1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
|
// SPDX-License-Identifier: GPL-2.0
/*
* Common clock framework driver for the Versaclock7 family of timing devices.
*
* Copyright (c) 2022 Renesas Electronics Corporation
*/
#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
#include <linux/bitfield.h>
#include <linux/clk.h>
#include <linux/clk-provider.h>
#include <linux/i2c.h>
#include <linux/math64.h>
#include <linux/module.h>
#include <linux/of.h>
#include <linux/property.h>
#include <linux/regmap.h>
#include <linux/swab.h>
/*
* 16-bit register address: the lower 8 bits of the register address come
* from the offset addr byte and the upper 8 bits come from the page register.
*/
#define VC7_PAGE_ADDR 0xFD
#define VC7_PAGE_WINDOW 256
#define VC7_MAX_REG 0x364
/* Maximum number of banks supported by VC7 */
#define VC7_NUM_BANKS 7
/* Maximum number of FODs supported by VC7 */
#define VC7_NUM_FOD 3
/* Maximum number of IODs supported by VC7 */
#define VC7_NUM_IOD 4
/* Maximum number of outputs supported by VC7 */
#define VC7_NUM_OUT 12
/* VCO valid range is 9.5 GHz to 10.7 GHz */
#define VC7_APLL_VCO_MIN 9500000000UL
#define VC7_APLL_VCO_MAX 10700000000UL
/* APLL denominator is fixed at 2^27 */
#define VC7_APLL_DENOMINATOR_BITS 27
/* FOD 1st stage denominator is fixed 2^34 */
#define VC7_FOD_DENOMINATOR_BITS 34
/* IOD can operate between 1kHz and 650MHz */
#define VC7_IOD_RATE_MIN 1000UL
#define VC7_IOD_RATE_MAX 650000000UL
#define VC7_IOD_MIN_DIVISOR 14
#define VC7_IOD_MAX_DIVISOR 0x1ffffff /* 25-bit */
#define VC7_FOD_RATE_MIN 1000UL
#define VC7_FOD_RATE_MAX 650000000UL
#define VC7_FOD_1ST_STAGE_RATE_MIN 33000000UL /* 33 MHz */
#define VC7_FOD_1ST_STAGE_RATE_MAX 650000000UL /* 650 MHz */
#define VC7_FOD_1ST_INT_MAX 324
#define VC7_FOD_2ND_INT_MIN 2
#define VC7_FOD_2ND_INT_MAX 0x1ffff /* 17-bit */
/* VC7 Registers */
#define VC7_REG_XO_CNFG 0x2C
#define VC7_REG_XO_CNFG_COUNT 4
#define VC7_REG_XO_IB_H_DIV_SHIFT 24
#define VC7_REG_XO_IB_H_DIV_MASK GENMASK(28, VC7_REG_XO_IB_H_DIV_SHIFT)
#define VC7_REG_APLL_FB_DIV_FRAC 0x120
#define VC7_REG_APLL_FB_DIV_FRAC_COUNT 4
#define VC7_REG_APLL_FB_DIV_FRAC_MASK GENMASK(26, 0)
#define VC7_REG_APLL_FB_DIV_INT 0x124
#define VC7_REG_APLL_FB_DIV_INT_COUNT 2
#define VC7_REG_APLL_FB_DIV_INT_MASK GENMASK(9, 0)
#define VC7_REG_APLL_CNFG 0x127
#define VC7_REG_APLL_EN_DOUBLER BIT(0)
#define VC7_REG_OUT_BANK_CNFG(idx) (0x280 + (0x4 * (idx)))
#define VC7_REG_OUTPUT_BANK_SRC_MASK GENMASK(2, 0)
#define VC7_REG_FOD_INT_CNFG(idx) (0x1E0 + (0x10 * (idx)))
#define VC7_REG_FOD_INT_CNFG_COUNT 8
#define VC7_REG_FOD_1ST_INT_MASK GENMASK(8, 0)
#define VC7_REG_FOD_2ND_INT_SHIFT 9
#define VC7_REG_FOD_2ND_INT_MASK GENMASK(25, VC7_REG_FOD_2ND_INT_SHIFT)
#define VC7_REG_FOD_FRAC_SHIFT 26
#define VC7_REG_FOD_FRAC_MASK GENMASK_ULL(59, VC7_REG_FOD_FRAC_SHIFT)
#define VC7_REG_IOD_INT_CNFG(idx) (0x1C0 + (0x8 * (idx)))
#define VC7_REG_IOD_INT_CNFG_COUNT 4
#define VC7_REG_IOD_INT_MASK GENMASK(24, 0)
#define VC7_REG_ODRV_EN(idx) (0x240 + (0x4 * (idx)))
#define VC7_REG_OUT_DIS BIT(0)
struct vc7_driver_data;
static const struct regmap_config vc7_regmap_config;
/* Supported Renesas VC7 models */
enum vc7_model {
VC7_RC21008A,
};
struct vc7_chip_info {
const enum vc7_model model;
const unsigned int banks[VC7_NUM_BANKS];
const unsigned int num_banks;
const unsigned int outputs[VC7_NUM_OUT];
const unsigned int num_outputs;
};
/*
* Changing the APLL frequency is currently not supported.
* The APLL will consist of an opaque block between the XO and FOD/IODs and
* its frequency will be computed based on the current state of the device.
*/
struct vc7_apll_data {
struct clk *clk;
struct vc7_driver_data *vc7;
u8 xo_ib_h_div;
u8 en_doubler;
u16 apll_fb_div_int;
u32 apll_fb_div_frac;
};
struct vc7_fod_data {
struct clk_hw hw;
struct vc7_driver_data *vc7;
unsigned int num;
u32 fod_1st_int;
u32 fod_2nd_int;
u64 fod_frac;
};
struct vc7_iod_data {
struct clk_hw hw;
struct vc7_driver_data *vc7;
unsigned int num;
u32 iod_int;
};
struct vc7_out_data {
struct clk_hw hw;
struct vc7_driver_data *vc7;
unsigned int num;
unsigned int out_dis;
};
struct vc7_driver_data {
struct i2c_client *client;
struct regmap *regmap;
const struct vc7_chip_info *chip_info;
struct clk *pin_xin;
struct vc7_apll_data clk_apll;
struct vc7_fod_data clk_fod[VC7_NUM_FOD];
struct vc7_iod_data clk_iod[VC7_NUM_IOD];
struct vc7_out_data clk_out[VC7_NUM_OUT];
};
struct vc7_bank_src_map {
enum vc7_bank_src_type {
VC7_FOD,
VC7_IOD,
} type;
union _divider {
struct vc7_iod_data *iod;
struct vc7_fod_data *fod;
} src;
};
static struct clk_hw *vc7_of_clk_get(struct of_phandle_args *clkspec,
void *data)
{
struct vc7_driver_data *vc7 = data;
unsigned int idx = clkspec->args[0];
if (idx >= vc7->chip_info->num_outputs)
return ERR_PTR(-EINVAL);
return &vc7->clk_out[idx].hw;
}
static const unsigned int RC21008A_index_to_output_mapping[] = {
1, 2, 3, 6, 7, 8, 10, 11
};
static int vc7_map_index_to_output(const enum vc7_model model, const unsigned int i)
{
switch (model) {
case VC7_RC21008A:
return RC21008A_index_to_output_mapping[i];
default:
return i;
}
}
/* bank to output mapping, same across all variants */
static const unsigned int output_bank_mapping[] = {
0, /* Output 0 */
1, /* Output 1 */
2, /* Output 2 */
2, /* Output 3 */
3, /* Output 4 */
3, /* Output 5 */
3, /* Output 6 */
3, /* Output 7 */
4, /* Output 8 */
4, /* Output 9 */
5, /* Output 10 */
6 /* Output 11 */
};
/**
* vc7_64_mul_64_to_128() - Multiply two u64 and return an unsigned 128-bit integer
* as an upper and lower part.
*
* @left: The left argument.
* @right: The right argument.
* @hi: The upper 64-bits of the 128-bit product.
* @lo: The lower 64-bits of the 128-bit product.
*
* From mul_64_64 in crypto/ecc.c:350 in the linux kernel, accessed in v5.17.2.
*/
static void vc7_64_mul_64_to_128(u64 left, u64 right, u64 *hi, u64 *lo)
{
u64 a0 = left & 0xffffffffull;
u64 a1 = left >> 32;
u64 b0 = right & 0xffffffffull;
u64 b1 = right >> 32;
u64 m0 = a0 * b0;
u64 m1 = a0 * b1;
u64 m2 = a1 * b0;
u64 m3 = a1 * b1;
m2 += (m0 >> 32);
m2 += m1;
/* Overflow */
if (m2 < m1)
m3 += 0x100000000ull;
*lo = (m0 & 0xffffffffull) | (m2 << 32);
*hi = m3 + (m2 >> 32);
}
/**
* vc7_128_div_64_to_64() - Divides a 128-bit uint by a 64-bit divisor, return a 64-bit quotient.
*
* @numhi: The uppper 64-bits of the dividend.
* @numlo: The lower 64-bits of the dividend.
* @den: The denominator (divisor).
* @r: The remainder, pass NULL if the remainder is not needed.
*
* Originally from libdivide, modified to use kernel u64/u32 types.
*
* See https://github.com/ridiculousfish/libdivide/blob/master/libdivide.h#L471.
*
* Return: The 64-bit quotient of the division.
*
* In case of overflow of division by zero, max(u64) is returned.
*/
static u64 vc7_128_div_64_to_64(u64 numhi, u64 numlo, u64 den, u64 *r)
{
/*
* We work in base 2**32.
* A uint32 holds a single digit. A uint64 holds two digits.
* Our numerator is conceptually [num3, num2, num1, num0].
* Our denominator is [den1, den0].
*/
const u64 b = ((u64)1 << 32);
/* The high and low digits of our computed quotient. */
u32 q1, q0;
/* The normalization shift factor */
int shift;
/*
* The high and low digits of our denominator (after normalizing).
* Also the low 2 digits of our numerator (after normalizing).
*/
u32 den1, den0, num1, num0;
/* A partial remainder; */
u64 rem;
/*
* The estimated quotient, and its corresponding remainder (unrelated
* to true remainder).
*/
u64 qhat, rhat;
/* Variables used to correct the estimated quotient. */
u64 c1, c2;
/* Check for overflow and divide by 0. */
if (numhi >= den) {
if (r)
*r = ~0ull;
return ~0ull;
}
/*
* Determine the normalization factor. We multiply den by this, so that
* its leading digit is at least half b. In binary this means just
* shifting left by the number of leading zeros, so that there's a 1 in
* the MSB.
*
* We also shift numer by the same amount. This cannot overflow because
* numhi < den. The expression (-shift & 63) is the same as (64 -
* shift), except it avoids the UB of shifting by 64. The funny bitwise
* 'and' ensures that numlo does not get shifted into numhi if shift is
* 0. clang 11 has an x86 codegen bug here: see LLVM bug 50118. The
* sequence below avoids it.
*/
shift = __builtin_clzll(den);
den <<= shift;
numhi <<= shift;
numhi |= (numlo >> (-shift & 63)) & (-(s64)shift >> 63);
numlo <<= shift;
/*
* Extract the low digits of the numerator and both digits of the
* denominator.
*/
num1 = (u32)(numlo >> 32);
num0 = (u32)(numlo & 0xFFFFFFFFu);
den1 = (u32)(den >> 32);
den0 = (u32)(den & 0xFFFFFFFFu);
/*
* We wish to compute q1 = [n3 n2 n1] / [d1 d0].
* Estimate q1 as [n3 n2] / [d1], and then correct it.
* Note while qhat may be 2 digits, q1 is always 1 digit.
*/
qhat = div64_u64_rem(numhi, den1, &rhat);
c1 = qhat * den0;
c2 = rhat * b + num1;
if (c1 > c2)
qhat -= (c1 - c2 > den) ? 2 : 1;
q1 = (u32)qhat;
/* Compute the true (partial) remainder. */
rem = numhi * b + num1 - q1 * den;
/*
* We wish to compute q0 = [rem1 rem0 n0] / [d1 d0].
* Estimate q0 as [rem1 rem0] / [d1] and correct it.
*/
qhat = div64_u64_rem(rem, den1, &rhat);
c1 = qhat * den0;
c2 = rhat * b + num0;
if (c1 > c2)
qhat -= (c1 - c2 > den) ? 2 : 1;
q0 = (u32)qhat;
/* Return remainder if requested. */
if (r)
*r = (rem * b + num0 - q0 * den) >> shift;
return ((u64)q1 << 32) | q0;
}
static int vc7_get_bank_clk(struct vc7_driver_data *vc7,
unsigned int bank_idx,
unsigned int output_bank_src,
struct vc7_bank_src_map *map)
{
/* Mapping from Table 38 in datasheet */
if (bank_idx == 0 || bank_idx == 1) {
switch (output_bank_src) {
case 0:
map->type = VC7_IOD,
map->src.iod = &vc7->clk_iod[0];
return 0;
case 1:
map->type = VC7_IOD,
map->src.iod = &vc7->clk_iod[1];
return 0;
case 4:
map->type = VC7_FOD,
map->src.fod = &vc7->clk_fod[0];
return 0;
case 5:
map->type = VC7_FOD,
map->src.fod = &vc7->clk_fod[1];
return 0;
default:
break;
}
} else if (bank_idx == 2) {
switch (output_bank_src) {
case 1:
map->type = VC7_IOD,
map->src.iod = &vc7->clk_iod[1];
return 0;
case 4:
map->type = VC7_FOD,
map->src.fod = &vc7->clk_fod[0];
return 0;
case 5:
map->type = VC7_FOD,
map->src.fod = &vc7->clk_fod[1];
return 0;
default:
break;
}
} else if (bank_idx == 3) {
switch (output_bank_src) {
case 4:
map->type = VC7_FOD,
map->src.fod = &vc7->clk_fod[0];
return 0;
case 5:
map->type = VC7_FOD,
map->src.fod = &vc7->clk_fod[1];
return 0;
case 6:
map->type = VC7_FOD,
map->src.fod = &vc7->clk_fod[2];
return 0;
default:
break;
}
} else if (bank_idx == 4) {
switch (output_bank_src) {
case 0:
/* CLKIN1 not supported in this driver */
break;
case 2:
map->type = VC7_IOD,
map->src.iod = &vc7->clk_iod[2];
return 0;
case 5:
map->type = VC7_FOD,
map->src.fod = &vc7->clk_fod[1];
return 0;
case 6:
map->type = VC7_FOD,
map->src.fod = &vc7->clk_fod[2];
return 0;
case 7:
/* CLKIN0 not supported in this driver */
break;
default:
break;
}
} else if (bank_idx == 5) {
switch (output_bank_src) {
case 0:
/* CLKIN1 not supported in this driver */
break;
case 1:
/* XIN_REFIN not supported in this driver */
break;
case 2:
map->type = VC7_IOD,
map->src.iod = &vc7->clk_iod[2];
return 0;
case 3:
map->type = VC7_IOD,
map->src.iod = &vc7->clk_iod[3];
return 0;
case 5:
map->type = VC7_FOD,
map->src.fod = &vc7->clk_fod[1];
return 0;
case 6:
map->type = VC7_FOD,
map->src.fod = &vc7->clk_fod[2];
return 0;
case 7:
/* CLKIN0 not supported in this driver */
break;
default:
break;
}
} else if (bank_idx == 6) {
switch (output_bank_src) {
case 0:
/* CLKIN1 not supported in this driver */
break;
case 2:
map->type = VC7_IOD,
map->src.iod = &vc7->clk_iod[2];
return 0;
case 3:
map->type = VC7_IOD,
map->src.iod = &vc7->clk_iod[3];
return 0;
case 5:
map->type = VC7_FOD,
map->src.fod = &vc7->clk_fod[1];
return 0;
case 6:
map->type = VC7_FOD,
map->src.fod = &vc7->clk_fod[2];
return 0;
case 7:
/* CLKIN0 not supported in this driver */
break;
default:
break;
}
}
pr_warn("bank_src%d = %d is not supported\n", bank_idx, output_bank_src);
return -1;
}
static int vc7_read_apll(struct vc7_driver_data *vc7)
{
int err;
u32 val32;
u16 val16;
err = regmap_bulk_read(vc7->regmap,
VC7_REG_XO_CNFG,
(u32 *)&val32,
VC7_REG_XO_CNFG_COUNT);
if (err) {
dev_err(&vc7->client->dev, "failed to read XO_CNFG\n");
return err;
}
vc7->clk_apll.xo_ib_h_div = (val32 & VC7_REG_XO_IB_H_DIV_MASK)
>> VC7_REG_XO_IB_H_DIV_SHIFT;
err = regmap_read(vc7->regmap,
VC7_REG_APLL_CNFG,
&val32);
if (err) {
dev_err(&vc7->client->dev, "failed to read APLL_CNFG\n");
return err;
}
vc7->clk_apll.en_doubler = val32 & VC7_REG_APLL_EN_DOUBLER;
err = regmap_bulk_read(vc7->regmap,
VC7_REG_APLL_FB_DIV_FRAC,
(u32 *)&val32,
VC7_REG_APLL_FB_DIV_FRAC_COUNT);
if (err) {
dev_err(&vc7->client->dev, "failed to read APLL_FB_DIV_FRAC\n");
return err;
}
vc7->clk_apll.apll_fb_div_frac = val32 & VC7_REG_APLL_FB_DIV_FRAC_MASK;
err = regmap_bulk_read(vc7->regmap,
VC7_REG_APLL_FB_DIV_INT,
(u16 *)&val16,
VC7_REG_APLL_FB_DIV_INT_COUNT);
if (err) {
dev_err(&vc7->client->dev, "failed to read APLL_FB_DIV_INT\n");
return err;
}
vc7->clk_apll.apll_fb_div_int = val16 & VC7_REG_APLL_FB_DIV_INT_MASK;
return 0;
}
static int vc7_read_fod(struct vc7_driver_data *vc7, unsigned int idx)
{
int err;
u64 val;
err = regmap_bulk_read(vc7->regmap,
VC7_REG_FOD_INT_CNFG(idx),
(u64 *)&val,
VC7_REG_FOD_INT_CNFG_COUNT);
if (err) {
dev_err(&vc7->client->dev, "failed to read FOD%d\n", idx);
return err;
}
vc7->clk_fod[idx].fod_1st_int = (val & VC7_REG_FOD_1ST_INT_MASK);
vc7->clk_fod[idx].fod_2nd_int =
(val & VC7_REG_FOD_2ND_INT_MASK) >> VC7_REG_FOD_2ND_INT_SHIFT;
vc7->clk_fod[idx].fod_frac = (val & VC7_REG_FOD_FRAC_MASK)
>> VC7_REG_FOD_FRAC_SHIFT;
return 0;
}
static int vc7_write_fod(struct vc7_driver_data *vc7, unsigned int idx)
{
int err;
u64 val;
/*
* FOD dividers are part of an atomic group where fod_1st_int,
* fod_2nd_int, and fod_frac must be written together. The new divider
* is applied when the MSB of fod_frac is written.
*/
err = regmap_bulk_read(vc7->regmap,
VC7_REG_FOD_INT_CNFG(idx),
(u64 *)&val,
VC7_REG_FOD_INT_CNFG_COUNT);
if (err) {
dev_err(&vc7->client->dev, "failed to read FOD%d\n", idx);
return err;
}
val = u64_replace_bits(val,
vc7->clk_fod[idx].fod_1st_int,
VC7_REG_FOD_1ST_INT_MASK);
val = u64_replace_bits(val,
vc7->clk_fod[idx].fod_2nd_int,
VC7_REG_FOD_2ND_INT_MASK);
val = u64_replace_bits(val,
vc7->clk_fod[idx].fod_frac,
VC7_REG_FOD_FRAC_MASK);
err = regmap_bulk_write(vc7->regmap,
VC7_REG_FOD_INT_CNFG(idx),
(u64 *)&val,
sizeof(u64));
if (err) {
dev_err(&vc7->client->dev, "failed to write FOD%d\n", idx);
return err;
}
return 0;
}
static int vc7_read_iod(struct vc7_driver_data *vc7, unsigned int idx)
{
int err;
u32 val;
err = regmap_bulk_read(vc7->regmap,
VC7_REG_IOD_INT_CNFG(idx),
(u32 *)&val,
VC7_REG_IOD_INT_CNFG_COUNT);
if (err) {
dev_err(&vc7->client->dev, "failed to read IOD%d\n", idx);
return err;
}
vc7->clk_iod[idx].iod_int = (val & VC7_REG_IOD_INT_MASK);
return 0;
}
static int vc7_write_iod(struct vc7_driver_data *vc7, unsigned int idx)
{
int err;
u32 val;
/*
* IOD divider field is atomic and all bits must be written.
* The new divider is applied when the MSB of iod_int is written.
*/
err = regmap_bulk_read(vc7->regmap,
VC7_REG_IOD_INT_CNFG(idx),
(u32 *)&val,
VC7_REG_IOD_INT_CNFG_COUNT);
if (err) {
dev_err(&vc7->client->dev, "failed to read IOD%d\n", idx);
return err;
}
val = u32_replace_bits(val,
vc7->clk_iod[idx].iod_int,
VC7_REG_IOD_INT_MASK);
err = regmap_bulk_write(vc7->regmap,
VC7_REG_IOD_INT_CNFG(idx),
(u32 *)&val,
sizeof(u32));
if (err) {
dev_err(&vc7->client->dev, "failed to write IOD%d\n", idx);
return err;
}
return 0;
}
static int vc7_read_output(struct vc7_driver_data *vc7, unsigned int idx)
{
int err;
unsigned int val, out_num;
out_num = vc7_map_index_to_output(vc7->chip_info->model, idx);
err = regmap_read(vc7->regmap,
VC7_REG_ODRV_EN(out_num),
&val);
if (err) {
dev_err(&vc7->client->dev, "failed to read ODRV_EN[%d]\n", idx);
return err;
}
vc7->clk_out[idx].out_dis = val & VC7_REG_OUT_DIS;
return 0;
}
static int vc7_write_output(struct vc7_driver_data *vc7, unsigned int idx)
{
int err;
unsigned int out_num;
out_num = vc7_map_index_to_output(vc7->chip_info->model, idx);
err = regmap_write_bits(vc7->regmap,
VC7_REG_ODRV_EN(out_num),
VC7_REG_OUT_DIS,
vc7->clk_out[idx].out_dis);
if (err) {
dev_err(&vc7->client->dev, "failed to write ODRV_EN[%d]\n", idx);
return err;
}
return 0;
}
static unsigned long vc7_get_apll_rate(struct vc7_driver_data *vc7)
{
int err;
unsigned long xtal_rate;
u64 refin_div, apll_rate;
xtal_rate = clk_get_rate(vc7->pin_xin);
err = vc7_read_apll(vc7);
if (err) {
dev_err(&vc7->client->dev, "unable to read apll\n");
return err;
}
/* 0 is bypassed, 1 is reserved */
if (vc7->clk_apll.xo_ib_h_div < 2)
refin_div = xtal_rate;
else
refin_div = div64_u64(xtal_rate, vc7->clk_apll.xo_ib_h_div);
if (vc7->clk_apll.en_doubler)
refin_div *= 2;
/* divider = int + (frac / 2^27) */
apll_rate = (refin_div * vc7->clk_apll.apll_fb_div_int) +
((refin_div * vc7->clk_apll.apll_fb_div_frac) >> VC7_APLL_DENOMINATOR_BITS);
pr_debug("%s - xo_ib_h_div: %u, apll_fb_div_int: %u, apll_fb_div_frac: %u\n",
__func__, vc7->clk_apll.xo_ib_h_div, vc7->clk_apll.apll_fb_div_int,
vc7->clk_apll.apll_fb_div_frac);
pr_debug("%s - refin_div: %llu, apll rate: %llu\n",
__func__, refin_div, apll_rate);
return apll_rate;
}
static void vc7_calc_iod_divider(unsigned long rate, unsigned long parent_rate,
u32 *divider)
{
*divider = DIV_ROUND_UP(parent_rate, rate);
if (*divider < VC7_IOD_MIN_DIVISOR)
*divider = VC7_IOD_MIN_DIVISOR;
if (*divider > VC7_IOD_MAX_DIVISOR)
*divider = VC7_IOD_MAX_DIVISOR;
}
static void vc7_calc_fod_1st_stage(unsigned long rate, unsigned long parent_rate,
u32 *div_int, u64 *div_frac)
{
u64 rem;
*div_int = (u32)div64_u64_rem(parent_rate, rate, &rem);
*div_frac = div64_u64(rem << VC7_FOD_DENOMINATOR_BITS, rate);
}
static unsigned long vc7_calc_fod_1st_stage_rate(unsigned long parent_rate,
u32 fod_1st_int, u64 fod_frac)
{
u64 numer, denom, hi, lo, divisor;
numer = fod_frac;
denom = BIT_ULL(VC7_FOD_DENOMINATOR_BITS);
if (fod_frac) {
vc7_64_mul_64_to_128(parent_rate, denom, &hi, &lo);
divisor = ((u64)fod_1st_int * denom) + numer;
return vc7_128_div_64_to_64(hi, lo, divisor, NULL);
}
return div64_u64(parent_rate, fod_1st_int);
}
static unsigned long vc7_calc_fod_2nd_stage_rate(unsigned long parent_rate,
u32 fod_1st_int, u32 fod_2nd_int, u64 fod_frac)
{
unsigned long fod_1st_stage_rate;
fod_1st_stage_rate = vc7_calc_fod_1st_stage_rate(parent_rate, fod_1st_int, fod_frac);
if (fod_2nd_int < 2)
return fod_1st_stage_rate;
/*
* There is a div-by-2 preceding the 2nd stage integer divider
* (not shown on block diagram) so the actual 2nd stage integer
* divisor is 2 * N.
*/
return div64_u64(fod_1st_stage_rate >> 1, fod_2nd_int);
}
static void vc7_calc_fod_divider(unsigned long rate, unsigned long parent_rate,
u32 *fod_1st_int, u32 *fod_2nd_int, u64 *fod_frac)
{
unsigned int allow_frac, i, best_frac_i;
unsigned long first_stage_rate;
vc7_calc_fod_1st_stage(rate, parent_rate, fod_1st_int, fod_frac);
first_stage_rate = vc7_calc_fod_1st_stage_rate(parent_rate, *fod_1st_int, *fod_frac);
*fod_2nd_int = 0;
/* Do we need the second stage integer divider? */
if (first_stage_rate < VC7_FOD_1ST_STAGE_RATE_MIN) {
allow_frac = 0;
best_frac_i = VC7_FOD_2ND_INT_MIN;
for (i = VC7_FOD_2ND_INT_MIN; i <= VC7_FOD_2ND_INT_MAX; i++) {
/*
* 1) There is a div-by-2 preceding the 2nd stage integer divider
* (not shown on block diagram) so the actual 2nd stage integer
* divisor is 2 * N.
* 2) Attempt to find an integer solution first. This means stepping
* through each 2nd stage integer and recalculating the 1st stage
* until the 1st stage frequency is out of bounds. If no integer
* solution is found, use the best fractional solution.
*/
vc7_calc_fod_1st_stage(parent_rate, rate * 2 * i, fod_1st_int, fod_frac);
first_stage_rate = vc7_calc_fod_1st_stage_rate(parent_rate,
*fod_1st_int,
*fod_frac);
/* Remember the first viable fractional solution */
if (best_frac_i == VC7_FOD_2ND_INT_MIN &&
first_stage_rate > VC7_FOD_1ST_STAGE_RATE_MIN) {
best_frac_i = i;
}
/* Is the divider viable? Prefer integer solutions over fractional. */
if (*fod_1st_int < VC7_FOD_1ST_INT_MAX &&
first_stage_rate >= VC7_FOD_1ST_STAGE_RATE_MIN &&
(allow_frac || *fod_frac == 0)) {
*fod_2nd_int = i;
break;
}
/* Ran out of divisors or the 1st stage frequency is out of range */
if (i >= VC7_FOD_2ND_INT_MAX ||
first_stage_rate > VC7_FOD_1ST_STAGE_RATE_MAX) {
allow_frac = 1;
i = best_frac_i;
/* Restore the best frac and rerun the loop for the last time */
if (best_frac_i != VC7_FOD_2ND_INT_MIN)
i--;
continue;
}
}
}
}
static unsigned long vc7_fod_recalc_rate(struct clk_hw *hw, unsigned long parent_rate)
{
struct vc7_fod_data *fod = container_of(hw, struct vc7_fod_data, hw);
struct vc7_driver_data *vc7 = fod->vc7;
int err;
unsigned long fod_rate;
err = vc7_read_fod(vc7, fod->num);
if (err) {
dev_err(&vc7->client->dev, "error reading registers for %s\n",
clk_hw_get_name(hw));
return err;
}
pr_debug("%s - %s: parent_rate: %lu\n", __func__, clk_hw_get_name(hw), parent_rate);
fod_rate = vc7_calc_fod_2nd_stage_rate(parent_rate, fod->fod_1st_int,
fod->fod_2nd_int, fod->fod_frac);
pr_debug("%s - %s: fod_1st_int: %u, fod_2nd_int: %u, fod_frac: %llu\n",
__func__, clk_hw_get_name(hw),
fod->fod_1st_int, fod->fod_2nd_int, fod->fod_frac);
pr_debug("%s - %s rate: %lu\n", __func__, clk_hw_get_name(hw), fod_rate);
return fod_rate;
}
static long vc7_fod_round_rate(struct clk_hw *hw, unsigned long rate, unsigned long *parent_rate)
{
struct vc7_fod_data *fod = container_of(hw, struct vc7_fod_data, hw);
unsigned long fod_rate;
pr_debug("%s - %s: requested rate: %lu, parent_rate: %lu\n",
__func__, clk_hw_get_name(hw), rate, *parent_rate);
vc7_calc_fod_divider(rate, *parent_rate,
&fod->fod_1st_int, &fod->fod_2nd_int, &fod->fod_frac);
fod_rate = vc7_calc_fod_2nd_stage_rate(*parent_rate, fod->fod_1st_int,
fod->fod_2nd_int, fod->fod_frac);
pr_debug("%s - %s: fod_1st_int: %u, fod_2nd_int: %u, fod_frac: %llu\n",
__func__, clk_hw_get_name(hw),
fod->fod_1st_int, fod->fod_2nd_int, fod->fod_frac);
pr_debug("%s - %s rate: %lu\n", __func__, clk_hw_get_name(hw), fod_rate);
return fod_rate;
}
static int vc7_fod_set_rate(struct clk_hw *hw, unsigned long rate, unsigned long parent_rate)
{
struct vc7_fod_data *fod = container_of(hw, struct vc7_fod_data, hw);
struct vc7_driver_data *vc7 = fod->vc7;
unsigned long fod_rate;
pr_debug("%s - %s: rate: %lu, parent_rate: %lu\n",
__func__, clk_hw_get_name(hw), rate, parent_rate);
if (rate < VC7_FOD_RATE_MIN || rate > VC7_FOD_RATE_MAX) {
dev_err(&vc7->client->dev,
"requested frequency %lu Hz for %s is out of range\n",
rate, clk_hw_get_name(hw));
return -EINVAL;
}
vc7_write_fod(vc7, fod->num);
fod_rate = vc7_calc_fod_2nd_stage_rate(parent_rate, fod->fod_1st_int,
fod->fod_2nd_int, fod->fod_frac);
pr_debug("%s - %s: fod_1st_int: %u, fod_2nd_int: %u, fod_frac: %llu\n",
__func__, clk_hw_get_name(hw),
fod->fod_1st_int, fod->fod_2nd_int, fod->fod_frac);
pr_debug("%s - %s rate: %lu\n", __func__, clk_hw_get_name(hw), fod_rate);
return 0;
}
static const struct clk_ops vc7_fod_ops = {
.recalc_rate = vc7_fod_recalc_rate,
.round_rate = vc7_fod_round_rate,
.set_rate = vc7_fod_set_rate,
};
static unsigned long vc7_iod_recalc_rate(struct clk_hw *hw, unsigned long parent_rate)
{
struct vc7_iod_data *iod = container_of(hw, struct vc7_iod_data, hw);
struct vc7_driver_data *vc7 = iod->vc7;
int err;
unsigned long iod_rate;
err = vc7_read_iod(vc7, iod->num);
if (err) {
dev_err(&vc7->client->dev, "error reading registers for %s\n",
clk_hw_get_name(hw));
return err;
}
iod_rate = div64_u64(parent_rate, iod->iod_int);
pr_debug("%s - %s: iod_int: %u\n", __func__, clk_hw_get_name(hw), iod->iod_int);
pr_debug("%s - %s rate: %lu\n", __func__, clk_hw_get_name(hw), iod_rate);
return iod_rate;
}
static long vc7_iod_round_rate(struct clk_hw *hw, unsigned long rate, unsigned long *parent_rate)
{
struct vc7_iod_data *iod = container_of(hw, struct vc7_iod_data, hw);
unsigned long iod_rate;
pr_debug("%s - %s: requested rate: %lu, parent_rate: %lu\n",
__func__, clk_hw_get_name(hw), rate, *parent_rate);
vc7_calc_iod_divider(rate, *parent_rate, &iod->iod_int);
iod_rate = div64_u64(*parent_rate, iod->iod_int);
pr_debug("%s - %s: iod_int: %u\n", __func__, clk_hw_get_name(hw), iod->iod_int);
pr_debug("%s - %s rate: %ld\n", __func__, clk_hw_get_name(hw), iod_rate);
return iod_rate;
}
static int vc7_iod_set_rate(struct clk_hw *hw, unsigned long rate, unsigned long parent_rate)
{
struct vc7_iod_data *iod = container_of(hw, struct vc7_iod_data, hw);
struct vc7_driver_data *vc7 = iod->vc7;
unsigned long iod_rate;
pr_debug("%s - %s: rate: %lu, parent_rate: %lu\n",
__func__, clk_hw_get_name(hw), rate, parent_rate);
if (rate < VC7_IOD_RATE_MIN || rate > VC7_IOD_RATE_MAX) {
dev_err(&vc7->client->dev,
"requested frequency %lu Hz for %s is out of range\n",
rate, clk_hw_get_name(hw));
return -EINVAL;
}
vc7_write_iod(vc7, iod->num);
iod_rate = div64_u64(parent_rate, iod->iod_int);
pr_debug("%s - %s: iod_int: %u\n", __func__, clk_hw_get_name(hw), iod->iod_int);
pr_debug("%s - %s rate: %ld\n", __func__, clk_hw_get_name(hw), iod_rate);
return 0;
}
static const struct clk_ops vc7_iod_ops = {
.recalc_rate = vc7_iod_recalc_rate,
.round_rate = vc7_iod_round_rate,
.set_rate = vc7_iod_set_rate,
};
static int vc7_clk_out_prepare(struct clk_hw *hw)
{
struct vc7_out_data *out = container_of(hw, struct vc7_out_data, hw);
struct vc7_driver_data *vc7 = out->vc7;
int err;
out->out_dis = 0;
err = vc7_write_output(vc7, out->num);
if (err) {
dev_err(&vc7->client->dev, "error writing registers for %s\n",
clk_hw_get_name(hw));
return err;
}
pr_debug("%s - %s: clk prepared\n", __func__, clk_hw_get_name(hw));
return 0;
}
static void vc7_clk_out_unprepare(struct clk_hw *hw)
{
struct vc7_out_data *out = container_of(hw, struct vc7_out_data, hw);
struct vc7_driver_data *vc7 = out->vc7;
int err;
out->out_dis = 1;
err = vc7_write_output(vc7, out->num);
if (err) {
dev_err(&vc7->client->dev, "error writing registers for %s\n",
clk_hw_get_name(hw));
return;
}
pr_debug("%s - %s: clk unprepared\n", __func__, clk_hw_get_name(hw));
}
static int vc7_clk_out_is_enabled(struct clk_hw *hw)
{
struct vc7_out_data *out = container_of(hw, struct vc7_out_data, hw);
struct vc7_driver_data *vc7 = out->vc7;
int err, is_enabled;
err = vc7_read_output(vc7, out->num);
if (err) {
dev_err(&vc7->client->dev, "error reading registers for %s\n",
clk_hw_get_name(hw));
return err;
}
is_enabled = !out->out_dis;
pr_debug("%s - %s: is_enabled=%d\n", __func__, clk_hw_get_name(hw), is_enabled);
return is_enabled;
}
static const struct clk_ops vc7_clk_out_ops = {
.prepare = vc7_clk_out_prepare,
.unprepare = vc7_clk_out_unprepare,
.is_enabled = vc7_clk_out_is_enabled,
};
static int vc7_probe(struct i2c_client *client)
{
struct vc7_driver_data *vc7;
struct clk_init_data clk_init;
struct vc7_bank_src_map bank_src_map;
const char *node_name, *apll_name;
const char *parent_names[1];
unsigned int i, val, bank_idx, out_num;
unsigned long apll_rate;
int ret;
vc7 = devm_kzalloc(&client->dev, sizeof(*vc7), GFP_KERNEL);
if (!vc7)
return -ENOMEM;
i2c_set_clientdata(client, vc7);
vc7->client = client;
vc7->chip_info = i2c_get_match_data(client);
vc7->pin_xin = devm_clk_get(&client->dev, "xin");
if (PTR_ERR(vc7->pin_xin) == -EPROBE_DEFER) {
return dev_err_probe(&client->dev, -EPROBE_DEFER,
"xin not specified\n");
}
vc7->regmap = devm_regmap_init_i2c(client, &vc7_regmap_config);
if (IS_ERR(vc7->regmap)) {
return dev_err_probe(&client->dev, PTR_ERR(vc7->regmap),
"failed to allocate register map\n");
}
if (of_property_read_string(client->dev.of_node, "clock-output-names",
&node_name))
node_name = client->dev.of_node->name;
/* Register APLL */
apll_rate = vc7_get_apll_rate(vc7);
apll_name = kasprintf(GFP_KERNEL, "%s_apll", node_name);
vc7->clk_apll.clk = clk_register_fixed_rate(&client->dev, apll_name,
__clk_get_name(vc7->pin_xin),
0, apll_rate);
kfree(apll_name); /* ccf made a copy of the name */
if (IS_ERR(vc7->clk_apll.clk)) {
return dev_err_probe(&client->dev, PTR_ERR(vc7->clk_apll.clk),
"failed to register apll\n");
}
/* Register FODs */
for (i = 0; i < VC7_NUM_FOD; i++) {
memset(&clk_init, 0, sizeof(clk_init));
clk_init.name = kasprintf(GFP_KERNEL, "%s_fod%d", node_name, i);
clk_init.ops = &vc7_fod_ops;
clk_init.parent_names = parent_names;
parent_names[0] = __clk_get_name(vc7->clk_apll.clk);
clk_init.num_parents = 1;
vc7->clk_fod[i].num = i;
vc7->clk_fod[i].vc7 = vc7;
vc7->clk_fod[i].hw.init = &clk_init;
ret = devm_clk_hw_register(&client->dev, &vc7->clk_fod[i].hw);
if (ret)
goto err_clk_register;
kfree(clk_init.name); /* ccf made a copy of the name */
}
/* Register IODs */
for (i = 0; i < VC7_NUM_IOD; i++) {
memset(&clk_init, 0, sizeof(clk_init));
clk_init.name = kasprintf(GFP_KERNEL, "%s_iod%d", node_name, i);
clk_init.ops = &vc7_iod_ops;
clk_init.parent_names = parent_names;
parent_names[0] = __clk_get_name(vc7->clk_apll.clk);
clk_init.num_parents = 1;
vc7->clk_iod[i].num = i;
vc7->clk_iod[i].vc7 = vc7;
vc7->clk_iod[i].hw.init = &clk_init;
ret = devm_clk_hw_register(&client->dev, &vc7->clk_iod[i].hw);
if (ret)
goto err_clk_register;
kfree(clk_init.name); /* ccf made a copy of the name */
}
/* Register outputs */
for (i = 0; i < vc7->chip_info->num_outputs; i++) {
out_num = vc7_map_index_to_output(vc7->chip_info->model, i);
/*
* This driver does not support remapping FOD/IOD to banks.
* The device state is read and the driver is setup to match
* the device's existing mapping.
*/
bank_idx = output_bank_mapping[out_num];
regmap_read(vc7->regmap, VC7_REG_OUT_BANK_CNFG(bank_idx), &val);
val &= VC7_REG_OUTPUT_BANK_SRC_MASK;
memset(&bank_src_map, 0, sizeof(bank_src_map));
ret = vc7_get_bank_clk(vc7, bank_idx, val, &bank_src_map);
if (ret) {
dev_err_probe(&client->dev, ret,
"unable to register output %d\n", i);
return ret;
}
switch (bank_src_map.type) {
case VC7_FOD:
parent_names[0] = clk_hw_get_name(&bank_src_map.src.fod->hw);
break;
case VC7_IOD:
parent_names[0] = clk_hw_get_name(&bank_src_map.src.iod->hw);
break;
}
memset(&clk_init, 0, sizeof(clk_init));
clk_init.name = kasprintf(GFP_KERNEL, "%s_out%d", node_name, i);
clk_init.ops = &vc7_clk_out_ops;
clk_init.flags = CLK_SET_RATE_PARENT;
clk_init.parent_names = parent_names;
clk_init.num_parents = 1;
vc7->clk_out[i].num = i;
vc7->clk_out[i].vc7 = vc7;
vc7->clk_out[i].hw.init = &clk_init;
ret = devm_clk_hw_register(&client->dev, &vc7->clk_out[i].hw);
if (ret)
goto err_clk_register;
kfree(clk_init.name); /* ccf made a copy of the name */
}
ret = of_clk_add_hw_provider(client->dev.of_node, vc7_of_clk_get, vc7);
if (ret) {
dev_err_probe(&client->dev, ret, "unable to add clk provider\n");
goto err_clk;
}
return ret;
err_clk_register:
dev_err_probe(&client->dev, ret,
"unable to register %s\n", clk_init.name);
kfree(clk_init.name); /* ccf made a copy of the name */
err_clk:
clk_unregister_fixed_rate(vc7->clk_apll.clk);
return ret;
}
static void vc7_remove(struct i2c_client *client)
{
struct vc7_driver_data *vc7 = i2c_get_clientdata(client);
of_clk_del_provider(client->dev.of_node);
clk_unregister_fixed_rate(vc7->clk_apll.clk);
}
static bool vc7_volatile_reg(struct device *dev, unsigned int reg)
{
if (reg == VC7_PAGE_ADDR)
return false;
return true;
}
static const struct vc7_chip_info vc7_rc21008a_info = {
.model = VC7_RC21008A,
.num_banks = 6,
.num_outputs = 8,
};
static struct regmap_range_cfg vc7_range_cfg[] = {
{
.range_min = 0,
.range_max = VC7_MAX_REG,
.selector_reg = VC7_PAGE_ADDR,
.selector_mask = 0xFF,
.selector_shift = 0,
.window_start = 0,
.window_len = VC7_PAGE_WINDOW,
}};
static const struct regmap_config vc7_regmap_config = {
.reg_bits = 8,
.val_bits = 8,
.max_register = VC7_MAX_REG,
.ranges = vc7_range_cfg,
.num_ranges = ARRAY_SIZE(vc7_range_cfg),
.volatile_reg = vc7_volatile_reg,
.cache_type = REGCACHE_MAPLE,
.can_multi_write = true,
.reg_format_endian = REGMAP_ENDIAN_LITTLE,
.val_format_endian = REGMAP_ENDIAN_LITTLE,
};
static const struct i2c_device_id vc7_i2c_id[] = {
{ "rc21008a", .driver_data = (kernel_ulong_t)&vc7_rc21008a_info },
{}
};
MODULE_DEVICE_TABLE(i2c, vc7_i2c_id);
static const struct of_device_id vc7_of_match[] = {
{ .compatible = "renesas,rc21008a", .data = &vc7_rc21008a_info },
{}
};
MODULE_DEVICE_TABLE(of, vc7_of_match);
static struct i2c_driver vc7_i2c_driver = {
.driver = {
.name = "vc7",
.of_match_table = vc7_of_match,
},
.probe = vc7_probe,
.remove = vc7_remove,
.id_table = vc7_i2c_id,
};
module_i2c_driver(vc7_i2c_driver);
MODULE_LICENSE("GPL");
MODULE_AUTHOR("Alex Helms <alexander.helms.jy@renesas.com");
MODULE_DESCRIPTION("Renesas Versaclock7 common clock framework driver");
|