1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
|
/* SPDX-License-Identifier: Apache-2.0 OR BSD-2-Clause */
//
// This file is dual-licensed, meaning that you can use it under your
// choice of either of the following two licenses:
//
// Copyright 2023 The OpenSSL Project Authors. All Rights Reserved.
//
// Licensed under the Apache License 2.0 (the "License"). You can obtain
// a copy in the file LICENSE in the source distribution or at
// https://www.openssl.org/source/license.html
//
// or
//
// Copyright (c) 2023, Christoph Müllner <christoph.muellner@vrull.eu>
// Copyright (c) 2023, Phoebe Chen <phoebe.chen@sifive.com>
// Copyright (c) 2023, Jerry Shih <jerry.shih@sifive.com>
// Copyright 2024 Google LLC
// All rights reserved.
//
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions
// are met:
// 1. Redistributions of source code must retain the above copyright
// notice, this list of conditions and the following disclaimer.
// 2. Redistributions in binary form must reproduce the above copyright
// notice, this list of conditions and the following disclaimer in the
// documentation and/or other materials provided with the distribution.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
// The generated code of this file depends on the following RISC-V extensions:
// - RV64I
// - RISC-V Vector ('V') with VLEN >= 128
// - RISC-V Vector AES block cipher extension ('Zvkned')
#include <linux/linkage.h>
.text
.option arch, +zvkned
#include "aes-macros.S"
#define KEYP a0
#define INP a1
#define OUTP a2
#define LEN a3
#define IVP a4
.macro __aes_crypt_zvkned enc, keylen
vle32.v v16, (INP)
aes_crypt v16, \enc, \keylen
vse32.v v16, (OUTP)
ret
.endm
.macro aes_crypt_zvkned enc
aes_begin KEYP, 128f, 192f
__aes_crypt_zvkned \enc, 256
128:
__aes_crypt_zvkned \enc, 128
192:
__aes_crypt_zvkned \enc, 192
.endm
// void aes_encrypt_zvkned(const struct crypto_aes_ctx *key,
// const u8 in[16], u8 out[16]);
SYM_FUNC_START(aes_encrypt_zvkned)
aes_crypt_zvkned 1
SYM_FUNC_END(aes_encrypt_zvkned)
// Same prototype and calling convention as the encryption function
SYM_FUNC_START(aes_decrypt_zvkned)
aes_crypt_zvkned 0
SYM_FUNC_END(aes_decrypt_zvkned)
.macro __aes_ecb_crypt enc, keylen
srli t0, LEN, 2
// t0 is the remaining length in 32-bit words. It's a multiple of 4.
1:
vsetvli t1, t0, e32, m8, ta, ma
sub t0, t0, t1 // Subtract number of words processed
slli t1, t1, 2 // Words to bytes
vle32.v v16, (INP)
aes_crypt v16, \enc, \keylen
vse32.v v16, (OUTP)
add INP, INP, t1
add OUTP, OUTP, t1
bnez t0, 1b
ret
.endm
.macro aes_ecb_crypt enc
aes_begin KEYP, 128f, 192f
__aes_ecb_crypt \enc, 256
128:
__aes_ecb_crypt \enc, 128
192:
__aes_ecb_crypt \enc, 192
.endm
// void aes_ecb_encrypt_zvkned(const struct crypto_aes_ctx *key,
// const u8 *in, u8 *out, size_t len);
//
// |len| must be nonzero and a multiple of 16 (AES_BLOCK_SIZE).
SYM_FUNC_START(aes_ecb_encrypt_zvkned)
aes_ecb_crypt 1
SYM_FUNC_END(aes_ecb_encrypt_zvkned)
// Same prototype and calling convention as the encryption function
SYM_FUNC_START(aes_ecb_decrypt_zvkned)
aes_ecb_crypt 0
SYM_FUNC_END(aes_ecb_decrypt_zvkned)
.macro aes_cbc_encrypt keylen
vle32.v v16, (IVP) // Load IV
1:
vle32.v v17, (INP) // Load plaintext block
vxor.vv v16, v16, v17 // XOR with IV or prev ciphertext block
aes_encrypt v16, \keylen // Encrypt
vse32.v v16, (OUTP) // Store ciphertext block
addi INP, INP, 16
addi OUTP, OUTP, 16
addi LEN, LEN, -16
bnez LEN, 1b
vse32.v v16, (IVP) // Store next IV
ret
.endm
.macro aes_cbc_decrypt keylen
srli LEN, LEN, 2 // Convert LEN from bytes to words
vle32.v v16, (IVP) // Load IV
1:
vsetvli t0, LEN, e32, m4, ta, ma
vle32.v v20, (INP) // Load ciphertext blocks
vslideup.vi v16, v20, 4 // Setup prev ciphertext blocks
addi t1, t0, -4
vslidedown.vx v24, v20, t1 // Save last ciphertext block
aes_decrypt v20, \keylen // Decrypt the blocks
vxor.vv v20, v20, v16 // XOR with prev ciphertext blocks
vse32.v v20, (OUTP) // Store plaintext blocks
vmv.v.v v16, v24 // Next "IV" is last ciphertext block
slli t1, t0, 2 // Words to bytes
add INP, INP, t1
add OUTP, OUTP, t1
sub LEN, LEN, t0
bnez LEN, 1b
vsetivli zero, 4, e32, m1, ta, ma
vse32.v v16, (IVP) // Store next IV
ret
.endm
// void aes_cbc_encrypt_zvkned(const struct crypto_aes_ctx *key,
// const u8 *in, u8 *out, size_t len, u8 iv[16]);
//
// |len| must be nonzero and a multiple of 16 (AES_BLOCK_SIZE).
SYM_FUNC_START(aes_cbc_encrypt_zvkned)
aes_begin KEYP, 128f, 192f
aes_cbc_encrypt 256
128:
aes_cbc_encrypt 128
192:
aes_cbc_encrypt 192
SYM_FUNC_END(aes_cbc_encrypt_zvkned)
// Same prototype and calling convention as the encryption function
SYM_FUNC_START(aes_cbc_decrypt_zvkned)
aes_begin KEYP, 128f, 192f
aes_cbc_decrypt 256
128:
aes_cbc_decrypt 128
192:
aes_cbc_decrypt 192
SYM_FUNC_END(aes_cbc_decrypt_zvkned)
.macro aes_cbc_cts_encrypt keylen
// CBC-encrypt all blocks except the last. But don't store the
// second-to-last block to the output buffer yet, since it will be
// handled specially in the ciphertext stealing step. Exception: if the
// message is single-block, still encrypt the last (and only) block.
li t0, 16
j 2f
1:
vse32.v v16, (OUTP) // Store ciphertext block
addi OUTP, OUTP, 16
2:
vle32.v v17, (INP) // Load plaintext block
vxor.vv v16, v16, v17 // XOR with IV or prev ciphertext block
aes_encrypt v16, \keylen // Encrypt
addi INP, INP, 16
addi LEN, LEN, -16
bgt LEN, t0, 1b // Repeat if more than one block remains
// Special case: if the message is a single block, just do CBC.
beqz LEN, .Lcts_encrypt_done\@
// Encrypt the last two blocks using ciphertext stealing as follows:
// C[n-1] = Encrypt(Encrypt(P[n-1] ^ C[n-2]) ^ P[n])
// C[n] = Encrypt(P[n-1] ^ C[n-2])[0..LEN]
//
// C[i] denotes the i'th ciphertext block, and likewise P[i] the i'th
// plaintext block. Block n, the last block, may be partial; its length
// is 1 <= LEN <= 16. If there are only 2 blocks, C[n-2] means the IV.
//
// v16 already contains Encrypt(P[n-1] ^ C[n-2]).
// INP points to P[n]. OUTP points to where C[n-1] should go.
// To support in-place encryption, load P[n] before storing C[n].
addi t0, OUTP, 16 // Get pointer to where C[n] should go
vsetvli zero, LEN, e8, m1, tu, ma
vle8.v v17, (INP) // Load P[n]
vse8.v v16, (t0) // Store C[n]
vxor.vv v16, v16, v17 // v16 = Encrypt(P[n-1] ^ C[n-2]) ^ P[n]
vsetivli zero, 4, e32, m1, ta, ma
aes_encrypt v16, \keylen
.Lcts_encrypt_done\@:
vse32.v v16, (OUTP) // Store C[n-1] (or C[n] in single-block case)
ret
.endm
#define LEN32 t4 // Length of remaining full blocks in 32-bit words
#define LEN_MOD16 t5 // Length of message in bytes mod 16
.macro aes_cbc_cts_decrypt keylen
andi LEN32, LEN, ~15
srli LEN32, LEN32, 2
andi LEN_MOD16, LEN, 15
// Save C[n-2] in v28 so that it's available later during the ciphertext
// stealing step. If there are fewer than three blocks, C[n-2] means
// the IV, otherwise it means the third-to-last ciphertext block.
vmv.v.v v28, v16 // IV
add t0, LEN, -33
bltz t0, .Lcts_decrypt_loop\@
andi t0, t0, ~15
add t0, t0, INP
vle32.v v28, (t0)
// CBC-decrypt all full blocks. For the last full block, or the last 2
// full blocks if the message is block-aligned, this doesn't write the
// correct output blocks (unless the message is only a single block),
// because it XORs the wrong values with the raw AES plaintexts. But we
// fix this after this loop without redoing the AES decryptions. This
// approach allows more of the AES decryptions to be parallelized.
.Lcts_decrypt_loop\@:
vsetvli t0, LEN32, e32, m4, ta, ma
addi t1, t0, -4
vle32.v v20, (INP) // Load next set of ciphertext blocks
vmv.v.v v24, v16 // Get IV or last ciphertext block of prev set
vslideup.vi v24, v20, 4 // Setup prev ciphertext blocks
vslidedown.vx v16, v20, t1 // Save last ciphertext block of this set
aes_decrypt v20, \keylen // Decrypt this set of blocks
vxor.vv v24, v24, v20 // XOR prev ciphertext blocks with decrypted blocks
vse32.v v24, (OUTP) // Store this set of plaintext blocks
sub LEN32, LEN32, t0
slli t0, t0, 2 // Words to bytes
add INP, INP, t0
add OUTP, OUTP, t0
bnez LEN32, .Lcts_decrypt_loop\@
vsetivli zero, 4, e32, m4, ta, ma
vslidedown.vx v20, v20, t1 // Extract raw plaintext of last full block
addi t0, OUTP, -16 // Get pointer to last full plaintext block
bnez LEN_MOD16, .Lcts_decrypt_non_block_aligned\@
// Special case: if the message is a single block, just do CBC.
li t1, 16
beq LEN, t1, .Lcts_decrypt_done\@
// Block-aligned message. Just fix up the last 2 blocks. We need:
//
// P[n-1] = Decrypt(C[n]) ^ C[n-2]
// P[n] = Decrypt(C[n-1]) ^ C[n]
//
// We have C[n] in v16, Decrypt(C[n]) in v20, and C[n-2] in v28.
// Together with Decrypt(C[n-1]) ^ C[n-2] from the output buffer, this
// is everything needed to fix the output without re-decrypting blocks.
addi t1, OUTP, -32 // Get pointer to where P[n-1] should go
vxor.vv v20, v20, v28 // Decrypt(C[n]) ^ C[n-2] == P[n-1]
vle32.v v24, (t1) // Decrypt(C[n-1]) ^ C[n-2]
vse32.v v20, (t1) // Store P[n-1]
vxor.vv v20, v24, v16 // Decrypt(C[n-1]) ^ C[n-2] ^ C[n] == P[n] ^ C[n-2]
j .Lcts_decrypt_finish\@
.Lcts_decrypt_non_block_aligned\@:
// Decrypt the last two blocks using ciphertext stealing as follows:
//
// P[n-1] = Decrypt(C[n] || Decrypt(C[n-1])[LEN_MOD16..16]) ^ C[n-2]
// P[n] = (Decrypt(C[n-1]) ^ C[n])[0..LEN_MOD16]
//
// We already have Decrypt(C[n-1]) in v20 and C[n-2] in v28.
vmv.v.v v16, v20 // v16 = Decrypt(C[n-1])
vsetvli zero, LEN_MOD16, e8, m1, tu, ma
vle8.v v20, (INP) // v20 = C[n] || Decrypt(C[n-1])[LEN_MOD16..16]
vxor.vv v16, v16, v20 // v16 = Decrypt(C[n-1]) ^ C[n]
vse8.v v16, (OUTP) // Store P[n]
vsetivli zero, 4, e32, m1, ta, ma
aes_decrypt v20, \keylen // v20 = Decrypt(C[n] || Decrypt(C[n-1])[LEN_MOD16..16])
.Lcts_decrypt_finish\@:
vxor.vv v20, v20, v28 // XOR with C[n-2]
vse32.v v20, (t0) // Store last full plaintext block
.Lcts_decrypt_done\@:
ret
.endm
.macro aes_cbc_cts_crypt keylen
vle32.v v16, (IVP) // Load IV
beqz a5, .Lcts_decrypt\@
aes_cbc_cts_encrypt \keylen
.Lcts_decrypt\@:
aes_cbc_cts_decrypt \keylen
.endm
// void aes_cbc_cts_crypt_zvkned(const struct crypto_aes_ctx *key,
// const u8 *in, u8 *out, size_t len,
// const u8 iv[16], bool enc);
//
// Encrypts or decrypts a message with the CS3 variant of AES-CBC-CTS.
// This is the variant that unconditionally swaps the last two blocks.
SYM_FUNC_START(aes_cbc_cts_crypt_zvkned)
aes_begin KEYP, 128f, 192f
aes_cbc_cts_crypt 256
128:
aes_cbc_cts_crypt 128
192:
aes_cbc_cts_crypt 192
SYM_FUNC_END(aes_cbc_cts_crypt_zvkned)
|