summaryrefslogtreecommitdiffstats
path: root/drivers/clocksource/timer-riscv.c
blob: 57857c0dfba97e0bfdcd5190e8aee31e11028667 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
// SPDX-License-Identifier: GPL-2.0
/*
 * Copyright (C) 2012 Regents of the University of California
 * Copyright (C) 2017 SiFive
 *
 * All RISC-V systems have a timer attached to every hart.  These timers can
 * either be read from the "time" and "timeh" CSRs, and can use the SBI to
 * setup events, or directly accessed using MMIO registers.
 */

#define pr_fmt(fmt) "riscv-timer: " fmt

#include <linux/acpi.h>
#include <linux/clocksource.h>
#include <linux/clockchips.h>
#include <linux/cpu.h>
#include <linux/delay.h>
#include <linux/irq.h>
#include <linux/irqdomain.h>
#include <linux/module.h>
#include <linux/sched_clock.h>
#include <linux/io-64-nonatomic-lo-hi.h>
#include <linux/interrupt.h>
#include <linux/of_irq.h>
#include <linux/limits.h>
#include <clocksource/timer-riscv.h>
#include <asm/smp.h>
#include <asm/cpufeature.h>
#include <asm/sbi.h>
#include <asm/timex.h>

static DEFINE_STATIC_KEY_FALSE(riscv_sstc_available);
static bool riscv_timer_cannot_wake_cpu;

static void riscv_clock_event_stop(void)
{
	if (static_branch_likely(&riscv_sstc_available)) {
		csr_write(CSR_STIMECMP, ULONG_MAX);
		if (IS_ENABLED(CONFIG_32BIT))
			csr_write(CSR_STIMECMPH, ULONG_MAX);
	} else {
		sbi_set_timer(U64_MAX);
	}
}

static int riscv_clock_next_event(unsigned long delta,
		struct clock_event_device *ce)
{
	u64 next_tval = get_cycles64() + delta;

	if (static_branch_likely(&riscv_sstc_available)) {
#if defined(CONFIG_32BIT)
		csr_write(CSR_STIMECMP, next_tval & 0xFFFFFFFF);
		csr_write(CSR_STIMECMPH, next_tval >> 32);
#else
		csr_write(CSR_STIMECMP, next_tval);
#endif
	} else
		sbi_set_timer(next_tval);

	return 0;
}

static unsigned int riscv_clock_event_irq;
static DEFINE_PER_CPU(struct clock_event_device, riscv_clock_event) = {
	.name			= "riscv_timer_clockevent",
	.features		= CLOCK_EVT_FEAT_ONESHOT,
	.rating			= 100,
	.set_next_event		= riscv_clock_next_event,
};

/*
 * It is guaranteed that all the timers across all the harts are synchronized
 * within one tick of each other, so while this could technically go
 * backwards when hopping between CPUs, practically it won't happen.
 */
static unsigned long long riscv_clocksource_rdtime(struct clocksource *cs)
{
	return get_cycles64();
}

static u64 notrace riscv_sched_clock(void)
{
	return get_cycles64();
}

static struct clocksource riscv_clocksource = {
	.name		= "riscv_clocksource",
	.rating		= 400,
	.mask		= CLOCKSOURCE_MASK(64),
	.flags		= CLOCK_SOURCE_IS_CONTINUOUS,
	.read		= riscv_clocksource_rdtime,
#if IS_ENABLED(CONFIG_GENERIC_GETTIMEOFDAY)
	.vdso_clock_mode = VDSO_CLOCKMODE_ARCHTIMER,
#else
	.vdso_clock_mode = VDSO_CLOCKMODE_NONE,
#endif
};

static int riscv_timer_starting_cpu(unsigned int cpu)
{
	struct clock_event_device *ce = per_cpu_ptr(&riscv_clock_event, cpu);

	ce->cpumask = cpumask_of(cpu);
	ce->irq = riscv_clock_event_irq;
	if (riscv_timer_cannot_wake_cpu)
		ce->features |= CLOCK_EVT_FEAT_C3STOP;
	if (static_branch_likely(&riscv_sstc_available))
		ce->rating = 450;
	clockevents_config_and_register(ce, riscv_timebase, 100, 0x7fffffff);

	enable_percpu_irq(riscv_clock_event_irq,
			  irq_get_trigger_type(riscv_clock_event_irq));
	return 0;
}

static int riscv_timer_dying_cpu(unsigned int cpu)
{
	disable_percpu_irq(riscv_clock_event_irq);
	return 0;
}

void riscv_cs_get_mult_shift(u32 *mult, u32 *shift)
{
	*mult = riscv_clocksource.mult;
	*shift = riscv_clocksource.shift;
}
EXPORT_SYMBOL_GPL(riscv_cs_get_mult_shift);

/* called directly from the low-level interrupt handler */
static irqreturn_t riscv_timer_interrupt(int irq, void *dev_id)
{
	struct clock_event_device *evdev = this_cpu_ptr(&riscv_clock_event);

	riscv_clock_event_stop();
	evdev->event_handler(evdev);

	return IRQ_HANDLED;
}

static int __init riscv_timer_init_common(void)
{
	int error;
	struct irq_domain *domain;
	struct fwnode_handle *intc_fwnode = riscv_get_intc_hwnode();

	domain = irq_find_matching_fwnode(intc_fwnode, DOMAIN_BUS_ANY);
	if (!domain) {
		pr_err("Failed to find irq_domain for INTC node [%pfwP]\n",
		       intc_fwnode);
		return -ENODEV;
	}

	riscv_clock_event_irq = irq_create_mapping(domain, RV_IRQ_TIMER);
	if (!riscv_clock_event_irq) {
		pr_err("Failed to map timer interrupt for node [%pfwP]\n", intc_fwnode);
		return -ENODEV;
	}

	error = clocksource_register_hz(&riscv_clocksource, riscv_timebase);
	if (error) {
		pr_err("RISCV timer registration failed [%d]\n", error);
		return error;
	}

	sched_clock_register(riscv_sched_clock, 64, riscv_timebase);

	error = request_percpu_irq(riscv_clock_event_irq,
				    riscv_timer_interrupt,
				    "riscv-timer", &riscv_clock_event);
	if (error) {
		pr_err("registering percpu irq failed [%d]\n", error);
		return error;
	}

	if (riscv_isa_extension_available(NULL, SSTC)) {
		pr_info("Timer interrupt in S-mode is available via sstc extension\n");
		static_branch_enable(&riscv_sstc_available);
	}

	error = cpuhp_setup_state(CPUHP_AP_RISCV_TIMER_STARTING,
			 "clockevents/riscv/timer:starting",
			 riscv_timer_starting_cpu, riscv_timer_dying_cpu);
	if (error)
		pr_err("cpu hp setup state failed for RISCV timer [%d]\n",
		       error);

	return error;
}

static int __init riscv_timer_init_dt(struct device_node *n)
{
	int cpuid, error;
	unsigned long hartid;
	struct device_node *child;

	error = riscv_of_processor_hartid(n, &hartid);
	if (error < 0) {
		pr_warn("Invalid hartid for node [%pOF] error = [%lu]\n",
			n, hartid);
		return error;
	}

	cpuid = riscv_hartid_to_cpuid(hartid);
	if (cpuid < 0) {
		pr_warn("Invalid cpuid for hartid [%lu]\n", hartid);
		return cpuid;
	}

	if (cpuid != smp_processor_id())
		return 0;

	child = of_find_compatible_node(NULL, NULL, "riscv,timer");
	if (child) {
		riscv_timer_cannot_wake_cpu = of_property_read_bool(child,
					"riscv,timer-cannot-wake-cpu");
		of_node_put(child);
	}

	return riscv_timer_init_common();
}

TIMER_OF_DECLARE(riscv_timer, "riscv", riscv_timer_init_dt);

#ifdef CONFIG_ACPI
static int __init riscv_timer_acpi_init(struct acpi_table_header *table)
{
	struct acpi_table_rhct *rhct = (struct acpi_table_rhct *)table;

	riscv_timer_cannot_wake_cpu = rhct->flags & ACPI_RHCT_TIMER_CANNOT_WAKEUP_CPU;

	return riscv_timer_init_common();
}

TIMER_ACPI_DECLARE(aclint_mtimer, ACPI_SIG_RHCT, riscv_timer_acpi_init);

#endif