summaryrefslogtreecommitdiffstats
path: root/debian/patches-rt/0007-futex-pi-Fix-recursive-rt_mutex-waiter-state.patch
blob: 76a9b6058118ccb865582602e908179c4ee0ace5 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
From: Peter Zijlstra <peterz@infradead.org>
Date: Fri, 15 Sep 2023 17:19:44 +0200
Subject: [PATCH 7/7] futex/pi: Fix recursive rt_mutex waiter state
Origin: https://www.kernel.org/pub/linux/kernel/projects/rt/6.6/older/patches-6.6.7-rt18.tar.xz

Some new assertions pointed out that the existing code has nested rt_mutex wait
state in the futex code.

Specifically, the futex_lock_pi() cancel case uses spin_lock() while there
still is a rt_waiter enqueued for this task, resulting in a state where there
are two waiters for the same task (and task_struct::pi_blocked_on gets
scrambled).

The reason to take hb->lock at this point is to avoid the wake_futex_pi()
EAGAIN case.

This happens when futex_top_waiter() and rt_mutex_top_waiter() state becomes
inconsistent. The current rules are such that this inconsistency will not be
observed.

Notably the case that needs to be avoided is where futex_lock_pi() and
futex_unlock_pi() interleave such that unlock will fail to observe a new
waiter.

*However* the case at hand is where a waiter is leaving, in this case the race
means a waiter that is going away is not observed -- which is harmless,
provided this race is explicitly handled.

This is a somewhat dangerous proposition because the converse race is not
observing a new waiter, which must absolutely not happen. But since the race is
valid this cannot be asserted.

Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Reviewed-by: Thomas Gleixner <tglx@linutronix.de>
Reviewed-by: Sebastian Andrzej Siewior <bigeasy@linutronix.de>
Tested-by: Sebastian Andrzej Siewior <bigeasy@linutronix.de>
Link: https://lkml.kernel.org/r/20230915151943.GD6743@noisy.programming.kicks-ass.net
---
 kernel/futex/pi.c      |   76 ++++++++++++++++++++++++++++++-------------------
 kernel/futex/requeue.c |    6 ++-
 2 files changed, 52 insertions(+), 30 deletions(-)

--- a/kernel/futex/pi.c
+++ b/kernel/futex/pi.c
@@ -611,29 +611,16 @@ int futex_lock_pi_atomic(u32 __user *uad
 /*
  * Caller must hold a reference on @pi_state.
  */
-static int wake_futex_pi(u32 __user *uaddr, u32 uval, struct futex_pi_state *pi_state)
+static int wake_futex_pi(u32 __user *uaddr, u32 uval,
+			 struct futex_pi_state *pi_state,
+			 struct rt_mutex_waiter *top_waiter)
 {
-	struct rt_mutex_waiter *top_waiter;
 	struct task_struct *new_owner;
 	bool postunlock = false;
 	DEFINE_RT_WAKE_Q(wqh);
 	u32 curval, newval;
 	int ret = 0;
 
-	top_waiter = rt_mutex_top_waiter(&pi_state->pi_mutex);
-	if (WARN_ON_ONCE(!top_waiter)) {
-		/*
-		 * As per the comment in futex_unlock_pi() this should not happen.
-		 *
-		 * When this happens, give up our locks and try again, giving
-		 * the futex_lock_pi() instance time to complete, either by
-		 * waiting on the rtmutex or removing itself from the futex
-		 * queue.
-		 */
-		ret = -EAGAIN;
-		goto out_unlock;
-	}
-
 	new_owner = top_waiter->task;
 
 	/*
@@ -1046,20 +1033,34 @@ int futex_lock_pi(u32 __user *uaddr, uns
 	ret = rt_mutex_wait_proxy_lock(&q.pi_state->pi_mutex, to, &rt_waiter);
 
 cleanup:
-	spin_lock(q.lock_ptr);
 	/*
 	 * If we failed to acquire the lock (deadlock/signal/timeout), we must
-	 * first acquire the hb->lock before removing the lock from the
-	 * rt_mutex waitqueue, such that we can keep the hb and rt_mutex wait
-	 * lists consistent.
+	 * must unwind the above, however we canont lock hb->lock because
+	 * rt_mutex already has a waiter enqueued and hb->lock can itself try
+	 * and enqueue an rt_waiter through rtlock.
+	 *
+	 * Doing the cleanup without holding hb->lock can cause inconsistent
+	 * state between hb and pi_state, but only in the direction of not
+	 * seeing a waiter that is leaving.
+	 *
+	 * See futex_unlock_pi(), it deals with this inconsistency.
+	 *
+	 * There be dragons here, since we must deal with the inconsistency on
+	 * the way out (here), it is impossible to detect/warn about the race
+	 * the other way around (missing an incoming waiter).
 	 *
-	 * In particular; it is important that futex_unlock_pi() can not
-	 * observe this inconsistency.
+	 * What could possibly go wrong...
 	 */
 	if (ret && !rt_mutex_cleanup_proxy_lock(&q.pi_state->pi_mutex, &rt_waiter))
 		ret = 0;
 
 	/*
+	 * Now that the rt_waiter has been dequeued, it is safe to use
+	 * spinlock/rtlock (which might enqueue its own rt_waiter) and fix up
+	 * the
+	 */
+	spin_lock(q.lock_ptr);
+	/*
 	 * Waiter is unqueued.
 	 */
 	rt_mutex_post_schedule();
@@ -1143,6 +1144,7 @@ int futex_unlock_pi(u32 __user *uaddr, u
 	top_waiter = futex_top_waiter(hb, &key);
 	if (top_waiter) {
 		struct futex_pi_state *pi_state = top_waiter->pi_state;
+		struct rt_mutex_waiter *rt_waiter;
 
 		ret = -EINVAL;
 		if (!pi_state)
@@ -1155,22 +1157,39 @@ int futex_unlock_pi(u32 __user *uaddr, u
 		if (pi_state->owner != current)
 			goto out_unlock;
 
-		get_pi_state(pi_state);
 		/*
 		 * By taking wait_lock while still holding hb->lock, we ensure
-		 * there is no point where we hold neither; and therefore
-		 * wake_futex_p() must observe a state consistent with what we
-		 * observed.
+		 * there is no point where we hold neither; and thereby
+		 * wake_futex_pi() must observe any new waiters.
+		 *
+		 * Since the cleanup: case in futex_lock_pi() removes the
+		 * rt_waiter without holding hb->lock, it is possible for
+		 * wake_futex_pi() to not find a waiter while the above does,
+		 * in this case the waiter is on the way out and it can be
+		 * ignored.
 		 *
 		 * In particular; this forces __rt_mutex_start_proxy() to
 		 * complete such that we're guaranteed to observe the
-		 * rt_waiter. Also see the WARN in wake_futex_pi().
+		 * rt_waiter.
 		 */
 		raw_spin_lock_irq(&pi_state->pi_mutex.wait_lock);
+
+		/*
+		 * Futex vs rt_mutex waiter state -- if there are no rt_mutex
+		 * waiters even though futex thinks there are, then the waiter
+		 * is leaving and the uncontended path is safe to take.
+		 */
+		rt_waiter = rt_mutex_top_waiter(&pi_state->pi_mutex);
+		if (!rt_waiter) {
+			raw_spin_unlock_irq(&pi_state->pi_mutex.wait_lock);
+			goto do_uncontended;
+		}
+
+		get_pi_state(pi_state);
 		spin_unlock(&hb->lock);
 
 		/* drops pi_state->pi_mutex.wait_lock */
-		ret = wake_futex_pi(uaddr, uval, pi_state);
+		ret = wake_futex_pi(uaddr, uval, pi_state, rt_waiter);
 
 		put_pi_state(pi_state);
 
@@ -1198,6 +1217,7 @@ int futex_unlock_pi(u32 __user *uaddr, u
 		return ret;
 	}
 
+do_uncontended:
 	/*
 	 * We have no kernel internal state, i.e. no waiters in the
 	 * kernel. Waiters which are about to queue themselves are stuck
--- a/kernel/futex/requeue.c
+++ b/kernel/futex/requeue.c
@@ -850,11 +850,13 @@ int futex_wait_requeue_pi(u32 __user *ua
 		pi_mutex = &q.pi_state->pi_mutex;
 		ret = rt_mutex_wait_proxy_lock(pi_mutex, to, &rt_waiter);
 
-		/* Current is not longer pi_blocked_on */
-		spin_lock(q.lock_ptr);
+		/*
+		 * See futex_unlock_pi()'s cleanup: comment.
+		 */
 		if (ret && !rt_mutex_cleanup_proxy_lock(pi_mutex, &rt_waiter))
 			ret = 0;
 
+		spin_lock(q.lock_ptr);
 		debug_rt_mutex_free_waiter(&rt_waiter);
 		/*
 		 * Fixup the pi_state owner and possibly acquire the lock if we