summaryrefslogtreecommitdiffstats
path: root/arch/mips/kvm/entry.c
blob: ac8e074c6bb76e0fd7c84d2357906c710f919e17 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
/*
 * This file is subject to the terms and conditions of the GNU General Public
 * License.  See the file "COPYING" in the main directory of this archive
 * for more details.
 *
 * Generation of main entry point for the guest, exception handling.
 *
 * Copyright (C) 2012  MIPS Technologies, Inc.
 * Authors: Sanjay Lal <sanjayl@kymasys.com>
 *
 * Copyright (C) 2016 Imagination Technologies Ltd.
 */

#include <linux/kvm_host.h>
#include <linux/log2.h>
#include <asm/mipsregs.h>
#include <asm/mmu_context.h>
#include <asm/msa.h>
#include <asm/regdef.h>
#include <asm/setup.h>
#include <asm/tlbex.h>
#include <asm/uasm.h>

#define CALLFRAME_SIZ   32

static unsigned int scratch_vcpu[2] = { C0_DDATALO };
static unsigned int scratch_tmp[2] = { C0_ERROREPC };

enum label_id {
	label_fpu_1 = 1,
	label_msa_1,
	label_return_to_host,
	label_kernel_asid,
	label_exit_common,
};

UASM_L_LA(_fpu_1)
UASM_L_LA(_msa_1)
UASM_L_LA(_return_to_host)
UASM_L_LA(_kernel_asid)
UASM_L_LA(_exit_common)

static void *kvm_mips_build_enter_guest(void *addr);
static void *kvm_mips_build_ret_from_exit(void *addr);
static void *kvm_mips_build_ret_to_guest(void *addr);
static void *kvm_mips_build_ret_to_host(void *addr);

/*
 * The version of this function in tlbex.c uses current_cpu_type(), but for KVM
 * we assume symmetry.
 */
static int c0_kscratch(void)
{
	return 31;
}

/**
 * kvm_mips_entry_setup() - Perform global setup for entry code.
 *
 * Perform global setup for entry code, such as choosing a scratch register.
 *
 * Returns:	0 on success.
 *		-errno on failure.
 */
int kvm_mips_entry_setup(void)
{
	/*
	 * We prefer to use KScratchN registers if they are available over the
	 * defaults above, which may not work on all cores.
	 */
	unsigned int kscratch_mask = cpu_data[0].kscratch_mask;

	if (pgd_reg != -1)
		kscratch_mask &= ~BIT(pgd_reg);

	/* Pick a scratch register for storing VCPU */
	if (kscratch_mask) {
		scratch_vcpu[0] = c0_kscratch();
		scratch_vcpu[1] = ffs(kscratch_mask) - 1;
		kscratch_mask &= ~BIT(scratch_vcpu[1]);
	}

	/* Pick a scratch register to use as a temp for saving state */
	if (kscratch_mask) {
		scratch_tmp[0] = c0_kscratch();
		scratch_tmp[1] = ffs(kscratch_mask) - 1;
		kscratch_mask &= ~BIT(scratch_tmp[1]);
	}

	return 0;
}

static void kvm_mips_build_save_scratch(u32 **p, unsigned int tmp,
					unsigned int frame)
{
	/* Save the VCPU scratch register value in cp0_epc of the stack frame */
	UASM_i_MFC0(p, tmp, scratch_vcpu[0], scratch_vcpu[1]);
	UASM_i_SW(p, tmp, offsetof(struct pt_regs, cp0_epc), frame);

	/* Save the temp scratch register value in cp0_cause of stack frame */
	if (scratch_tmp[0] == c0_kscratch()) {
		UASM_i_MFC0(p, tmp, scratch_tmp[0], scratch_tmp[1]);
		UASM_i_SW(p, tmp, offsetof(struct pt_regs, cp0_cause), frame);
	}
}

static void kvm_mips_build_restore_scratch(u32 **p, unsigned int tmp,
					   unsigned int frame)
{
	/*
	 * Restore host scratch register values saved by
	 * kvm_mips_build_save_scratch().
	 */
	UASM_i_LW(p, tmp, offsetof(struct pt_regs, cp0_epc), frame);
	UASM_i_MTC0(p, tmp, scratch_vcpu[0], scratch_vcpu[1]);

	if (scratch_tmp[0] == c0_kscratch()) {
		UASM_i_LW(p, tmp, offsetof(struct pt_regs, cp0_cause), frame);
		UASM_i_MTC0(p, tmp, scratch_tmp[0], scratch_tmp[1]);
	}
}

/**
 * build_set_exc_base() - Assemble code to write exception base address.
 * @p:		Code buffer pointer.
 * @reg:	Source register (generated code may set WG bit in @reg).
 *
 * Assemble code to modify the exception base address in the EBase register,
 * using the appropriately sized access and setting the WG bit if necessary.
 */
static inline void build_set_exc_base(u32 **p, unsigned int reg)
{
	if (cpu_has_ebase_wg) {
		/* Set WG so that all the bits get written */
		uasm_i_ori(p, reg, reg, MIPS_EBASE_WG);
		UASM_i_MTC0(p, reg, C0_EBASE);
	} else {
		uasm_i_mtc0(p, reg, C0_EBASE);
	}
}

/**
 * kvm_mips_build_vcpu_run() - Assemble function to start running a guest VCPU.
 * @addr:	Address to start writing code.
 *
 * Assemble the start of the vcpu_run function to run a guest VCPU. The function
 * conforms to the following prototype:
 *
 * int vcpu_run(struct kvm_vcpu *vcpu);
 *
 * The exit from the guest and return to the caller is handled by the code
 * generated by kvm_mips_build_ret_to_host().
 *
 * Returns:	Next address after end of written function.
 */
void *kvm_mips_build_vcpu_run(void *addr)
{
	u32 *p = addr;
	unsigned int i;

	/*
	 * GPR_A0: vcpu
	 */

	/* k0/k1 not being used in host kernel context */
	UASM_i_ADDIU(&p, GPR_K1, GPR_SP, -(int)sizeof(struct pt_regs));
	for (i = 16; i < 32; ++i) {
		if (i == 24)
			i = 28;
		UASM_i_SW(&p, i, offsetof(struct pt_regs, regs[i]), GPR_K1);
	}

	/* Save host status */
	uasm_i_mfc0(&p, GPR_V0, C0_STATUS);
	UASM_i_SW(&p, GPR_V0, offsetof(struct pt_regs, cp0_status), GPR_K1);

	/* Save scratch registers, will be used to store pointer to vcpu etc */
	kvm_mips_build_save_scratch(&p, GPR_V1, GPR_K1);

	/* VCPU scratch register has pointer to vcpu */
	UASM_i_MTC0(&p, GPR_A0, scratch_vcpu[0], scratch_vcpu[1]);

	/* Offset into vcpu->arch */
	UASM_i_ADDIU(&p, GPR_K1, GPR_A0, offsetof(struct kvm_vcpu, arch));

	/*
	 * Save the host stack to VCPU, used for exception processing
	 * when we exit from the Guest
	 */
	UASM_i_SW(&p, GPR_SP, offsetof(struct kvm_vcpu_arch, host_stack), GPR_K1);

	/* Save the kernel gp as well */
	UASM_i_SW(&p, GPR_GP, offsetof(struct kvm_vcpu_arch, host_gp), GPR_K1);

	/*
	 * Setup status register for running the guest in UM, interrupts
	 * are disabled
	 */
	UASM_i_LA(&p, GPR_K0, ST0_EXL | KSU_USER | ST0_BEV | ST0_KX_IF_64);
	uasm_i_mtc0(&p, GPR_K0, C0_STATUS);
	uasm_i_ehb(&p);

	/* load up the new EBASE */
	UASM_i_LW(&p, GPR_K0, offsetof(struct kvm_vcpu_arch, guest_ebase), GPR_K1);
	build_set_exc_base(&p, GPR_K0);

	/*
	 * Now that the new EBASE has been loaded, unset BEV, set
	 * interrupt mask as it was but make sure that timer interrupts
	 * are enabled
	 */
	uasm_i_addiu(&p, GPR_K0, GPR_ZERO, ST0_EXL | KSU_USER | ST0_IE | ST0_KX_IF_64);
	uasm_i_andi(&p, GPR_V0, GPR_V0, ST0_IM);
	uasm_i_or(&p, GPR_K0, GPR_K0, GPR_V0);
	uasm_i_mtc0(&p, GPR_K0, C0_STATUS);
	uasm_i_ehb(&p);

	p = kvm_mips_build_enter_guest(p);

	return p;
}

/**
 * kvm_mips_build_enter_guest() - Assemble code to resume guest execution.
 * @addr:	Address to start writing code.
 *
 * Assemble the code to resume guest execution. This code is common between the
 * initial entry into the guest from the host, and returning from the exit
 * handler back to the guest.
 *
 * Returns:	Next address after end of written function.
 */
static void *kvm_mips_build_enter_guest(void *addr)
{
	u32 *p = addr;
	unsigned int i;
	struct uasm_label labels[2];
	struct uasm_reloc relocs[2];
	struct uasm_label __maybe_unused *l = labels;
	struct uasm_reloc __maybe_unused *r = relocs;

	memset(labels, 0, sizeof(labels));
	memset(relocs, 0, sizeof(relocs));

	/* Set Guest EPC */
	UASM_i_LW(&p, GPR_T0, offsetof(struct kvm_vcpu_arch, pc), GPR_K1);
	UASM_i_MTC0(&p, GPR_T0, C0_EPC);

	/* Save normal linux process pgd (VZ guarantees pgd_reg is set) */
	if (cpu_has_ldpte)
		UASM_i_MFC0(&p, GPR_K0, C0_PWBASE);
	else
		UASM_i_MFC0(&p, GPR_K0, c0_kscratch(), pgd_reg);
	UASM_i_SW(&p, GPR_K0, offsetof(struct kvm_vcpu_arch, host_pgd), GPR_K1);

	/*
	 * Set up KVM GPA pgd.
	 * This does roughly the same as TLBMISS_HANDLER_SETUP_PGD():
	 * - call tlbmiss_handler_setup_pgd(mm->pgd)
	 * - write mm->pgd into CP0_PWBase
	 *
	 * We keep GPR_S0 pointing at struct kvm so we can load the ASID below.
	 */
	UASM_i_LW(&p, GPR_S0, (int)offsetof(struct kvm_vcpu, kvm) -
			  (int)offsetof(struct kvm_vcpu, arch), GPR_K1);
	UASM_i_LW(&p, GPR_A0, offsetof(struct kvm, arch.gpa_mm.pgd), GPR_S0);
	UASM_i_LA(&p, GPR_T9, (unsigned long)tlbmiss_handler_setup_pgd);
	uasm_i_jalr(&p, GPR_RA, GPR_T9);
	/* delay slot */
	if (cpu_has_htw)
		UASM_i_MTC0(&p, GPR_A0, C0_PWBASE);
	else
		uasm_i_nop(&p);

	/* Set GM bit to setup eret to VZ guest context */
	uasm_i_addiu(&p, GPR_V1, GPR_ZERO, 1);
	uasm_i_mfc0(&p, GPR_K0, C0_GUESTCTL0);
	uasm_i_ins(&p, GPR_K0, GPR_V1, MIPS_GCTL0_GM_SHIFT, 1);
	uasm_i_mtc0(&p, GPR_K0, C0_GUESTCTL0);

	if (cpu_has_guestid) {
		/*
		 * Set root mode GuestID, so that root TLB refill handler can
		 * use the correct GuestID in the root TLB.
		 */

		/* Get current GuestID */
		uasm_i_mfc0(&p, GPR_T0, C0_GUESTCTL1);
		/* Set GuestCtl1.RID = GuestCtl1.ID */
		uasm_i_ext(&p, GPR_T1, GPR_T0, MIPS_GCTL1_ID_SHIFT,
			   MIPS_GCTL1_ID_WIDTH);
		uasm_i_ins(&p, GPR_T0, GPR_T1, MIPS_GCTL1_RID_SHIFT,
			   MIPS_GCTL1_RID_WIDTH);
		uasm_i_mtc0(&p, GPR_T0, C0_GUESTCTL1);

		/* GuestID handles dealiasing so we don't need to touch ASID */
		goto skip_asid_restore;
	}

	/* Root ASID Dealias (RAD) */

	/* Save host ASID */
	UASM_i_MFC0(&p, GPR_K0, C0_ENTRYHI);
	UASM_i_SW(&p, GPR_K0, offsetof(struct kvm_vcpu_arch, host_entryhi),
		  GPR_K1);

	/* Set the root ASID for the Guest */
	UASM_i_ADDIU(&p, GPR_T1, GPR_S0,
		     offsetof(struct kvm, arch.gpa_mm.context.asid));

	/* t1: contains the base of the ASID array, need to get the cpu id  */
	/* smp_processor_id */
	uasm_i_lw(&p, GPR_T2, offsetof(struct thread_info, cpu), GPR_GP);
	/* index the ASID array */
	uasm_i_sll(&p, GPR_T2, GPR_T2, ilog2(sizeof(long)));
	UASM_i_ADDU(&p, GPR_T3, GPR_T1, GPR_T2);
	UASM_i_LW(&p, GPR_K0, 0, GPR_T3);
#ifdef CONFIG_MIPS_ASID_BITS_VARIABLE
	/*
	 * reuse ASID array offset
	 * cpuinfo_mips is a multiple of sizeof(long)
	 */
	uasm_i_addiu(&p, GPR_T3, GPR_ZERO, sizeof(struct cpuinfo_mips)/sizeof(long));
	uasm_i_mul(&p, GPR_T2, GPR_T2, GPR_T3);

	UASM_i_LA_mostly(&p, GPR_AT, (long)&cpu_data[0].asid_mask);
	UASM_i_ADDU(&p, GPR_AT, GPR_AT, GPR_T2);
	UASM_i_LW(&p, GPR_T2, uasm_rel_lo((long)&cpu_data[0].asid_mask), GPR_AT);
	uasm_i_and(&p, GPR_K0, GPR_K0, GPR_T2);
#else
	uasm_i_andi(&p, GPR_K0, GPR_K0, MIPS_ENTRYHI_ASID);
#endif

	/* Set up KVM VZ root ASID (!guestid) */
	uasm_i_mtc0(&p, GPR_K0, C0_ENTRYHI);
skip_asid_restore:
	uasm_i_ehb(&p);

	/* Disable RDHWR access */
	uasm_i_mtc0(&p, GPR_ZERO, C0_HWRENA);

	/* load the guest context from VCPU and return */
	for (i = 1; i < 32; ++i) {
		/* Guest k0/k1 loaded later */
		if (i == GPR_K0 || i == GPR_K1)
			continue;
		UASM_i_LW(&p, i, offsetof(struct kvm_vcpu_arch, gprs[i]), GPR_K1);
	}

#ifndef CONFIG_CPU_MIPSR6
	/* Restore hi/lo */
	UASM_i_LW(&p, GPR_K0, offsetof(struct kvm_vcpu_arch, hi), GPR_K1);
	uasm_i_mthi(&p, GPR_K0);

	UASM_i_LW(&p, GPR_K0, offsetof(struct kvm_vcpu_arch, lo), GPR_K1);
	uasm_i_mtlo(&p, GPR_K0);
#endif

	/* Restore the guest's k0/k1 registers */
	UASM_i_LW(&p, GPR_K0, offsetof(struct kvm_vcpu_arch, gprs[GPR_K0]), GPR_K1);
	UASM_i_LW(&p, GPR_K1, offsetof(struct kvm_vcpu_arch, gprs[GPR_K1]), GPR_K1);

	/* Jump to guest */
	uasm_i_eret(&p);

	uasm_resolve_relocs(relocs, labels);

	return p;
}

/**
 * kvm_mips_build_tlb_refill_exception() - Assemble TLB refill handler.
 * @addr:	Address to start writing code.
 * @handler:	Address of common handler (within range of @addr).
 *
 * Assemble TLB refill exception fast path handler for guest execution.
 *
 * Returns:	Next address after end of written function.
 */
void *kvm_mips_build_tlb_refill_exception(void *addr, void *handler)
{
	u32 *p = addr;
	struct uasm_label labels[2];
	struct uasm_reloc relocs[2];
#ifndef CONFIG_CPU_LOONGSON64
	struct uasm_label *l = labels;
	struct uasm_reloc *r = relocs;
#endif

	memset(labels, 0, sizeof(labels));
	memset(relocs, 0, sizeof(relocs));

	/* Save guest k1 into scratch register */
	UASM_i_MTC0(&p, GPR_K1, scratch_tmp[0], scratch_tmp[1]);

	/* Get the VCPU pointer from the VCPU scratch register */
	UASM_i_MFC0(&p, GPR_K1, scratch_vcpu[0], scratch_vcpu[1]);

	/* Save guest k0 into VCPU structure */
	UASM_i_SW(&p, GPR_K0, offsetof(struct kvm_vcpu, arch.gprs[GPR_K0]), GPR_K1);

	/*
	 * Some of the common tlbex code uses current_cpu_type(). For KVM we
	 * assume symmetry and just disable preemption to silence the warning.
	 */
	preempt_disable();

#ifdef CONFIG_CPU_LOONGSON64
	UASM_i_MFC0(&p, GPR_K1, C0_PGD);
	uasm_i_lddir(&p, GPR_K0, GPR_K1, 3);  /* global page dir */
#ifndef __PAGETABLE_PMD_FOLDED
	uasm_i_lddir(&p, GPR_K1, GPR_K0, 1);  /* middle page dir */
#endif
	uasm_i_ldpte(&p, GPR_K1, 0);      /* even */
	uasm_i_ldpte(&p, GPR_K1, 1);      /* odd */
	uasm_i_tlbwr(&p);
#else
	/*
	 * Now for the actual refill bit. A lot of this can be common with the
	 * Linux TLB refill handler, however we don't need to handle so many
	 * cases. We only need to handle user mode refills, and user mode runs
	 * with 32-bit addressing.
	 *
	 * Therefore the branch to label_vmalloc generated by build_get_pmde64()
	 * that isn't resolved should never actually get taken and is harmless
	 * to leave in place for now.
	 */

#ifdef CONFIG_64BIT
	build_get_pmde64(&p, &l, &r, GPR_K0, GPR_K1); /* get pmd in GPR_K1 */
#else
	build_get_pgde32(&p, GPR_K0, GPR_K1); /* get pgd in GPR_K1 */
#endif

	/* we don't support huge pages yet */

	build_get_ptep(&p, GPR_K0, GPR_K1);
	build_update_entries(&p, GPR_K0, GPR_K1);
	build_tlb_write_entry(&p, &l, &r, tlb_random);
#endif

	preempt_enable();

	/* Get the VCPU pointer from the VCPU scratch register again */
	UASM_i_MFC0(&p, GPR_K1, scratch_vcpu[0], scratch_vcpu[1]);

	/* Restore the guest's k0/k1 registers */
	UASM_i_LW(&p, GPR_K0, offsetof(struct kvm_vcpu, arch.gprs[GPR_K0]), GPR_K1);
	uasm_i_ehb(&p);
	UASM_i_MFC0(&p, GPR_K1, scratch_tmp[0], scratch_tmp[1]);

	/* Jump to guest */
	uasm_i_eret(&p);

	return p;
}

/**
 * kvm_mips_build_exception() - Assemble first level guest exception handler.
 * @addr:	Address to start writing code.
 * @handler:	Address of common handler (within range of @addr).
 *
 * Assemble exception vector code for guest execution. The generated vector will
 * branch to the common exception handler generated by kvm_mips_build_exit().
 *
 * Returns:	Next address after end of written function.
 */
void *kvm_mips_build_exception(void *addr, void *handler)
{
	u32 *p = addr;
	struct uasm_label labels[2];
	struct uasm_reloc relocs[2];
	struct uasm_label *l = labels;
	struct uasm_reloc *r = relocs;

	memset(labels, 0, sizeof(labels));
	memset(relocs, 0, sizeof(relocs));

	/* Save guest k1 into scratch register */
	UASM_i_MTC0(&p, GPR_K1, scratch_tmp[0], scratch_tmp[1]);

	/* Get the VCPU pointer from the VCPU scratch register */
	UASM_i_MFC0(&p, GPR_K1, scratch_vcpu[0], scratch_vcpu[1]);
	UASM_i_ADDIU(&p, GPR_K1, GPR_K1, offsetof(struct kvm_vcpu, arch));

	/* Save guest k0 into VCPU structure */
	UASM_i_SW(&p, GPR_K0, offsetof(struct kvm_vcpu_arch, gprs[GPR_K0]), GPR_K1);

	/* Branch to the common handler */
	uasm_il_b(&p, &r, label_exit_common);
	 uasm_i_nop(&p);

	uasm_l_exit_common(&l, handler);
	uasm_resolve_relocs(relocs, labels);

	return p;
}

/**
 * kvm_mips_build_exit() - Assemble common guest exit handler.
 * @addr:	Address to start writing code.
 *
 * Assemble the generic guest exit handling code. This is called by the
 * exception vectors (generated by kvm_mips_build_exception()), and calls
 * kvm_mips_handle_exit(), then either resumes the guest or returns to the host
 * depending on the return value.
 *
 * Returns:	Next address after end of written function.
 */
void *kvm_mips_build_exit(void *addr)
{
	u32 *p = addr;
	unsigned int i;
	struct uasm_label labels[3];
	struct uasm_reloc relocs[3];
	struct uasm_label *l = labels;
	struct uasm_reloc *r = relocs;

	memset(labels, 0, sizeof(labels));
	memset(relocs, 0, sizeof(relocs));

	/*
	 * Generic Guest exception handler. We end up here when the guest
	 * does something that causes a trap to kernel mode.
	 *
	 * Both k0/k1 registers will have already been saved (k0 into the vcpu
	 * structure, and k1 into the scratch_tmp register).
	 *
	 * The k1 register will already contain the kvm_vcpu_arch pointer.
	 */

	/* Start saving Guest context to VCPU */
	for (i = 0; i < 32; ++i) {
		/* Guest k0/k1 saved later */
		if (i == GPR_K0 || i == GPR_K1)
			continue;
		UASM_i_SW(&p, i, offsetof(struct kvm_vcpu_arch, gprs[i]), GPR_K1);
	}

#ifndef CONFIG_CPU_MIPSR6
	/* We need to save hi/lo and restore them on the way out */
	uasm_i_mfhi(&p, GPR_T0);
	UASM_i_SW(&p, GPR_T0, offsetof(struct kvm_vcpu_arch, hi), GPR_K1);

	uasm_i_mflo(&p, GPR_T0);
	UASM_i_SW(&p, GPR_T0, offsetof(struct kvm_vcpu_arch, lo), GPR_K1);
#endif

	/* Finally save guest k1 to VCPU */
	uasm_i_ehb(&p);
	UASM_i_MFC0(&p, GPR_T0, scratch_tmp[0], scratch_tmp[1]);
	UASM_i_SW(&p, GPR_T0, offsetof(struct kvm_vcpu_arch, gprs[GPR_K1]), GPR_K1);

	/* Now that context has been saved, we can use other registers */

	/* Restore vcpu */
	UASM_i_MFC0(&p, GPR_S0, scratch_vcpu[0], scratch_vcpu[1]);

	/*
	 * Save Host level EPC, BadVaddr and Cause to VCPU, useful to process
	 * the exception
	 */
	UASM_i_MFC0(&p, GPR_K0, C0_EPC);
	UASM_i_SW(&p, GPR_K0, offsetof(struct kvm_vcpu_arch, pc), GPR_K1);

	UASM_i_MFC0(&p, GPR_K0, C0_BADVADDR);
	UASM_i_SW(&p, GPR_K0, offsetof(struct kvm_vcpu_arch, host_cp0_badvaddr),
		  GPR_K1);

	uasm_i_mfc0(&p, GPR_K0, C0_CAUSE);
	uasm_i_sw(&p, GPR_K0, offsetof(struct kvm_vcpu_arch, host_cp0_cause), GPR_K1);

	if (cpu_has_badinstr) {
		uasm_i_mfc0(&p, GPR_K0, C0_BADINSTR);
		uasm_i_sw(&p, GPR_K0, offsetof(struct kvm_vcpu_arch,
					   host_cp0_badinstr), GPR_K1);
	}

	if (cpu_has_badinstrp) {
		uasm_i_mfc0(&p, GPR_K0, C0_BADINSTRP);
		uasm_i_sw(&p, GPR_K0, offsetof(struct kvm_vcpu_arch,
					   host_cp0_badinstrp), GPR_K1);
	}

	/* Now restore the host state just enough to run the handlers */

	/* Switch EBASE to the one used by Linux */
	/* load up the host EBASE */
	uasm_i_mfc0(&p, GPR_V0, C0_STATUS);

	uasm_i_lui(&p, GPR_AT, ST0_BEV >> 16);
	uasm_i_or(&p, GPR_K0, GPR_V0, GPR_AT);

	uasm_i_mtc0(&p, GPR_K0, C0_STATUS);
	uasm_i_ehb(&p);

	UASM_i_LA_mostly(&p, GPR_K0, (long)&ebase);
	UASM_i_LW(&p, GPR_K0, uasm_rel_lo((long)&ebase), GPR_K0);
	build_set_exc_base(&p, GPR_K0);

	if (raw_cpu_has_fpu) {
		/*
		 * If FPU is enabled, save FCR31 and clear it so that later
		 * ctc1's don't trigger FPE for pending exceptions.
		 */
		uasm_i_lui(&p, GPR_AT, ST0_CU1 >> 16);
		uasm_i_and(&p, GPR_V1, GPR_V0, GPR_AT);
		uasm_il_beqz(&p, &r, GPR_V1, label_fpu_1);
		 uasm_i_nop(&p);
		uasm_i_cfc1(&p, GPR_T0, 31);
		uasm_i_sw(&p, GPR_T0, offsetof(struct kvm_vcpu_arch, fpu.fcr31),
			  GPR_K1);
		uasm_i_ctc1(&p, GPR_ZERO, 31);
		uasm_l_fpu_1(&l, p);
	}

	if (cpu_has_msa) {
		/*
		 * If MSA is enabled, save MSACSR and clear it so that later
		 * instructions don't trigger MSAFPE for pending exceptions.
		 */
		uasm_i_mfc0(&p, GPR_T0, C0_CONFIG5);
		uasm_i_ext(&p, GPR_T0, GPR_T0, 27, 1); /* MIPS_CONF5_MSAEN */
		uasm_il_beqz(&p, &r, GPR_T0, label_msa_1);
		 uasm_i_nop(&p);
		uasm_i_cfcmsa(&p, GPR_T0, MSA_CSR);
		uasm_i_sw(&p, GPR_T0, offsetof(struct kvm_vcpu_arch, fpu.msacsr),
			  GPR_K1);
		uasm_i_ctcmsa(&p, MSA_CSR, GPR_ZERO);
		uasm_l_msa_1(&l, p);
	}

	/* Restore host ASID */
	if (!cpu_has_guestid) {
		UASM_i_LW(&p, GPR_K0, offsetof(struct kvm_vcpu_arch, host_entryhi),
			  GPR_K1);
		UASM_i_MTC0(&p, GPR_K0, C0_ENTRYHI);
	}

	/*
	 * Set up normal Linux process pgd.
	 * This does roughly the same as TLBMISS_HANDLER_SETUP_PGD():
	 * - call tlbmiss_handler_setup_pgd(mm->pgd)
	 * - write mm->pgd into CP0_PWBase
	 */
	UASM_i_LW(&p, GPR_A0,
		  offsetof(struct kvm_vcpu_arch, host_pgd), GPR_K1);
	UASM_i_LA(&p, GPR_T9, (unsigned long)tlbmiss_handler_setup_pgd);
	uasm_i_jalr(&p, GPR_RA, GPR_T9);
	/* delay slot */
	if (cpu_has_htw)
		UASM_i_MTC0(&p, GPR_A0, C0_PWBASE);
	else
		uasm_i_nop(&p);

	/* Clear GM bit so we don't enter guest mode when EXL is cleared */
	uasm_i_mfc0(&p, GPR_K0, C0_GUESTCTL0);
	uasm_i_ins(&p, GPR_K0, GPR_ZERO, MIPS_GCTL0_GM_SHIFT, 1);
	uasm_i_mtc0(&p, GPR_K0, C0_GUESTCTL0);

	/* Save GuestCtl0 so we can access GExcCode after CPU migration */
	uasm_i_sw(&p, GPR_K0,
		  offsetof(struct kvm_vcpu_arch, host_cp0_guestctl0), GPR_K1);

	if (cpu_has_guestid) {
		/*
		 * Clear root mode GuestID, so that root TLB operations use the
		 * root GuestID in the root TLB.
		 */
		uasm_i_mfc0(&p, GPR_T0, C0_GUESTCTL1);
		/* Set GuestCtl1.RID = MIPS_GCTL1_ROOT_GUESTID (i.e. 0) */
		uasm_i_ins(&p, GPR_T0, GPR_ZERO, MIPS_GCTL1_RID_SHIFT,
			   MIPS_GCTL1_RID_WIDTH);
		uasm_i_mtc0(&p, GPR_T0, C0_GUESTCTL1);
	}

	/* Now that the new EBASE has been loaded, unset BEV and KSU_USER */
	uasm_i_addiu(&p, GPR_AT, GPR_ZERO, ~(ST0_EXL | KSU_USER | ST0_IE));
	uasm_i_and(&p, GPR_V0, GPR_V0, GPR_AT);
	uasm_i_lui(&p, GPR_AT, ST0_CU0 >> 16);
	uasm_i_or(&p, GPR_V0, GPR_V0, GPR_AT);
#ifdef CONFIG_64BIT
	uasm_i_ori(&p, GPR_V0, GPR_V0, ST0_SX | ST0_UX);
#endif
	uasm_i_mtc0(&p, GPR_V0, C0_STATUS);
	uasm_i_ehb(&p);

	/* Load up host GPR_GP */
	UASM_i_LW(&p, GPR_GP, offsetof(struct kvm_vcpu_arch, host_gp), GPR_K1);

	/* Need a stack before we can jump to "C" */
	UASM_i_LW(&p, GPR_SP, offsetof(struct kvm_vcpu_arch, host_stack), GPR_K1);

	/* Saved host state */
	UASM_i_ADDIU(&p, GPR_SP, GPR_SP, -(int)sizeof(struct pt_regs));

	/*
	 * XXXKYMA do we need to load the host ASID, maybe not because the
	 * kernel entries are marked GLOBAL, need to verify
	 */

	/* Restore host scratch registers, as we'll have clobbered them */
	kvm_mips_build_restore_scratch(&p, GPR_K0, GPR_SP);

	/* Restore RDHWR access */
	UASM_i_LA_mostly(&p, GPR_K0, (long)&hwrena);
	uasm_i_lw(&p, GPR_K0, uasm_rel_lo((long)&hwrena), GPR_K0);
	uasm_i_mtc0(&p, GPR_K0, C0_HWRENA);

	/* Jump to handler */
	/*
	 * XXXKYMA: not sure if this is safe, how large is the stack??
	 * Now jump to the kvm_mips_handle_exit() to see if we can deal
	 * with this in the kernel
	 */
	uasm_i_move(&p, GPR_A0, GPR_S0);
	UASM_i_LA(&p, GPR_T9, (unsigned long)kvm_mips_handle_exit);
	uasm_i_jalr(&p, GPR_RA, GPR_T9);
	 UASM_i_ADDIU(&p, GPR_SP, GPR_SP, -CALLFRAME_SIZ);

	uasm_resolve_relocs(relocs, labels);

	p = kvm_mips_build_ret_from_exit(p);

	return p;
}

/**
 * kvm_mips_build_ret_from_exit() - Assemble guest exit return handler.
 * @addr:	Address to start writing code.
 *
 * Assemble the code to handle the return from kvm_mips_handle_exit(), either
 * resuming the guest or returning to the host depending on the return value.
 *
 * Returns:	Next address after end of written function.
 */
static void *kvm_mips_build_ret_from_exit(void *addr)
{
	u32 *p = addr;
	struct uasm_label labels[2];
	struct uasm_reloc relocs[2];
	struct uasm_label *l = labels;
	struct uasm_reloc *r = relocs;

	memset(labels, 0, sizeof(labels));
	memset(relocs, 0, sizeof(relocs));

	/* Return from handler Make sure interrupts are disabled */
	uasm_i_di(&p, GPR_ZERO);
	uasm_i_ehb(&p);

	/*
	 * XXXKYMA: k0/k1 could have been blown away if we processed
	 * an exception while we were handling the exception from the
	 * guest, reload k1
	 */

	uasm_i_move(&p, GPR_K1, GPR_S0);
	UASM_i_ADDIU(&p, GPR_K1, GPR_K1, offsetof(struct kvm_vcpu, arch));

	/*
	 * Check return value, should tell us if we are returning to the
	 * host (handle I/O etc)or resuming the guest
	 */
	uasm_i_andi(&p, GPR_T0, GPR_V0, RESUME_HOST);
	uasm_il_bnez(&p, &r, GPR_T0, label_return_to_host);
	 uasm_i_nop(&p);

	p = kvm_mips_build_ret_to_guest(p);

	uasm_l_return_to_host(&l, p);
	p = kvm_mips_build_ret_to_host(p);

	uasm_resolve_relocs(relocs, labels);

	return p;
}

/**
 * kvm_mips_build_ret_to_guest() - Assemble code to return to the guest.
 * @addr:	Address to start writing code.
 *
 * Assemble the code to handle return from the guest exit handler
 * (kvm_mips_handle_exit()) back to the guest.
 *
 * Returns:	Next address after end of written function.
 */
static void *kvm_mips_build_ret_to_guest(void *addr)
{
	u32 *p = addr;

	/* Put the saved pointer to vcpu (s0) back into the scratch register */
	UASM_i_MTC0(&p, GPR_S0, scratch_vcpu[0], scratch_vcpu[1]);

	/* Load up the Guest EBASE to minimize the window where BEV is set */
	UASM_i_LW(&p, GPR_T0, offsetof(struct kvm_vcpu_arch, guest_ebase), GPR_K1);

	/* Switch EBASE back to the one used by KVM */
	uasm_i_mfc0(&p, GPR_V1, C0_STATUS);
	uasm_i_lui(&p, GPR_AT, ST0_BEV >> 16);
	uasm_i_or(&p, GPR_K0, GPR_V1, GPR_AT);
	uasm_i_mtc0(&p, GPR_K0, C0_STATUS);
	uasm_i_ehb(&p);
	build_set_exc_base(&p, GPR_T0);

	/* Setup status register for running guest in UM */
	uasm_i_ori(&p, GPR_V1, GPR_V1, ST0_EXL | KSU_USER | ST0_IE);
	UASM_i_LA(&p, GPR_AT, ~(ST0_CU0 | ST0_MX | ST0_SX | ST0_UX));
	uasm_i_and(&p, GPR_V1, GPR_V1, GPR_AT);
	uasm_i_mtc0(&p, GPR_V1, C0_STATUS);
	uasm_i_ehb(&p);

	p = kvm_mips_build_enter_guest(p);

	return p;
}

/**
 * kvm_mips_build_ret_to_host() - Assemble code to return to the host.
 * @addr:	Address to start writing code.
 *
 * Assemble the code to handle return from the guest exit handler
 * (kvm_mips_handle_exit()) back to the host, i.e. to the caller of the vcpu_run
 * function generated by kvm_mips_build_vcpu_run().
 *
 * Returns:	Next address after end of written function.
 */
static void *kvm_mips_build_ret_to_host(void *addr)
{
	u32 *p = addr;
	unsigned int i;

	/* EBASE is already pointing to Linux */
	UASM_i_LW(&p, GPR_K1, offsetof(struct kvm_vcpu_arch, host_stack), GPR_K1);
	UASM_i_ADDIU(&p, GPR_K1, GPR_K1, -(int)sizeof(struct pt_regs));

	/*
	 * r2/v0 is the return code, shift it down by 2 (arithmetic)
	 * to recover the err code
	 */
	uasm_i_sra(&p, GPR_K0, GPR_V0, 2);
	uasm_i_move(&p, GPR_V0, GPR_K0);

	/* Load context saved on the host stack */
	for (i = 16; i < 31; ++i) {
		if (i == 24)
			i = 28;
		UASM_i_LW(&p, i, offsetof(struct pt_regs, regs[i]), GPR_K1);
	}

	/* Restore RDHWR access */
	UASM_i_LA_mostly(&p, GPR_K0, (long)&hwrena);
	uasm_i_lw(&p, GPR_K0, uasm_rel_lo((long)&hwrena), GPR_K0);
	uasm_i_mtc0(&p, GPR_K0, C0_HWRENA);

	/* Restore GPR_RA, which is the address we will return to */
	UASM_i_LW(&p, GPR_RA, offsetof(struct pt_regs, regs[GPR_RA]), GPR_K1);
	uasm_i_jr(&p, GPR_RA);
	 uasm_i_nop(&p);

	return p;
}