summaryrefslogtreecommitdiffstats
path: root/arch/arm64/kvm/sys_regs.c
blob: 30253bd19917f46640ecffc914d91a7d1102dc81 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023
3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071
3072
3073
3074
3075
3076
3077
3078
3079
3080
3081
3082
3083
3084
3085
3086
3087
3088
3089
3090
3091
3092
3093
3094
3095
3096
3097
3098
3099
3100
3101
3102
3103
3104
3105
3106
3107
3108
3109
3110
3111
3112
3113
3114
3115
3116
3117
3118
3119
3120
3121
3122
3123
3124
3125
3126
3127
3128
3129
3130
3131
3132
3133
3134
3135
3136
3137
3138
3139
3140
3141
3142
3143
3144
3145
3146
3147
3148
3149
3150
3151
3152
3153
3154
3155
3156
3157
3158
3159
3160
3161
3162
3163
3164
3165
3166
3167
3168
3169
3170
3171
3172
3173
3174
3175
3176
3177
3178
3179
3180
3181
3182
3183
3184
3185
3186
3187
3188
3189
3190
3191
3192
3193
3194
3195
3196
3197
3198
3199
3200
3201
3202
3203
3204
3205
3206
3207
3208
3209
3210
3211
3212
3213
3214
3215
3216
3217
3218
3219
3220
3221
3222
3223
3224
3225
3226
3227
3228
3229
3230
3231
3232
3233
3234
3235
3236
3237
3238
3239
3240
3241
3242
3243
3244
3245
3246
3247
3248
3249
3250
3251
3252
3253
3254
3255
3256
3257
3258
3259
3260
3261
3262
3263
3264
3265
3266
3267
3268
3269
3270
3271
3272
3273
3274
3275
3276
3277
3278
3279
3280
3281
3282
3283
3284
3285
3286
3287
3288
3289
3290
3291
3292
3293
3294
3295
3296
3297
3298
3299
3300
3301
3302
3303
3304
3305
3306
3307
3308
3309
3310
3311
3312
3313
3314
3315
3316
3317
3318
3319
3320
3321
3322
3323
3324
3325
3326
3327
3328
3329
3330
3331
3332
3333
3334
3335
3336
3337
3338
3339
3340
3341
3342
3343
3344
3345
3346
3347
3348
3349
3350
3351
3352
3353
3354
3355
3356
3357
3358
3359
3360
3361
3362
3363
3364
3365
3366
3367
3368
3369
3370
3371
3372
3373
3374
3375
3376
3377
3378
3379
3380
3381
3382
3383
3384
3385
3386
3387
3388
3389
3390
3391
3392
3393
3394
3395
3396
3397
3398
3399
3400
3401
3402
3403
3404
3405
3406
3407
3408
3409
3410
3411
3412
3413
3414
3415
3416
3417
3418
3419
3420
3421
3422
3423
3424
3425
3426
3427
3428
3429
3430
3431
3432
3433
3434
3435
3436
3437
3438
3439
3440
3441
3442
3443
3444
3445
3446
3447
3448
3449
3450
3451
3452
3453
3454
3455
3456
3457
3458
3459
3460
3461
3462
3463
3464
3465
3466
3467
3468
3469
3470
3471
3472
3473
3474
3475
3476
3477
3478
3479
3480
3481
3482
3483
3484
3485
3486
3487
3488
3489
3490
3491
3492
3493
3494
3495
3496
3497
3498
3499
3500
3501
3502
3503
3504
3505
3506
3507
3508
3509
3510
3511
3512
3513
3514
3515
3516
3517
3518
3519
3520
3521
3522
3523
3524
3525
3526
3527
3528
3529
3530
3531
3532
3533
3534
3535
3536
3537
3538
3539
3540
3541
3542
3543
3544
3545
3546
3547
3548
3549
3550
3551
3552
3553
3554
3555
3556
3557
3558
3559
3560
3561
3562
3563
3564
3565
3566
3567
3568
3569
3570
3571
3572
3573
3574
3575
3576
3577
3578
3579
3580
3581
3582
3583
3584
3585
3586
3587
3588
3589
3590
3591
3592
3593
3594
3595
3596
3597
3598
3599
3600
3601
3602
3603
3604
3605
3606
3607
3608
3609
3610
3611
3612
3613
3614
3615
3616
3617
3618
3619
3620
3621
3622
3623
3624
3625
3626
3627
3628
3629
3630
3631
3632
3633
3634
3635
3636
3637
3638
3639
3640
3641
3642
3643
3644
3645
3646
3647
3648
3649
3650
3651
3652
3653
3654
3655
3656
3657
3658
3659
3660
3661
3662
3663
3664
3665
3666
3667
3668
3669
3670
3671
3672
3673
3674
3675
3676
3677
3678
3679
3680
3681
3682
3683
3684
3685
3686
3687
3688
3689
3690
3691
3692
3693
3694
3695
3696
3697
3698
3699
3700
3701
3702
3703
3704
3705
3706
3707
3708
3709
3710
3711
3712
3713
3714
3715
3716
3717
3718
3719
3720
3721
3722
3723
3724
3725
3726
3727
3728
3729
3730
3731
3732
3733
3734
3735
3736
3737
3738
3739
3740
3741
3742
3743
3744
3745
3746
3747
3748
3749
3750
3751
3752
3753
3754
3755
3756
3757
3758
3759
3760
3761
3762
3763
3764
3765
3766
3767
3768
3769
3770
3771
3772
3773
3774
3775
3776
3777
3778
3779
3780
3781
3782
3783
3784
3785
3786
3787
3788
3789
3790
3791
3792
3793
3794
3795
3796
3797
3798
3799
3800
3801
3802
3803
3804
3805
3806
3807
3808
3809
3810
3811
3812
3813
3814
3815
3816
3817
3818
3819
3820
3821
3822
3823
3824
3825
3826
3827
3828
3829
3830
3831
3832
3833
3834
3835
3836
3837
3838
3839
3840
3841
3842
3843
3844
3845
3846
3847
3848
3849
3850
3851
3852
3853
3854
3855
3856
3857
3858
3859
3860
3861
3862
3863
3864
3865
3866
3867
3868
3869
3870
3871
3872
3873
3874
3875
3876
3877
3878
3879
3880
3881
3882
3883
3884
3885
3886
3887
3888
3889
3890
3891
3892
3893
3894
3895
3896
3897
3898
3899
3900
3901
3902
3903
3904
3905
3906
3907
3908
3909
3910
3911
3912
3913
3914
3915
3916
3917
3918
3919
3920
3921
3922
3923
3924
3925
3926
3927
3928
3929
3930
3931
3932
3933
3934
3935
3936
3937
3938
3939
3940
3941
3942
3943
3944
3945
3946
3947
3948
3949
3950
3951
3952
3953
3954
3955
3956
3957
3958
3959
3960
3961
3962
3963
3964
// SPDX-License-Identifier: GPL-2.0-only
/*
 * Copyright (C) 2012,2013 - ARM Ltd
 * Author: Marc Zyngier <marc.zyngier@arm.com>
 *
 * Derived from arch/arm/kvm/coproc.c:
 * Copyright (C) 2012 - Virtual Open Systems and Columbia University
 * Authors: Rusty Russell <rusty@rustcorp.com.au>
 *          Christoffer Dall <c.dall@virtualopensystems.com>
 */

#include <linux/bitfield.h>
#include <linux/bsearch.h>
#include <linux/cacheinfo.h>
#include <linux/kvm_host.h>
#include <linux/mm.h>
#include <linux/printk.h>
#include <linux/uaccess.h>

#include <asm/cacheflush.h>
#include <asm/cputype.h>
#include <asm/debug-monitors.h>
#include <asm/esr.h>
#include <asm/kvm_arm.h>
#include <asm/kvm_emulate.h>
#include <asm/kvm_hyp.h>
#include <asm/kvm_mmu.h>
#include <asm/kvm_nested.h>
#include <asm/perf_event.h>
#include <asm/sysreg.h>

#include <trace/events/kvm.h>

#include "sys_regs.h"

#include "trace.h"

/*
 * For AArch32, we only take care of what is being trapped. Anything
 * that has to do with init and userspace access has to go via the
 * 64bit interface.
 */

static u64 sys_reg_to_index(const struct sys_reg_desc *reg);
static int set_id_reg(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd,
		      u64 val);

static bool bad_trap(struct kvm_vcpu *vcpu,
		     struct sys_reg_params *params,
		     const struct sys_reg_desc *r,
		     const char *msg)
{
	WARN_ONCE(1, "Unexpected %s\n", msg);
	print_sys_reg_instr(params);
	kvm_inject_undefined(vcpu);
	return false;
}

static bool read_from_write_only(struct kvm_vcpu *vcpu,
				 struct sys_reg_params *params,
				 const struct sys_reg_desc *r)
{
	return bad_trap(vcpu, params, r,
			"sys_reg read to write-only register");
}

static bool write_to_read_only(struct kvm_vcpu *vcpu,
			       struct sys_reg_params *params,
			       const struct sys_reg_desc *r)
{
	return bad_trap(vcpu, params, r,
			"sys_reg write to read-only register");
}

#define PURE_EL2_SYSREG(el2)						\
	case el2: {							\
		*el1r = el2;						\
		return true;						\
	}

#define MAPPED_EL2_SYSREG(el2, el1, fn)					\
	case el2: {							\
		*xlate = fn;						\
		*el1r = el1;						\
		return true;						\
	}

static bool get_el2_to_el1_mapping(unsigned int reg,
				   unsigned int *el1r, u64 (**xlate)(u64))
{
	switch (reg) {
		PURE_EL2_SYSREG(  VPIDR_EL2	);
		PURE_EL2_SYSREG(  VMPIDR_EL2	);
		PURE_EL2_SYSREG(  ACTLR_EL2	);
		PURE_EL2_SYSREG(  HCR_EL2	);
		PURE_EL2_SYSREG(  MDCR_EL2	);
		PURE_EL2_SYSREG(  HSTR_EL2	);
		PURE_EL2_SYSREG(  HACR_EL2	);
		PURE_EL2_SYSREG(  VTTBR_EL2	);
		PURE_EL2_SYSREG(  VTCR_EL2	);
		PURE_EL2_SYSREG(  RVBAR_EL2	);
		PURE_EL2_SYSREG(  TPIDR_EL2	);
		PURE_EL2_SYSREG(  HPFAR_EL2	);
		PURE_EL2_SYSREG(  CNTHCTL_EL2	);
		MAPPED_EL2_SYSREG(SCTLR_EL2,   SCTLR_EL1,
				  translate_sctlr_el2_to_sctlr_el1	     );
		MAPPED_EL2_SYSREG(CPTR_EL2,    CPACR_EL1,
				  translate_cptr_el2_to_cpacr_el1	     );
		MAPPED_EL2_SYSREG(TTBR0_EL2,   TTBR0_EL1,
				  translate_ttbr0_el2_to_ttbr0_el1	     );
		MAPPED_EL2_SYSREG(TTBR1_EL2,   TTBR1_EL1,   NULL	     );
		MAPPED_EL2_SYSREG(TCR_EL2,     TCR_EL1,
				  translate_tcr_el2_to_tcr_el1		     );
		MAPPED_EL2_SYSREG(VBAR_EL2,    VBAR_EL1,    NULL	     );
		MAPPED_EL2_SYSREG(AFSR0_EL2,   AFSR0_EL1,   NULL	     );
		MAPPED_EL2_SYSREG(AFSR1_EL2,   AFSR1_EL1,   NULL	     );
		MAPPED_EL2_SYSREG(ESR_EL2,     ESR_EL1,     NULL	     );
		MAPPED_EL2_SYSREG(FAR_EL2,     FAR_EL1,     NULL	     );
		MAPPED_EL2_SYSREG(MAIR_EL2,    MAIR_EL1,    NULL	     );
		MAPPED_EL2_SYSREG(AMAIR_EL2,   AMAIR_EL1,   NULL	     );
		MAPPED_EL2_SYSREG(ELR_EL2,     ELR_EL1,	    NULL	     );
		MAPPED_EL2_SYSREG(SPSR_EL2,    SPSR_EL1,    NULL	     );
	default:
		return false;
	}
}

u64 vcpu_read_sys_reg(const struct kvm_vcpu *vcpu, int reg)
{
	u64 val = 0x8badf00d8badf00d;
	u64 (*xlate)(u64) = NULL;
	unsigned int el1r;

	if (!vcpu_get_flag(vcpu, SYSREGS_ON_CPU))
		goto memory_read;

	if (unlikely(get_el2_to_el1_mapping(reg, &el1r, &xlate))) {
		if (!is_hyp_ctxt(vcpu))
			goto memory_read;

		/*
		 * If this register does not have an EL1 counterpart,
		 * then read the stored EL2 version.
		 */
		if (reg == el1r)
			goto memory_read;

		/*
		 * If we have a non-VHE guest and that the sysreg
		 * requires translation to be used at EL1, use the
		 * in-memory copy instead.
		 */
		if (!vcpu_el2_e2h_is_set(vcpu) && xlate)
			goto memory_read;

		/* Get the current version of the EL1 counterpart. */
		WARN_ON(!__vcpu_read_sys_reg_from_cpu(el1r, &val));
		return val;
	}

	/* EL1 register can't be on the CPU if the guest is in vEL2. */
	if (unlikely(is_hyp_ctxt(vcpu)))
		goto memory_read;

	if (__vcpu_read_sys_reg_from_cpu(reg, &val))
		return val;

memory_read:
	return __vcpu_sys_reg(vcpu, reg);
}

void vcpu_write_sys_reg(struct kvm_vcpu *vcpu, u64 val, int reg)
{
	u64 (*xlate)(u64) = NULL;
	unsigned int el1r;

	if (!vcpu_get_flag(vcpu, SYSREGS_ON_CPU))
		goto memory_write;

	if (unlikely(get_el2_to_el1_mapping(reg, &el1r, &xlate))) {
		if (!is_hyp_ctxt(vcpu))
			goto memory_write;

		/*
		 * Always store a copy of the write to memory to avoid having
		 * to reverse-translate virtual EL2 system registers for a
		 * non-VHE guest hypervisor.
		 */
		__vcpu_sys_reg(vcpu, reg) = val;

		/* No EL1 counterpart? We're done here.? */
		if (reg == el1r)
			return;

		if (!vcpu_el2_e2h_is_set(vcpu) && xlate)
			val = xlate(val);

		/* Redirect this to the EL1 version of the register. */
		WARN_ON(!__vcpu_write_sys_reg_to_cpu(val, el1r));
		return;
	}

	/* EL1 register can't be on the CPU if the guest is in vEL2. */
	if (unlikely(is_hyp_ctxt(vcpu)))
		goto memory_write;

	if (__vcpu_write_sys_reg_to_cpu(val, reg))
		return;

memory_write:
	 __vcpu_sys_reg(vcpu, reg) = val;
}

/* CSSELR values; used to index KVM_REG_ARM_DEMUX_ID_CCSIDR */
#define CSSELR_MAX 14

/*
 * Returns the minimum line size for the selected cache, expressed as
 * Log2(bytes).
 */
static u8 get_min_cache_line_size(bool icache)
{
	u64 ctr = read_sanitised_ftr_reg(SYS_CTR_EL0);
	u8 field;

	if (icache)
		field = SYS_FIELD_GET(CTR_EL0, IminLine, ctr);
	else
		field = SYS_FIELD_GET(CTR_EL0, DminLine, ctr);

	/*
	 * Cache line size is represented as Log2(words) in CTR_EL0.
	 * Log2(bytes) can be derived with the following:
	 *
	 * Log2(words) + 2 = Log2(bytes / 4) + 2
	 * 		   = Log2(bytes) - 2 + 2
	 * 		   = Log2(bytes)
	 */
	return field + 2;
}

/* Which cache CCSIDR represents depends on CSSELR value. */
static u32 get_ccsidr(struct kvm_vcpu *vcpu, u32 csselr)
{
	u8 line_size;

	if (vcpu->arch.ccsidr)
		return vcpu->arch.ccsidr[csselr];

	line_size = get_min_cache_line_size(csselr & CSSELR_EL1_InD);

	/*
	 * Fabricate a CCSIDR value as the overriding value does not exist.
	 * The real CCSIDR value will not be used as it can vary by the
	 * physical CPU which the vcpu currently resides in.
	 *
	 * The line size is determined with get_min_cache_line_size(), which
	 * should be valid for all CPUs even if they have different cache
	 * configuration.
	 *
	 * The associativity bits are cleared, meaning the geometry of all data
	 * and unified caches (which are guaranteed to be PIPT and thus
	 * non-aliasing) are 1 set and 1 way.
	 * Guests should not be doing cache operations by set/way at all, and
	 * for this reason, we trap them and attempt to infer the intent, so
	 * that we can flush the entire guest's address space at the appropriate
	 * time. The exposed geometry minimizes the number of the traps.
	 * [If guests should attempt to infer aliasing properties from the
	 * geometry (which is not permitted by the architecture), they would
	 * only do so for virtually indexed caches.]
	 *
	 * We don't check if the cache level exists as it is allowed to return
	 * an UNKNOWN value if not.
	 */
	return SYS_FIELD_PREP(CCSIDR_EL1, LineSize, line_size - 4);
}

static int set_ccsidr(struct kvm_vcpu *vcpu, u32 csselr, u32 val)
{
	u8 line_size = FIELD_GET(CCSIDR_EL1_LineSize, val) + 4;
	u32 *ccsidr = vcpu->arch.ccsidr;
	u32 i;

	if ((val & CCSIDR_EL1_RES0) ||
	    line_size < get_min_cache_line_size(csselr & CSSELR_EL1_InD))
		return -EINVAL;

	if (!ccsidr) {
		if (val == get_ccsidr(vcpu, csselr))
			return 0;

		ccsidr = kmalloc_array(CSSELR_MAX, sizeof(u32), GFP_KERNEL_ACCOUNT);
		if (!ccsidr)
			return -ENOMEM;

		for (i = 0; i < CSSELR_MAX; i++)
			ccsidr[i] = get_ccsidr(vcpu, i);

		vcpu->arch.ccsidr = ccsidr;
	}

	ccsidr[csselr] = val;

	return 0;
}

static bool access_rw(struct kvm_vcpu *vcpu,
		      struct sys_reg_params *p,
		      const struct sys_reg_desc *r)
{
	if (p->is_write)
		vcpu_write_sys_reg(vcpu, p->regval, r->reg);
	else
		p->regval = vcpu_read_sys_reg(vcpu, r->reg);

	return true;
}

/*
 * See note at ARMv7 ARM B1.14.4 (TL;DR: S/W ops are not easily virtualized).
 */
static bool access_dcsw(struct kvm_vcpu *vcpu,
			struct sys_reg_params *p,
			const struct sys_reg_desc *r)
{
	if (!p->is_write)
		return read_from_write_only(vcpu, p, r);

	/*
	 * Only track S/W ops if we don't have FWB. It still indicates
	 * that the guest is a bit broken (S/W operations should only
	 * be done by firmware, knowing that there is only a single
	 * CPU left in the system, and certainly not from non-secure
	 * software).
	 */
	if (!cpus_have_final_cap(ARM64_HAS_STAGE2_FWB))
		kvm_set_way_flush(vcpu);

	return true;
}

static bool access_dcgsw(struct kvm_vcpu *vcpu,
			 struct sys_reg_params *p,
			 const struct sys_reg_desc *r)
{
	if (!kvm_has_mte(vcpu->kvm)) {
		kvm_inject_undefined(vcpu);
		return false;
	}

	/* Treat MTE S/W ops as we treat the classic ones: with contempt */
	return access_dcsw(vcpu, p, r);
}

static void get_access_mask(const struct sys_reg_desc *r, u64 *mask, u64 *shift)
{
	switch (r->aarch32_map) {
	case AA32_LO:
		*mask = GENMASK_ULL(31, 0);
		*shift = 0;
		break;
	case AA32_HI:
		*mask = GENMASK_ULL(63, 32);
		*shift = 32;
		break;
	default:
		*mask = GENMASK_ULL(63, 0);
		*shift = 0;
		break;
	}
}

/*
 * Generic accessor for VM registers. Only called as long as HCR_TVM
 * is set. If the guest enables the MMU, we stop trapping the VM
 * sys_regs and leave it in complete control of the caches.
 */
static bool access_vm_reg(struct kvm_vcpu *vcpu,
			  struct sys_reg_params *p,
			  const struct sys_reg_desc *r)
{
	bool was_enabled = vcpu_has_cache_enabled(vcpu);
	u64 val, mask, shift;

	BUG_ON(!p->is_write);

	get_access_mask(r, &mask, &shift);

	if (~mask) {
		val = vcpu_read_sys_reg(vcpu, r->reg);
		val &= ~mask;
	} else {
		val = 0;
	}

	val |= (p->regval & (mask >> shift)) << shift;
	vcpu_write_sys_reg(vcpu, val, r->reg);

	kvm_toggle_cache(vcpu, was_enabled);
	return true;
}

static bool access_actlr(struct kvm_vcpu *vcpu,
			 struct sys_reg_params *p,
			 const struct sys_reg_desc *r)
{
	u64 mask, shift;

	if (p->is_write)
		return ignore_write(vcpu, p);

	get_access_mask(r, &mask, &shift);
	p->regval = (vcpu_read_sys_reg(vcpu, r->reg) & mask) >> shift;

	return true;
}

/*
 * Trap handler for the GICv3 SGI generation system register.
 * Forward the request to the VGIC emulation.
 * The cp15_64 code makes sure this automatically works
 * for both AArch64 and AArch32 accesses.
 */
static bool access_gic_sgi(struct kvm_vcpu *vcpu,
			   struct sys_reg_params *p,
			   const struct sys_reg_desc *r)
{
	bool g1;

	if (!p->is_write)
		return read_from_write_only(vcpu, p, r);

	/*
	 * In a system where GICD_CTLR.DS=1, a ICC_SGI0R_EL1 access generates
	 * Group0 SGIs only, while ICC_SGI1R_EL1 can generate either group,
	 * depending on the SGI configuration. ICC_ASGI1R_EL1 is effectively
	 * equivalent to ICC_SGI0R_EL1, as there is no "alternative" secure
	 * group.
	 */
	if (p->Op0 == 0) {		/* AArch32 */
		switch (p->Op1) {
		default:		/* Keep GCC quiet */
		case 0:			/* ICC_SGI1R */
			g1 = true;
			break;
		case 1:			/* ICC_ASGI1R */
		case 2:			/* ICC_SGI0R */
			g1 = false;
			break;
		}
	} else {			/* AArch64 */
		switch (p->Op2) {
		default:		/* Keep GCC quiet */
		case 5:			/* ICC_SGI1R_EL1 */
			g1 = true;
			break;
		case 6:			/* ICC_ASGI1R_EL1 */
		case 7:			/* ICC_SGI0R_EL1 */
			g1 = false;
			break;
		}
	}

	vgic_v3_dispatch_sgi(vcpu, p->regval, g1);

	return true;
}

static bool access_gic_sre(struct kvm_vcpu *vcpu,
			   struct sys_reg_params *p,
			   const struct sys_reg_desc *r)
{
	if (p->is_write)
		return ignore_write(vcpu, p);

	p->regval = vcpu->arch.vgic_cpu.vgic_v3.vgic_sre;
	return true;
}

static bool trap_raz_wi(struct kvm_vcpu *vcpu,
			struct sys_reg_params *p,
			const struct sys_reg_desc *r)
{
	if (p->is_write)
		return ignore_write(vcpu, p);
	else
		return read_zero(vcpu, p);
}

static bool trap_undef(struct kvm_vcpu *vcpu,
		       struct sys_reg_params *p,
		       const struct sys_reg_desc *r)
{
	kvm_inject_undefined(vcpu);
	return false;
}

/*
 * ARMv8.1 mandates at least a trivial LORegion implementation, where all the
 * RW registers are RES0 (which we can implement as RAZ/WI). On an ARMv8.0
 * system, these registers should UNDEF. LORID_EL1 being a RO register, we
 * treat it separately.
 */
static bool trap_loregion(struct kvm_vcpu *vcpu,
			  struct sys_reg_params *p,
			  const struct sys_reg_desc *r)
{
	u64 val = IDREG(vcpu->kvm, SYS_ID_AA64MMFR1_EL1);
	u32 sr = reg_to_encoding(r);

	if (!(val & (0xfUL << ID_AA64MMFR1_EL1_LO_SHIFT))) {
		kvm_inject_undefined(vcpu);
		return false;
	}

	if (p->is_write && sr == SYS_LORID_EL1)
		return write_to_read_only(vcpu, p, r);

	return trap_raz_wi(vcpu, p, r);
}

static bool trap_oslar_el1(struct kvm_vcpu *vcpu,
			   struct sys_reg_params *p,
			   const struct sys_reg_desc *r)
{
	u64 oslsr;

	if (!p->is_write)
		return read_from_write_only(vcpu, p, r);

	/* Forward the OSLK bit to OSLSR */
	oslsr = __vcpu_sys_reg(vcpu, OSLSR_EL1) & ~OSLSR_EL1_OSLK;
	if (p->regval & OSLAR_EL1_OSLK)
		oslsr |= OSLSR_EL1_OSLK;

	__vcpu_sys_reg(vcpu, OSLSR_EL1) = oslsr;
	return true;
}

static bool trap_oslsr_el1(struct kvm_vcpu *vcpu,
			   struct sys_reg_params *p,
			   const struct sys_reg_desc *r)
{
	if (p->is_write)
		return write_to_read_only(vcpu, p, r);

	p->regval = __vcpu_sys_reg(vcpu, r->reg);
	return true;
}

static int set_oslsr_el1(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd,
			 u64 val)
{
	/*
	 * The only modifiable bit is the OSLK bit. Refuse the write if
	 * userspace attempts to change any other bit in the register.
	 */
	if ((val ^ rd->val) & ~OSLSR_EL1_OSLK)
		return -EINVAL;

	__vcpu_sys_reg(vcpu, rd->reg) = val;
	return 0;
}

static bool trap_dbgauthstatus_el1(struct kvm_vcpu *vcpu,
				   struct sys_reg_params *p,
				   const struct sys_reg_desc *r)
{
	if (p->is_write) {
		return ignore_write(vcpu, p);
	} else {
		p->regval = read_sysreg(dbgauthstatus_el1);
		return true;
	}
}

/*
 * We want to avoid world-switching all the DBG registers all the
 * time:
 *
 * - If we've touched any debug register, it is likely that we're
 *   going to touch more of them. It then makes sense to disable the
 *   traps and start doing the save/restore dance
 * - If debug is active (DBG_MDSCR_KDE or DBG_MDSCR_MDE set), it is
 *   then mandatory to save/restore the registers, as the guest
 *   depends on them.
 *
 * For this, we use a DIRTY bit, indicating the guest has modified the
 * debug registers, used as follow:
 *
 * On guest entry:
 * - If the dirty bit is set (because we're coming back from trapping),
 *   disable the traps, save host registers, restore guest registers.
 * - If debug is actively in use (DBG_MDSCR_KDE or DBG_MDSCR_MDE set),
 *   set the dirty bit, disable the traps, save host registers,
 *   restore guest registers.
 * - Otherwise, enable the traps
 *
 * On guest exit:
 * - If the dirty bit is set, save guest registers, restore host
 *   registers and clear the dirty bit. This ensure that the host can
 *   now use the debug registers.
 */
static bool trap_debug_regs(struct kvm_vcpu *vcpu,
			    struct sys_reg_params *p,
			    const struct sys_reg_desc *r)
{
	access_rw(vcpu, p, r);
	if (p->is_write)
		vcpu_set_flag(vcpu, DEBUG_DIRTY);

	trace_trap_reg(__func__, r->reg, p->is_write, p->regval);

	return true;
}

/*
 * reg_to_dbg/dbg_to_reg
 *
 * A 32 bit write to a debug register leave top bits alone
 * A 32 bit read from a debug register only returns the bottom bits
 *
 * All writes will set the DEBUG_DIRTY flag to ensure the hyp code
 * switches between host and guest values in future.
 */
static void reg_to_dbg(struct kvm_vcpu *vcpu,
		       struct sys_reg_params *p,
		       const struct sys_reg_desc *rd,
		       u64 *dbg_reg)
{
	u64 mask, shift, val;

	get_access_mask(rd, &mask, &shift);

	val = *dbg_reg;
	val &= ~mask;
	val |= (p->regval & (mask >> shift)) << shift;
	*dbg_reg = val;

	vcpu_set_flag(vcpu, DEBUG_DIRTY);
}

static void dbg_to_reg(struct kvm_vcpu *vcpu,
		       struct sys_reg_params *p,
		       const struct sys_reg_desc *rd,
		       u64 *dbg_reg)
{
	u64 mask, shift;

	get_access_mask(rd, &mask, &shift);
	p->regval = (*dbg_reg & mask) >> shift;
}

static bool trap_bvr(struct kvm_vcpu *vcpu,
		     struct sys_reg_params *p,
		     const struct sys_reg_desc *rd)
{
	u64 *dbg_reg = &vcpu->arch.vcpu_debug_state.dbg_bvr[rd->CRm];

	if (p->is_write)
		reg_to_dbg(vcpu, p, rd, dbg_reg);
	else
		dbg_to_reg(vcpu, p, rd, dbg_reg);

	trace_trap_reg(__func__, rd->CRm, p->is_write, *dbg_reg);

	return true;
}

static int set_bvr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd,
		   u64 val)
{
	vcpu->arch.vcpu_debug_state.dbg_bvr[rd->CRm] = val;
	return 0;
}

static int get_bvr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd,
		   u64 *val)
{
	*val = vcpu->arch.vcpu_debug_state.dbg_bvr[rd->CRm];
	return 0;
}

static u64 reset_bvr(struct kvm_vcpu *vcpu,
		      const struct sys_reg_desc *rd)
{
	vcpu->arch.vcpu_debug_state.dbg_bvr[rd->CRm] = rd->val;
	return rd->val;
}

static bool trap_bcr(struct kvm_vcpu *vcpu,
		     struct sys_reg_params *p,
		     const struct sys_reg_desc *rd)
{
	u64 *dbg_reg = &vcpu->arch.vcpu_debug_state.dbg_bcr[rd->CRm];

	if (p->is_write)
		reg_to_dbg(vcpu, p, rd, dbg_reg);
	else
		dbg_to_reg(vcpu, p, rd, dbg_reg);

	trace_trap_reg(__func__, rd->CRm, p->is_write, *dbg_reg);

	return true;
}

static int set_bcr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd,
		   u64 val)
{
	vcpu->arch.vcpu_debug_state.dbg_bcr[rd->CRm] = val;
	return 0;
}

static int get_bcr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd,
		   u64 *val)
{
	*val = vcpu->arch.vcpu_debug_state.dbg_bcr[rd->CRm];
	return 0;
}

static u64 reset_bcr(struct kvm_vcpu *vcpu,
		      const struct sys_reg_desc *rd)
{
	vcpu->arch.vcpu_debug_state.dbg_bcr[rd->CRm] = rd->val;
	return rd->val;
}

static bool trap_wvr(struct kvm_vcpu *vcpu,
		     struct sys_reg_params *p,
		     const struct sys_reg_desc *rd)
{
	u64 *dbg_reg = &vcpu->arch.vcpu_debug_state.dbg_wvr[rd->CRm];

	if (p->is_write)
		reg_to_dbg(vcpu, p, rd, dbg_reg);
	else
		dbg_to_reg(vcpu, p, rd, dbg_reg);

	trace_trap_reg(__func__, rd->CRm, p->is_write,
		vcpu->arch.vcpu_debug_state.dbg_wvr[rd->CRm]);

	return true;
}

static int set_wvr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd,
		   u64 val)
{
	vcpu->arch.vcpu_debug_state.dbg_wvr[rd->CRm] = val;
	return 0;
}

static int get_wvr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd,
		   u64 *val)
{
	*val = vcpu->arch.vcpu_debug_state.dbg_wvr[rd->CRm];
	return 0;
}

static u64 reset_wvr(struct kvm_vcpu *vcpu,
		      const struct sys_reg_desc *rd)
{
	vcpu->arch.vcpu_debug_state.dbg_wvr[rd->CRm] = rd->val;
	return rd->val;
}

static bool trap_wcr(struct kvm_vcpu *vcpu,
		     struct sys_reg_params *p,
		     const struct sys_reg_desc *rd)
{
	u64 *dbg_reg = &vcpu->arch.vcpu_debug_state.dbg_wcr[rd->CRm];

	if (p->is_write)
		reg_to_dbg(vcpu, p, rd, dbg_reg);
	else
		dbg_to_reg(vcpu, p, rd, dbg_reg);

	trace_trap_reg(__func__, rd->CRm, p->is_write, *dbg_reg);

	return true;
}

static int set_wcr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd,
		   u64 val)
{
	vcpu->arch.vcpu_debug_state.dbg_wcr[rd->CRm] = val;
	return 0;
}

static int get_wcr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd,
		   u64 *val)
{
	*val = vcpu->arch.vcpu_debug_state.dbg_wcr[rd->CRm];
	return 0;
}

static u64 reset_wcr(struct kvm_vcpu *vcpu,
		      const struct sys_reg_desc *rd)
{
	vcpu->arch.vcpu_debug_state.dbg_wcr[rd->CRm] = rd->val;
	return rd->val;
}

static u64 reset_amair_el1(struct kvm_vcpu *vcpu, const struct sys_reg_desc *r)
{
	u64 amair = read_sysreg(amair_el1);
	vcpu_write_sys_reg(vcpu, amair, AMAIR_EL1);
	return amair;
}

static u64 reset_actlr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *r)
{
	u64 actlr = read_sysreg(actlr_el1);
	vcpu_write_sys_reg(vcpu, actlr, ACTLR_EL1);
	return actlr;
}

static u64 reset_mpidr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *r)
{
	u64 mpidr;

	/*
	 * Map the vcpu_id into the first three affinity level fields of
	 * the MPIDR. We limit the number of VCPUs in level 0 due to a
	 * limitation to 16 CPUs in that level in the ICC_SGIxR registers
	 * of the GICv3 to be able to address each CPU directly when
	 * sending IPIs.
	 */
	mpidr = (vcpu->vcpu_id & 0x0f) << MPIDR_LEVEL_SHIFT(0);
	mpidr |= ((vcpu->vcpu_id >> 4) & 0xff) << MPIDR_LEVEL_SHIFT(1);
	mpidr |= ((vcpu->vcpu_id >> 12) & 0xff) << MPIDR_LEVEL_SHIFT(2);
	mpidr |= (1ULL << 31);
	vcpu_write_sys_reg(vcpu, mpidr, MPIDR_EL1);

	return mpidr;
}

static unsigned int pmu_visibility(const struct kvm_vcpu *vcpu,
				   const struct sys_reg_desc *r)
{
	if (kvm_vcpu_has_pmu(vcpu))
		return 0;

	return REG_HIDDEN;
}

static u64 reset_pmu_reg(struct kvm_vcpu *vcpu, const struct sys_reg_desc *r)
{
	u64 mask = BIT(ARMV8_PMU_CYCLE_IDX);
	u8 n = vcpu->kvm->arch.pmcr_n;

	if (n)
		mask |= GENMASK(n - 1, 0);

	reset_unknown(vcpu, r);
	__vcpu_sys_reg(vcpu, r->reg) &= mask;

	return __vcpu_sys_reg(vcpu, r->reg);
}

static u64 reset_pmevcntr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *r)
{
	reset_unknown(vcpu, r);
	__vcpu_sys_reg(vcpu, r->reg) &= GENMASK(31, 0);

	return __vcpu_sys_reg(vcpu, r->reg);
}

static u64 reset_pmevtyper(struct kvm_vcpu *vcpu, const struct sys_reg_desc *r)
{
	/* This thing will UNDEF, who cares about the reset value? */
	if (!kvm_vcpu_has_pmu(vcpu))
		return 0;

	reset_unknown(vcpu, r);
	__vcpu_sys_reg(vcpu, r->reg) &= kvm_pmu_evtyper_mask(vcpu->kvm);

	return __vcpu_sys_reg(vcpu, r->reg);
}

static u64 reset_pmselr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *r)
{
	reset_unknown(vcpu, r);
	__vcpu_sys_reg(vcpu, r->reg) &= ARMV8_PMU_COUNTER_MASK;

	return __vcpu_sys_reg(vcpu, r->reg);
}

static u64 reset_pmcr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *r)
{
	u64 pmcr = 0;

	if (!kvm_supports_32bit_el0())
		pmcr |= ARMV8_PMU_PMCR_LC;

	/*
	 * The value of PMCR.N field is included when the
	 * vCPU register is read via kvm_vcpu_read_pmcr().
	 */
	__vcpu_sys_reg(vcpu, r->reg) = pmcr;

	return __vcpu_sys_reg(vcpu, r->reg);
}

static bool check_pmu_access_disabled(struct kvm_vcpu *vcpu, u64 flags)
{
	u64 reg = __vcpu_sys_reg(vcpu, PMUSERENR_EL0);
	bool enabled = (reg & flags) || vcpu_mode_priv(vcpu);

	if (!enabled)
		kvm_inject_undefined(vcpu);

	return !enabled;
}

static bool pmu_access_el0_disabled(struct kvm_vcpu *vcpu)
{
	return check_pmu_access_disabled(vcpu, ARMV8_PMU_USERENR_EN);
}

static bool pmu_write_swinc_el0_disabled(struct kvm_vcpu *vcpu)
{
	return check_pmu_access_disabled(vcpu, ARMV8_PMU_USERENR_SW | ARMV8_PMU_USERENR_EN);
}

static bool pmu_access_cycle_counter_el0_disabled(struct kvm_vcpu *vcpu)
{
	return check_pmu_access_disabled(vcpu, ARMV8_PMU_USERENR_CR | ARMV8_PMU_USERENR_EN);
}

static bool pmu_access_event_counter_el0_disabled(struct kvm_vcpu *vcpu)
{
	return check_pmu_access_disabled(vcpu, ARMV8_PMU_USERENR_ER | ARMV8_PMU_USERENR_EN);
}

static bool access_pmcr(struct kvm_vcpu *vcpu, struct sys_reg_params *p,
			const struct sys_reg_desc *r)
{
	u64 val;

	if (pmu_access_el0_disabled(vcpu))
		return false;

	if (p->is_write) {
		/*
		 * Only update writeable bits of PMCR (continuing into
		 * kvm_pmu_handle_pmcr() as well)
		 */
		val = kvm_vcpu_read_pmcr(vcpu);
		val &= ~ARMV8_PMU_PMCR_MASK;
		val |= p->regval & ARMV8_PMU_PMCR_MASK;
		if (!kvm_supports_32bit_el0())
			val |= ARMV8_PMU_PMCR_LC;
		kvm_pmu_handle_pmcr(vcpu, val);
	} else {
		/* PMCR.P & PMCR.C are RAZ */
		val = kvm_vcpu_read_pmcr(vcpu)
		      & ~(ARMV8_PMU_PMCR_P | ARMV8_PMU_PMCR_C);
		p->regval = val;
	}

	return true;
}

static bool access_pmselr(struct kvm_vcpu *vcpu, struct sys_reg_params *p,
			  const struct sys_reg_desc *r)
{
	if (pmu_access_event_counter_el0_disabled(vcpu))
		return false;

	if (p->is_write)
		__vcpu_sys_reg(vcpu, PMSELR_EL0) = p->regval;
	else
		/* return PMSELR.SEL field */
		p->regval = __vcpu_sys_reg(vcpu, PMSELR_EL0)
			    & ARMV8_PMU_COUNTER_MASK;

	return true;
}

static bool access_pmceid(struct kvm_vcpu *vcpu, struct sys_reg_params *p,
			  const struct sys_reg_desc *r)
{
	u64 pmceid, mask, shift;

	BUG_ON(p->is_write);

	if (pmu_access_el0_disabled(vcpu))
		return false;

	get_access_mask(r, &mask, &shift);

	pmceid = kvm_pmu_get_pmceid(vcpu, (p->Op2 & 1));
	pmceid &= mask;
	pmceid >>= shift;

	p->regval = pmceid;

	return true;
}

static bool pmu_counter_idx_valid(struct kvm_vcpu *vcpu, u64 idx)
{
	u64 pmcr, val;

	pmcr = kvm_vcpu_read_pmcr(vcpu);
	val = FIELD_GET(ARMV8_PMU_PMCR_N, pmcr);
	if (idx >= val && idx != ARMV8_PMU_CYCLE_IDX) {
		kvm_inject_undefined(vcpu);
		return false;
	}

	return true;
}

static int get_pmu_evcntr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *r,
			  u64 *val)
{
	u64 idx;

	if (r->CRn == 9 && r->CRm == 13 && r->Op2 == 0)
		/* PMCCNTR_EL0 */
		idx = ARMV8_PMU_CYCLE_IDX;
	else
		/* PMEVCNTRn_EL0 */
		idx = ((r->CRm & 3) << 3) | (r->Op2 & 7);

	*val = kvm_pmu_get_counter_value(vcpu, idx);
	return 0;
}

static bool access_pmu_evcntr(struct kvm_vcpu *vcpu,
			      struct sys_reg_params *p,
			      const struct sys_reg_desc *r)
{
	u64 idx = ~0UL;

	if (r->CRn == 9 && r->CRm == 13) {
		if (r->Op2 == 2) {
			/* PMXEVCNTR_EL0 */
			if (pmu_access_event_counter_el0_disabled(vcpu))
				return false;

			idx = __vcpu_sys_reg(vcpu, PMSELR_EL0)
			      & ARMV8_PMU_COUNTER_MASK;
		} else if (r->Op2 == 0) {
			/* PMCCNTR_EL0 */
			if (pmu_access_cycle_counter_el0_disabled(vcpu))
				return false;

			idx = ARMV8_PMU_CYCLE_IDX;
		}
	} else if (r->CRn == 0 && r->CRm == 9) {
		/* PMCCNTR */
		if (pmu_access_event_counter_el0_disabled(vcpu))
			return false;

		idx = ARMV8_PMU_CYCLE_IDX;
	} else if (r->CRn == 14 && (r->CRm & 12) == 8) {
		/* PMEVCNTRn_EL0 */
		if (pmu_access_event_counter_el0_disabled(vcpu))
			return false;

		idx = ((r->CRm & 3) << 3) | (r->Op2 & 7);
	}

	/* Catch any decoding mistake */
	WARN_ON(idx == ~0UL);

	if (!pmu_counter_idx_valid(vcpu, idx))
		return false;

	if (p->is_write) {
		if (pmu_access_el0_disabled(vcpu))
			return false;

		kvm_pmu_set_counter_value(vcpu, idx, p->regval);
	} else {
		p->regval = kvm_pmu_get_counter_value(vcpu, idx);
	}

	return true;
}

static bool access_pmu_evtyper(struct kvm_vcpu *vcpu, struct sys_reg_params *p,
			       const struct sys_reg_desc *r)
{
	u64 idx, reg;

	if (pmu_access_el0_disabled(vcpu))
		return false;

	if (r->CRn == 9 && r->CRm == 13 && r->Op2 == 1) {
		/* PMXEVTYPER_EL0 */
		idx = __vcpu_sys_reg(vcpu, PMSELR_EL0) & ARMV8_PMU_COUNTER_MASK;
		reg = PMEVTYPER0_EL0 + idx;
	} else if (r->CRn == 14 && (r->CRm & 12) == 12) {
		idx = ((r->CRm & 3) << 3) | (r->Op2 & 7);
		if (idx == ARMV8_PMU_CYCLE_IDX)
			reg = PMCCFILTR_EL0;
		else
			/* PMEVTYPERn_EL0 */
			reg = PMEVTYPER0_EL0 + idx;
	} else {
		BUG();
	}

	if (!pmu_counter_idx_valid(vcpu, idx))
		return false;

	if (p->is_write) {
		kvm_pmu_set_counter_event_type(vcpu, p->regval, idx);
		kvm_vcpu_pmu_restore_guest(vcpu);
	} else {
		p->regval = __vcpu_sys_reg(vcpu, reg);
	}

	return true;
}

static int set_pmreg(struct kvm_vcpu *vcpu, const struct sys_reg_desc *r, u64 val)
{
	bool set;

	val &= kvm_pmu_valid_counter_mask(vcpu);

	switch (r->reg) {
	case PMOVSSET_EL0:
		/* CRm[1] being set indicates a SET register, and CLR otherwise */
		set = r->CRm & 2;
		break;
	default:
		/* Op2[0] being set indicates a SET register, and CLR otherwise */
		set = r->Op2 & 1;
		break;
	}

	if (set)
		__vcpu_sys_reg(vcpu, r->reg) |= val;
	else
		__vcpu_sys_reg(vcpu, r->reg) &= ~val;

	return 0;
}

static int get_pmreg(struct kvm_vcpu *vcpu, const struct sys_reg_desc *r, u64 *val)
{
	u64 mask = kvm_pmu_valid_counter_mask(vcpu);

	*val = __vcpu_sys_reg(vcpu, r->reg) & mask;
	return 0;
}

static bool access_pmcnten(struct kvm_vcpu *vcpu, struct sys_reg_params *p,
			   const struct sys_reg_desc *r)
{
	u64 val, mask;

	if (pmu_access_el0_disabled(vcpu))
		return false;

	mask = kvm_pmu_valid_counter_mask(vcpu);
	if (p->is_write) {
		val = p->regval & mask;
		if (r->Op2 & 0x1) {
			/* accessing PMCNTENSET_EL0 */
			__vcpu_sys_reg(vcpu, PMCNTENSET_EL0) |= val;
			kvm_pmu_enable_counter_mask(vcpu, val);
			kvm_vcpu_pmu_restore_guest(vcpu);
		} else {
			/* accessing PMCNTENCLR_EL0 */
			__vcpu_sys_reg(vcpu, PMCNTENSET_EL0) &= ~val;
			kvm_pmu_disable_counter_mask(vcpu, val);
		}
	} else {
		p->regval = __vcpu_sys_reg(vcpu, PMCNTENSET_EL0);
	}

	return true;
}

static bool access_pminten(struct kvm_vcpu *vcpu, struct sys_reg_params *p,
			   const struct sys_reg_desc *r)
{
	u64 mask = kvm_pmu_valid_counter_mask(vcpu);

	if (check_pmu_access_disabled(vcpu, 0))
		return false;

	if (p->is_write) {
		u64 val = p->regval & mask;

		if (r->Op2 & 0x1)
			/* accessing PMINTENSET_EL1 */
			__vcpu_sys_reg(vcpu, PMINTENSET_EL1) |= val;
		else
			/* accessing PMINTENCLR_EL1 */
			__vcpu_sys_reg(vcpu, PMINTENSET_EL1) &= ~val;
	} else {
		p->regval = __vcpu_sys_reg(vcpu, PMINTENSET_EL1);
	}

	return true;
}

static bool access_pmovs(struct kvm_vcpu *vcpu, struct sys_reg_params *p,
			 const struct sys_reg_desc *r)
{
	u64 mask = kvm_pmu_valid_counter_mask(vcpu);

	if (pmu_access_el0_disabled(vcpu))
		return false;

	if (p->is_write) {
		if (r->CRm & 0x2)
			/* accessing PMOVSSET_EL0 */
			__vcpu_sys_reg(vcpu, PMOVSSET_EL0) |= (p->regval & mask);
		else
			/* accessing PMOVSCLR_EL0 */
			__vcpu_sys_reg(vcpu, PMOVSSET_EL0) &= ~(p->regval & mask);
	} else {
		p->regval = __vcpu_sys_reg(vcpu, PMOVSSET_EL0);
	}

	return true;
}

static bool access_pmswinc(struct kvm_vcpu *vcpu, struct sys_reg_params *p,
			   const struct sys_reg_desc *r)
{
	u64 mask;

	if (!p->is_write)
		return read_from_write_only(vcpu, p, r);

	if (pmu_write_swinc_el0_disabled(vcpu))
		return false;

	mask = kvm_pmu_valid_counter_mask(vcpu);
	kvm_pmu_software_increment(vcpu, p->regval & mask);
	return true;
}

static bool access_pmuserenr(struct kvm_vcpu *vcpu, struct sys_reg_params *p,
			     const struct sys_reg_desc *r)
{
	if (p->is_write) {
		if (!vcpu_mode_priv(vcpu)) {
			kvm_inject_undefined(vcpu);
			return false;
		}

		__vcpu_sys_reg(vcpu, PMUSERENR_EL0) =
			       p->regval & ARMV8_PMU_USERENR_MASK;
	} else {
		p->regval = __vcpu_sys_reg(vcpu, PMUSERENR_EL0)
			    & ARMV8_PMU_USERENR_MASK;
	}

	return true;
}

static int get_pmcr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *r,
		    u64 *val)
{
	*val = kvm_vcpu_read_pmcr(vcpu);
	return 0;
}

static int set_pmcr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *r,
		    u64 val)
{
	u8 new_n = FIELD_GET(ARMV8_PMU_PMCR_N, val);
	struct kvm *kvm = vcpu->kvm;

	mutex_lock(&kvm->arch.config_lock);

	/*
	 * The vCPU can't have more counters than the PMU hardware
	 * implements. Ignore this error to maintain compatibility
	 * with the existing KVM behavior.
	 */
	if (!kvm_vm_has_ran_once(kvm) &&
	    new_n <= kvm_arm_pmu_get_max_counters(kvm))
		kvm->arch.pmcr_n = new_n;

	mutex_unlock(&kvm->arch.config_lock);

	/*
	 * Ignore writes to RES0 bits, read only bits that are cleared on
	 * vCPU reset, and writable bits that KVM doesn't support yet.
	 * (i.e. only PMCR.N and bits [7:0] are mutable from userspace)
	 * The LP bit is RES0 when FEAT_PMUv3p5 is not supported on the vCPU.
	 * But, we leave the bit as it is here, as the vCPU's PMUver might
	 * be changed later (NOTE: the bit will be cleared on first vCPU run
	 * if necessary).
	 */
	val &= ARMV8_PMU_PMCR_MASK;

	/* The LC bit is RES1 when AArch32 is not supported */
	if (!kvm_supports_32bit_el0())
		val |= ARMV8_PMU_PMCR_LC;

	__vcpu_sys_reg(vcpu, r->reg) = val;
	return 0;
}

/* Silly macro to expand the DBG{BCR,BVR,WVR,WCR}n_EL1 registers in one go */
#define DBG_BCR_BVR_WCR_WVR_EL1(n)					\
	{ SYS_DESC(SYS_DBGBVRn_EL1(n)),					\
	  trap_bvr, reset_bvr, 0, 0, get_bvr, set_bvr },		\
	{ SYS_DESC(SYS_DBGBCRn_EL1(n)),					\
	  trap_bcr, reset_bcr, 0, 0, get_bcr, set_bcr },		\
	{ SYS_DESC(SYS_DBGWVRn_EL1(n)),					\
	  trap_wvr, reset_wvr, 0, 0,  get_wvr, set_wvr },		\
	{ SYS_DESC(SYS_DBGWCRn_EL1(n)),					\
	  trap_wcr, reset_wcr, 0, 0,  get_wcr, set_wcr }

#define PMU_SYS_REG(name)						\
	SYS_DESC(SYS_##name), .reset = reset_pmu_reg,			\
	.visibility = pmu_visibility

/* Macro to expand the PMEVCNTRn_EL0 register */
#define PMU_PMEVCNTR_EL0(n)						\
	{ PMU_SYS_REG(PMEVCNTRn_EL0(n)),				\
	  .reset = reset_pmevcntr, .get_user = get_pmu_evcntr,		\
	  .access = access_pmu_evcntr, .reg = (PMEVCNTR0_EL0 + n), }

/* Macro to expand the PMEVTYPERn_EL0 register */
#define PMU_PMEVTYPER_EL0(n)						\
	{ PMU_SYS_REG(PMEVTYPERn_EL0(n)),				\
	  .reset = reset_pmevtyper,					\
	  .access = access_pmu_evtyper, .reg = (PMEVTYPER0_EL0 + n), }

static bool undef_access(struct kvm_vcpu *vcpu, struct sys_reg_params *p,
			 const struct sys_reg_desc *r)
{
	kvm_inject_undefined(vcpu);

	return false;
}

/* Macro to expand the AMU counter and type registers*/
#define AMU_AMEVCNTR0_EL0(n) { SYS_DESC(SYS_AMEVCNTR0_EL0(n)), undef_access }
#define AMU_AMEVTYPER0_EL0(n) { SYS_DESC(SYS_AMEVTYPER0_EL0(n)), undef_access }
#define AMU_AMEVCNTR1_EL0(n) { SYS_DESC(SYS_AMEVCNTR1_EL0(n)), undef_access }
#define AMU_AMEVTYPER1_EL0(n) { SYS_DESC(SYS_AMEVTYPER1_EL0(n)), undef_access }

static unsigned int ptrauth_visibility(const struct kvm_vcpu *vcpu,
			const struct sys_reg_desc *rd)
{
	return vcpu_has_ptrauth(vcpu) ? 0 : REG_HIDDEN;
}

/*
 * If we land here on a PtrAuth access, that is because we didn't
 * fixup the access on exit by allowing the PtrAuth sysregs. The only
 * way this happens is when the guest does not have PtrAuth support
 * enabled.
 */
#define __PTRAUTH_KEY(k)						\
	{ SYS_DESC(SYS_## k), undef_access, reset_unknown, k,		\
	.visibility = ptrauth_visibility}

#define PTRAUTH_KEY(k)							\
	__PTRAUTH_KEY(k ## KEYLO_EL1),					\
	__PTRAUTH_KEY(k ## KEYHI_EL1)

static bool access_arch_timer(struct kvm_vcpu *vcpu,
			      struct sys_reg_params *p,
			      const struct sys_reg_desc *r)
{
	enum kvm_arch_timers tmr;
	enum kvm_arch_timer_regs treg;
	u64 reg = reg_to_encoding(r);

	switch (reg) {
	case SYS_CNTP_TVAL_EL0:
	case SYS_AARCH32_CNTP_TVAL:
		tmr = TIMER_PTIMER;
		treg = TIMER_REG_TVAL;
		break;
	case SYS_CNTP_CTL_EL0:
	case SYS_AARCH32_CNTP_CTL:
		tmr = TIMER_PTIMER;
		treg = TIMER_REG_CTL;
		break;
	case SYS_CNTP_CVAL_EL0:
	case SYS_AARCH32_CNTP_CVAL:
		tmr = TIMER_PTIMER;
		treg = TIMER_REG_CVAL;
		break;
	case SYS_CNTPCT_EL0:
	case SYS_CNTPCTSS_EL0:
	case SYS_AARCH32_CNTPCT:
		tmr = TIMER_PTIMER;
		treg = TIMER_REG_CNT;
		break;
	default:
		print_sys_reg_msg(p, "%s", "Unhandled trapped timer register");
		kvm_inject_undefined(vcpu);
		return false;
	}

	if (p->is_write)
		kvm_arm_timer_write_sysreg(vcpu, tmr, treg, p->regval);
	else
		p->regval = kvm_arm_timer_read_sysreg(vcpu, tmr, treg);

	return true;
}

static s64 kvm_arm64_ftr_safe_value(u32 id, const struct arm64_ftr_bits *ftrp,
				    s64 new, s64 cur)
{
	struct arm64_ftr_bits kvm_ftr = *ftrp;

	/* Some features have different safe value type in KVM than host features */
	switch (id) {
	case SYS_ID_AA64DFR0_EL1:
		switch (kvm_ftr.shift) {
		case ID_AA64DFR0_EL1_PMUVer_SHIFT:
			kvm_ftr.type = FTR_LOWER_SAFE;
			break;
		case ID_AA64DFR0_EL1_DebugVer_SHIFT:
			kvm_ftr.type = FTR_LOWER_SAFE;
			break;
		}
		break;
	case SYS_ID_DFR0_EL1:
		if (kvm_ftr.shift == ID_DFR0_EL1_PerfMon_SHIFT)
			kvm_ftr.type = FTR_LOWER_SAFE;
		break;
	}

	return arm64_ftr_safe_value(&kvm_ftr, new, cur);
}

/*
 * arm64_check_features() - Check if a feature register value constitutes
 * a subset of features indicated by the idreg's KVM sanitised limit.
 *
 * This function will check if each feature field of @val is the "safe" value
 * against idreg's KVM sanitised limit return from reset() callback.
 * If a field value in @val is the same as the one in limit, it is always
 * considered the safe value regardless For register fields that are not in
 * writable, only the value in limit is considered the safe value.
 *
 * Return: 0 if all the fields are safe. Otherwise, return negative errno.
 */
static int arm64_check_features(struct kvm_vcpu *vcpu,
				const struct sys_reg_desc *rd,
				u64 val)
{
	const struct arm64_ftr_reg *ftr_reg;
	const struct arm64_ftr_bits *ftrp = NULL;
	u32 id = reg_to_encoding(rd);
	u64 writable_mask = rd->val;
	u64 limit = rd->reset(vcpu, rd);
	u64 mask = 0;

	/*
	 * Hidden and unallocated ID registers may not have a corresponding
	 * struct arm64_ftr_reg. Of course, if the register is RAZ we know the
	 * only safe value is 0.
	 */
	if (sysreg_visible_as_raz(vcpu, rd))
		return val ? -E2BIG : 0;

	ftr_reg = get_arm64_ftr_reg(id);
	if (!ftr_reg)
		return -EINVAL;

	ftrp = ftr_reg->ftr_bits;

	for (; ftrp && ftrp->width; ftrp++) {
		s64 f_val, f_lim, safe_val;
		u64 ftr_mask;

		ftr_mask = arm64_ftr_mask(ftrp);
		if ((ftr_mask & writable_mask) != ftr_mask)
			continue;

		f_val = arm64_ftr_value(ftrp, val);
		f_lim = arm64_ftr_value(ftrp, limit);
		mask |= ftr_mask;

		if (f_val == f_lim)
			safe_val = f_val;
		else
			safe_val = kvm_arm64_ftr_safe_value(id, ftrp, f_val, f_lim);

		if (safe_val != f_val)
			return -E2BIG;
	}

	/* For fields that are not writable, values in limit are the safe values. */
	if ((val & ~mask) != (limit & ~mask))
		return -E2BIG;

	return 0;
}

static u8 pmuver_to_perfmon(u8 pmuver)
{
	switch (pmuver) {
	case ID_AA64DFR0_EL1_PMUVer_IMP:
		return ID_DFR0_EL1_PerfMon_PMUv3;
	case ID_AA64DFR0_EL1_PMUVer_IMP_DEF:
		return ID_DFR0_EL1_PerfMon_IMPDEF;
	default:
		/* Anything ARMv8.1+ and NI have the same value. For now. */
		return pmuver;
	}
}

/* Read a sanitised cpufeature ID register by sys_reg_desc */
static u64 __kvm_read_sanitised_id_reg(const struct kvm_vcpu *vcpu,
				       const struct sys_reg_desc *r)
{
	u32 id = reg_to_encoding(r);
	u64 val;

	if (sysreg_visible_as_raz(vcpu, r))
		return 0;

	val = read_sanitised_ftr_reg(id);

	switch (id) {
	case SYS_ID_AA64PFR1_EL1:
		if (!kvm_has_mte(vcpu->kvm))
			val &= ~ARM64_FEATURE_MASK(ID_AA64PFR1_EL1_MTE);

		val &= ~ARM64_FEATURE_MASK(ID_AA64PFR1_EL1_SME);
		break;
	case SYS_ID_AA64ISAR1_EL1:
		if (!vcpu_has_ptrauth(vcpu))
			val &= ~(ARM64_FEATURE_MASK(ID_AA64ISAR1_EL1_APA) |
				 ARM64_FEATURE_MASK(ID_AA64ISAR1_EL1_API) |
				 ARM64_FEATURE_MASK(ID_AA64ISAR1_EL1_GPA) |
				 ARM64_FEATURE_MASK(ID_AA64ISAR1_EL1_GPI));
		break;
	case SYS_ID_AA64ISAR2_EL1:
		if (!vcpu_has_ptrauth(vcpu))
			val &= ~(ARM64_FEATURE_MASK(ID_AA64ISAR2_EL1_APA3) |
				 ARM64_FEATURE_MASK(ID_AA64ISAR2_EL1_GPA3));
		if (!cpus_have_final_cap(ARM64_HAS_WFXT))
			val &= ~ARM64_FEATURE_MASK(ID_AA64ISAR2_EL1_WFxT);
		break;
	case SYS_ID_AA64MMFR2_EL1:
		val &= ~ID_AA64MMFR2_EL1_CCIDX_MASK;
		break;
	case SYS_ID_MMFR4_EL1:
		val &= ~ARM64_FEATURE_MASK(ID_MMFR4_EL1_CCIDX);
		break;
	}

	return val;
}

static u64 kvm_read_sanitised_id_reg(struct kvm_vcpu *vcpu,
				     const struct sys_reg_desc *r)
{
	return __kvm_read_sanitised_id_reg(vcpu, r);
}

static u64 read_id_reg(const struct kvm_vcpu *vcpu, const struct sys_reg_desc *r)
{
	return IDREG(vcpu->kvm, reg_to_encoding(r));
}

/*
 * Return true if the register's (Op0, Op1, CRn, CRm, Op2) is
 * (3, 0, 0, crm, op2), where 1<=crm<8, 0<=op2<8.
 */
static inline bool is_id_reg(u32 id)
{
	return (sys_reg_Op0(id) == 3 && sys_reg_Op1(id) == 0 &&
		sys_reg_CRn(id) == 0 && sys_reg_CRm(id) >= 1 &&
		sys_reg_CRm(id) < 8);
}

static inline bool is_aa32_id_reg(u32 id)
{
	return (sys_reg_Op0(id) == 3 && sys_reg_Op1(id) == 0 &&
		sys_reg_CRn(id) == 0 && sys_reg_CRm(id) >= 1 &&
		sys_reg_CRm(id) <= 3);
}

static unsigned int id_visibility(const struct kvm_vcpu *vcpu,
				  const struct sys_reg_desc *r)
{
	u32 id = reg_to_encoding(r);

	switch (id) {
	case SYS_ID_AA64ZFR0_EL1:
		if (!vcpu_has_sve(vcpu))
			return REG_RAZ;
		break;
	}

	return 0;
}

static unsigned int aa32_id_visibility(const struct kvm_vcpu *vcpu,
				       const struct sys_reg_desc *r)
{
	/*
	 * AArch32 ID registers are UNKNOWN if AArch32 isn't implemented at any
	 * EL. Promote to RAZ/WI in order to guarantee consistency between
	 * systems.
	 */
	if (!kvm_supports_32bit_el0())
		return REG_RAZ | REG_USER_WI;

	return id_visibility(vcpu, r);
}

static unsigned int raz_visibility(const struct kvm_vcpu *vcpu,
				   const struct sys_reg_desc *r)
{
	return REG_RAZ;
}

/* cpufeature ID register access trap handlers */

static bool access_id_reg(struct kvm_vcpu *vcpu,
			  struct sys_reg_params *p,
			  const struct sys_reg_desc *r)
{
	if (p->is_write)
		return write_to_read_only(vcpu, p, r);

	p->regval = read_id_reg(vcpu, r);

	return true;
}

/* Visibility overrides for SVE-specific control registers */
static unsigned int sve_visibility(const struct kvm_vcpu *vcpu,
				   const struct sys_reg_desc *rd)
{
	if (vcpu_has_sve(vcpu))
		return 0;

	return REG_HIDDEN;
}

static u64 read_sanitised_id_aa64pfr0_el1(struct kvm_vcpu *vcpu,
					  const struct sys_reg_desc *rd)
{
	u64 val = read_sanitised_ftr_reg(SYS_ID_AA64PFR0_EL1);

	if (!vcpu_has_sve(vcpu))
		val &= ~ID_AA64PFR0_EL1_SVE_MASK;

	/*
	 * The default is to expose CSV2 == 1 if the HW isn't affected.
	 * Although this is a per-CPU feature, we make it global because
	 * asymmetric systems are just a nuisance.
	 *
	 * Userspace can override this as long as it doesn't promise
	 * the impossible.
	 */
	if (arm64_get_spectre_v2_state() == SPECTRE_UNAFFECTED) {
		val &= ~ID_AA64PFR0_EL1_CSV2_MASK;
		val |= SYS_FIELD_PREP_ENUM(ID_AA64PFR0_EL1, CSV2, IMP);
	}
	if (arm64_get_meltdown_state() == SPECTRE_UNAFFECTED) {
		val &= ~ID_AA64PFR0_EL1_CSV3_MASK;
		val |= SYS_FIELD_PREP_ENUM(ID_AA64PFR0_EL1, CSV3, IMP);
	}

	if (kvm_vgic_global_state.type == VGIC_V3) {
		val &= ~ID_AA64PFR0_EL1_GIC_MASK;
		val |= SYS_FIELD_PREP_ENUM(ID_AA64PFR0_EL1, GIC, IMP);
	}

	val &= ~ID_AA64PFR0_EL1_AMU_MASK;

	return val;
}

#define ID_REG_LIMIT_FIELD_ENUM(val, reg, field, limit)			       \
({									       \
	u64 __f_val = FIELD_GET(reg##_##field##_MASK, val);		       \
	(val) &= ~reg##_##field##_MASK;					       \
	(val) |= FIELD_PREP(reg##_##field##_MASK,			       \
			min(__f_val, (u64)reg##_##field##_##limit));	       \
	(val);								       \
})

static u64 read_sanitised_id_aa64dfr0_el1(struct kvm_vcpu *vcpu,
					  const struct sys_reg_desc *rd)
{
	u64 val = read_sanitised_ftr_reg(SYS_ID_AA64DFR0_EL1);

	val = ID_REG_LIMIT_FIELD_ENUM(val, ID_AA64DFR0_EL1, DebugVer, V8P8);

	/*
	 * Only initialize the PMU version if the vCPU was configured with one.
	 */
	val &= ~ID_AA64DFR0_EL1_PMUVer_MASK;
	if (kvm_vcpu_has_pmu(vcpu))
		val |= SYS_FIELD_PREP(ID_AA64DFR0_EL1, PMUVer,
				      kvm_arm_pmu_get_pmuver_limit());

	/* Hide SPE from guests */
	val &= ~ID_AA64DFR0_EL1_PMSVer_MASK;

	return val;
}

static int set_id_aa64dfr0_el1(struct kvm_vcpu *vcpu,
			       const struct sys_reg_desc *rd,
			       u64 val)
{
	u8 debugver = SYS_FIELD_GET(ID_AA64DFR0_EL1, DebugVer, val);
	u8 pmuver = SYS_FIELD_GET(ID_AA64DFR0_EL1, PMUVer, val);

	/*
	 * Prior to commit 3d0dba5764b9 ("KVM: arm64: PMU: Move the
	 * ID_AA64DFR0_EL1.PMUver limit to VM creation"), KVM erroneously
	 * exposed an IMP_DEF PMU to userspace and the guest on systems w/
	 * non-architectural PMUs. Of course, PMUv3 is the only game in town for
	 * PMU virtualization, so the IMP_DEF value was rather user-hostile.
	 *
	 * At minimum, we're on the hook to allow values that were given to
	 * userspace by KVM. Cover our tracks here and replace the IMP_DEF value
	 * with a more sensible NI. The value of an ID register changing under
	 * the nose of the guest is unfortunate, but is certainly no more
	 * surprising than an ill-guided PMU driver poking at impdef system
	 * registers that end in an UNDEF...
	 */
	if (pmuver == ID_AA64DFR0_EL1_PMUVer_IMP_DEF)
		val &= ~ID_AA64DFR0_EL1_PMUVer_MASK;

	/*
	 * ID_AA64DFR0_EL1.DebugVer is one of those awkward fields with a
	 * nonzero minimum safe value.
	 */
	if (debugver < ID_AA64DFR0_EL1_DebugVer_IMP)
		return -EINVAL;

	return set_id_reg(vcpu, rd, val);
}

static u64 read_sanitised_id_dfr0_el1(struct kvm_vcpu *vcpu,
				      const struct sys_reg_desc *rd)
{
	u8 perfmon = pmuver_to_perfmon(kvm_arm_pmu_get_pmuver_limit());
	u64 val = read_sanitised_ftr_reg(SYS_ID_DFR0_EL1);

	val &= ~ID_DFR0_EL1_PerfMon_MASK;
	if (kvm_vcpu_has_pmu(vcpu))
		val |= SYS_FIELD_PREP(ID_DFR0_EL1, PerfMon, perfmon);

	val = ID_REG_LIMIT_FIELD_ENUM(val, ID_DFR0_EL1, CopDbg, Debugv8p8);

	return val;
}

static int set_id_dfr0_el1(struct kvm_vcpu *vcpu,
			   const struct sys_reg_desc *rd,
			   u64 val)
{
	u8 perfmon = SYS_FIELD_GET(ID_DFR0_EL1, PerfMon, val);
	u8 copdbg = SYS_FIELD_GET(ID_DFR0_EL1, CopDbg, val);

	if (perfmon == ID_DFR0_EL1_PerfMon_IMPDEF) {
		val &= ~ID_DFR0_EL1_PerfMon_MASK;
		perfmon = 0;
	}

	/*
	 * Allow DFR0_EL1.PerfMon to be set from userspace as long as
	 * it doesn't promise more than what the HW gives us on the
	 * AArch64 side (as everything is emulated with that), and
	 * that this is a PMUv3.
	 */
	if (perfmon != 0 && perfmon < ID_DFR0_EL1_PerfMon_PMUv3)
		return -EINVAL;

	if (copdbg < ID_DFR0_EL1_CopDbg_Armv8)
		return -EINVAL;

	return set_id_reg(vcpu, rd, val);
}

/*
 * cpufeature ID register user accessors
 *
 * For now, these registers are immutable for userspace, so no values
 * are stored, and for set_id_reg() we don't allow the effective value
 * to be changed.
 */
static int get_id_reg(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd,
		      u64 *val)
{
	/*
	 * Avoid locking if the VM has already started, as the ID registers are
	 * guaranteed to be invariant at that point.
	 */
	if (kvm_vm_has_ran_once(vcpu->kvm)) {
		*val = read_id_reg(vcpu, rd);
		return 0;
	}

	mutex_lock(&vcpu->kvm->arch.config_lock);
	*val = read_id_reg(vcpu, rd);
	mutex_unlock(&vcpu->kvm->arch.config_lock);

	return 0;
}

static int set_id_reg(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd,
		      u64 val)
{
	u32 id = reg_to_encoding(rd);
	int ret;

	mutex_lock(&vcpu->kvm->arch.config_lock);

	/*
	 * Once the VM has started the ID registers are immutable. Reject any
	 * write that does not match the final register value.
	 */
	if (kvm_vm_has_ran_once(vcpu->kvm)) {
		if (val != read_id_reg(vcpu, rd))
			ret = -EBUSY;
		else
			ret = 0;

		mutex_unlock(&vcpu->kvm->arch.config_lock);
		return ret;
	}

	ret = arm64_check_features(vcpu, rd, val);
	if (!ret)
		IDREG(vcpu->kvm, id) = val;

	mutex_unlock(&vcpu->kvm->arch.config_lock);

	/*
	 * arm64_check_features() returns -E2BIG to indicate the register's
	 * feature set is a superset of the maximally-allowed register value.
	 * While it would be nice to precisely describe this to userspace, the
	 * existing UAPI for KVM_SET_ONE_REG has it that invalid register
	 * writes return -EINVAL.
	 */
	if (ret == -E2BIG)
		ret = -EINVAL;
	return ret;
}

static int get_raz_reg(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd,
		       u64 *val)
{
	*val = 0;
	return 0;
}

static int set_wi_reg(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd,
		      u64 val)
{
	return 0;
}

static bool access_ctr(struct kvm_vcpu *vcpu, struct sys_reg_params *p,
		       const struct sys_reg_desc *r)
{
	if (p->is_write)
		return write_to_read_only(vcpu, p, r);

	p->regval = read_sanitised_ftr_reg(SYS_CTR_EL0);
	return true;
}

static bool access_clidr(struct kvm_vcpu *vcpu, struct sys_reg_params *p,
			 const struct sys_reg_desc *r)
{
	if (p->is_write)
		return write_to_read_only(vcpu, p, r);

	p->regval = __vcpu_sys_reg(vcpu, r->reg);
	return true;
}

/*
 * Fabricate a CLIDR_EL1 value instead of using the real value, which can vary
 * by the physical CPU which the vcpu currently resides in.
 */
static u64 reset_clidr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *r)
{
	u64 ctr_el0 = read_sanitised_ftr_reg(SYS_CTR_EL0);
	u64 clidr;
	u8 loc;

	if ((ctr_el0 & CTR_EL0_IDC)) {
		/*
		 * Data cache clean to the PoU is not required so LoUU and LoUIS
		 * will not be set and a unified cache, which will be marked as
		 * LoC, will be added.
		 *
		 * If not DIC, let the unified cache L2 so that an instruction
		 * cache can be added as L1 later.
		 */
		loc = (ctr_el0 & CTR_EL0_DIC) ? 1 : 2;
		clidr = CACHE_TYPE_UNIFIED << CLIDR_CTYPE_SHIFT(loc);
	} else {
		/*
		 * Data cache clean to the PoU is required so let L1 have a data
		 * cache and mark it as LoUU and LoUIS. As L1 has a data cache,
		 * it can be marked as LoC too.
		 */
		loc = 1;
		clidr = 1 << CLIDR_LOUU_SHIFT;
		clidr |= 1 << CLIDR_LOUIS_SHIFT;
		clidr |= CACHE_TYPE_DATA << CLIDR_CTYPE_SHIFT(1);
	}

	/*
	 * Instruction cache invalidation to the PoU is required so let L1 have
	 * an instruction cache. If L1 already has a data cache, it will be
	 * CACHE_TYPE_SEPARATE.
	 */
	if (!(ctr_el0 & CTR_EL0_DIC))
		clidr |= CACHE_TYPE_INST << CLIDR_CTYPE_SHIFT(1);

	clidr |= loc << CLIDR_LOC_SHIFT;

	/*
	 * Add tag cache unified to data cache. Allocation tags and data are
	 * unified in a cache line so that it looks valid even if there is only
	 * one cache line.
	 */
	if (kvm_has_mte(vcpu->kvm))
		clidr |= 2 << CLIDR_TTYPE_SHIFT(loc);

	__vcpu_sys_reg(vcpu, r->reg) = clidr;

	return __vcpu_sys_reg(vcpu, r->reg);
}

static int set_clidr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd,
		      u64 val)
{
	u64 ctr_el0 = read_sanitised_ftr_reg(SYS_CTR_EL0);
	u64 idc = !CLIDR_LOC(val) || (!CLIDR_LOUIS(val) && !CLIDR_LOUU(val));

	if ((val & CLIDR_EL1_RES0) || (!(ctr_el0 & CTR_EL0_IDC) && idc))
		return -EINVAL;

	__vcpu_sys_reg(vcpu, rd->reg) = val;

	return 0;
}

static bool access_csselr(struct kvm_vcpu *vcpu, struct sys_reg_params *p,
			  const struct sys_reg_desc *r)
{
	int reg = r->reg;

	if (p->is_write)
		vcpu_write_sys_reg(vcpu, p->regval, reg);
	else
		p->regval = vcpu_read_sys_reg(vcpu, reg);
	return true;
}

static bool access_ccsidr(struct kvm_vcpu *vcpu, struct sys_reg_params *p,
			  const struct sys_reg_desc *r)
{
	u32 csselr;

	if (p->is_write)
		return write_to_read_only(vcpu, p, r);

	csselr = vcpu_read_sys_reg(vcpu, CSSELR_EL1);
	csselr &= CSSELR_EL1_Level | CSSELR_EL1_InD;
	if (csselr < CSSELR_MAX)
		p->regval = get_ccsidr(vcpu, csselr);

	return true;
}

static unsigned int mte_visibility(const struct kvm_vcpu *vcpu,
				   const struct sys_reg_desc *rd)
{
	if (kvm_has_mte(vcpu->kvm))
		return 0;

	return REG_HIDDEN;
}

#define MTE_REG(name) {				\
	SYS_DESC(SYS_##name),			\
	.access = undef_access,			\
	.reset = reset_unknown,			\
	.reg = name,				\
	.visibility = mte_visibility,		\
}

static unsigned int el2_visibility(const struct kvm_vcpu *vcpu,
				   const struct sys_reg_desc *rd)
{
	if (vcpu_has_nv(vcpu))
		return 0;

	return REG_HIDDEN;
}

static bool bad_vncr_trap(struct kvm_vcpu *vcpu,
			  struct sys_reg_params *p,
			  const struct sys_reg_desc *r)
{
	/*
	 * We really shouldn't be here, and this is likely the result
	 * of a misconfigured trap, as this register should target the
	 * VNCR page, and nothing else.
	 */
	return bad_trap(vcpu, p, r,
			"trap of VNCR-backed register");
}

static bool bad_redir_trap(struct kvm_vcpu *vcpu,
			   struct sys_reg_params *p,
			   const struct sys_reg_desc *r)
{
	/*
	 * We really shouldn't be here, and this is likely the result
	 * of a misconfigured trap, as this register should target the
	 * corresponding EL1, and nothing else.
	 */
	return bad_trap(vcpu, p, r,
			"trap of EL2 register redirected to EL1");
}

#define EL2_REG(name, acc, rst, v) {		\
	SYS_DESC(SYS_##name),			\
	.access = acc,				\
	.reset = rst,				\
	.reg = name,				\
	.visibility = el2_visibility,		\
	.val = v,				\
}

#define EL2_REG_VNCR(name, rst, v)	EL2_REG(name, bad_vncr_trap, rst, v)
#define EL2_REG_REDIR(name, rst, v)	EL2_REG(name, bad_redir_trap, rst, v)

/*
 * EL{0,1}2 registers are the EL2 view on an EL0 or EL1 register when
 * HCR_EL2.E2H==1, and only in the sysreg table for convenience of
 * handling traps. Given that, they are always hidden from userspace.
 */
static unsigned int hidden_user_visibility(const struct kvm_vcpu *vcpu,
					   const struct sys_reg_desc *rd)
{
	return REG_HIDDEN_USER;
}

#define EL12_REG(name, acc, rst, v) {		\
	SYS_DESC(SYS_##name##_EL12),		\
	.access = acc,				\
	.reset = rst,				\
	.reg = name##_EL1,			\
	.val = v,				\
	.visibility = hidden_user_visibility,	\
}

/*
 * Since reset() callback and field val are not used for idregs, they will be
 * used for specific purposes for idregs.
 * The reset() would return KVM sanitised register value. The value would be the
 * same as the host kernel sanitised value if there is no KVM sanitisation.
 * The val would be used as a mask indicating writable fields for the idreg.
 * Only bits with 1 are writable from userspace. This mask might not be
 * necessary in the future whenever all ID registers are enabled as writable
 * from userspace.
 */

#define ID_DESC(name)				\
	SYS_DESC(SYS_##name),			\
	.access	= access_id_reg,		\
	.get_user = get_id_reg			\

/* sys_reg_desc initialiser for known cpufeature ID registers */
#define ID_SANITISED(name) {			\
	ID_DESC(name),				\
	.set_user = set_id_reg,			\
	.visibility = id_visibility,		\
	.reset = kvm_read_sanitised_id_reg,	\
	.val = 0,				\
}

/* sys_reg_desc initialiser for known cpufeature ID registers */
#define AA32_ID_SANITISED(name) {		\
	ID_DESC(name),				\
	.set_user = set_id_reg,			\
	.visibility = aa32_id_visibility,	\
	.reset = kvm_read_sanitised_id_reg,	\
	.val = 0,				\
}

/* sys_reg_desc initialiser for writable ID registers */
#define ID_WRITABLE(name, mask) {		\
	ID_DESC(name),				\
	.set_user = set_id_reg,			\
	.visibility = id_visibility,		\
	.reset = kvm_read_sanitised_id_reg,	\
	.val = mask,				\
}

/*
 * sys_reg_desc initialiser for architecturally unallocated cpufeature ID
 * register with encoding Op0=3, Op1=0, CRn=0, CRm=crm, Op2=op2
 * (1 <= crm < 8, 0 <= Op2 < 8).
 */
#define ID_UNALLOCATED(crm, op2) {			\
	Op0(3), Op1(0), CRn(0), CRm(crm), Op2(op2),	\
	.access = access_id_reg,			\
	.get_user = get_id_reg,				\
	.set_user = set_id_reg,				\
	.visibility = raz_visibility,			\
	.reset = kvm_read_sanitised_id_reg,		\
	.val = 0,					\
}

/*
 * sys_reg_desc initialiser for known ID registers that we hide from guests.
 * For now, these are exposed just like unallocated ID regs: they appear
 * RAZ for the guest.
 */
#define ID_HIDDEN(name) {			\
	ID_DESC(name),				\
	.set_user = set_id_reg,			\
	.visibility = raz_visibility,		\
	.reset = kvm_read_sanitised_id_reg,	\
	.val = 0,				\
}

static bool access_sp_el1(struct kvm_vcpu *vcpu,
			  struct sys_reg_params *p,
			  const struct sys_reg_desc *r)
{
	if (p->is_write)
		__vcpu_sys_reg(vcpu, SP_EL1) = p->regval;
	else
		p->regval = __vcpu_sys_reg(vcpu, SP_EL1);

	return true;
}

static bool access_elr(struct kvm_vcpu *vcpu,
		       struct sys_reg_params *p,
		       const struct sys_reg_desc *r)
{
	if (p->is_write)
		vcpu_write_sys_reg(vcpu, p->regval, ELR_EL1);
	else
		p->regval = vcpu_read_sys_reg(vcpu, ELR_EL1);

	return true;
}

static bool access_spsr(struct kvm_vcpu *vcpu,
			struct sys_reg_params *p,
			const struct sys_reg_desc *r)
{
	if (p->is_write)
		__vcpu_sys_reg(vcpu, SPSR_EL1) = p->regval;
	else
		p->regval = __vcpu_sys_reg(vcpu, SPSR_EL1);

	return true;
}

/*
 * Architected system registers.
 * Important: Must be sorted ascending by Op0, Op1, CRn, CRm, Op2
 *
 * Debug handling: We do trap most, if not all debug related system
 * registers. The implementation is good enough to ensure that a guest
 * can use these with minimal performance degradation. The drawback is
 * that we don't implement any of the external debug architecture.
 * This should be revisited if we ever encounter a more demanding
 * guest...
 */
static const struct sys_reg_desc sys_reg_descs[] = {
	{ SYS_DESC(SYS_DC_ISW), access_dcsw },
	{ SYS_DESC(SYS_DC_IGSW), access_dcgsw },
	{ SYS_DESC(SYS_DC_IGDSW), access_dcgsw },
	{ SYS_DESC(SYS_DC_CSW), access_dcsw },
	{ SYS_DESC(SYS_DC_CGSW), access_dcgsw },
	{ SYS_DESC(SYS_DC_CGDSW), access_dcgsw },
	{ SYS_DESC(SYS_DC_CISW), access_dcsw },
	{ SYS_DESC(SYS_DC_CIGSW), access_dcgsw },
	{ SYS_DESC(SYS_DC_CIGDSW), access_dcgsw },

	DBG_BCR_BVR_WCR_WVR_EL1(0),
	DBG_BCR_BVR_WCR_WVR_EL1(1),
	{ SYS_DESC(SYS_MDCCINT_EL1), trap_debug_regs, reset_val, MDCCINT_EL1, 0 },
	{ SYS_DESC(SYS_MDSCR_EL1), trap_debug_regs, reset_val, MDSCR_EL1, 0 },
	DBG_BCR_BVR_WCR_WVR_EL1(2),
	DBG_BCR_BVR_WCR_WVR_EL1(3),
	DBG_BCR_BVR_WCR_WVR_EL1(4),
	DBG_BCR_BVR_WCR_WVR_EL1(5),
	DBG_BCR_BVR_WCR_WVR_EL1(6),
	DBG_BCR_BVR_WCR_WVR_EL1(7),
	DBG_BCR_BVR_WCR_WVR_EL1(8),
	DBG_BCR_BVR_WCR_WVR_EL1(9),
	DBG_BCR_BVR_WCR_WVR_EL1(10),
	DBG_BCR_BVR_WCR_WVR_EL1(11),
	DBG_BCR_BVR_WCR_WVR_EL1(12),
	DBG_BCR_BVR_WCR_WVR_EL1(13),
	DBG_BCR_BVR_WCR_WVR_EL1(14),
	DBG_BCR_BVR_WCR_WVR_EL1(15),

	{ SYS_DESC(SYS_MDRAR_EL1), trap_raz_wi },
	{ SYS_DESC(SYS_OSLAR_EL1), trap_oslar_el1 },
	{ SYS_DESC(SYS_OSLSR_EL1), trap_oslsr_el1, reset_val, OSLSR_EL1,
		OSLSR_EL1_OSLM_IMPLEMENTED, .set_user = set_oslsr_el1, },
	{ SYS_DESC(SYS_OSDLR_EL1), trap_raz_wi },
	{ SYS_DESC(SYS_DBGPRCR_EL1), trap_raz_wi },
	{ SYS_DESC(SYS_DBGCLAIMSET_EL1), trap_raz_wi },
	{ SYS_DESC(SYS_DBGCLAIMCLR_EL1), trap_raz_wi },
	{ SYS_DESC(SYS_DBGAUTHSTATUS_EL1), trap_dbgauthstatus_el1 },

	{ SYS_DESC(SYS_MDCCSR_EL0), trap_raz_wi },
	{ SYS_DESC(SYS_DBGDTR_EL0), trap_raz_wi },
	// DBGDTR[TR]X_EL0 share the same encoding
	{ SYS_DESC(SYS_DBGDTRTX_EL0), trap_raz_wi },

	{ SYS_DESC(SYS_DBGVCR32_EL2), trap_undef, reset_val, DBGVCR32_EL2, 0 },

	{ SYS_DESC(SYS_MPIDR_EL1), NULL, reset_mpidr, MPIDR_EL1 },

	/*
	 * ID regs: all ID_SANITISED() entries here must have corresponding
	 * entries in arm64_ftr_regs[].
	 */

	/* AArch64 mappings of the AArch32 ID registers */
	/* CRm=1 */
	AA32_ID_SANITISED(ID_PFR0_EL1),
	AA32_ID_SANITISED(ID_PFR1_EL1),
	{ SYS_DESC(SYS_ID_DFR0_EL1),
	  .access = access_id_reg,
	  .get_user = get_id_reg,
	  .set_user = set_id_dfr0_el1,
	  .visibility = aa32_id_visibility,
	  .reset = read_sanitised_id_dfr0_el1,
	  .val = ID_DFR0_EL1_PerfMon_MASK |
		 ID_DFR0_EL1_CopDbg_MASK, },
	ID_HIDDEN(ID_AFR0_EL1),
	AA32_ID_SANITISED(ID_MMFR0_EL1),
	AA32_ID_SANITISED(ID_MMFR1_EL1),
	AA32_ID_SANITISED(ID_MMFR2_EL1),
	AA32_ID_SANITISED(ID_MMFR3_EL1),

	/* CRm=2 */
	AA32_ID_SANITISED(ID_ISAR0_EL1),
	AA32_ID_SANITISED(ID_ISAR1_EL1),
	AA32_ID_SANITISED(ID_ISAR2_EL1),
	AA32_ID_SANITISED(ID_ISAR3_EL1),
	AA32_ID_SANITISED(ID_ISAR4_EL1),
	AA32_ID_SANITISED(ID_ISAR5_EL1),
	AA32_ID_SANITISED(ID_MMFR4_EL1),
	AA32_ID_SANITISED(ID_ISAR6_EL1),

	/* CRm=3 */
	AA32_ID_SANITISED(MVFR0_EL1),
	AA32_ID_SANITISED(MVFR1_EL1),
	AA32_ID_SANITISED(MVFR2_EL1),
	ID_UNALLOCATED(3,3),
	AA32_ID_SANITISED(ID_PFR2_EL1),
	ID_HIDDEN(ID_DFR1_EL1),
	AA32_ID_SANITISED(ID_MMFR5_EL1),
	ID_UNALLOCATED(3,7),

	/* AArch64 ID registers */
	/* CRm=4 */
	{ SYS_DESC(SYS_ID_AA64PFR0_EL1),
	  .access = access_id_reg,
	  .get_user = get_id_reg,
	  .set_user = set_id_reg,
	  .reset = read_sanitised_id_aa64pfr0_el1,
	  .val = ~(ID_AA64PFR0_EL1_AMU |
		   ID_AA64PFR0_EL1_MPAM |
		   ID_AA64PFR0_EL1_SVE |
		   ID_AA64PFR0_EL1_RAS |
		   ID_AA64PFR0_EL1_GIC |
		   ID_AA64PFR0_EL1_AdvSIMD |
		   ID_AA64PFR0_EL1_FP), },
	ID_SANITISED(ID_AA64PFR1_EL1),
	ID_UNALLOCATED(4,2),
	ID_UNALLOCATED(4,3),
	ID_WRITABLE(ID_AA64ZFR0_EL1, ~ID_AA64ZFR0_EL1_RES0),
	ID_HIDDEN(ID_AA64SMFR0_EL1),
	ID_UNALLOCATED(4,6),
	ID_UNALLOCATED(4,7),

	/* CRm=5 */
	{ SYS_DESC(SYS_ID_AA64DFR0_EL1),
	  .access = access_id_reg,
	  .get_user = get_id_reg,
	  .set_user = set_id_aa64dfr0_el1,
	  .reset = read_sanitised_id_aa64dfr0_el1,
	  .val = ID_AA64DFR0_EL1_PMUVer_MASK |
		 ID_AA64DFR0_EL1_DebugVer_MASK, },
	ID_SANITISED(ID_AA64DFR1_EL1),
	ID_UNALLOCATED(5,2),
	ID_UNALLOCATED(5,3),
	ID_HIDDEN(ID_AA64AFR0_EL1),
	ID_HIDDEN(ID_AA64AFR1_EL1),
	ID_UNALLOCATED(5,6),
	ID_UNALLOCATED(5,7),

	/* CRm=6 */
	ID_WRITABLE(ID_AA64ISAR0_EL1, ~ID_AA64ISAR0_EL1_RES0),
	ID_WRITABLE(ID_AA64ISAR1_EL1, ~(ID_AA64ISAR1_EL1_GPI |
					ID_AA64ISAR1_EL1_GPA |
					ID_AA64ISAR1_EL1_API |
					ID_AA64ISAR1_EL1_APA)),
	ID_WRITABLE(ID_AA64ISAR2_EL1, ~(ID_AA64ISAR2_EL1_RES0 |
					ID_AA64ISAR2_EL1_APA3 |
					ID_AA64ISAR2_EL1_GPA3)),
	ID_UNALLOCATED(6,3),
	ID_UNALLOCATED(6,4),
	ID_UNALLOCATED(6,5),
	ID_UNALLOCATED(6,6),
	ID_UNALLOCATED(6,7),

	/* CRm=7 */
	ID_WRITABLE(ID_AA64MMFR0_EL1, ~(ID_AA64MMFR0_EL1_RES0 |
					ID_AA64MMFR0_EL1_TGRAN4_2 |
					ID_AA64MMFR0_EL1_TGRAN64_2 |
					ID_AA64MMFR0_EL1_TGRAN16_2)),
	ID_WRITABLE(ID_AA64MMFR1_EL1, ~(ID_AA64MMFR1_EL1_RES0 |
					ID_AA64MMFR1_EL1_HCX |
					ID_AA64MMFR1_EL1_XNX |
					ID_AA64MMFR1_EL1_TWED |
					ID_AA64MMFR1_EL1_XNX |
					ID_AA64MMFR1_EL1_VH |
					ID_AA64MMFR1_EL1_VMIDBits)),
	ID_WRITABLE(ID_AA64MMFR2_EL1, ~(ID_AA64MMFR2_EL1_RES0 |
					ID_AA64MMFR2_EL1_EVT |
					ID_AA64MMFR2_EL1_FWB |
					ID_AA64MMFR2_EL1_IDS |
					ID_AA64MMFR2_EL1_NV |
					ID_AA64MMFR2_EL1_CCIDX)),
	ID_SANITISED(ID_AA64MMFR3_EL1),
	ID_UNALLOCATED(7,4),
	ID_UNALLOCATED(7,5),
	ID_UNALLOCATED(7,6),
	ID_UNALLOCATED(7,7),

	{ SYS_DESC(SYS_SCTLR_EL1), access_vm_reg, reset_val, SCTLR_EL1, 0x00C50078 },
	{ SYS_DESC(SYS_ACTLR_EL1), access_actlr, reset_actlr, ACTLR_EL1 },
	{ SYS_DESC(SYS_CPACR_EL1), NULL, reset_val, CPACR_EL1, 0 },

	MTE_REG(RGSR_EL1),
	MTE_REG(GCR_EL1),

	{ SYS_DESC(SYS_ZCR_EL1), NULL, reset_val, ZCR_EL1, 0, .visibility = sve_visibility },
	{ SYS_DESC(SYS_TRFCR_EL1), undef_access },
	{ SYS_DESC(SYS_SMPRI_EL1), undef_access },
	{ SYS_DESC(SYS_SMCR_EL1), undef_access },
	{ SYS_DESC(SYS_TTBR0_EL1), access_vm_reg, reset_unknown, TTBR0_EL1 },
	{ SYS_DESC(SYS_TTBR1_EL1), access_vm_reg, reset_unknown, TTBR1_EL1 },
	{ SYS_DESC(SYS_TCR_EL1), access_vm_reg, reset_val, TCR_EL1, 0 },
	{ SYS_DESC(SYS_TCR2_EL1), access_vm_reg, reset_val, TCR2_EL1, 0 },

	PTRAUTH_KEY(APIA),
	PTRAUTH_KEY(APIB),
	PTRAUTH_KEY(APDA),
	PTRAUTH_KEY(APDB),
	PTRAUTH_KEY(APGA),

	{ SYS_DESC(SYS_SPSR_EL1), access_spsr},
	{ SYS_DESC(SYS_ELR_EL1), access_elr},

	{ SYS_DESC(SYS_AFSR0_EL1), access_vm_reg, reset_unknown, AFSR0_EL1 },
	{ SYS_DESC(SYS_AFSR1_EL1), access_vm_reg, reset_unknown, AFSR1_EL1 },
	{ SYS_DESC(SYS_ESR_EL1), access_vm_reg, reset_unknown, ESR_EL1 },

	{ SYS_DESC(SYS_ERRIDR_EL1), trap_raz_wi },
	{ SYS_DESC(SYS_ERRSELR_EL1), trap_raz_wi },
	{ SYS_DESC(SYS_ERXFR_EL1), trap_raz_wi },
	{ SYS_DESC(SYS_ERXCTLR_EL1), trap_raz_wi },
	{ SYS_DESC(SYS_ERXSTATUS_EL1), trap_raz_wi },
	{ SYS_DESC(SYS_ERXADDR_EL1), trap_raz_wi },
	{ SYS_DESC(SYS_ERXMISC0_EL1), trap_raz_wi },
	{ SYS_DESC(SYS_ERXMISC1_EL1), trap_raz_wi },

	MTE_REG(TFSR_EL1),
	MTE_REG(TFSRE0_EL1),

	{ SYS_DESC(SYS_FAR_EL1), access_vm_reg, reset_unknown, FAR_EL1 },
	{ SYS_DESC(SYS_PAR_EL1), NULL, reset_unknown, PAR_EL1 },

	{ SYS_DESC(SYS_PMSCR_EL1), undef_access },
	{ SYS_DESC(SYS_PMSNEVFR_EL1), undef_access },
	{ SYS_DESC(SYS_PMSICR_EL1), undef_access },
	{ SYS_DESC(SYS_PMSIRR_EL1), undef_access },
	{ SYS_DESC(SYS_PMSFCR_EL1), undef_access },
	{ SYS_DESC(SYS_PMSEVFR_EL1), undef_access },
	{ SYS_DESC(SYS_PMSLATFR_EL1), undef_access },
	{ SYS_DESC(SYS_PMSIDR_EL1), undef_access },
	{ SYS_DESC(SYS_PMBLIMITR_EL1), undef_access },
	{ SYS_DESC(SYS_PMBPTR_EL1), undef_access },
	{ SYS_DESC(SYS_PMBSR_EL1), undef_access },
	/* PMBIDR_EL1 is not trapped */

	{ PMU_SYS_REG(PMINTENSET_EL1),
	  .access = access_pminten, .reg = PMINTENSET_EL1,
	  .get_user = get_pmreg, .set_user = set_pmreg },
	{ PMU_SYS_REG(PMINTENCLR_EL1),
	  .access = access_pminten, .reg = PMINTENSET_EL1,
	  .get_user = get_pmreg, .set_user = set_pmreg },
	{ SYS_DESC(SYS_PMMIR_EL1), trap_raz_wi },

	{ SYS_DESC(SYS_MAIR_EL1), access_vm_reg, reset_unknown, MAIR_EL1 },
	{ SYS_DESC(SYS_PIRE0_EL1), NULL, reset_unknown, PIRE0_EL1 },
	{ SYS_DESC(SYS_PIR_EL1), NULL, reset_unknown, PIR_EL1 },
	{ SYS_DESC(SYS_AMAIR_EL1), access_vm_reg, reset_amair_el1, AMAIR_EL1 },

	{ SYS_DESC(SYS_LORSA_EL1), trap_loregion },
	{ SYS_DESC(SYS_LOREA_EL1), trap_loregion },
	{ SYS_DESC(SYS_LORN_EL1), trap_loregion },
	{ SYS_DESC(SYS_LORC_EL1), trap_loregion },
	{ SYS_DESC(SYS_LORID_EL1), trap_loregion },

	{ SYS_DESC(SYS_VBAR_EL1), access_rw, reset_val, VBAR_EL1, 0 },
	{ SYS_DESC(SYS_DISR_EL1), NULL, reset_val, DISR_EL1, 0 },

	{ SYS_DESC(SYS_ICC_IAR0_EL1), write_to_read_only },
	{ SYS_DESC(SYS_ICC_EOIR0_EL1), read_from_write_only },
	{ SYS_DESC(SYS_ICC_HPPIR0_EL1), write_to_read_only },
	{ SYS_DESC(SYS_ICC_DIR_EL1), read_from_write_only },
	{ SYS_DESC(SYS_ICC_RPR_EL1), write_to_read_only },
	{ SYS_DESC(SYS_ICC_SGI1R_EL1), access_gic_sgi },
	{ SYS_DESC(SYS_ICC_ASGI1R_EL1), access_gic_sgi },
	{ SYS_DESC(SYS_ICC_SGI0R_EL1), access_gic_sgi },
	{ SYS_DESC(SYS_ICC_IAR1_EL1), write_to_read_only },
	{ SYS_DESC(SYS_ICC_EOIR1_EL1), read_from_write_only },
	{ SYS_DESC(SYS_ICC_HPPIR1_EL1), write_to_read_only },
	{ SYS_DESC(SYS_ICC_SRE_EL1), access_gic_sre },

	{ SYS_DESC(SYS_CONTEXTIDR_EL1), access_vm_reg, reset_val, CONTEXTIDR_EL1, 0 },
	{ SYS_DESC(SYS_TPIDR_EL1), NULL, reset_unknown, TPIDR_EL1 },

	{ SYS_DESC(SYS_ACCDATA_EL1), undef_access },

	{ SYS_DESC(SYS_SCXTNUM_EL1), undef_access },

	{ SYS_DESC(SYS_CNTKCTL_EL1), NULL, reset_val, CNTKCTL_EL1, 0},

	{ SYS_DESC(SYS_CCSIDR_EL1), access_ccsidr },
	{ SYS_DESC(SYS_CLIDR_EL1), access_clidr, reset_clidr, CLIDR_EL1,
	  .set_user = set_clidr },
	{ SYS_DESC(SYS_CCSIDR2_EL1), undef_access },
	{ SYS_DESC(SYS_SMIDR_EL1), undef_access },
	{ SYS_DESC(SYS_CSSELR_EL1), access_csselr, reset_unknown, CSSELR_EL1 },
	{ SYS_DESC(SYS_CTR_EL0), access_ctr },
	{ SYS_DESC(SYS_SVCR), undef_access },

	{ PMU_SYS_REG(PMCR_EL0), .access = access_pmcr, .reset = reset_pmcr,
	  .reg = PMCR_EL0, .get_user = get_pmcr, .set_user = set_pmcr },
	{ PMU_SYS_REG(PMCNTENSET_EL0),
	  .access = access_pmcnten, .reg = PMCNTENSET_EL0,
	  .get_user = get_pmreg, .set_user = set_pmreg },
	{ PMU_SYS_REG(PMCNTENCLR_EL0),
	  .access = access_pmcnten, .reg = PMCNTENSET_EL0,
	  .get_user = get_pmreg, .set_user = set_pmreg },
	{ PMU_SYS_REG(PMOVSCLR_EL0),
	  .access = access_pmovs, .reg = PMOVSSET_EL0,
	  .get_user = get_pmreg, .set_user = set_pmreg },
	/*
	 * PM_SWINC_EL0 is exposed to userspace as RAZ/WI, as it was
	 * previously (and pointlessly) advertised in the past...
	 */
	{ PMU_SYS_REG(PMSWINC_EL0),
	  .get_user = get_raz_reg, .set_user = set_wi_reg,
	  .access = access_pmswinc, .reset = NULL },
	{ PMU_SYS_REG(PMSELR_EL0),
	  .access = access_pmselr, .reset = reset_pmselr, .reg = PMSELR_EL0 },
	{ PMU_SYS_REG(PMCEID0_EL0),
	  .access = access_pmceid, .reset = NULL },
	{ PMU_SYS_REG(PMCEID1_EL0),
	  .access = access_pmceid, .reset = NULL },
	{ PMU_SYS_REG(PMCCNTR_EL0),
	  .access = access_pmu_evcntr, .reset = reset_unknown,
	  .reg = PMCCNTR_EL0, .get_user = get_pmu_evcntr},
	{ PMU_SYS_REG(PMXEVTYPER_EL0),
	  .access = access_pmu_evtyper, .reset = NULL },
	{ PMU_SYS_REG(PMXEVCNTR_EL0),
	  .access = access_pmu_evcntr, .reset = NULL },
	/*
	 * PMUSERENR_EL0 resets as unknown in 64bit mode while it resets as zero
	 * in 32bit mode. Here we choose to reset it as zero for consistency.
	 */
	{ PMU_SYS_REG(PMUSERENR_EL0), .access = access_pmuserenr,
	  .reset = reset_val, .reg = PMUSERENR_EL0, .val = 0 },
	{ PMU_SYS_REG(PMOVSSET_EL0),
	  .access = access_pmovs, .reg = PMOVSSET_EL0,
	  .get_user = get_pmreg, .set_user = set_pmreg },

	{ SYS_DESC(SYS_TPIDR_EL0), NULL, reset_unknown, TPIDR_EL0 },
	{ SYS_DESC(SYS_TPIDRRO_EL0), NULL, reset_unknown, TPIDRRO_EL0 },
	{ SYS_DESC(SYS_TPIDR2_EL0), undef_access },

	{ SYS_DESC(SYS_SCXTNUM_EL0), undef_access },

	{ SYS_DESC(SYS_AMCR_EL0), undef_access },
	{ SYS_DESC(SYS_AMCFGR_EL0), undef_access },
	{ SYS_DESC(SYS_AMCGCR_EL0), undef_access },
	{ SYS_DESC(SYS_AMUSERENR_EL0), undef_access },
	{ SYS_DESC(SYS_AMCNTENCLR0_EL0), undef_access },
	{ SYS_DESC(SYS_AMCNTENSET0_EL0), undef_access },
	{ SYS_DESC(SYS_AMCNTENCLR1_EL0), undef_access },
	{ SYS_DESC(SYS_AMCNTENSET1_EL0), undef_access },
	AMU_AMEVCNTR0_EL0(0),
	AMU_AMEVCNTR0_EL0(1),
	AMU_AMEVCNTR0_EL0(2),
	AMU_AMEVCNTR0_EL0(3),
	AMU_AMEVCNTR0_EL0(4),
	AMU_AMEVCNTR0_EL0(5),
	AMU_AMEVCNTR0_EL0(6),
	AMU_AMEVCNTR0_EL0(7),
	AMU_AMEVCNTR0_EL0(8),
	AMU_AMEVCNTR0_EL0(9),
	AMU_AMEVCNTR0_EL0(10),
	AMU_AMEVCNTR0_EL0(11),
	AMU_AMEVCNTR0_EL0(12),
	AMU_AMEVCNTR0_EL0(13),
	AMU_AMEVCNTR0_EL0(14),
	AMU_AMEVCNTR0_EL0(15),
	AMU_AMEVTYPER0_EL0(0),
	AMU_AMEVTYPER0_EL0(1),
	AMU_AMEVTYPER0_EL0(2),
	AMU_AMEVTYPER0_EL0(3),
	AMU_AMEVTYPER0_EL0(4),
	AMU_AMEVTYPER0_EL0(5),
	AMU_AMEVTYPER0_EL0(6),
	AMU_AMEVTYPER0_EL0(7),
	AMU_AMEVTYPER0_EL0(8),
	AMU_AMEVTYPER0_EL0(9),
	AMU_AMEVTYPER0_EL0(10),
	AMU_AMEVTYPER0_EL0(11),
	AMU_AMEVTYPER0_EL0(12),
	AMU_AMEVTYPER0_EL0(13),
	AMU_AMEVTYPER0_EL0(14),
	AMU_AMEVTYPER0_EL0(15),
	AMU_AMEVCNTR1_EL0(0),
	AMU_AMEVCNTR1_EL0(1),
	AMU_AMEVCNTR1_EL0(2),
	AMU_AMEVCNTR1_EL0(3),
	AMU_AMEVCNTR1_EL0(4),
	AMU_AMEVCNTR1_EL0(5),
	AMU_AMEVCNTR1_EL0(6),
	AMU_AMEVCNTR1_EL0(7),
	AMU_AMEVCNTR1_EL0(8),
	AMU_AMEVCNTR1_EL0(9),
	AMU_AMEVCNTR1_EL0(10),
	AMU_AMEVCNTR1_EL0(11),
	AMU_AMEVCNTR1_EL0(12),
	AMU_AMEVCNTR1_EL0(13),
	AMU_AMEVCNTR1_EL0(14),
	AMU_AMEVCNTR1_EL0(15),
	AMU_AMEVTYPER1_EL0(0),
	AMU_AMEVTYPER1_EL0(1),
	AMU_AMEVTYPER1_EL0(2),
	AMU_AMEVTYPER1_EL0(3),
	AMU_AMEVTYPER1_EL0(4),
	AMU_AMEVTYPER1_EL0(5),
	AMU_AMEVTYPER1_EL0(6),
	AMU_AMEVTYPER1_EL0(7),
	AMU_AMEVTYPER1_EL0(8),
	AMU_AMEVTYPER1_EL0(9),
	AMU_AMEVTYPER1_EL0(10),
	AMU_AMEVTYPER1_EL0(11),
	AMU_AMEVTYPER1_EL0(12),
	AMU_AMEVTYPER1_EL0(13),
	AMU_AMEVTYPER1_EL0(14),
	AMU_AMEVTYPER1_EL0(15),

	{ SYS_DESC(SYS_CNTPCT_EL0), access_arch_timer },
	{ SYS_DESC(SYS_CNTPCTSS_EL0), access_arch_timer },
	{ SYS_DESC(SYS_CNTP_TVAL_EL0), access_arch_timer },
	{ SYS_DESC(SYS_CNTP_CTL_EL0), access_arch_timer },
	{ SYS_DESC(SYS_CNTP_CVAL_EL0), access_arch_timer },

	/* PMEVCNTRn_EL0 */
	PMU_PMEVCNTR_EL0(0),
	PMU_PMEVCNTR_EL0(1),
	PMU_PMEVCNTR_EL0(2),
	PMU_PMEVCNTR_EL0(3),
	PMU_PMEVCNTR_EL0(4),
	PMU_PMEVCNTR_EL0(5),
	PMU_PMEVCNTR_EL0(6),
	PMU_PMEVCNTR_EL0(7),
	PMU_PMEVCNTR_EL0(8),
	PMU_PMEVCNTR_EL0(9),
	PMU_PMEVCNTR_EL0(10),
	PMU_PMEVCNTR_EL0(11),
	PMU_PMEVCNTR_EL0(12),
	PMU_PMEVCNTR_EL0(13),
	PMU_PMEVCNTR_EL0(14),
	PMU_PMEVCNTR_EL0(15),
	PMU_PMEVCNTR_EL0(16),
	PMU_PMEVCNTR_EL0(17),
	PMU_PMEVCNTR_EL0(18),
	PMU_PMEVCNTR_EL0(19),
	PMU_PMEVCNTR_EL0(20),
	PMU_PMEVCNTR_EL0(21),
	PMU_PMEVCNTR_EL0(22),
	PMU_PMEVCNTR_EL0(23),
	PMU_PMEVCNTR_EL0(24),
	PMU_PMEVCNTR_EL0(25),
	PMU_PMEVCNTR_EL0(26),
	PMU_PMEVCNTR_EL0(27),
	PMU_PMEVCNTR_EL0(28),
	PMU_PMEVCNTR_EL0(29),
	PMU_PMEVCNTR_EL0(30),
	/* PMEVTYPERn_EL0 */
	PMU_PMEVTYPER_EL0(0),
	PMU_PMEVTYPER_EL0(1),
	PMU_PMEVTYPER_EL0(2),
	PMU_PMEVTYPER_EL0(3),
	PMU_PMEVTYPER_EL0(4),
	PMU_PMEVTYPER_EL0(5),
	PMU_PMEVTYPER_EL0(6),
	PMU_PMEVTYPER_EL0(7),
	PMU_PMEVTYPER_EL0(8),
	PMU_PMEVTYPER_EL0(9),
	PMU_PMEVTYPER_EL0(10),
	PMU_PMEVTYPER_EL0(11),
	PMU_PMEVTYPER_EL0(12),
	PMU_PMEVTYPER_EL0(13),
	PMU_PMEVTYPER_EL0(14),
	PMU_PMEVTYPER_EL0(15),
	PMU_PMEVTYPER_EL0(16),
	PMU_PMEVTYPER_EL0(17),
	PMU_PMEVTYPER_EL0(18),
	PMU_PMEVTYPER_EL0(19),
	PMU_PMEVTYPER_EL0(20),
	PMU_PMEVTYPER_EL0(21),
	PMU_PMEVTYPER_EL0(22),
	PMU_PMEVTYPER_EL0(23),
	PMU_PMEVTYPER_EL0(24),
	PMU_PMEVTYPER_EL0(25),
	PMU_PMEVTYPER_EL0(26),
	PMU_PMEVTYPER_EL0(27),
	PMU_PMEVTYPER_EL0(28),
	PMU_PMEVTYPER_EL0(29),
	PMU_PMEVTYPER_EL0(30),
	/*
	 * PMCCFILTR_EL0 resets as unknown in 64bit mode while it resets as zero
	 * in 32bit mode. Here we choose to reset it as zero for consistency.
	 */
	{ PMU_SYS_REG(PMCCFILTR_EL0), .access = access_pmu_evtyper,
	  .reset = reset_val, .reg = PMCCFILTR_EL0, .val = 0 },

	EL2_REG_VNCR(VPIDR_EL2, reset_unknown, 0),
	EL2_REG_VNCR(VMPIDR_EL2, reset_unknown, 0),
	EL2_REG(SCTLR_EL2, access_rw, reset_val, SCTLR_EL2_RES1),
	EL2_REG(ACTLR_EL2, access_rw, reset_val, 0),
	EL2_REG_VNCR(HCR_EL2, reset_val, 0),
	EL2_REG(MDCR_EL2, access_rw, reset_val, 0),
	EL2_REG(CPTR_EL2, access_rw, reset_val, CPTR_NVHE_EL2_RES1),
	EL2_REG_VNCR(HSTR_EL2, reset_val, 0),
	EL2_REG_VNCR(HFGRTR_EL2, reset_val, 0),
	EL2_REG_VNCR(HFGWTR_EL2, reset_val, 0),
	EL2_REG_VNCR(HFGITR_EL2, reset_val, 0),
	EL2_REG_VNCR(HACR_EL2, reset_val, 0),

	EL2_REG_VNCR(HCRX_EL2, reset_val, 0),

	EL2_REG(TTBR0_EL2, access_rw, reset_val, 0),
	EL2_REG(TTBR1_EL2, access_rw, reset_val, 0),
	EL2_REG(TCR_EL2, access_rw, reset_val, TCR_EL2_RES1),
	EL2_REG_VNCR(VTTBR_EL2, reset_val, 0),
	EL2_REG_VNCR(VTCR_EL2, reset_val, 0),

	{ SYS_DESC(SYS_DACR32_EL2), trap_undef, reset_unknown, DACR32_EL2 },
	EL2_REG_VNCR(HDFGRTR_EL2, reset_val, 0),
	EL2_REG_VNCR(HDFGWTR_EL2, reset_val, 0),
	EL2_REG_VNCR(HAFGRTR_EL2, reset_val, 0),
	EL2_REG_REDIR(SPSR_EL2, reset_val, 0),
	EL2_REG_REDIR(ELR_EL2, reset_val, 0),
	{ SYS_DESC(SYS_SP_EL1), access_sp_el1},

	/* AArch32 SPSR_* are RES0 if trapped from a NV guest */
	{ SYS_DESC(SYS_SPSR_irq), .access = trap_raz_wi,
	  .visibility = hidden_user_visibility },
	{ SYS_DESC(SYS_SPSR_abt), .access = trap_raz_wi,
	  .visibility = hidden_user_visibility },
	{ SYS_DESC(SYS_SPSR_und), .access = trap_raz_wi,
	  .visibility = hidden_user_visibility },
	{ SYS_DESC(SYS_SPSR_fiq), .access = trap_raz_wi,
	  .visibility = hidden_user_visibility },

	{ SYS_DESC(SYS_IFSR32_EL2), trap_undef, reset_unknown, IFSR32_EL2 },
	EL2_REG(AFSR0_EL2, access_rw, reset_val, 0),
	EL2_REG(AFSR1_EL2, access_rw, reset_val, 0),
	EL2_REG_REDIR(ESR_EL2, reset_val, 0),
	{ SYS_DESC(SYS_FPEXC32_EL2), trap_undef, reset_val, FPEXC32_EL2, 0x700 },

	EL2_REG_REDIR(FAR_EL2, reset_val, 0),
	EL2_REG(HPFAR_EL2, access_rw, reset_val, 0),

	EL2_REG(MAIR_EL2, access_rw, reset_val, 0),
	EL2_REG(AMAIR_EL2, access_rw, reset_val, 0),

	EL2_REG(VBAR_EL2, access_rw, reset_val, 0),
	EL2_REG(RVBAR_EL2, access_rw, reset_val, 0),
	{ SYS_DESC(SYS_RMR_EL2), trap_undef },

	EL2_REG(CONTEXTIDR_EL2, access_rw, reset_val, 0),
	EL2_REG(TPIDR_EL2, access_rw, reset_val, 0),

	EL2_REG_VNCR(CNTVOFF_EL2, reset_val, 0),
	EL2_REG(CNTHCTL_EL2, access_rw, reset_val, 0),

	EL12_REG(CNTKCTL, access_rw, reset_val, 0),

	EL2_REG(SP_EL2, NULL, reset_unknown, 0),
};

static const struct sys_reg_desc *first_idreg;

static bool trap_dbgdidr(struct kvm_vcpu *vcpu,
			struct sys_reg_params *p,
			const struct sys_reg_desc *r)
{
	if (p->is_write) {
		return ignore_write(vcpu, p);
	} else {
		u64 dfr = IDREG(vcpu->kvm, SYS_ID_AA64DFR0_EL1);
		u64 pfr = IDREG(vcpu->kvm, SYS_ID_AA64PFR0_EL1);
		u32 el3 = !!SYS_FIELD_GET(ID_AA64PFR0_EL1, EL3, pfr);

		p->regval = ((SYS_FIELD_GET(ID_AA64DFR0_EL1, WRPs, dfr) << 28) |
			     (SYS_FIELD_GET(ID_AA64DFR0_EL1, BRPs, dfr) << 24) |
			     (SYS_FIELD_GET(ID_AA64DFR0_EL1, CTX_CMPs, dfr) << 20) |
			     (SYS_FIELD_GET(ID_AA64DFR0_EL1, DebugVer, dfr) << 16) |
			     (1 << 15) | (el3 << 14) | (el3 << 12));
		return true;
	}
}

/*
 * AArch32 debug register mappings
 *
 * AArch32 DBGBVRn is mapped to DBGBVRn_EL1[31:0]
 * AArch32 DBGBXVRn is mapped to DBGBVRn_EL1[63:32]
 *
 * None of the other registers share their location, so treat them as
 * if they were 64bit.
 */
#define DBG_BCR_BVR_WCR_WVR(n)						      \
	/* DBGBVRn */							      \
	{ AA32(LO), Op1( 0), CRn( 0), CRm((n)), Op2( 4), trap_bvr, NULL, n }, \
	/* DBGBCRn */							      \
	{ Op1( 0), CRn( 0), CRm((n)), Op2( 5), trap_bcr, NULL, n },	      \
	/* DBGWVRn */							      \
	{ Op1( 0), CRn( 0), CRm((n)), Op2( 6), trap_wvr, NULL, n },	      \
	/* DBGWCRn */							      \
	{ Op1( 0), CRn( 0), CRm((n)), Op2( 7), trap_wcr, NULL, n }

#define DBGBXVR(n)							      \
	{ AA32(HI), Op1( 0), CRn( 1), CRm((n)), Op2( 1), trap_bvr, NULL, n }

/*
 * Trapped cp14 registers. We generally ignore most of the external
 * debug, on the principle that they don't really make sense to a
 * guest. Revisit this one day, would this principle change.
 */
static const struct sys_reg_desc cp14_regs[] = {
	/* DBGDIDR */
	{ Op1( 0), CRn( 0), CRm( 0), Op2( 0), trap_dbgdidr },
	/* DBGDTRRXext */
	{ Op1( 0), CRn( 0), CRm( 0), Op2( 2), trap_raz_wi },

	DBG_BCR_BVR_WCR_WVR(0),
	/* DBGDSCRint */
	{ Op1( 0), CRn( 0), CRm( 1), Op2( 0), trap_raz_wi },
	DBG_BCR_BVR_WCR_WVR(1),
	/* DBGDCCINT */
	{ Op1( 0), CRn( 0), CRm( 2), Op2( 0), trap_debug_regs, NULL, MDCCINT_EL1 },
	/* DBGDSCRext */
	{ Op1( 0), CRn( 0), CRm( 2), Op2( 2), trap_debug_regs, NULL, MDSCR_EL1 },
	DBG_BCR_BVR_WCR_WVR(2),
	/* DBGDTR[RT]Xint */
	{ Op1( 0), CRn( 0), CRm( 3), Op2( 0), trap_raz_wi },
	/* DBGDTR[RT]Xext */
	{ Op1( 0), CRn( 0), CRm( 3), Op2( 2), trap_raz_wi },
	DBG_BCR_BVR_WCR_WVR(3),
	DBG_BCR_BVR_WCR_WVR(4),
	DBG_BCR_BVR_WCR_WVR(5),
	/* DBGWFAR */
	{ Op1( 0), CRn( 0), CRm( 6), Op2( 0), trap_raz_wi },
	/* DBGOSECCR */
	{ Op1( 0), CRn( 0), CRm( 6), Op2( 2), trap_raz_wi },
	DBG_BCR_BVR_WCR_WVR(6),
	/* DBGVCR */
	{ Op1( 0), CRn( 0), CRm( 7), Op2( 0), trap_debug_regs, NULL, DBGVCR32_EL2 },
	DBG_BCR_BVR_WCR_WVR(7),
	DBG_BCR_BVR_WCR_WVR(8),
	DBG_BCR_BVR_WCR_WVR(9),
	DBG_BCR_BVR_WCR_WVR(10),
	DBG_BCR_BVR_WCR_WVR(11),
	DBG_BCR_BVR_WCR_WVR(12),
	DBG_BCR_BVR_WCR_WVR(13),
	DBG_BCR_BVR_WCR_WVR(14),
	DBG_BCR_BVR_WCR_WVR(15),

	/* DBGDRAR (32bit) */
	{ Op1( 0), CRn( 1), CRm( 0), Op2( 0), trap_raz_wi },

	DBGBXVR(0),
	/* DBGOSLAR */
	{ Op1( 0), CRn( 1), CRm( 0), Op2( 4), trap_oslar_el1 },
	DBGBXVR(1),
	/* DBGOSLSR */
	{ Op1( 0), CRn( 1), CRm( 1), Op2( 4), trap_oslsr_el1, NULL, OSLSR_EL1 },
	DBGBXVR(2),
	DBGBXVR(3),
	/* DBGOSDLR */
	{ Op1( 0), CRn( 1), CRm( 3), Op2( 4), trap_raz_wi },
	DBGBXVR(4),
	/* DBGPRCR */
	{ Op1( 0), CRn( 1), CRm( 4), Op2( 4), trap_raz_wi },
	DBGBXVR(5),
	DBGBXVR(6),
	DBGBXVR(7),
	DBGBXVR(8),
	DBGBXVR(9),
	DBGBXVR(10),
	DBGBXVR(11),
	DBGBXVR(12),
	DBGBXVR(13),
	DBGBXVR(14),
	DBGBXVR(15),

	/* DBGDSAR (32bit) */
	{ Op1( 0), CRn( 2), CRm( 0), Op2( 0), trap_raz_wi },

	/* DBGDEVID2 */
	{ Op1( 0), CRn( 7), CRm( 0), Op2( 7), trap_raz_wi },
	/* DBGDEVID1 */
	{ Op1( 0), CRn( 7), CRm( 1), Op2( 7), trap_raz_wi },
	/* DBGDEVID */
	{ Op1( 0), CRn( 7), CRm( 2), Op2( 7), trap_raz_wi },
	/* DBGCLAIMSET */
	{ Op1( 0), CRn( 7), CRm( 8), Op2( 6), trap_raz_wi },
	/* DBGCLAIMCLR */
	{ Op1( 0), CRn( 7), CRm( 9), Op2( 6), trap_raz_wi },
	/* DBGAUTHSTATUS */
	{ Op1( 0), CRn( 7), CRm(14), Op2( 6), trap_dbgauthstatus_el1 },
};

/* Trapped cp14 64bit registers */
static const struct sys_reg_desc cp14_64_regs[] = {
	/* DBGDRAR (64bit) */
	{ Op1( 0), CRm( 1), .access = trap_raz_wi },

	/* DBGDSAR (64bit) */
	{ Op1( 0), CRm( 2), .access = trap_raz_wi },
};

#define CP15_PMU_SYS_REG(_map, _Op1, _CRn, _CRm, _Op2)			\
	AA32(_map),							\
	Op1(_Op1), CRn(_CRn), CRm(_CRm), Op2(_Op2),			\
	.visibility = pmu_visibility

/* Macro to expand the PMEVCNTRn register */
#define PMU_PMEVCNTR(n)							\
	{ CP15_PMU_SYS_REG(DIRECT, 0, 0b1110,				\
	  (0b1000 | (((n) >> 3) & 0x3)), ((n) & 0x7)),			\
	  .access = access_pmu_evcntr }

/* Macro to expand the PMEVTYPERn register */
#define PMU_PMEVTYPER(n)						\
	{ CP15_PMU_SYS_REG(DIRECT, 0, 0b1110,				\
	  (0b1100 | (((n) >> 3) & 0x3)), ((n) & 0x7)),			\
	  .access = access_pmu_evtyper }
/*
 * Trapped cp15 registers. TTBR0/TTBR1 get a double encoding,
 * depending on the way they are accessed (as a 32bit or a 64bit
 * register).
 */
static const struct sys_reg_desc cp15_regs[] = {
	{ Op1( 0), CRn( 0), CRm( 0), Op2( 1), access_ctr },
	{ Op1( 0), CRn( 1), CRm( 0), Op2( 0), access_vm_reg, NULL, SCTLR_EL1 },
	/* ACTLR */
	{ AA32(LO), Op1( 0), CRn( 1), CRm( 0), Op2( 1), access_actlr, NULL, ACTLR_EL1 },
	/* ACTLR2 */
	{ AA32(HI), Op1( 0), CRn( 1), CRm( 0), Op2( 3), access_actlr, NULL, ACTLR_EL1 },
	{ Op1( 0), CRn( 2), CRm( 0), Op2( 0), access_vm_reg, NULL, TTBR0_EL1 },
	{ Op1( 0), CRn( 2), CRm( 0), Op2( 1), access_vm_reg, NULL, TTBR1_EL1 },
	/* TTBCR */
	{ AA32(LO), Op1( 0), CRn( 2), CRm( 0), Op2( 2), access_vm_reg, NULL, TCR_EL1 },
	/* TTBCR2 */
	{ AA32(HI), Op1( 0), CRn( 2), CRm( 0), Op2( 3), access_vm_reg, NULL, TCR_EL1 },
	{ Op1( 0), CRn( 3), CRm( 0), Op2( 0), access_vm_reg, NULL, DACR32_EL2 },
	/* DFSR */
	{ Op1( 0), CRn( 5), CRm( 0), Op2( 0), access_vm_reg, NULL, ESR_EL1 },
	{ Op1( 0), CRn( 5), CRm( 0), Op2( 1), access_vm_reg, NULL, IFSR32_EL2 },
	/* ADFSR */
	{ Op1( 0), CRn( 5), CRm( 1), Op2( 0), access_vm_reg, NULL, AFSR0_EL1 },
	/* AIFSR */
	{ Op1( 0), CRn( 5), CRm( 1), Op2( 1), access_vm_reg, NULL, AFSR1_EL1 },
	/* DFAR */
	{ AA32(LO), Op1( 0), CRn( 6), CRm( 0), Op2( 0), access_vm_reg, NULL, FAR_EL1 },
	/* IFAR */
	{ AA32(HI), Op1( 0), CRn( 6), CRm( 0), Op2( 2), access_vm_reg, NULL, FAR_EL1 },

	/*
	 * DC{C,I,CI}SW operations:
	 */
	{ Op1( 0), CRn( 7), CRm( 6), Op2( 2), access_dcsw },
	{ Op1( 0), CRn( 7), CRm(10), Op2( 2), access_dcsw },
	{ Op1( 0), CRn( 7), CRm(14), Op2( 2), access_dcsw },

	/* PMU */
	{ CP15_PMU_SYS_REG(DIRECT, 0, 9, 12, 0), .access = access_pmcr },
	{ CP15_PMU_SYS_REG(DIRECT, 0, 9, 12, 1), .access = access_pmcnten },
	{ CP15_PMU_SYS_REG(DIRECT, 0, 9, 12, 2), .access = access_pmcnten },
	{ CP15_PMU_SYS_REG(DIRECT, 0, 9, 12, 3), .access = access_pmovs },
	{ CP15_PMU_SYS_REG(DIRECT, 0, 9, 12, 4), .access = access_pmswinc },
	{ CP15_PMU_SYS_REG(DIRECT, 0, 9, 12, 5), .access = access_pmselr },
	{ CP15_PMU_SYS_REG(LO,     0, 9, 12, 6), .access = access_pmceid },
	{ CP15_PMU_SYS_REG(LO,     0, 9, 12, 7), .access = access_pmceid },
	{ CP15_PMU_SYS_REG(DIRECT, 0, 9, 13, 0), .access = access_pmu_evcntr },
	{ CP15_PMU_SYS_REG(DIRECT, 0, 9, 13, 1), .access = access_pmu_evtyper },
	{ CP15_PMU_SYS_REG(DIRECT, 0, 9, 13, 2), .access = access_pmu_evcntr },
	{ CP15_PMU_SYS_REG(DIRECT, 0, 9, 14, 0), .access = access_pmuserenr },
	{ CP15_PMU_SYS_REG(DIRECT, 0, 9, 14, 1), .access = access_pminten },
	{ CP15_PMU_SYS_REG(DIRECT, 0, 9, 14, 2), .access = access_pminten },
	{ CP15_PMU_SYS_REG(DIRECT, 0, 9, 14, 3), .access = access_pmovs },
	{ CP15_PMU_SYS_REG(HI,     0, 9, 14, 4), .access = access_pmceid },
	{ CP15_PMU_SYS_REG(HI,     0, 9, 14, 5), .access = access_pmceid },
	/* PMMIR */
	{ CP15_PMU_SYS_REG(DIRECT, 0, 9, 14, 6), .access = trap_raz_wi },

	/* PRRR/MAIR0 */
	{ AA32(LO), Op1( 0), CRn(10), CRm( 2), Op2( 0), access_vm_reg, NULL, MAIR_EL1 },
	/* NMRR/MAIR1 */
	{ AA32(HI), Op1( 0), CRn(10), CRm( 2), Op2( 1), access_vm_reg, NULL, MAIR_EL1 },
	/* AMAIR0 */
	{ AA32(LO), Op1( 0), CRn(10), CRm( 3), Op2( 0), access_vm_reg, NULL, AMAIR_EL1 },
	/* AMAIR1 */
	{ AA32(HI), Op1( 0), CRn(10), CRm( 3), Op2( 1), access_vm_reg, NULL, AMAIR_EL1 },

	/* ICC_SRE */
	{ Op1( 0), CRn(12), CRm(12), Op2( 5), access_gic_sre },

	{ Op1( 0), CRn(13), CRm( 0), Op2( 1), access_vm_reg, NULL, CONTEXTIDR_EL1 },

	/* Arch Tmers */
	{ SYS_DESC(SYS_AARCH32_CNTP_TVAL), access_arch_timer },
	{ SYS_DESC(SYS_AARCH32_CNTP_CTL), access_arch_timer },

	/* PMEVCNTRn */
	PMU_PMEVCNTR(0),
	PMU_PMEVCNTR(1),
	PMU_PMEVCNTR(2),
	PMU_PMEVCNTR(3),
	PMU_PMEVCNTR(4),
	PMU_PMEVCNTR(5),
	PMU_PMEVCNTR(6),
	PMU_PMEVCNTR(7),
	PMU_PMEVCNTR(8),
	PMU_PMEVCNTR(9),
	PMU_PMEVCNTR(10),
	PMU_PMEVCNTR(11),
	PMU_PMEVCNTR(12),
	PMU_PMEVCNTR(13),
	PMU_PMEVCNTR(14),
	PMU_PMEVCNTR(15),
	PMU_PMEVCNTR(16),
	PMU_PMEVCNTR(17),
	PMU_PMEVCNTR(18),
	PMU_PMEVCNTR(19),
	PMU_PMEVCNTR(20),
	PMU_PMEVCNTR(21),
	PMU_PMEVCNTR(22),
	PMU_PMEVCNTR(23),
	PMU_PMEVCNTR(24),
	PMU_PMEVCNTR(25),
	PMU_PMEVCNTR(26),
	PMU_PMEVCNTR(27),
	PMU_PMEVCNTR(28),
	PMU_PMEVCNTR(29),
	PMU_PMEVCNTR(30),
	/* PMEVTYPERn */
	PMU_PMEVTYPER(0),
	PMU_PMEVTYPER(1),
	PMU_PMEVTYPER(2),
	PMU_PMEVTYPER(3),
	PMU_PMEVTYPER(4),
	PMU_PMEVTYPER(5),
	PMU_PMEVTYPER(6),
	PMU_PMEVTYPER(7),
	PMU_PMEVTYPER(8),
	PMU_PMEVTYPER(9),
	PMU_PMEVTYPER(10),
	PMU_PMEVTYPER(11),
	PMU_PMEVTYPER(12),
	PMU_PMEVTYPER(13),
	PMU_PMEVTYPER(14),
	PMU_PMEVTYPER(15),
	PMU_PMEVTYPER(16),
	PMU_PMEVTYPER(17),
	PMU_PMEVTYPER(18),
	PMU_PMEVTYPER(19),
	PMU_PMEVTYPER(20),
	PMU_PMEVTYPER(21),
	PMU_PMEVTYPER(22),
	PMU_PMEVTYPER(23),
	PMU_PMEVTYPER(24),
	PMU_PMEVTYPER(25),
	PMU_PMEVTYPER(26),
	PMU_PMEVTYPER(27),
	PMU_PMEVTYPER(28),
	PMU_PMEVTYPER(29),
	PMU_PMEVTYPER(30),
	/* PMCCFILTR */
	{ CP15_PMU_SYS_REG(DIRECT, 0, 14, 15, 7), .access = access_pmu_evtyper },

	{ Op1(1), CRn( 0), CRm( 0), Op2(0), access_ccsidr },
	{ Op1(1), CRn( 0), CRm( 0), Op2(1), access_clidr },

	/* CCSIDR2 */
	{ Op1(1), CRn( 0), CRm( 0),  Op2(2), undef_access },

	{ Op1(2), CRn( 0), CRm( 0), Op2(0), access_csselr, NULL, CSSELR_EL1 },
};

static const struct sys_reg_desc cp15_64_regs[] = {
	{ Op1( 0), CRn( 0), CRm( 2), Op2( 0), access_vm_reg, NULL, TTBR0_EL1 },
	{ CP15_PMU_SYS_REG(DIRECT, 0, 0, 9, 0), .access = access_pmu_evcntr },
	{ Op1( 0), CRn( 0), CRm(12), Op2( 0), access_gic_sgi }, /* ICC_SGI1R */
	{ SYS_DESC(SYS_AARCH32_CNTPCT),	      access_arch_timer },
	{ Op1( 1), CRn( 0), CRm( 2), Op2( 0), access_vm_reg, NULL, TTBR1_EL1 },
	{ Op1( 1), CRn( 0), CRm(12), Op2( 0), access_gic_sgi }, /* ICC_ASGI1R */
	{ Op1( 2), CRn( 0), CRm(12), Op2( 0), access_gic_sgi }, /* ICC_SGI0R */
	{ SYS_DESC(SYS_AARCH32_CNTP_CVAL),    access_arch_timer },
	{ SYS_DESC(SYS_AARCH32_CNTPCTSS),     access_arch_timer },
};

static bool check_sysreg_table(const struct sys_reg_desc *table, unsigned int n,
			       bool is_32)
{
	unsigned int i;

	for (i = 0; i < n; i++) {
		if (!is_32 && table[i].reg && !table[i].reset) {
			kvm_err("sys_reg table %pS entry %d lacks reset\n", &table[i], i);
			return false;
		}

		if (i && cmp_sys_reg(&table[i-1], &table[i]) >= 0) {
			kvm_err("sys_reg table %pS entry %d out of order\n", &table[i - 1], i - 1);
			return false;
		}
	}

	return true;
}

int kvm_handle_cp14_load_store(struct kvm_vcpu *vcpu)
{
	kvm_inject_undefined(vcpu);
	return 1;
}

static void perform_access(struct kvm_vcpu *vcpu,
			   struct sys_reg_params *params,
			   const struct sys_reg_desc *r)
{
	trace_kvm_sys_access(*vcpu_pc(vcpu), params, r);

	/* Check for regs disabled by runtime config */
	if (sysreg_hidden(vcpu, r)) {
		kvm_inject_undefined(vcpu);
		return;
	}

	/*
	 * Not having an accessor means that we have configured a trap
	 * that we don't know how to handle. This certainly qualifies
	 * as a gross bug that should be fixed right away.
	 */
	BUG_ON(!r->access);

	/* Skip instruction if instructed so */
	if (likely(r->access(vcpu, params, r)))
		kvm_incr_pc(vcpu);
}

/*
 * emulate_cp --  tries to match a sys_reg access in a handling table, and
 *                call the corresponding trap handler.
 *
 * @params: pointer to the descriptor of the access
 * @table: array of trap descriptors
 * @num: size of the trap descriptor array
 *
 * Return true if the access has been handled, false if not.
 */
static bool emulate_cp(struct kvm_vcpu *vcpu,
		       struct sys_reg_params *params,
		       const struct sys_reg_desc *table,
		       size_t num)
{
	const struct sys_reg_desc *r;

	if (!table)
		return false;	/* Not handled */

	r = find_reg(params, table, num);

	if (r) {
		perform_access(vcpu, params, r);
		return true;
	}

	/* Not handled */
	return false;
}

static void unhandled_cp_access(struct kvm_vcpu *vcpu,
				struct sys_reg_params *params)
{
	u8 esr_ec = kvm_vcpu_trap_get_class(vcpu);
	int cp = -1;

	switch (esr_ec) {
	case ESR_ELx_EC_CP15_32:
	case ESR_ELx_EC_CP15_64:
		cp = 15;
		break;
	case ESR_ELx_EC_CP14_MR:
	case ESR_ELx_EC_CP14_64:
		cp = 14;
		break;
	default:
		WARN_ON(1);
	}

	print_sys_reg_msg(params,
			  "Unsupported guest CP%d access at: %08lx [%08lx]\n",
			  cp, *vcpu_pc(vcpu), *vcpu_cpsr(vcpu));
	kvm_inject_undefined(vcpu);
}

/**
 * kvm_handle_cp_64 -- handles a mrrc/mcrr trap on a guest CP14/CP15 access
 * @vcpu: The VCPU pointer
 * @run:  The kvm_run struct
 */
static int kvm_handle_cp_64(struct kvm_vcpu *vcpu,
			    const struct sys_reg_desc *global,
			    size_t nr_global)
{
	struct sys_reg_params params;
	u64 esr = kvm_vcpu_get_esr(vcpu);
	int Rt = kvm_vcpu_sys_get_rt(vcpu);
	int Rt2 = (esr >> 10) & 0x1f;

	params.CRm = (esr >> 1) & 0xf;
	params.is_write = ((esr & 1) == 0);

	params.Op0 = 0;
	params.Op1 = (esr >> 16) & 0xf;
	params.Op2 = 0;
	params.CRn = 0;

	/*
	 * Make a 64-bit value out of Rt and Rt2. As we use the same trap
	 * backends between AArch32 and AArch64, we get away with it.
	 */
	if (params.is_write) {
		params.regval = vcpu_get_reg(vcpu, Rt) & 0xffffffff;
		params.regval |= vcpu_get_reg(vcpu, Rt2) << 32;
	}

	/*
	 * If the table contains a handler, handle the
	 * potential register operation in the case of a read and return
	 * with success.
	 */
	if (emulate_cp(vcpu, &params, global, nr_global)) {
		/* Split up the value between registers for the read side */
		if (!params.is_write) {
			vcpu_set_reg(vcpu, Rt, lower_32_bits(params.regval));
			vcpu_set_reg(vcpu, Rt2, upper_32_bits(params.regval));
		}

		return 1;
	}

	unhandled_cp_access(vcpu, &params);
	return 1;
}

static bool emulate_sys_reg(struct kvm_vcpu *vcpu, struct sys_reg_params *params);

/*
 * The CP10 ID registers are architecturally mapped to AArch64 feature
 * registers. Abuse that fact so we can rely on the AArch64 handler for accesses
 * from AArch32.
 */
static bool kvm_esr_cp10_id_to_sys64(u64 esr, struct sys_reg_params *params)
{
	u8 reg_id = (esr >> 10) & 0xf;
	bool valid;

	params->is_write = ((esr & 1) == 0);
	params->Op0 = 3;
	params->Op1 = 0;
	params->CRn = 0;
	params->CRm = 3;

	/* CP10 ID registers are read-only */
	valid = !params->is_write;

	switch (reg_id) {
	/* MVFR0 */
	case 0b0111:
		params->Op2 = 0;
		break;
	/* MVFR1 */
	case 0b0110:
		params->Op2 = 1;
		break;
	/* MVFR2 */
	case 0b0101:
		params->Op2 = 2;
		break;
	default:
		valid = false;
	}

	if (valid)
		return true;

	kvm_pr_unimpl("Unhandled cp10 register %s: %u\n",
		      params->is_write ? "write" : "read", reg_id);
	return false;
}

/**
 * kvm_handle_cp10_id() - Handles a VMRS trap on guest access to a 'Media and
 *			  VFP Register' from AArch32.
 * @vcpu: The vCPU pointer
 *
 * MVFR{0-2} are architecturally mapped to the AArch64 MVFR{0-2}_EL1 registers.
 * Work out the correct AArch64 system register encoding and reroute to the
 * AArch64 system register emulation.
 */
int kvm_handle_cp10_id(struct kvm_vcpu *vcpu)
{
	int Rt = kvm_vcpu_sys_get_rt(vcpu);
	u64 esr = kvm_vcpu_get_esr(vcpu);
	struct sys_reg_params params;

	/* UNDEF on any unhandled register access */
	if (!kvm_esr_cp10_id_to_sys64(esr, &params)) {
		kvm_inject_undefined(vcpu);
		return 1;
	}

	if (emulate_sys_reg(vcpu, &params))
		vcpu_set_reg(vcpu, Rt, params.regval);

	return 1;
}

/**
 * kvm_emulate_cp15_id_reg() - Handles an MRC trap on a guest CP15 access where
 *			       CRn=0, which corresponds to the AArch32 feature
 *			       registers.
 * @vcpu: the vCPU pointer
 * @params: the system register access parameters.
 *
 * Our cp15 system register tables do not enumerate the AArch32 feature
 * registers. Conveniently, our AArch64 table does, and the AArch32 system
 * register encoding can be trivially remapped into the AArch64 for the feature
 * registers: Append op0=3, leaving op1, CRn, CRm, and op2 the same.
 *
 * According to DDI0487G.b G7.3.1, paragraph "Behavior of VMSAv8-32 32-bit
 * System registers with (coproc=0b1111, CRn==c0)", read accesses from this
 * range are either UNKNOWN or RES0. Rerouting remains architectural as we
 * treat undefined registers in this range as RAZ.
 */
static int kvm_emulate_cp15_id_reg(struct kvm_vcpu *vcpu,
				   struct sys_reg_params *params)
{
	int Rt = kvm_vcpu_sys_get_rt(vcpu);

	/* Treat impossible writes to RO registers as UNDEFINED */
	if (params->is_write) {
		unhandled_cp_access(vcpu, params);
		return 1;
	}

	params->Op0 = 3;

	/*
	 * All registers where CRm > 3 are known to be UNKNOWN/RAZ from AArch32.
	 * Avoid conflicting with future expansion of AArch64 feature registers
	 * and simply treat them as RAZ here.
	 */
	if (params->CRm > 3)
		params->regval = 0;
	else if (!emulate_sys_reg(vcpu, params))
		return 1;

	vcpu_set_reg(vcpu, Rt, params->regval);
	return 1;
}

/**
 * kvm_handle_cp_32 -- handles a mrc/mcr trap on a guest CP14/CP15 access
 * @vcpu: The VCPU pointer
 * @run:  The kvm_run struct
 */
static int kvm_handle_cp_32(struct kvm_vcpu *vcpu,
			    struct sys_reg_params *params,
			    const struct sys_reg_desc *global,
			    size_t nr_global)
{
	int Rt  = kvm_vcpu_sys_get_rt(vcpu);

	params->regval = vcpu_get_reg(vcpu, Rt);

	if (emulate_cp(vcpu, params, global, nr_global)) {
		if (!params->is_write)
			vcpu_set_reg(vcpu, Rt, params->regval);
		return 1;
	}

	unhandled_cp_access(vcpu, params);
	return 1;
}

int kvm_handle_cp15_64(struct kvm_vcpu *vcpu)
{
	return kvm_handle_cp_64(vcpu, cp15_64_regs, ARRAY_SIZE(cp15_64_regs));
}

int kvm_handle_cp15_32(struct kvm_vcpu *vcpu)
{
	struct sys_reg_params params;

	params = esr_cp1x_32_to_params(kvm_vcpu_get_esr(vcpu));

	/*
	 * Certain AArch32 ID registers are handled by rerouting to the AArch64
	 * system register table. Registers in the ID range where CRm=0 are
	 * excluded from this scheme as they do not trivially map into AArch64
	 * system register encodings.
	 */
	if (params.Op1 == 0 && params.CRn == 0 && params.CRm)
		return kvm_emulate_cp15_id_reg(vcpu, &params);

	return kvm_handle_cp_32(vcpu, &params, cp15_regs, ARRAY_SIZE(cp15_regs));
}

int kvm_handle_cp14_64(struct kvm_vcpu *vcpu)
{
	return kvm_handle_cp_64(vcpu, cp14_64_regs, ARRAY_SIZE(cp14_64_regs));
}

int kvm_handle_cp14_32(struct kvm_vcpu *vcpu)
{
	struct sys_reg_params params;

	params = esr_cp1x_32_to_params(kvm_vcpu_get_esr(vcpu));

	return kvm_handle_cp_32(vcpu, &params, cp14_regs, ARRAY_SIZE(cp14_regs));
}

static bool is_imp_def_sys_reg(struct sys_reg_params *params)
{
	// See ARM DDI 0487E.a, section D12.3.2
	return params->Op0 == 3 && (params->CRn & 0b1011) == 0b1011;
}

/**
 * emulate_sys_reg - Emulate a guest access to an AArch64 system register
 * @vcpu: The VCPU pointer
 * @params: Decoded system register parameters
 *
 * Return: true if the system register access was successful, false otherwise.
 */
static bool emulate_sys_reg(struct kvm_vcpu *vcpu,
			   struct sys_reg_params *params)
{
	const struct sys_reg_desc *r;

	r = find_reg(params, sys_reg_descs, ARRAY_SIZE(sys_reg_descs));

	if (likely(r)) {
		perform_access(vcpu, params, r);
		return true;
	}

	if (is_imp_def_sys_reg(params)) {
		kvm_inject_undefined(vcpu);
	} else {
		print_sys_reg_msg(params,
				  "Unsupported guest sys_reg access at: %lx [%08lx]\n",
				  *vcpu_pc(vcpu), *vcpu_cpsr(vcpu));
		kvm_inject_undefined(vcpu);
	}
	return false;
}

static void kvm_reset_id_regs(struct kvm_vcpu *vcpu)
{
	const struct sys_reg_desc *idreg = first_idreg;
	u32 id = reg_to_encoding(idreg);
	struct kvm *kvm = vcpu->kvm;

	if (test_bit(KVM_ARCH_FLAG_ID_REGS_INITIALIZED, &kvm->arch.flags))
		return;

	lockdep_assert_held(&kvm->arch.config_lock);

	/* Initialize all idregs */
	while (is_id_reg(id)) {
		IDREG(kvm, id) = idreg->reset(vcpu, idreg);

		idreg++;
		id = reg_to_encoding(idreg);
	}

	set_bit(KVM_ARCH_FLAG_ID_REGS_INITIALIZED, &kvm->arch.flags);
}

/**
 * kvm_reset_sys_regs - sets system registers to reset value
 * @vcpu: The VCPU pointer
 *
 * This function finds the right table above and sets the registers on the
 * virtual CPU struct to their architecturally defined reset values.
 */
void kvm_reset_sys_regs(struct kvm_vcpu *vcpu)
{
	unsigned long i;

	kvm_reset_id_regs(vcpu);

	for (i = 0; i < ARRAY_SIZE(sys_reg_descs); i++) {
		const struct sys_reg_desc *r = &sys_reg_descs[i];

		if (is_id_reg(reg_to_encoding(r)))
			continue;

		if (r->reset)
			r->reset(vcpu, r);
	}
}

/**
 * kvm_handle_sys_reg -- handles a mrs/msr trap on a guest sys_reg access
 * @vcpu: The VCPU pointer
 */
int kvm_handle_sys_reg(struct kvm_vcpu *vcpu)
{
	struct sys_reg_params params;
	unsigned long esr = kvm_vcpu_get_esr(vcpu);
	int Rt = kvm_vcpu_sys_get_rt(vcpu);

	trace_kvm_handle_sys_reg(esr);

	if (__check_nv_sr_forward(vcpu))
		return 1;

	params = esr_sys64_to_params(esr);
	params.regval = vcpu_get_reg(vcpu, Rt);

	if (!emulate_sys_reg(vcpu, &params))
		return 1;

	if (!params.is_write)
		vcpu_set_reg(vcpu, Rt, params.regval);
	return 1;
}

/******************************************************************************
 * Userspace API
 *****************************************************************************/

static bool index_to_params(u64 id, struct sys_reg_params *params)
{
	switch (id & KVM_REG_SIZE_MASK) {
	case KVM_REG_SIZE_U64:
		/* Any unused index bits means it's not valid. */
		if (id & ~(KVM_REG_ARCH_MASK | KVM_REG_SIZE_MASK
			      | KVM_REG_ARM_COPROC_MASK
			      | KVM_REG_ARM64_SYSREG_OP0_MASK
			      | KVM_REG_ARM64_SYSREG_OP1_MASK
			      | KVM_REG_ARM64_SYSREG_CRN_MASK
			      | KVM_REG_ARM64_SYSREG_CRM_MASK
			      | KVM_REG_ARM64_SYSREG_OP2_MASK))
			return false;
		params->Op0 = ((id & KVM_REG_ARM64_SYSREG_OP0_MASK)
			       >> KVM_REG_ARM64_SYSREG_OP0_SHIFT);
		params->Op1 = ((id & KVM_REG_ARM64_SYSREG_OP1_MASK)
			       >> KVM_REG_ARM64_SYSREG_OP1_SHIFT);
		params->CRn = ((id & KVM_REG_ARM64_SYSREG_CRN_MASK)
			       >> KVM_REG_ARM64_SYSREG_CRN_SHIFT);
		params->CRm = ((id & KVM_REG_ARM64_SYSREG_CRM_MASK)
			       >> KVM_REG_ARM64_SYSREG_CRM_SHIFT);
		params->Op2 = ((id & KVM_REG_ARM64_SYSREG_OP2_MASK)
			       >> KVM_REG_ARM64_SYSREG_OP2_SHIFT);
		return true;
	default:
		return false;
	}
}

const struct sys_reg_desc *get_reg_by_id(u64 id,
					 const struct sys_reg_desc table[],
					 unsigned int num)
{
	struct sys_reg_params params;

	if (!index_to_params(id, &params))
		return NULL;

	return find_reg(&params, table, num);
}

/* Decode an index value, and find the sys_reg_desc entry. */
static const struct sys_reg_desc *
id_to_sys_reg_desc(struct kvm_vcpu *vcpu, u64 id,
		   const struct sys_reg_desc table[], unsigned int num)

{
	const struct sys_reg_desc *r;

	/* We only do sys_reg for now. */
	if ((id & KVM_REG_ARM_COPROC_MASK) != KVM_REG_ARM64_SYSREG)
		return NULL;

	r = get_reg_by_id(id, table, num);

	/* Not saved in the sys_reg array and not otherwise accessible? */
	if (r && (!(r->reg || r->get_user) || sysreg_hidden(vcpu, r)))
		r = NULL;

	return r;
}

/*
 * These are the invariant sys_reg registers: we let the guest see the
 * host versions of these, so they're part of the guest state.
 *
 * A future CPU may provide a mechanism to present different values to
 * the guest, or a future kvm may trap them.
 */

#define FUNCTION_INVARIANT(reg)						\
	static u64 get_##reg(struct kvm_vcpu *v,			\
			      const struct sys_reg_desc *r)		\
	{								\
		((struct sys_reg_desc *)r)->val = read_sysreg(reg);	\
		return ((struct sys_reg_desc *)r)->val;			\
	}

FUNCTION_INVARIANT(midr_el1)
FUNCTION_INVARIANT(revidr_el1)
FUNCTION_INVARIANT(aidr_el1)

static u64 get_ctr_el0(struct kvm_vcpu *v, const struct sys_reg_desc *r)
{
	((struct sys_reg_desc *)r)->val = read_sanitised_ftr_reg(SYS_CTR_EL0);
	return ((struct sys_reg_desc *)r)->val;
}

/* ->val is filled in by kvm_sys_reg_table_init() */
static struct sys_reg_desc invariant_sys_regs[] __ro_after_init = {
	{ SYS_DESC(SYS_MIDR_EL1), NULL, get_midr_el1 },
	{ SYS_DESC(SYS_REVIDR_EL1), NULL, get_revidr_el1 },
	{ SYS_DESC(SYS_AIDR_EL1), NULL, get_aidr_el1 },
	{ SYS_DESC(SYS_CTR_EL0), NULL, get_ctr_el0 },
};

static int get_invariant_sys_reg(u64 id, u64 __user *uaddr)
{
	const struct sys_reg_desc *r;

	r = get_reg_by_id(id, invariant_sys_regs,
			  ARRAY_SIZE(invariant_sys_regs));
	if (!r)
		return -ENOENT;

	return put_user(r->val, uaddr);
}

static int set_invariant_sys_reg(u64 id, u64 __user *uaddr)
{
	const struct sys_reg_desc *r;
	u64 val;

	r = get_reg_by_id(id, invariant_sys_regs,
			  ARRAY_SIZE(invariant_sys_regs));
	if (!r)
		return -ENOENT;

	if (get_user(val, uaddr))
		return -EFAULT;

	/* This is what we mean by invariant: you can't change it. */
	if (r->val != val)
		return -EINVAL;

	return 0;
}

static int demux_c15_get(struct kvm_vcpu *vcpu, u64 id, void __user *uaddr)
{
	u32 val;
	u32 __user *uval = uaddr;

	/* Fail if we have unknown bits set. */
	if (id & ~(KVM_REG_ARCH_MASK|KVM_REG_SIZE_MASK|KVM_REG_ARM_COPROC_MASK
		   | ((1 << KVM_REG_ARM_COPROC_SHIFT)-1)))
		return -ENOENT;

	switch (id & KVM_REG_ARM_DEMUX_ID_MASK) {
	case KVM_REG_ARM_DEMUX_ID_CCSIDR:
		if (KVM_REG_SIZE(id) != 4)
			return -ENOENT;
		val = (id & KVM_REG_ARM_DEMUX_VAL_MASK)
			>> KVM_REG_ARM_DEMUX_VAL_SHIFT;
		if (val >= CSSELR_MAX)
			return -ENOENT;

		return put_user(get_ccsidr(vcpu, val), uval);
	default:
		return -ENOENT;
	}
}

static int demux_c15_set(struct kvm_vcpu *vcpu, u64 id, void __user *uaddr)
{
	u32 val, newval;
	u32 __user *uval = uaddr;

	/* Fail if we have unknown bits set. */
	if (id & ~(KVM_REG_ARCH_MASK|KVM_REG_SIZE_MASK|KVM_REG_ARM_COPROC_MASK
		   | ((1 << KVM_REG_ARM_COPROC_SHIFT)-1)))
		return -ENOENT;

	switch (id & KVM_REG_ARM_DEMUX_ID_MASK) {
	case KVM_REG_ARM_DEMUX_ID_CCSIDR:
		if (KVM_REG_SIZE(id) != 4)
			return -ENOENT;
		val = (id & KVM_REG_ARM_DEMUX_VAL_MASK)
			>> KVM_REG_ARM_DEMUX_VAL_SHIFT;
		if (val >= CSSELR_MAX)
			return -ENOENT;

		if (get_user(newval, uval))
			return -EFAULT;

		return set_ccsidr(vcpu, val, newval);
	default:
		return -ENOENT;
	}
}

int kvm_sys_reg_get_user(struct kvm_vcpu *vcpu, const struct kvm_one_reg *reg,
			 const struct sys_reg_desc table[], unsigned int num)
{
	u64 __user *uaddr = (u64 __user *)(unsigned long)reg->addr;
	const struct sys_reg_desc *r;
	u64 val;
	int ret;

	r = id_to_sys_reg_desc(vcpu, reg->id, table, num);
	if (!r || sysreg_hidden_user(vcpu, r))
		return -ENOENT;

	if (r->get_user) {
		ret = (r->get_user)(vcpu, r, &val);
	} else {
		val = __vcpu_sys_reg(vcpu, r->reg);
		ret = 0;
	}

	if (!ret)
		ret = put_user(val, uaddr);

	return ret;
}

int kvm_arm_sys_reg_get_reg(struct kvm_vcpu *vcpu, const struct kvm_one_reg *reg)
{
	void __user *uaddr = (void __user *)(unsigned long)reg->addr;
	int err;

	if ((reg->id & KVM_REG_ARM_COPROC_MASK) == KVM_REG_ARM_DEMUX)
		return demux_c15_get(vcpu, reg->id, uaddr);

	err = get_invariant_sys_reg(reg->id, uaddr);
	if (err != -ENOENT)
		return err;

	return kvm_sys_reg_get_user(vcpu, reg,
				    sys_reg_descs, ARRAY_SIZE(sys_reg_descs));
}

int kvm_sys_reg_set_user(struct kvm_vcpu *vcpu, const struct kvm_one_reg *reg,
			 const struct sys_reg_desc table[], unsigned int num)
{
	u64 __user *uaddr = (u64 __user *)(unsigned long)reg->addr;
	const struct sys_reg_desc *r;
	u64 val;
	int ret;

	if (get_user(val, uaddr))
		return -EFAULT;

	r = id_to_sys_reg_desc(vcpu, reg->id, table, num);
	if (!r || sysreg_hidden_user(vcpu, r))
		return -ENOENT;

	if (sysreg_user_write_ignore(vcpu, r))
		return 0;

	if (r->set_user) {
		ret = (r->set_user)(vcpu, r, val);
	} else {
		__vcpu_sys_reg(vcpu, r->reg) = val;
		ret = 0;
	}

	return ret;
}

int kvm_arm_sys_reg_set_reg(struct kvm_vcpu *vcpu, const struct kvm_one_reg *reg)
{
	void __user *uaddr = (void __user *)(unsigned long)reg->addr;
	int err;

	if ((reg->id & KVM_REG_ARM_COPROC_MASK) == KVM_REG_ARM_DEMUX)
		return demux_c15_set(vcpu, reg->id, uaddr);

	err = set_invariant_sys_reg(reg->id, uaddr);
	if (err != -ENOENT)
		return err;

	return kvm_sys_reg_set_user(vcpu, reg,
				    sys_reg_descs, ARRAY_SIZE(sys_reg_descs));
}

static unsigned int num_demux_regs(void)
{
	return CSSELR_MAX;
}

static int write_demux_regids(u64 __user *uindices)
{
	u64 val = KVM_REG_ARM64 | KVM_REG_SIZE_U32 | KVM_REG_ARM_DEMUX;
	unsigned int i;

	val |= KVM_REG_ARM_DEMUX_ID_CCSIDR;
	for (i = 0; i < CSSELR_MAX; i++) {
		if (put_user(val | i, uindices))
			return -EFAULT;
		uindices++;
	}
	return 0;
}

static u64 sys_reg_to_index(const struct sys_reg_desc *reg)
{
	return (KVM_REG_ARM64 | KVM_REG_SIZE_U64 |
		KVM_REG_ARM64_SYSREG |
		(reg->Op0 << KVM_REG_ARM64_SYSREG_OP0_SHIFT) |
		(reg->Op1 << KVM_REG_ARM64_SYSREG_OP1_SHIFT) |
		(reg->CRn << KVM_REG_ARM64_SYSREG_CRN_SHIFT) |
		(reg->CRm << KVM_REG_ARM64_SYSREG_CRM_SHIFT) |
		(reg->Op2 << KVM_REG_ARM64_SYSREG_OP2_SHIFT));
}

static bool copy_reg_to_user(const struct sys_reg_desc *reg, u64 __user **uind)
{
	if (!*uind)
		return true;

	if (put_user(sys_reg_to_index(reg), *uind))
		return false;

	(*uind)++;
	return true;
}

static int walk_one_sys_reg(const struct kvm_vcpu *vcpu,
			    const struct sys_reg_desc *rd,
			    u64 __user **uind,
			    unsigned int *total)
{
	/*
	 * Ignore registers we trap but don't save,
	 * and for which no custom user accessor is provided.
	 */
	if (!(rd->reg || rd->get_user))
		return 0;

	if (sysreg_hidden_user(vcpu, rd))
		return 0;

	if (!copy_reg_to_user(rd, uind))
		return -EFAULT;

	(*total)++;
	return 0;
}

/* Assumed ordered tables, see kvm_sys_reg_table_init. */
static int walk_sys_regs(struct kvm_vcpu *vcpu, u64 __user *uind)
{
	const struct sys_reg_desc *i2, *end2;
	unsigned int total = 0;
	int err;

	i2 = sys_reg_descs;
	end2 = sys_reg_descs + ARRAY_SIZE(sys_reg_descs);

	while (i2 != end2) {
		err = walk_one_sys_reg(vcpu, i2++, &uind, &total);
		if (err)
			return err;
	}
	return total;
}

unsigned long kvm_arm_num_sys_reg_descs(struct kvm_vcpu *vcpu)
{
	return ARRAY_SIZE(invariant_sys_regs)
		+ num_demux_regs()
		+ walk_sys_regs(vcpu, (u64 __user *)NULL);
}

int kvm_arm_copy_sys_reg_indices(struct kvm_vcpu *vcpu, u64 __user *uindices)
{
	unsigned int i;
	int err;

	/* Then give them all the invariant registers' indices. */
	for (i = 0; i < ARRAY_SIZE(invariant_sys_regs); i++) {
		if (put_user(sys_reg_to_index(&invariant_sys_regs[i]), uindices))
			return -EFAULT;
		uindices++;
	}

	err = walk_sys_regs(vcpu, uindices);
	if (err < 0)
		return err;
	uindices += err;

	return write_demux_regids(uindices);
}

#define KVM_ARM_FEATURE_ID_RANGE_INDEX(r)			\
	KVM_ARM_FEATURE_ID_RANGE_IDX(sys_reg_Op0(r),		\
		sys_reg_Op1(r),					\
		sys_reg_CRn(r),					\
		sys_reg_CRm(r),					\
		sys_reg_Op2(r))

static bool is_feature_id_reg(u32 encoding)
{
	return (sys_reg_Op0(encoding) == 3 &&
		(sys_reg_Op1(encoding) < 2 || sys_reg_Op1(encoding) == 3) &&
		sys_reg_CRn(encoding) == 0 &&
		sys_reg_CRm(encoding) <= 7);
}

int kvm_vm_ioctl_get_reg_writable_masks(struct kvm *kvm, struct reg_mask_range *range)
{
	const void *zero_page = page_to_virt(ZERO_PAGE(0));
	u64 __user *masks = (u64 __user *)range->addr;

	/* Only feature id range is supported, reserved[13] must be zero. */
	if (range->range ||
	    memcmp(range->reserved, zero_page, sizeof(range->reserved)))
		return -EINVAL;

	/* Wipe the whole thing first */
	if (clear_user(masks, KVM_ARM_FEATURE_ID_RANGE_SIZE * sizeof(__u64)))
		return -EFAULT;

	for (int i = 0; i < ARRAY_SIZE(sys_reg_descs); i++) {
		const struct sys_reg_desc *reg = &sys_reg_descs[i];
		u32 encoding = reg_to_encoding(reg);
		u64 val;

		if (!is_feature_id_reg(encoding) || !reg->set_user)
			continue;

		/*
		 * For ID registers, we return the writable mask. Other feature
		 * registers return a full 64bit mask. That's not necessary
		 * compliant with a given revision of the architecture, but the
		 * RES0/RES1 definitions allow us to do that.
		 */
		if (is_id_reg(encoding)) {
			if (!reg->val ||
			    (is_aa32_id_reg(encoding) && !kvm_supports_32bit_el0()))
				continue;
			val = reg->val;
		} else {
			val = ~0UL;
		}

		if (put_user(val, (masks + KVM_ARM_FEATURE_ID_RANGE_INDEX(encoding))))
			return -EFAULT;
	}

	return 0;
}

int __init kvm_sys_reg_table_init(void)
{
	struct sys_reg_params params;
	bool valid = true;
	unsigned int i;

	/* Make sure tables are unique and in order. */
	valid &= check_sysreg_table(sys_reg_descs, ARRAY_SIZE(sys_reg_descs), false);
	valid &= check_sysreg_table(cp14_regs, ARRAY_SIZE(cp14_regs), true);
	valid &= check_sysreg_table(cp14_64_regs, ARRAY_SIZE(cp14_64_regs), true);
	valid &= check_sysreg_table(cp15_regs, ARRAY_SIZE(cp15_regs), true);
	valid &= check_sysreg_table(cp15_64_regs, ARRAY_SIZE(cp15_64_regs), true);
	valid &= check_sysreg_table(invariant_sys_regs, ARRAY_SIZE(invariant_sys_regs), false);

	if (!valid)
		return -EINVAL;

	/* We abuse the reset function to overwrite the table itself. */
	for (i = 0; i < ARRAY_SIZE(invariant_sys_regs); i++)
		invariant_sys_regs[i].reset(NULL, &invariant_sys_regs[i]);

	/* Find the first idreg (SYS_ID_PFR0_EL1) in sys_reg_descs. */
	params = encoding_to_params(SYS_ID_PFR0_EL1);
	first_idreg = find_reg(&params, sys_reg_descs, ARRAY_SIZE(sys_reg_descs));
	if (!first_idreg)
		return -EINVAL;

	if (kvm_get_mode() == KVM_MODE_NV)
		return populate_nv_trap_config();

	return 0;
}