1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
|
// SPDX-License-Identifier: GPL-2.0
/*
* Copyright (c) 2020 - 2022, NVIDIA CORPORATION. All rights reserved
*/
#include <linux/cpu.h>
#include <linux/cpufreq.h>
#include <linux/dma-mapping.h>
#include <linux/module.h>
#include <linux/of.h>
#include <linux/of_platform.h>
#include <linux/platform_device.h>
#include <linux/slab.h>
#include <linux/units.h>
#include <asm/smp_plat.h>
#include <soc/tegra/bpmp.h>
#include <soc/tegra/bpmp-abi.h>
#define KHZ 1000
#define REF_CLK_MHZ 408 /* 408 MHz */
#define CPUFREQ_TBL_STEP_HZ (50 * KHZ * KHZ)
#define MAX_CNT ~0U
#define MAX_DELTA_KHZ 115200
#define NDIV_MASK 0x1FF
#define CORE_OFFSET(cpu) (cpu * 8)
#define CMU_CLKS_BASE 0x2000
#define SCRATCH_FREQ_CORE_REG(data, cpu) (data->regs + CMU_CLKS_BASE + CORE_OFFSET(cpu))
#define MMCRAB_CLUSTER_BASE(cl) (0x30000 + (cl * 0x10000))
#define CLUSTER_ACTMON_BASE(data, cl) \
(data->regs + (MMCRAB_CLUSTER_BASE(cl) + data->soc->actmon_cntr_base))
#define CORE_ACTMON_CNTR_REG(data, cl, cpu) (CLUSTER_ACTMON_BASE(data, cl) + CORE_OFFSET(cpu))
/* cpufreq transisition latency */
#define TEGRA_CPUFREQ_TRANSITION_LATENCY (300 * 1000) /* unit in nanoseconds */
struct tegra_cpu_data {
u32 cpuid;
u32 clusterid;
void __iomem *freq_core_reg;
};
struct tegra_cpu_ctr {
u32 cpu;
u32 coreclk_cnt, last_coreclk_cnt;
u32 refclk_cnt, last_refclk_cnt;
};
struct read_counters_work {
struct work_struct work;
struct tegra_cpu_ctr c;
};
struct tegra_cpufreq_ops {
void (*read_counters)(struct tegra_cpu_ctr *c);
void (*set_cpu_ndiv)(struct cpufreq_policy *policy, u64 ndiv);
void (*get_cpu_cluster_id)(u32 cpu, u32 *cpuid, u32 *clusterid);
int (*get_cpu_ndiv)(u32 cpu, u32 cpuid, u32 clusterid, u64 *ndiv);
};
struct tegra_cpufreq_soc {
struct tegra_cpufreq_ops *ops;
int maxcpus_per_cluster;
unsigned int num_clusters;
phys_addr_t actmon_cntr_base;
u32 refclk_delta_min;
};
struct tegra194_cpufreq_data {
void __iomem *regs;
struct cpufreq_frequency_table **bpmp_luts;
const struct tegra_cpufreq_soc *soc;
bool icc_dram_bw_scaling;
struct tegra_cpu_data *cpu_data;
};
static struct workqueue_struct *read_counters_wq;
static int tegra_cpufreq_set_bw(struct cpufreq_policy *policy, unsigned long freq_khz)
{
struct tegra194_cpufreq_data *data = cpufreq_get_driver_data();
struct dev_pm_opp *opp;
struct device *dev;
int ret;
dev = get_cpu_device(policy->cpu);
if (!dev)
return -ENODEV;
opp = dev_pm_opp_find_freq_exact(dev, freq_khz * KHZ, true);
if (IS_ERR(opp))
return PTR_ERR(opp);
ret = dev_pm_opp_set_opp(dev, opp);
if (ret)
data->icc_dram_bw_scaling = false;
dev_pm_opp_put(opp);
return ret;
}
static void tegra_get_cpu_mpidr(void *mpidr)
{
*((u64 *)mpidr) = read_cpuid_mpidr() & MPIDR_HWID_BITMASK;
}
static void tegra234_get_cpu_cluster_id(u32 cpu, u32 *cpuid, u32 *clusterid)
{
u64 mpidr;
smp_call_function_single(cpu, tegra_get_cpu_mpidr, &mpidr, true);
if (cpuid)
*cpuid = MPIDR_AFFINITY_LEVEL(mpidr, 1);
if (clusterid)
*clusterid = MPIDR_AFFINITY_LEVEL(mpidr, 2);
}
static int tegra234_get_cpu_ndiv(u32 cpu, u32 cpuid, u32 clusterid, u64 *ndiv)
{
struct tegra194_cpufreq_data *data = cpufreq_get_driver_data();
*ndiv = readl(data->cpu_data[cpu].freq_core_reg) & NDIV_MASK;
return 0;
}
static void tegra234_set_cpu_ndiv(struct cpufreq_policy *policy, u64 ndiv)
{
struct tegra194_cpufreq_data *data = cpufreq_get_driver_data();
u32 cpu;
for_each_cpu(cpu, policy->cpus)
writel(ndiv, data->cpu_data[cpu].freq_core_reg);
}
/*
* This register provides access to two counter values with a single
* 64-bit read. The counter values are used to determine the average
* actual frequency a core has run at over a period of time.
* [63:32] PLLP counter: Counts at fixed frequency (408 MHz)
* [31:0] Core clock counter: Counts on every core clock cycle
*/
static void tegra234_read_counters(struct tegra_cpu_ctr *c)
{
struct tegra194_cpufreq_data *data = cpufreq_get_driver_data();
void __iomem *actmon_reg;
u32 delta_refcnt;
int cnt = 0;
u64 val;
actmon_reg = CORE_ACTMON_CNTR_REG(data, data->cpu_data[c->cpu].clusterid,
data->cpu_data[c->cpu].cpuid);
val = readq(actmon_reg);
c->last_refclk_cnt = upper_32_bits(val);
c->last_coreclk_cnt = lower_32_bits(val);
/*
* The sampling window is based on the minimum number of reference
* clock cycles which is known to give a stable value of CPU frequency.
*/
do {
val = readq(actmon_reg);
c->refclk_cnt = upper_32_bits(val);
c->coreclk_cnt = lower_32_bits(val);
if (c->refclk_cnt < c->last_refclk_cnt)
delta_refcnt = c->refclk_cnt + (MAX_CNT - c->last_refclk_cnt);
else
delta_refcnt = c->refclk_cnt - c->last_refclk_cnt;
if (++cnt >= 0xFFFF) {
pr_warn("cpufreq: problem with refclk on cpu:%d, delta_refcnt:%u, cnt:%d\n",
c->cpu, delta_refcnt, cnt);
break;
}
} while (delta_refcnt < data->soc->refclk_delta_min);
}
static struct tegra_cpufreq_ops tegra234_cpufreq_ops = {
.read_counters = tegra234_read_counters,
.get_cpu_cluster_id = tegra234_get_cpu_cluster_id,
.get_cpu_ndiv = tegra234_get_cpu_ndiv,
.set_cpu_ndiv = tegra234_set_cpu_ndiv,
};
static const struct tegra_cpufreq_soc tegra234_cpufreq_soc = {
.ops = &tegra234_cpufreq_ops,
.actmon_cntr_base = 0x9000,
.maxcpus_per_cluster = 4,
.num_clusters = 3,
.refclk_delta_min = 16000,
};
static const struct tegra_cpufreq_soc tegra239_cpufreq_soc = {
.ops = &tegra234_cpufreq_ops,
.actmon_cntr_base = 0x4000,
.maxcpus_per_cluster = 8,
.num_clusters = 1,
.refclk_delta_min = 16000,
};
static void tegra194_get_cpu_cluster_id(u32 cpu, u32 *cpuid, u32 *clusterid)
{
u64 mpidr;
smp_call_function_single(cpu, tegra_get_cpu_mpidr, &mpidr, true);
if (cpuid)
*cpuid = MPIDR_AFFINITY_LEVEL(mpidr, 0);
if (clusterid)
*clusterid = MPIDR_AFFINITY_LEVEL(mpidr, 1);
}
/*
* Read per-core Read-only system register NVFREQ_FEEDBACK_EL1.
* The register provides frequency feedback information to
* determine the average actual frequency a core has run at over
* a period of time.
* [31:0] PLLP counter: Counts at fixed frequency (408 MHz)
* [63:32] Core clock counter: counts on every core clock cycle
* where the core is architecturally clocking
*/
static u64 read_freq_feedback(void)
{
u64 val = 0;
asm volatile("mrs %0, s3_0_c15_c0_5" : "=r" (val) : );
return val;
}
static inline u32 map_ndiv_to_freq(struct mrq_cpu_ndiv_limits_response
*nltbl, u16 ndiv)
{
return nltbl->ref_clk_hz / KHZ * ndiv / (nltbl->pdiv * nltbl->mdiv);
}
static void tegra194_read_counters(struct tegra_cpu_ctr *c)
{
struct tegra194_cpufreq_data *data = cpufreq_get_driver_data();
u32 delta_refcnt;
int cnt = 0;
u64 val;
val = read_freq_feedback();
c->last_refclk_cnt = lower_32_bits(val);
c->last_coreclk_cnt = upper_32_bits(val);
/*
* The sampling window is based on the minimum number of reference
* clock cycles which is known to give a stable value of CPU frequency.
*/
do {
val = read_freq_feedback();
c->refclk_cnt = lower_32_bits(val);
c->coreclk_cnt = upper_32_bits(val);
if (c->refclk_cnt < c->last_refclk_cnt)
delta_refcnt = c->refclk_cnt + (MAX_CNT - c->last_refclk_cnt);
else
delta_refcnt = c->refclk_cnt - c->last_refclk_cnt;
if (++cnt >= 0xFFFF) {
pr_warn("cpufreq: problem with refclk on cpu:%d, delta_refcnt:%u, cnt:%d\n",
c->cpu, delta_refcnt, cnt);
break;
}
} while (delta_refcnt < data->soc->refclk_delta_min);
}
static void tegra_read_counters(struct work_struct *work)
{
struct tegra194_cpufreq_data *data = cpufreq_get_driver_data();
struct read_counters_work *read_counters_work;
struct tegra_cpu_ctr *c;
/*
* ref_clk_counter(32 bit counter) runs on constant clk,
* pll_p(408MHz).
* It will take = 2 ^ 32 / 408 MHz to overflow ref clk counter
* = 10526880 usec = 10.527 sec to overflow
*
* Like wise core_clk_counter(32 bit counter) runs on core clock.
* It's synchronized to crab_clk (cpu_crab_clk) which runs at
* freq of cluster. Assuming max cluster clock ~2000MHz,
* It will take = 2 ^ 32 / 2000 MHz to overflow core clk counter
* = ~2.147 sec to overflow
*/
read_counters_work = container_of(work, struct read_counters_work,
work);
c = &read_counters_work->c;
data->soc->ops->read_counters(c);
}
/*
* Return instantaneous cpu speed
* Instantaneous freq is calculated as -
* -Takes sample on every query of getting the freq.
* - Read core and ref clock counters;
* - Delay for X us
* - Read above cycle counters again
* - Calculates freq by subtracting current and previous counters
* divided by the delay time or eqv. of ref_clk_counter in delta time
* - Return Kcycles/second, freq in KHz
*
* delta time period = x sec
* = delta ref_clk_counter / (408 * 10^6) sec
* freq in Hz = cycles/sec
* = (delta cycles / x sec
* = (delta cycles * 408 * 10^6) / delta ref_clk_counter
* in KHz = (delta cycles * 408 * 10^3) / delta ref_clk_counter
*
* @cpu - logical cpu whose freq to be updated
* Returns freq in KHz on success, 0 if cpu is offline
*/
static unsigned int tegra194_calculate_speed(u32 cpu)
{
struct read_counters_work read_counters_work;
struct tegra_cpu_ctr c;
u32 delta_refcnt;
u32 delta_ccnt;
u32 rate_mhz;
/*
* Reconstruct cpu frequency over an observation/sampling window.
* Using workqueue to keep interrupts enabled during the interval.
*/
read_counters_work.c.cpu = cpu;
INIT_WORK_ONSTACK(&read_counters_work.work, tegra_read_counters);
queue_work_on(cpu, read_counters_wq, &read_counters_work.work);
flush_work(&read_counters_work.work);
c = read_counters_work.c;
if (c.coreclk_cnt < c.last_coreclk_cnt)
delta_ccnt = c.coreclk_cnt + (MAX_CNT - c.last_coreclk_cnt);
else
delta_ccnt = c.coreclk_cnt - c.last_coreclk_cnt;
if (!delta_ccnt)
return 0;
/* ref clock is 32 bits */
if (c.refclk_cnt < c.last_refclk_cnt)
delta_refcnt = c.refclk_cnt + (MAX_CNT - c.last_refclk_cnt);
else
delta_refcnt = c.refclk_cnt - c.last_refclk_cnt;
if (!delta_refcnt) {
pr_debug("cpufreq: %d is idle, delta_refcnt: 0\n", cpu);
return 0;
}
rate_mhz = ((unsigned long)(delta_ccnt * REF_CLK_MHZ)) / delta_refcnt;
return (rate_mhz * KHZ); /* in KHz */
}
static void tegra194_get_cpu_ndiv_sysreg(void *ndiv)
{
u64 ndiv_val;
asm volatile("mrs %0, s3_0_c15_c0_4" : "=r" (ndiv_val) : );
*(u64 *)ndiv = ndiv_val;
}
static int tegra194_get_cpu_ndiv(u32 cpu, u32 cpuid, u32 clusterid, u64 *ndiv)
{
return smp_call_function_single(cpu, tegra194_get_cpu_ndiv_sysreg, &ndiv, true);
}
static void tegra194_set_cpu_ndiv_sysreg(void *data)
{
u64 ndiv_val = *(u64 *)data;
asm volatile("msr s3_0_c15_c0_4, %0" : : "r" (ndiv_val));
}
static void tegra194_set_cpu_ndiv(struct cpufreq_policy *policy, u64 ndiv)
{
on_each_cpu_mask(policy->cpus, tegra194_set_cpu_ndiv_sysreg, &ndiv, true);
}
static unsigned int tegra194_get_speed(u32 cpu)
{
struct tegra194_cpufreq_data *data = cpufreq_get_driver_data();
u32 clusterid = data->cpu_data[cpu].clusterid;
struct cpufreq_frequency_table *pos;
unsigned int rate;
u64 ndiv;
int ret;
/* reconstruct actual cpu freq using counters */
rate = tegra194_calculate_speed(cpu);
/* get last written ndiv value */
ret = data->soc->ops->get_cpu_ndiv(cpu, data->cpu_data[cpu].cpuid, clusterid, &ndiv);
if (WARN_ON_ONCE(ret))
return rate;
/*
* If the reconstructed frequency has acceptable delta from
* the last written value, then return freq corresponding
* to the last written ndiv value from freq_table. This is
* done to return consistent value.
*/
cpufreq_for_each_valid_entry(pos, data->bpmp_luts[clusterid]) {
if (pos->driver_data != ndiv)
continue;
if (abs(pos->frequency - rate) > MAX_DELTA_KHZ) {
pr_warn("cpufreq: cpu%d,cur:%u,set:%u,delta:%d,set ndiv:%llu\n",
cpu, rate, pos->frequency, abs(rate - pos->frequency), ndiv);
} else {
rate = pos->frequency;
}
break;
}
return rate;
}
static int tegra_cpufreq_init_cpufreq_table(struct cpufreq_policy *policy,
struct cpufreq_frequency_table *bpmp_lut,
struct cpufreq_frequency_table **opp_table)
{
struct tegra194_cpufreq_data *data = cpufreq_get_driver_data();
struct cpufreq_frequency_table *freq_table = NULL;
struct cpufreq_frequency_table *pos;
struct device *cpu_dev;
struct dev_pm_opp *opp;
unsigned long rate;
int ret, max_opps;
int j = 0;
cpu_dev = get_cpu_device(policy->cpu);
if (!cpu_dev) {
pr_err("%s: failed to get cpu%d device\n", __func__, policy->cpu);
return -ENODEV;
}
/* Initialize OPP table mentioned in operating-points-v2 property in DT */
ret = dev_pm_opp_of_add_table_indexed(cpu_dev, 0);
if (!ret) {
max_opps = dev_pm_opp_get_opp_count(cpu_dev);
if (max_opps <= 0) {
dev_err(cpu_dev, "Failed to add OPPs\n");
return max_opps;
}
/* Disable all opps and cross-validate against LUT later */
for (rate = 0; ; rate++) {
opp = dev_pm_opp_find_freq_ceil(cpu_dev, &rate);
if (IS_ERR(opp))
break;
dev_pm_opp_put(opp);
dev_pm_opp_disable(cpu_dev, rate);
}
} else {
dev_err(cpu_dev, "Invalid or empty opp table in device tree\n");
data->icc_dram_bw_scaling = false;
return ret;
}
freq_table = kcalloc((max_opps + 1), sizeof(*freq_table), GFP_KERNEL);
if (!freq_table)
return -ENOMEM;
/*
* Cross check the frequencies from BPMP-FW LUT against the OPP's present in DT.
* Enable only those DT OPP's which are present in LUT also.
*/
cpufreq_for_each_valid_entry(pos, bpmp_lut) {
opp = dev_pm_opp_find_freq_exact(cpu_dev, pos->frequency * KHZ, false);
if (IS_ERR(opp))
continue;
dev_pm_opp_put(opp);
ret = dev_pm_opp_enable(cpu_dev, pos->frequency * KHZ);
if (ret < 0)
return ret;
freq_table[j].driver_data = pos->driver_data;
freq_table[j].frequency = pos->frequency;
j++;
}
freq_table[j].driver_data = pos->driver_data;
freq_table[j].frequency = CPUFREQ_TABLE_END;
*opp_table = &freq_table[0];
dev_pm_opp_set_sharing_cpus(cpu_dev, policy->cpus);
return ret;
}
static int tegra194_cpufreq_init(struct cpufreq_policy *policy)
{
struct tegra194_cpufreq_data *data = cpufreq_get_driver_data();
int maxcpus_per_cluster = data->soc->maxcpus_per_cluster;
u32 clusterid = data->cpu_data[policy->cpu].clusterid;
struct cpufreq_frequency_table *freq_table;
struct cpufreq_frequency_table *bpmp_lut;
u32 start_cpu, cpu;
int ret;
if (clusterid >= data->soc->num_clusters || !data->bpmp_luts[clusterid])
return -EINVAL;
start_cpu = rounddown(policy->cpu, maxcpus_per_cluster);
/* set same policy for all cpus in a cluster */
for (cpu = start_cpu; cpu < (start_cpu + maxcpus_per_cluster); cpu++) {
if (cpu_possible(cpu))
cpumask_set_cpu(cpu, policy->cpus);
}
policy->cpuinfo.transition_latency = TEGRA_CPUFREQ_TRANSITION_LATENCY;
bpmp_lut = data->bpmp_luts[clusterid];
if (data->icc_dram_bw_scaling) {
ret = tegra_cpufreq_init_cpufreq_table(policy, bpmp_lut, &freq_table);
if (!ret) {
policy->freq_table = freq_table;
return 0;
}
}
data->icc_dram_bw_scaling = false;
policy->freq_table = bpmp_lut;
pr_info("OPP tables missing from DT, EMC frequency scaling disabled\n");
return 0;
}
static int tegra194_cpufreq_online(struct cpufreq_policy *policy)
{
/* We did light-weight tear down earlier, nothing to do here */
return 0;
}
static int tegra194_cpufreq_offline(struct cpufreq_policy *policy)
{
/*
* Preserve policy->driver_data and don't free resources on light-weight
* tear down.
*/
return 0;
}
static int tegra194_cpufreq_exit(struct cpufreq_policy *policy)
{
struct device *cpu_dev = get_cpu_device(policy->cpu);
dev_pm_opp_remove_all_dynamic(cpu_dev);
dev_pm_opp_of_cpumask_remove_table(policy->related_cpus);
return 0;
}
static int tegra194_cpufreq_set_target(struct cpufreq_policy *policy,
unsigned int index)
{
struct cpufreq_frequency_table *tbl = policy->freq_table + index;
struct tegra194_cpufreq_data *data = cpufreq_get_driver_data();
/*
* Each core writes frequency in per core register. Then both cores
* in a cluster run at same frequency which is the maximum frequency
* request out of the values requested by both cores in that cluster.
*/
data->soc->ops->set_cpu_ndiv(policy, (u64)tbl->driver_data);
if (data->icc_dram_bw_scaling)
tegra_cpufreq_set_bw(policy, tbl->frequency);
return 0;
}
static struct cpufreq_driver tegra194_cpufreq_driver = {
.name = "tegra194",
.flags = CPUFREQ_CONST_LOOPS | CPUFREQ_NEED_INITIAL_FREQ_CHECK |
CPUFREQ_IS_COOLING_DEV,
.verify = cpufreq_generic_frequency_table_verify,
.target_index = tegra194_cpufreq_set_target,
.get = tegra194_get_speed,
.init = tegra194_cpufreq_init,
.exit = tegra194_cpufreq_exit,
.online = tegra194_cpufreq_online,
.offline = tegra194_cpufreq_offline,
.attr = cpufreq_generic_attr,
};
static struct tegra_cpufreq_ops tegra194_cpufreq_ops = {
.read_counters = tegra194_read_counters,
.get_cpu_cluster_id = tegra194_get_cpu_cluster_id,
.get_cpu_ndiv = tegra194_get_cpu_ndiv,
.set_cpu_ndiv = tegra194_set_cpu_ndiv,
};
static const struct tegra_cpufreq_soc tegra194_cpufreq_soc = {
.ops = &tegra194_cpufreq_ops,
.maxcpus_per_cluster = 2,
.num_clusters = 4,
.refclk_delta_min = 16000,
};
static void tegra194_cpufreq_free_resources(void)
{
destroy_workqueue(read_counters_wq);
}
static struct cpufreq_frequency_table *
tegra_cpufreq_bpmp_read_lut(struct platform_device *pdev, struct tegra_bpmp *bpmp,
unsigned int cluster_id)
{
struct cpufreq_frequency_table *freq_table;
struct mrq_cpu_ndiv_limits_response resp;
unsigned int num_freqs, ndiv, delta_ndiv;
struct mrq_cpu_ndiv_limits_request req;
struct tegra_bpmp_message msg;
u16 freq_table_step_size;
int err, index;
memset(&req, 0, sizeof(req));
req.cluster_id = cluster_id;
memset(&msg, 0, sizeof(msg));
msg.mrq = MRQ_CPU_NDIV_LIMITS;
msg.tx.data = &req;
msg.tx.size = sizeof(req);
msg.rx.data = &resp;
msg.rx.size = sizeof(resp);
err = tegra_bpmp_transfer(bpmp, &msg);
if (err)
return ERR_PTR(err);
if (msg.rx.ret == -BPMP_EINVAL) {
/* Cluster not available */
return NULL;
}
if (msg.rx.ret)
return ERR_PTR(-EINVAL);
/*
* Make sure frequency table step is a multiple of mdiv to match
* vhint table granularity.
*/
freq_table_step_size = resp.mdiv *
DIV_ROUND_UP(CPUFREQ_TBL_STEP_HZ, resp.ref_clk_hz);
dev_dbg(&pdev->dev, "cluster %d: frequency table step size: %d\n",
cluster_id, freq_table_step_size);
delta_ndiv = resp.ndiv_max - resp.ndiv_min;
if (unlikely(delta_ndiv == 0)) {
num_freqs = 1;
} else {
/* We store both ndiv_min and ndiv_max hence the +1 */
num_freqs = delta_ndiv / freq_table_step_size + 1;
}
num_freqs += (delta_ndiv % freq_table_step_size) ? 1 : 0;
freq_table = devm_kcalloc(&pdev->dev, num_freqs + 1,
sizeof(*freq_table), GFP_KERNEL);
if (!freq_table)
return ERR_PTR(-ENOMEM);
for (index = 0, ndiv = resp.ndiv_min;
ndiv < resp.ndiv_max;
index++, ndiv += freq_table_step_size) {
freq_table[index].driver_data = ndiv;
freq_table[index].frequency = map_ndiv_to_freq(&resp, ndiv);
}
freq_table[index].driver_data = resp.ndiv_max;
freq_table[index++].frequency = map_ndiv_to_freq(&resp, resp.ndiv_max);
freq_table[index].frequency = CPUFREQ_TABLE_END;
return freq_table;
}
static int tegra194_cpufreq_store_physids(unsigned int cpu, struct tegra194_cpufreq_data *data)
{
int num_cpus = data->soc->maxcpus_per_cluster * data->soc->num_clusters;
u32 cpuid, clusterid;
u64 mpidr_id;
if (cpu > (num_cpus - 1)) {
pr_err("cpufreq: wrong num of cpus or clusters in soc data\n");
return -EINVAL;
}
data->soc->ops->get_cpu_cluster_id(cpu, &cpuid, &clusterid);
mpidr_id = (clusterid * data->soc->maxcpus_per_cluster) + cpuid;
data->cpu_data[cpu].cpuid = cpuid;
data->cpu_data[cpu].clusterid = clusterid;
data->cpu_data[cpu].freq_core_reg = SCRATCH_FREQ_CORE_REG(data, mpidr_id);
return 0;
}
static int tegra194_cpufreq_probe(struct platform_device *pdev)
{
const struct tegra_cpufreq_soc *soc;
struct tegra194_cpufreq_data *data;
struct tegra_bpmp *bpmp;
struct device *cpu_dev;
int err, i;
u32 cpu;
data = devm_kzalloc(&pdev->dev, sizeof(*data), GFP_KERNEL);
if (!data)
return -ENOMEM;
soc = of_device_get_match_data(&pdev->dev);
if (soc->ops && soc->maxcpus_per_cluster && soc->num_clusters && soc->refclk_delta_min) {
data->soc = soc;
} else {
dev_err(&pdev->dev, "soc data missing\n");
return -EINVAL;
}
data->bpmp_luts = devm_kcalloc(&pdev->dev, data->soc->num_clusters,
sizeof(*data->bpmp_luts), GFP_KERNEL);
if (!data->bpmp_luts)
return -ENOMEM;
if (soc->actmon_cntr_base) {
/* mmio registers are used for frequency request and re-construction */
data->regs = devm_platform_ioremap_resource(pdev, 0);
if (IS_ERR(data->regs))
return PTR_ERR(data->regs);
}
data->cpu_data = devm_kcalloc(&pdev->dev, data->soc->num_clusters *
data->soc->maxcpus_per_cluster,
sizeof(*data->cpu_data), GFP_KERNEL);
if (!data->cpu_data)
return -ENOMEM;
platform_set_drvdata(pdev, data);
bpmp = tegra_bpmp_get(&pdev->dev);
if (IS_ERR(bpmp))
return PTR_ERR(bpmp);
read_counters_wq = alloc_workqueue("read_counters_wq", __WQ_LEGACY, 1);
if (!read_counters_wq) {
dev_err(&pdev->dev, "fail to create_workqueue\n");
err = -EINVAL;
goto put_bpmp;
}
for (i = 0; i < data->soc->num_clusters; i++) {
data->bpmp_luts[i] = tegra_cpufreq_bpmp_read_lut(pdev, bpmp, i);
if (IS_ERR(data->bpmp_luts[i])) {
err = PTR_ERR(data->bpmp_luts[i]);
goto err_free_res;
}
}
for_each_possible_cpu(cpu) {
err = tegra194_cpufreq_store_physids(cpu, data);
if (err)
goto err_free_res;
}
tegra194_cpufreq_driver.driver_data = data;
/* Check for optional OPPv2 and interconnect paths on CPU0 to enable ICC scaling */
cpu_dev = get_cpu_device(0);
if (!cpu_dev) {
err = -EPROBE_DEFER;
goto err_free_res;
}
if (dev_pm_opp_of_get_opp_desc_node(cpu_dev)) {
err = dev_pm_opp_of_find_icc_paths(cpu_dev, NULL);
if (!err)
data->icc_dram_bw_scaling = true;
}
err = cpufreq_register_driver(&tegra194_cpufreq_driver);
if (!err)
goto put_bpmp;
err_free_res:
tegra194_cpufreq_free_resources();
put_bpmp:
tegra_bpmp_put(bpmp);
return err;
}
static void tegra194_cpufreq_remove(struct platform_device *pdev)
{
cpufreq_unregister_driver(&tegra194_cpufreq_driver);
tegra194_cpufreq_free_resources();
}
static const struct of_device_id tegra194_cpufreq_of_match[] = {
{ .compatible = "nvidia,tegra194-ccplex", .data = &tegra194_cpufreq_soc },
{ .compatible = "nvidia,tegra234-ccplex-cluster", .data = &tegra234_cpufreq_soc },
{ .compatible = "nvidia,tegra239-ccplex-cluster", .data = &tegra239_cpufreq_soc },
{ /* sentinel */ }
};
MODULE_DEVICE_TABLE(of, tegra194_cpufreq_of_match);
static struct platform_driver tegra194_ccplex_driver = {
.driver = {
.name = "tegra194-cpufreq",
.of_match_table = tegra194_cpufreq_of_match,
},
.probe = tegra194_cpufreq_probe,
.remove_new = tegra194_cpufreq_remove,
};
module_platform_driver(tegra194_ccplex_driver);
MODULE_AUTHOR("Mikko Perttunen <mperttunen@nvidia.com>");
MODULE_AUTHOR("Sumit Gupta <sumitg@nvidia.com>");
MODULE_DESCRIPTION("NVIDIA Tegra194 cpufreq driver");
MODULE_LICENSE("GPL v2");
|