprot((pgprot_val(prot) & ~PUD_TABLE_BIT) | PUD_TYPE_SECT);
}
static inline pgprot_t mk_pmd_sect_prot(pgprot_t prot)
{
return __pgprot((pgprot_val(prot) & ~PMD_TABLE_BIT) | PMD_TYPE_SECT);
}
static inline pte_t pte_swp_mkexclusive(pte_t pte)
{
return set_pte_bit(pte, __pgprot(PTE_SWP_EXCLUSIVE));
}
static inline int pte_swp_exclusive(pte_t pte)
{
return pte_val(pte) & PTE_SWP_EXCLUSIVE;
}
static inline pte_t pte_swp_clear_exclusive(pte_t pte)
{
return clear_pte_bit(pte, __pgprot(PTE_SWP_EXCLUSIVE));
}
#ifdef CONFIG_NUMA_BALANCING
/*
* See the comment in include/linux/pgtable.h
*/
static inline int pte_protnone(pte_t pte)
{
return (pte_val(pte) & (PTE_VALID | PTE_PROT_NONE)) == PTE_PROT_NONE;
}
static inline int pmd_protnone(pmd_t pmd)
{
return pte_protnone(pmd_pte(pmd));
}
#endif
#define pmd_present_invalid(pmd) (!!(pmd_val(pmd) & PMD_PRESENT_INVALID))
static inline int pmd_present(pmd_t pmd)
{
return pte_present(pmd_pte(pmd)) || pmd_present_invalid(pmd);
}
/*
* THP definitions.
*/
#ifdef CONFIG_TRANSPARENT_HUGEPAGE
static inline int pmd_trans_huge(pmd_t pmd)
{
return pmd_val(pmd) && pmd_present(pmd) && !(pmd_val(pmd) & PMD_TABLE_BIT);
}
#endif /* CONFIG_TRANSPARENT_HUGEPAGE */
#define pmd_dirty(pmd) pte_dirty(pmd_pte(pmd))
#define pmd_young(pmd) pte_young(pmd_pte(pmd))
#define pmd_valid(pmd) pte_valid(pmd_pte(pmd))
#define pmd_user(pmd) pte_user(pmd_pte(pmd))
#define pmd_user_exec(pmd) pte_user_exec(pmd_pte(pmd))
#define pmd_cont(pmd) pte_cont(pmd_pte(pmd))
#define pmd_wrprotect(pmd) pte_pmd(pte_wrprotect(pmd_pte(pmd)))
#define pmd_mkold(pmd) pte_pmd(pte_mkold(pmd_pte(pmd)))
#define pmd_mkwrite_novma(pmd) pte_pmd(pte_mkwrite_novma(pmd_pte(pmd)))
#define pmd_mkclean(pmd) pte_pmd(pte_mkclean(pmd_pte(pmd)))
#define pmd_mkdirty(pmd) pte_pmd(pte_mkdirty(pmd_pte(pmd)))
#define pmd_mkyoung(pmd) pte_pmd(pte_mkyoung(pmd_pte(pmd)))
static inline pmd_t pmd_mkinvalid(pmd_t pmd)
{
pmd = set_pmd_bit(pmd, __pgprot(PMD_PRESENT_INVALID));
pmd = clear_pmd_bit(pmd, __pgprot(PMD_SECT_VALID));
return pmd;
}
#define pmd_thp_or_huge(pmd) (pmd_huge(pmd) || pmd_trans_huge(pmd))
#define pmd_write(pmd) pte_write(pmd_pte(pmd))
#define pmd_mkhuge(pmd) (__pmd(pmd_val(pmd) & ~PMD_TABLE_BIT))
#ifdef CONFIG_TRANSPARENT_HUGEPAGE
#define pmd_devmap(pmd) pte_devmap(pmd_pte(pmd))
#endif
static inline pmd_t pmd_mkdevmap(pmd_t pmd)
{
return pte_pmd(set_pte_bit(pmd_pte(pmd), __pgprot(PTE_DEVMAP)));
}
#define __pmd_to_phys(pmd) __pte_to_phys(pmd_pte(pmd))
#define __phys_to_pmd_val(phys) __phys_to_pte_val(phys)
#define pmd_pfn(pmd) ((__pmd_to_phys(pmd) & PMD_MASK) >> PAGE_SHIFT)
#define pfn_pmd(pfn,prot) __pmd(__phys_to_pmd_val((phys_addr_t)(pfn) << PAGE_SHIFT) | pgprot_val(prot))
#define mk_pmd(page,prot) pfn_pmd(page_to_pfn(page),prot)
#define pud_young(pud) pte_young(pud_pte(pud))
#define pud_mkyoung(pud) pte_pud(pte_mkyoung(pud_pte(pud)))
#define pud_write(pud) pte_write(pud_pte(pud))
#define pud_mkhuge(pud) (__pud(pud_val(pud) & ~PUD_TABLE_BIT))
#define __pud_to_phys(pud) __pte_to_phys(pud_pte(pud))
#define __phys_to_pud_val(phys) __phys_to_pte_val(phys)
#define pud_pfn(pud) ((__pud_to_phys(pud) & PUD_MASK) >> PAGE_SHIFT)
#define pfn_pud(pfn,prot) __pud(__phys_to_pud_val((phys_addr_t)(pfn) << PAGE_SHIFT) | pgprot_val(prot))
static inline void __set_pte_at(struct mm_struct *mm,
unsigned long __always_unused addr,
pte_t *ptep, pte_t pte, unsigned int nr)
{
__sync_cache_and_tags(pte, nr);
__check_safe_pte_update(mm, ptep, pte);
__set_pte(ptep, pte);
}
static inline void set_pmd_at(struct mm_struct *mm, unsigned long addr,
pmd_t *pmdp, pmd_t pmd)
{
page_table_check_pmd_set(mm, pmdp, pmd);
return __set_pte_at(mm, addr, (pte_t *)pmdp, pmd_pte(pmd),
PMD_SIZE >> PAGE_SHIFT);
}
static inline void set_pud_at(struct mm_struct *mm, unsigned long addr,
pud_t *pudp, pud_t pud)
{
page_table_check_pud_set(mm, pudp, pud);
return __set_pte_at(mm, addr, (pte_t *)pudp, pud_pte(pud),
PUD_SIZE >> PAGE_SHIFT);
}
#define __p4d_to_phys(p4d) __pte_to_phys(p4d_pte(p4d))
#define __phys_to_p4d_val(phys) __phys_to_pte_val(phys)
#define __pgd_to_phys(pgd) __pte_to_phys(pgd_pte(pgd))
#define __phys_to_pgd_val(phys) __phys_to_pte_val(phys)
#define __pgprot_modify(prot,mask,bits) \
__pgprot((pgprot_val(prot) & ~(mask)) | (bits))
#define pgprot_nx(prot) \
__pgprot_modify(prot, PTE_MAYBE_GP, PTE_PXN)
/*
* Mark the prot value as uncacheable and unbufferable.
*/
#define pgprot_noncached(prot) \
__pgprot_modify(prot, PTE_ATTRINDX_MASK, PTE_ATTRINDX(MT_DEVICE_nGnRnE) | PTE_PXN | PTE_UXN)
#define pgprot_writecombine(prot) \
__pgprot_modify(prot, PTE_ATTRINDX_MASK, PTE_ATTRINDX(MT_NORMAL_NC) | PTE_PXN | PTE_UXN)
#define pgprot_device(prot) \
__pgprot_modify(prot, PTE_ATTRINDX_MASK, PTE_ATTRINDX(MT_DEVICE_nGnRE) | PTE_PXN | PTE_UXN)
#define pgprot_tagged(prot) \
__pgprot_modify(prot, PTE_ATTRINDX_MASK, PTE_ATTRINDX(MT_NORMAL_TAGGED))
#define pgprot_mhp pgprot_tagged
/*
* DMA allocations for non-coherent devices use what the Arm architecture calls
* "Normal non-cacheable" memory, which permits speculation, unaligned accesses
* and merging of writes. This is different from "Device-nGnR[nE]" memory which
* is intended for MMIO and thus forbids speculation, preserves access size,
* requires strict alignment and can also force write responses to come from the
* endpoint.
*/
#define pgprot_dmacoherent(prot) \
__pgprot_modify(prot, PTE_ATTRINDX_MASK, \
PTE_ATTRINDX(MT_NORMAL_NC) | PTE_PXN | PTE_UXN)
#define __HAVE_PHYS_MEM_ACCESS_PROT
struct file;
extern pgprot_t phys_mem_access_prot(struct file *file, unsigned long pfn,
unsigned long size, pgprot_t vma_prot);
#define pmd_none(pmd) (!pmd_val(pmd))
#define pmd_table(pmd) ((pmd_val(pmd) & PMD_TYPE_MASK) == \
PMD_TYPE_TABLE)
#define pmd_sect(pmd) ((pmd_val(pmd) & PMD_TYPE_MASK) == \
PMD_TYPE_SECT)
#define pmd_leaf(pmd) (pmd_present(pmd) && !pmd_table(pmd))
#define pmd_bad(pmd) (!pmd_table(pmd))
#define pmd_leaf_size(pmd) (pmd_cont(pmd) ? CONT_PMD_SIZE : PMD_SIZE)
#define pte_leaf_size(pte) (pte_cont(pte) ? CONT_PTE_SIZE : PAGE_SIZE)
#if defined(CONFIG_ARM64_64K_PAGES) || CONFIG_PGTABLE_LEVELS < 3
static inline bool pud_sect(pud_t pud) { return false; }
static inline bool pud_table(pud_t pud) { return true; }
#else
#define pud_sect(pud) ((pud_val(pud) & PUD_TYPE_MASK) == \
PUD_TYPE_SECT)
#define pud_table(pud) ((pud_val(pud) & PUD_TYPE_MASK) == \
PUD_TYPE_TABLE)
#endif
extern pgd_t init_pg_dir[];
extern pgd_t init_pg_end[];
extern pgd_t swapper_pg_dir[];
extern pgd_t idmap_pg_dir[];
extern pgd_t tramp_pg_dir[];
extern pgd_t reserved_pg_dir[];
extern void set_swapper_pgd(pgd_t *pgdp, pgd_t pgd);
static inline bool in_swapper_pgdir(void *addr)
{
return ((unsigned long)addr & PAGE_MASK) ==
((unsigned long)swapper_pg_dir & PAGE_MASK);
}
static inline void set_pmd(pmd_t *pmdp, pmd_t pmd)
{
#ifdef __PAGETABLE_PMD_FOLDED
if (in_swapper_pgdir(pmdp)) {
set_swapper_pgd((pgd_t *)pmdp, __pgd(pmd_val(pmd)));
return;
}
#endif /* __PAGETABLE_PMD_FOLDED */
WRITE_ONCE(*pmdp, pmd);
if (pmd_valid(pmd)) {
dsb(ishst);
isb();
}
}
static inline void pmd_clear(pmd_t *pmdp)
{
set_pmd(pmdp, __pmd(0));
}
static inline phys_addr_t pmd_page_paddr(pmd_t pmd)
{
return __pmd_to_phys(pmd);
}
static inline unsigned long pmd_page_vaddr(pmd_t pmd)
{
return (unsigned long)__va(pmd_page_paddr(pmd));
}
/* Find an entry in the third-level page table. */
#define pte_offset_phys(dir,addr) (pmd_page_paddr(READ_ONCE(*(dir))) + pte_index(addr) * sizeof(pte_t))
#define pte_set_fixmap(addr) ((pte_t *)set_fixmap_offset(FIX_PTE, addr))
#define pte_set_fixmap_offset(pmd, addr) pte_set_fixmap(pte_offset_phys(pmd, addr))
#define pte_clear_fixmap() clear_fixmap(FIX_PTE)
#define pmd_page(pmd) phys_to_page(__pmd_to_phys(pmd))
/* use ONLY for statically allocated translation tables */
#define pte_offset_kimg(dir,addr) ((pte_t *)__phys_to_kimg(pte_offset_phys((dir), (addr))))
/*
* Conversion functions: convert a page and protection to a page entry,
* and a page entry and page directory to the page they refer to.
*/
#define mk_pte(page,prot) pfn_pte(page_to_pfn(page),prot)
#if CONFIG_PGTABLE_LEVELS > 2
#define pmd_ERROR(e) \
pr_err("%s:%d: bad pmd %016llx.\n", __FILE__, __LINE__, pmd_val(e))
#define pud_none(pud) (!pud_val(pud))
#define pud_bad(pud) (!pud_table(pud))
#define pud_present(pud) pte_present(pud_pte(pud))
#define pud_leaf(pud) (pud_present(pud) && !pud_table(pud))
#define pud_valid(pud) pte_valid(pud_pte(pud))
#define pud_user(pud) pte_user(pud_pte(pud))
#define pud_user_exec(pud) pte_user_exec(pud_pte(pud))
static inline bool pgtable_l4_enabled(void);
static inline void set_pud(pud_t *pudp, pud_t pud)
{
if (!pgtable_l4_enabled() && in_swapper_pgdir(pudp)) {
set_swapper_pgd((pgd_t *)pudp, __pgd(pud_val(pud)));
return;
}
WRITE_ONCE(*pudp, pud);
if (pud_valid(pud)) {
dsb(ishst);
isb();
}
}
static inline void pud_clear(pud_t *pudp)
{
set_pud(pudp, __pud(0));
}
static inline phys_addr_t pud_page_paddr(pud_t pud)
{
return __pud_to_phys(pud);
}
static inline pmd_t *pud_pgtable(pud_t pud)
{
return (pmd_t *)__va(pud_page_paddr(pud));
}
/* Find an entry in the second-level page table. */
#define pmd_offset_phys(dir, addr) (pud_page_paddr(READ_ONCE(*(dir))) + pmd_index(addr) * sizeof(pmd_t))
#define pmd_set_fixmap(addr) ((pmd_t *)set_fixmap_offset(FIX_PMD, addr))
#define pmd_set_fixmap_offset(pud, addr) pmd_set_fixmap(pmd_offset_phys(pud, addr))
#define pmd_clear_fixmap() clear_fixmap(FIX_PMD)
#define pud_page(pud) phys_to_page(__pud_to_phys(pud))
/* use ONLY for statically allocated translation tables */
#define pmd_offset_kimg(dir,addr) ((pmd_t *)__phys_to_kimg(pmd_offset_phys((dir), (addr))))
#else
#define pud_page_paddr(pud) ({ BUILD_BUG(); 0; })
#define pud_user_exec(pud) pud_user(pud) /* Always 0 with folding */
/* Match pmd_offset folding in <asm/generic/pgtable-nopmd.h> */
#define pmd_set_fixmap(addr) NULL
#define pmd_set_fixmap_offset(pudp, addr) ((pmd_t *)pudp)
#define pmd_clear_fixmap()
#define pmd_offset_kimg(dir,addr) ((pmd_t *)dir)
#endif /* CONFIG_PGTABLE_LEVELS > 2 */
#if CONFIG_PGTABLE_LEVELS > 3
static __always_inline bool pgtable_l4_enabled(void)
{
if (CONFIG_PGTABLE_LEVELS > 4 || !IS_ENABLED(CONFIG_ARM64_LPA2))
return true;
if (!alternative_has_cap_likely(ARM64_ALWAYS_BOOT))
return vabits_actual == VA_BITS;
return alternative_has_cap_unlikely(ARM64_HAS_VA52);
}
static inline bool mm_pud_folded(const struct mm_struct *mm)
{
return !pgtable_l4_enabled();
}
#define mm_pud_folded mm_pud_folded
#define pud_ERROR(e) \
pr_err("%s:%d: bad pud %016llx.\n", __FILE__, __LINE__, pud_val(e))
#define p4d_none(p4d) (pgtable_l4_enabled() && !p4d_val(p4d))
#define p4d_bad(p4d) (pgtable_l4_enabled() && !(p4d_val(p4d) & 2))
#define p4d_present(p4d) (!p4d_none(p4d))
static inline void set_p4d(p4d_t *p4dp, p4d_t p4d)
{
if (in_swapper_pgdir(p4dp)) {
set_swapper_pgd((pgd_t *)p4dp, __pgd(p4d_val(p4d)));
return;
}
WRITE_ONCE(*p4dp, p4d);
dsb(ishst);
isb();
}
static inline void p4d_clear(p4d_t *p4dp)
{
if (pgtable_l4_enabled())
set_p4d(p4dp, __p4d(0));
}
static inline phys_addr_t p4d_page_paddr(p4d_t p4d)
{
return __p4d_to_phys(p4d);
}
#define pud_index(addr) (((addr) >> PUD_SHIFT) & (PTRS_PER_PUD - 1))
static inline pud_t *p4d_to_folded_pud(p4d_t *p4dp, unsigned long addr)
{
return (pud_t *)PTR_ALIGN_DOWN(p4dp, PAGE_SIZE) + pud_index(addr);
}
static inline pud_t *p4d_pgtable(p4d_t p4d)
{
return (pud_t *)__va(p4d_page_paddr(p4d));
}
static inline phys_addr_t pud_offset_phys(p4d_t *p4dp, unsigned long addr)
{
BUG_ON(!pgtable_l4_enabled());
return p4d_page_paddr(READ_ONCE(*p4dp)) + pud_index(addr) * sizeof(pud_t);
}
static inline
pud_t *pud_offset_lockless(p4d_t *p4dp, p4d_t p4d, unsigned long addr)
{
if (!pgtable_l4_enabled())
return p4d_to_folded_pud(p4dp, addr);
return (pud_t *)__va(p4d_page_paddr(p4d)) + pud_index(addr);
}
#define pud_offset_lockless pud_offset_lockless
static inline pud_t *pud_offset(p4d_t *p4dp, unsigned long addr)
{
return pud_offset_lockless(p4dp, READ_ONCE(*p4dp), addr);
}
#define pud_offset pud_offset
static inline pud_t *pud_set_fixmap(unsigned long addr)
{
if (!pgtable_l4_enabled())
return NULL;
return (pud_t *)set_fixmap_offset(FIX_PUD, addr);
}
static inline pud_t *pud_set_fixmap_offset(p4d_t *p4dp, unsigned long addr)
{
if (!pgtable_l4_enabled())
return p4d_to_folded_pud(p4dp, addr);
return pud_set_fixmap(pud_offset_phys(p4dp, addr));
}
static inline void pud_clear_fixmap(void)
{
if (pgtable_l4_enabled())
clear_fixmap(FIX_PUD);
}
/* use ONLY for statically allocated translation tables */
static inline pud_t *pud_offset_kimg(p4d_t *p4dp, u64 addr)
{
if (!pgtable_l4_enabled())
return p4d_to_folded_pud(p4dp, addr);
return (pud_t *)__phys_to_kimg(pud_offset_phys(p4dp, addr));
}
#define p4d_page(p4d) pfn_to_page(__phys_to_pfn(__p4d_to_phys(p4d)))
#else
static inline bool pgtable_l4_enabled(void) { return false; }
#define p4d_page_paddr(p4d) ({ BUILD_BUG(); 0;})
/* Match pud_offset folding in <asm/generic/pgtable-nopud.h> */
#define pud_set_fixmap(addr) NULL
#define pud_set_fixmap_offset(pgdp, addr) ((pud_t *)pgdp)
#define pud_clear_fixmap()
#define pud_offset_kimg(dir,addr) ((pud_t *)dir)
#endif /* CONFIG_PGTABLE_LEVELS > 3 */
#if CONFIG_PGTABLE_LEVELS > 4
static __always_inline bool pgtable_l5_enabled(void)
{
if (!alternative_has_cap_likely(ARM64_ALWAYS_BOOT))
return vabits_actual == VA_BITS;
return alternative_has_cap_unlikely(ARM64_HAS_VA52);
}
static inline bool mm_p4d_folded(const struct mm_struct *mm)
{
return !pgtable_l5_enabled();
}
#define mm_p4d_folded mm_p4d_folded
#define p4d_ERROR(e) \
pr_err("%s:%d: bad p4d %016llx.\n", __FILE__, __LINE__, p4d_val(e))
#define pgd_none(pgd) (pgtable_l5_enabled() && !pgd_val(pgd))
#define pgd_bad(pgd) (pgtable_l5_enabled() && !(pgd_val(pgd) & 2))
#define pgd_present(pgd) (!pgd_none(pgd))
static inline void set_pgd(pgd_t *pgdp, pgd_t pgd)
{
if (in_swapper_pgdir(pgdp)) {
set_swapper_pgd(pgdp, __pgd(pgd_val(pgd)));
return;
}
WRITE_ONCE(*pgdp, pgd);
dsb(ishst);
isb();
}
static inline void pgd_clear(pgd_t *pgdp)
{
if (pgtable_l5_enabled())
set_pgd(pgdp, __pgd(0));
}
static inline phys_addr_t pgd_page_paddr(pgd_t pgd)
{
return __pgd_to_phys(pgd);
}
#define p4d_index(addr) (((addr) >> P4D_SHIFT) & (PTRS_PER_P4D - 1))
static inline p4d_t *pgd_to_folded_p4d(pgd_t *pgdp, unsigned long addr)
{
return (p4d_t *)PTR_ALIGN_DOWN(pgdp, PAGE_SIZE) + p4d_index(addr);
}
static inline phys_addr_t p4d_offset_phys(pgd_t *pgdp, unsigned long addr)
{
BUG_ON(!pgtable_l5_enabled());
return pgd_page_paddr(READ_ONCE(*pgdp)) + p4d_index(addr) * sizeof(p4d_t);
}
static inline
p4d_t *p4d_offset_lockless(pgd_t *pgdp, pgd_t pgd, unsigned long addr)
{
if (!pgtable_l5_enabled())
return pgd_to_folded_p4d(pgdp, addr);
return (p4d_t *)__va(pgd_page_paddr(pgd)) + p4d_index(addr);
}
#define p4d_offset_lockless p4d_offset_lockless
static inline p4d_t *p4d_offset(pgd_t *pgdp, unsigned long addr)
{
return p4d_offset_lockless(pgdp, READ_ONCE(*pgdp), addr);
}
static inline p4d_t *p4d_set_fixmap(unsigned long addr)
{
if (!pgtable_l5_enabled())
return NULL;
return (p4d_t *)set_fixmap_offset(FIX_P4D, addr);
}
static inline p4d_t *p4d_set_fixmap_offset(pgd_t *pgdp, unsigned long addr)
{
if (!pgtable_l5_enabled())
return pgd_to_folded_p4d(pgdp, addr);
return p4d_set_fixmap(p4d_offset_phys(pgdp, addr));
}
static inline void p4d_clear_fixmap(void)
{
if (pgtable_l5_enabled())
clear_fixmap(FIX_P4D);
}
/* use ONLY for statically allocated translation tables */
static inline p4d_t *p4d_offset_kimg(pgd_t *pgdp, u64 addr)
{
if (!pgtable_l5_enabled())
return pgd_to_folded_p4d(pgdp, addr);
return (p4d_t *)__phys_to_kimg(p4d_offset_phys(pgdp, addr));
}
#define pgd_page(pgd) pfn_to_page(__phys_to_pfn(__pgd_to_phys(pgd)))
#else
static inline bool pgtable_l5_enabled(void) { return false; }
/* Match p4d_offset folding in <asm/generic/pgtable-nop4d.h> */
#define p4d_set_fixmap(addr) NULL
#define p4d_set_fixmap_offset(p4dp, addr) ((p4d_t *)p4dp)
#define p4d_clear_fixmap()
#define p4d_offset_kimg(dir,addr) ((p4d_t *)dir)
#endif /* CONFIG_PGTABLE_LEVELS > 4 */
#define pgd_ERROR(e) \
pr_err("%s:%d: bad pgd %016llx.\n", __FILE__, __LINE__, pgd_val(e))
#define pgd_set_fixmap(addr) ((pgd_t *)set_fixmap_offset(FIX_PGD, addr))
#define pgd_clear_fixmap() clear_fixmap(FIX_PGD)
static inline pte_t pte_modify(pte_t pte, pgprot_t newprot)
{
/*
* Normal and Normal-Tagged are two different memory types and indices
* in MAIR_EL1. The mask below has to include PTE_ATTRINDX_MASK.
*/
const pteval_t mask = PTE_USER | PTE_PXN | PTE_UXN | PTE_RDONLY |
PTE_PROT_NONE | PTE_VALID | PTE_WRITE | PTE_GP |
PTE_ATTRINDX_MASK;
/* preserve the hardware dirty information */
if (pte_hw_dirty(pte))
pte = set_pte_bit(pte, __pgprot(PTE_DIRTY));
pte_val(pte) = (pte_val(pte) & ~mask) | (pgprot_val(newprot) & mask);
/*
* If we end up clearing hw dirtiness for a sw-dirty PTE, set hardware
* dirtiness again.
*/
if (pte_sw_dirty(pte))
pte = pte_mkdirty(pte);
return pte;
}
static inline pmd_t pmd_modify(pmd_t pmd, pgprot_t newprot)
{
return pte_pmd(pte_modify(pmd_pte(pmd), newprot));
}
extern int __ptep_set_access_flags(struct vm_area_struct *vma,
unsigned long address, pte_t *ptep,
pte_t entry, int dirty);
#ifdef CONFIG_TRANSPARENT_HUGEPAGE
#define __HAVE_ARCH_PMDP_SET_ACCESS_FLAGS
static inline int pmdp_set_access_flags(struct vm_area_struct *vma,
unsigned long address, pmd_t *pmdp,
pmd_t entry, int dirty)
{
return __ptep_set_access_flags(vma, address, (pte_t *)pmdp,
pmd_pte(entry), dirty);
}
static inline int pud_devmap(pud_t pud)
{
return 0;
}
static inline int pgd_devmap(pgd_t pgd)
{
return 0;
}
#endif
#ifdef CONFIG_PAGE_TABLE_CHECK
static inline bool pte_user_accessible_page(pte_t pte)
{
return pte_present(pte) && (pte_user(pte) || pte_user_exec(pte));
}
static inline bool pmd_user_accessible_page(pmd_t pmd)
{
return pmd_leaf(pmd) && !pmd_present_invalid(pmd) && (pmd_user(pmd) || pmd_user_exec(pmd));
}
static inline bool pud_user_accessible_page(pud_t pud)
{
return pud_leaf(pud) && (pud_user(pud) || pud_user_exec(pud));
}
#endif
/*
* Atomic pte/pmd modifications.
*/
static inline int __ptep_test_and_clear_young(struct vm_area_struct *vma,
unsigned long address,
pte_t *ptep)
{
pte_t old_pte, pte;
pte = __ptep_get(ptep);
do {
old_pte = pte;
pte = pte_mkold(pte);
pte_val(pte) = cmpxchg_relaxed(&pte_val(*ptep),
pte_val(old_pte), pte_val(pte));
} while (pte_val(pte) != pte_val(old_pte));
return pte_young(pte);
}
static inline int __ptep_clear_flush_young(struct vm_area_struct *vma,
unsigned long address, pte_t *ptep)
{
int young = __ptep_test_and_clear_young(vma, address, ptep);
if (young) {
/*
* We can elide the trailing DSB here since the worst that can
* happen is that a CPU continues to use the young entry in its
* TLB and we mistakenly reclaim the associated page. The
* window for such an event is bounded by the next
* context-switch, which provides a DSB to complete the TLB
* invalidation.
*/
flush_tlb_page_nosync(vma, address);
}
return young;
}
#ifdef CONFIG_TRANSPARENT_HUGEPAGE
#define __HAVE_ARCH_PMDP_TEST_AND_CLEAR_YOUNG
static inline int pmdp_test_and_clear_young(struct vm_area_struct *vma,
unsigned long address,
pmd_t *pmdp)
{
return __ptep_test_and_clear_young(vma, address, (pte_t *)pmdp);
}
#endif /* CONFIG_TRANSPARENT_HUGEPAGE */
static inline pte_t __ptep_get_and_clear(struct mm_struct *mm,
unsigned long address, pte_t *ptep)
{
pte_t pte = __pte(xchg_relaxed(&pte_val(*ptep), 0));
page_table_check_pte_clear(mm, pte);
return pte;
}
static inline void __clear_full_ptes(struct mm_struct *mm, unsigned long addr,
pte_t *ptep, unsigned int nr, int full)
{
for (;;) {
__ptep_get_and_clear(mm, addr, ptep);
if (--nr == 0)
break;
ptep++;
addr += PAGE_SIZE;
}
}
static inline pte_t __get_and_clear_full_ptes(struct mm_struct *mm,
unsigned long addr, pte_t *ptep,
unsigned int nr, int full)
{
pte_t pte, tmp_pte;
pte = __ptep_get_and_clear(mm, addr, ptep);
while (--nr) {
ptep++;
addr += PAGE_SIZE;
tmp_pte = __ptep_get_and_clear(mm, addr, ptep);
if (pte_dirty(tmp_pte))
pte = pte_mkdirty(pte);
if (pte_young(tmp_pte))
pte = pte_mkyoung(pte);
}
return pte;
}
#ifdef CONFIG_TRANSPARENT_HUGEPAGE
#define __HAVE_ARCH_PMDP_HUGE_GET_AND_CLEAR
static inline pmd_t pmdp_huge_get_and_clear(struct mm_struct *mm,
unsigned long address, pmd_t *pmdp)
{
pmd_t pmd = __pmd(xchg_relaxed(&pmd_val(*pmdp), 0));
page_table_check_pmd_clear(mm, pmd);
return pmd;
}
#endif /* CONFIG_TRANSPARENT_HUGEPAGE */
static inline void ___ptep_set_wrprotect(struct mm_struct *mm,
unsigned long address, pte_t *ptep,
pte_t pte)
{
pte_t old_pte;
do {
old_pte = pte;
pte = pte_wrprotect(pte);
pte_val(pte) = cmpxchg_relaxed(&pte_val(*ptep),
pte_val(old_pte), pte_val(pte));
} while (pte_val(pte) != pte_val(old_pte));
}
/*
* __ptep_set_wrprotect - mark read-only while trasferring potential hardware
* dirty status (PTE_DBM && !PTE_RDONLY) to the software PTE_DIRTY bit.
*/
static inline void __ptep_set_wrprotect(struct mm_struct *mm,
unsigned long address, pte_t *ptep)
{
___ptep_set_wrprotect(mm, address, ptep, __ptep_get(ptep));
}
static inline void __wrprotect_ptes(struct mm_struct *mm, unsigned long address,
pte_t *ptep, unsigned int nr)
{
unsigned int i;
for (i = 0; i < nr; i++, address += PAGE_SIZE, ptep++)
__ptep_set_wrprotect(mm, address, ptep);
}
#ifdef CONFIG_TRANSPARENT_HUGEPAGE
#define __HAVE_ARCH_PMDP_SET_WRPROTECT
static inline void pmdp_set_wrprotect(struct mm_struct *mm,
unsigned long address, pmd_t *pmdp)
{
__ptep_set_wrprotect(mm, address, (pte_t *)pmdp);
}
#define pmdp_establish pmdp_establish
static inline pmd_t pmdp_establish(struct vm_area_struct *vma,
unsigned long address, pmd_t *pmdp, pmd_t pmd)
{
page_table_check_pmd_set(vma->vm_mm, pmdp, pmd);
return __pmd(xchg_relaxed(&pmd_val(*pmdp), pmd_val(pmd)));
}
#endif
/*
* Encode and decode a swap entry:
* bits 0-1: present (must be zero)
* bits 2: remember PG_anon_exclusive
* bits 3-7: swap type
* bits 8-57: swap offset
* bit 58: PTE_PROT_NONE (must be zero)
*/
#define __SWP_TYPE_SHIFT 3
#define __SWP_TYPE_BITS 5
#define __SWP_OFFSET_BITS 50
#define __SWP_TYPE_MASK ((1 << __SWP_TYPE_BITS) - 1)
#define __SWP_OFFSET_SHIFT (__SWP_TYPE_BITS + __SWP_TYPE_SHIFT)
#define __SWP_OFFSET_MASK ((1UL << __SWP_OFFSET_BITS) - 1)
#define __swp_type(x) (((x).val >> __SWP_TYPE_SHIFT) & __SWP_TYPE_MASK)
#define __swp_offset(x) (((x).val >> __SWP_OFFSET_SHIFT) & __SWP_OFFSET_MASK)
#define __swp_entry(type,offset) ((swp_entry_t) { ((type) << __SWP_TYPE_SHIFT) | ((offset) << __SWP_OFFSET_SHIFT) })
#define __pte_to_swp_entry(pte) ((swp_entry_t) { pte_val(pte) })
#define __swp_entry_to_pte(swp) ((pte_t) { (swp).val })
#ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION
#define __pmd_to_swp_entry(pmd) ((swp_entry_t) { pmd_val(pmd) })
#define __swp_entry_to_pmd(swp) __pmd((swp).val)
#endif /* CONFIG_ARCH_ENABLE_THP_MIGRATION */
/*
* Ensure that there are not more swap files than can be encoded in the kernel
* PTEs.
*/
#define MAX_SWAPFILES_CHECK() BUILD_BUG_ON(MAX_SWAPFILES_SHIFT > __SWP_TYPE_BITS)
#ifdef CONFIG_ARM64_MTE
#define __HAVE_ARCH_PREPARE_TO_SWAP
static inline int arch_prepare_to_swap(struct page *page)
{
if (system_supports_mte())
return mte_save_tags(page);
return 0;
}
#define __HAVE_ARCH_SWAP_INVALIDATE
static inline void arch_swap_invalidate_page(int type, pgoff_t offset)
{
if (system_supports_mte())
mte_invalidate_tags(type, offset);
}
static inline void arch_swap_invalidate_area(int type)
{
if (system_supports_mte())
mte_invalidate_tags_area(type);
}
#define __HAVE_ARCH_SWAP_RESTORE
static inline void arch_swap_restore(swp_entry_t entry, struct folio *folio)
{
if (system_supports_mte())
mte_restore_tags(entry, &folio->page);
}
#endif /* CONFIG_ARM64_MTE */
/*
* On AArch64, the cache coherency is handled via the __set_ptes() function.
*/
static inline void update_mmu_cache_range(struct vm_fault *vmf,
struct vm_area_struct *vma, unsigned long addr, pte_t *ptep,
unsigned int nr)
{
/*
* We don't do anything here, so there's a very small chance of
* us retaking a user fault which we just fixed up. The alternative
* is doing a dsb(ishst), but that penalises the fastpath.
*/
}
#define update_mmu_cache(vma, addr, ptep) \
update_mmu_cache_range(NULL, vma, addr, ptep, 1)
#define update_mmu_cache_pmd(vma, address, pmd) do { } while (0)
#ifdef CONFIG_ARM64_PA_BITS_52
#define phys_to_ttbr(addr) (((addr) | ((addr) >> 46)) & TTBR_BADDR_MASK_52)
#else
#define phys_to_ttbr(addr) (addr)
#endif
/*
* On arm64 without hardware Access Flag, copying from user will fail because
* the pte is old and cannot be marked young. So we always end up with zeroed
* page after fork() + CoW for pfn mappings. We don't always have a
* hardware-managed access flag on arm64.
*/
#define arch_has_hw_pte_young cpu_has_hw_af
/*
* Experimentally, it's cheap to set the access flag in hardware and we
* benefit from prefaulting mappings as 'old' to start with.
*/
#define arch_wants_old_prefaulted_pte cpu_has_hw_af
static inline bool pud_sect_supported(void)
{
return PAGE_SIZE == SZ_4K;
}
#define __HAVE_ARCH_PTEP_MODIFY_PROT_TRANSACTION
#define ptep_modify_prot_start ptep_modify_prot_start
extern pte_t ptep_modify_prot_start(struct vm_area_struct *vma,
unsigned long addr, pte_t *ptep);
#define ptep_modify_prot_commit ptep_modify_prot_commit
extern void ptep_modify_prot_commit(struct vm_area_struct *vma,
unsigned long addr, pte_t *ptep,
pte_t old_pte, pte_t new_pte);
#ifdef CONFIG_ARM64_CONTPTE
/*
* The contpte APIs are used to transparently manage the contiguous bit in ptes
* where it is possible and makes sense to do so. The PTE_CONT bit is considered
* a private implementation detail of the public ptep API (see below).
*/
extern void __contpte_try_fold(struct mm_struct *mm, unsigned long addr,
pte_t *ptep, pte_t pte);
extern void __contpte_try_unfold(struct mm_struct *mm, unsigned long addr,
pte_t *ptep, pte_t pte);
extern pte_t contpte_ptep_get(pte_t *ptep, pte_t orig_pte);
extern pte_t contpte_ptep_get_lockless(pte_t *orig_ptep);
extern void contpte_set_ptes(struct mm_struct *mm, unsigned long addr,
pte_t *ptep, pte_t pte, unsigned int nr);
extern void contpte_clear_full_ptes(struct mm_struct *mm, unsigned long addr,
pte_t *ptep, unsigned int nr, int full);
extern pte_t contpte_get_and_clear_full_ptes(struct mm_struct *mm,
unsigned long addr, pte_t *ptep,
unsigned int nr, int full);
extern int contpte_ptep_test_and_clear_young(struct vm_area_struct *vma,
unsigned long addr, pte_t *ptep);
extern int contpte_ptep_clear_flush_young(struct vm_area_struct *vma,
unsigned long addr, pte_t *ptep);
extern void contpte_wrprotect_ptes(struct mm_struct *mm, unsigned long addr,
pte_t *ptep, unsigned int nr);
extern int contpte_ptep_set_access_flags(struct vm_area_struct *vma,
unsigned long addr, pte_t *ptep,
pte_t entry, int dirty);
static __always_inline void contpte_try_fold(struct mm_struct *mm,
unsigned long addr, pte_t *ptep, pte_t pte)
{
/*
* Only bother trying if both the virtual and physical addresses are
* aligned and correspond to the last entry in a contig range. The core
* code mostly modifies ranges from low to high, so this is the likely
* the last modification in the contig range, so a good time to fold.
* We can't fold special mappings, because there is no associated folio.
*/
const unsigned long contmask = CONT_PTES - 1;
bool valign = ((addr >> PAGE_SHIFT) & contmask) == contmask;
if (unlikely(valign)) {
bool palign = (pte_pfn(pte) & contmask) == contmask;
if (unlikely(palign &&
pte_valid(pte) && !pte_cont(pte) && !pte_special(pte)))
__contpte_try_fold(mm, addr, ptep, pte);
}
}
static __always_inline void contpte_try_unfold(struct mm_struct *mm,
unsigned long addr, pte_t *ptep, pte_t pte)
{
if (unlikely(pte_valid_cont(pte)))
__contpte_try_unfold(mm, addr, ptep, pte);
}
#define pte_batch_hint pte_batch_hint
static inline unsigned int pte_batch_hint(pte_t *ptep, pte_t pte)
{
if (!pte_valid_cont(pte))
return 1;
return CONT_PTES - (((unsigned long)ptep >> 3) & (CONT_PTES - 1));
}
/*
* The below functions constitute the public API that arm64 presents to the
* core-mm to manipulate PTE entries within their page tables (or at least this
* is the subset of the API that arm64 needs to implement). These public
* versions will automatically and transparently apply the contiguous bit where
* it makes sense to do so. Therefore any users that are contig-aware (e.g.
* hugetlb, kernel mapper) should NOT use these APIs, but instead use the
* private versions, which are prefixed with double underscore. All of these
* APIs except for ptep_get_lockless() are expected to be called with the PTL
* held. Although the contiguous bit is considered private to the
* implementation, it is deliberately allowed to leak through the getters (e.g.
* ptep_get()), back to core code. This is required so that pte_leaf_size() can
* provide an accurate size for perf_get_pgtable_size(). But this leakage means
* its possible a pte will be passed to a setter with the contiguous bit set, so
* we explicitly clear the contiguous bit in those cases to prevent accidentally
* setting it in the pgtable.
*/
#define ptep_get ptep_get
static inline pte_t ptep_get(pte_t *ptep)
{
pte_t pte = __ptep_get(ptep);
if (likely(!pte_valid_cont(pte)))
return pte;
return contpte_ptep_get(ptep, pte);
}
#define ptep_get_lockless ptep_get_lockless
static inline pte_t ptep_get_lockless(pte_t *ptep)
{
pte_t pte = __ptep_get(ptep);
if (likely(!pte_valid_cont(pte)))
return pte;
return contpte_ptep_get_lockless(ptep);
}
static inline void set_pte(pte_t *ptep, pte_t pte)
{
/*
* We don't have the mm or vaddr so cannot unfold contig entries (since
* it requires tlb maintenance). set_pte() is not used in core code, so
* this should never even be called. Regardless do our best to service
* any call and emit a warning if there is any attempt to set a pte on
* top of an existing contig range.
*/
pte_t orig_pte = __ptep_get(ptep);
WARN_ON_ONCE(pte_valid_cont(orig_pte));
__set_pte(ptep, pte_mknoncont(pte));
}
#define set_ptes set_ptes
static __always_inline void set_ptes(struct mm_struct *mm, unsigned long addr,
pte_t *ptep, pte_t pte, unsigned int nr)
{
pte = pte_mknoncont(pte);
if (likely(nr == 1)) {
contpte_try_unfold(mm, addr, ptep, __ptep_get(ptep));
__set_ptes(mm, addr, ptep, pte, 1);
contpte_try_fold(mm, addr, ptep, pte);
} else {
contpte_set_ptes(mm, addr, ptep, pte, nr);
}
}
static inline void pte_clear(struct mm_struct *mm,
unsigned long addr, pte_t *ptep)
{
contpte_try_unfold(mm, addr, ptep, __ptep_get(ptep));
__pte_clear(mm, addr, ptep);
}
#define clear_full_ptes clear_full_ptes
static inline void clear_full_ptes(struct mm_struct *mm, unsigned long addr,
pte_t *ptep, unsigned int nr, int full)
{
if (likely(nr == 1)) {
contpte_try_unfold(mm, addr, ptep, __ptep_get(ptep));
__clear_full_ptes(mm, addr, ptep, nr, full);
} else {
contpte_clear_full_ptes(mm, addr, ptep, nr, full);
}
}
#define get_and_clear_full_ptes get_and_clear_full_ptes
static inline pte_t get_and_clear_full_ptes(struct mm_struct *mm,
unsigned long addr, pte_t *ptep,
unsigned int nr, int full)
{
pte_t pte;
if (likely(nr == 1)) {
contpte_try_unfold(mm, addr, ptep, __ptep_get(ptep));
pte = __get_and_clear_full_ptes(mm, addr, ptep, nr, full);
} else {
pte = contpte_get_and_clear_full_ptes(mm, addr, ptep, nr, full);
}
return pte;
}
#define __HAVE_ARCH_PTEP_GET_AND_CLEAR
static inline pte_t ptep_get_and_clear(struct mm_struct *mm,
unsigned long addr, pte_t *ptep)
{
contpte_try_unfold(mm, addr, ptep, __ptep_get(ptep));
return __ptep_get_and_clear(mm, addr, ptep);
}
#define __HAVE_ARCH_PTEP_TEST_AND_CLEAR_YOUNG
static inline int ptep_test_and_clear_young(struct vm_area_struct *vma,
unsigned long addr, pte_t *ptep)
{
pte_t orig_pte = __ptep_get(ptep);
if (likely(!pte_valid_cont(orig_pte)))
return __ptep_test_and_clear_young(vma, addr, ptep);
return contpte_ptep_test_and_clear_young(vma, addr, ptep);
}
#define __HAVE_ARCH_PTEP_CLEAR_YOUNG_FLUSH
static inline int ptep_clear_flush_young(struct vm_area_struct *vma,
unsigned long addr, pte_t *ptep)
{
pte_t orig_pte = __ptep_get(ptep);
if (likely(!pte_valid_cont(orig_pte)))
return __ptep_clear_flush_young(vma, addr, ptep);
return contpte_ptep_clear_flush_young(vma, addr, ptep);
}
#define wrprotect_ptes wrprotect_ptes
static __always_inline void wrprotect_ptes(struct mm_struct *mm,
unsigned long addr, pte_t *ptep, unsigned int nr)
{
if (likely(nr == 1)) {
/*
* Optimization: wrprotect_ptes() can only be called for present
* ptes so we only need to check contig bit as condition for
* unfold, and we can remove the contig bit from the pte we read
* to avoid re-reading. This speeds up fork() which is sensitive
* for order-0 folios. Equivalent to contpte_try_unfold().
*/
pte_t orig_pte = __ptep_get(ptep);
if (unlikely(pte_cont(orig_pte))) {
__contpte_try_unfold(mm, addr, ptep, orig_pte);
orig_pte = pte_mknoncont(orig_pte);
}
___ptep_set_wrprotect(mm, addr, ptep, orig_pte);
} else {
contpte_wrprotect_ptes(mm, addr, ptep, nr);
}
}
#define __HAVE_ARCH_PTEP_SET_WRPROTECT
static inline void ptep_set_wrprotect(struct mm_struct *mm,
unsigned long addr, pte_t *ptep)
{
wrprotect_ptes(mm, addr, ptep, 1);
}
#define __HAVE_ARCH_PTEP_SET_ACCESS_FLAGS
static inline int ptep_set_access_flags(struct vm_area_struct *vma,
unsigned long addr, pte_t *ptep,
pte_t entry, int dirty)
{
pte_t orig_pte = __ptep_get(ptep);
entry = pte_mknoncont(entry);
if (likely(!pte_valid_cont(orig_pte)))
return __ptep_set_access_flags(vma, addr, ptep, entry, dirty);
return contpte_ptep_set_access_flags(vma, addr, ptep, entry, dirty);
}
#else /* CONFIG_ARM64_CONTPTE */
#define ptep_get __ptep_get
#define set_pte __set_pte
#define set_ptes __set_ptes
#define pte_clear __pte_clear
#define clear_full_ptes __clear_full_ptes
#define get_and_clear_full_ptes __get_and_clear_full_ptes
#define __HAVE_ARCH_PTEP_GET_AND_CLEAR
#define ptep_get_and_clear __ptep_get_and_clear
#define __HAVE_ARCH_PTEP_TEST_AND_CLEAR_YOUNG
#define ptep_test_and_clear_young __ptep_test_and_clear_young
#define __HAVE_ARCH_PTEP_CLEAR_YOUNG_FLUSH
#define ptep_clear_flush_young __ptep_clear_flush_young
#define __HAVE_ARCH_PTEP_SET_WRPROTECT
#define ptep_set_wrprotect __ptep_set_wrprotect
#define wrprotect_ptes __wrprotect_ptes
#define __HAVE_ARCH_PTEP_SET_ACCESS_FLAGS
#define ptep_set_access_flags __ptep_set_access_flags
#endif /* CONFIG_ARM64_CONTPTE */
#endif /* !__ASSEMBLY__ */
#endif /* __ASM_PGTABLE_H */
|