summaryrefslogtreecommitdiffstats
path: root/drivers/dma/dma-axi-dmac.c
blob: d5a33e4a91b19a859e1ea72a22459cd8aba229ef (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
// SPDX-License-Identifier: GPL-2.0-only
/*
 * Driver for the Analog Devices AXI-DMAC core
 *
 * Copyright 2013-2019 Analog Devices Inc.
 *  Author: Lars-Peter Clausen <lars@metafoo.de>
 */

#include <linux/bitfield.h>
#include <linux/clk.h>
#include <linux/device.h>
#include <linux/dma-mapping.h>
#include <linux/dmaengine.h>
#include <linux/err.h>
#include <linux/interrupt.h>
#include <linux/io.h>
#include <linux/kernel.h>
#include <linux/module.h>
#include <linux/of.h>
#include <linux/of_dma.h>
#include <linux/of_address.h>
#include <linux/platform_device.h>
#include <linux/regmap.h>
#include <linux/slab.h>
#include <linux/fpga/adi-axi-common.h>

#include <dt-bindings/dma/axi-dmac.h>

#include "dmaengine.h"
#include "virt-dma.h"

/*
 * The AXI-DMAC is a soft IP core that is used in FPGA designs. The core has
 * various instantiation parameters which decided the exact feature set support
 * by the core.
 *
 * Each channel of the core has a source interface and a destination interface.
 * The number of channels and the type of the channel interfaces is selected at
 * configuration time. A interface can either be a connected to a central memory
 * interconnect, which allows access to system memory, or it can be connected to
 * a dedicated bus which is directly connected to a data port on a peripheral.
 * Given that those are configuration options of the core that are selected when
 * it is instantiated this means that they can not be changed by software at
 * runtime. By extension this means that each channel is uni-directional. It can
 * either be device to memory or memory to device, but not both. Also since the
 * device side is a dedicated data bus only connected to a single peripheral
 * there is no address than can or needs to be configured for the device side.
 */

#define AXI_DMAC_REG_INTERFACE_DESC	0x10
#define   AXI_DMAC_DMA_SRC_TYPE_MSK	GENMASK(13, 12)
#define   AXI_DMAC_DMA_SRC_TYPE_GET(x)	FIELD_GET(AXI_DMAC_DMA_SRC_TYPE_MSK, x)
#define   AXI_DMAC_DMA_SRC_WIDTH_MSK	GENMASK(11, 8)
#define   AXI_DMAC_DMA_SRC_WIDTH_GET(x)	FIELD_GET(AXI_DMAC_DMA_SRC_WIDTH_MSK, x)
#define   AXI_DMAC_DMA_DST_TYPE_MSK	GENMASK(5, 4)
#define   AXI_DMAC_DMA_DST_TYPE_GET(x)	FIELD_GET(AXI_DMAC_DMA_DST_TYPE_MSK, x)
#define   AXI_DMAC_DMA_DST_WIDTH_MSK	GENMASK(3, 0)
#define   AXI_DMAC_DMA_DST_WIDTH_GET(x)	FIELD_GET(AXI_DMAC_DMA_DST_WIDTH_MSK, x)
#define AXI_DMAC_REG_COHERENCY_DESC	0x14
#define   AXI_DMAC_DST_COHERENT_MSK	BIT(0)
#define   AXI_DMAC_DST_COHERENT_GET(x)	FIELD_GET(AXI_DMAC_DST_COHERENT_MSK, x)

#define AXI_DMAC_REG_IRQ_MASK		0x80
#define AXI_DMAC_REG_IRQ_PENDING	0x84
#define AXI_DMAC_REG_IRQ_SOURCE		0x88

#define AXI_DMAC_REG_CTRL		0x400
#define AXI_DMAC_REG_TRANSFER_ID	0x404
#define AXI_DMAC_REG_START_TRANSFER	0x408
#define AXI_DMAC_REG_FLAGS		0x40c
#define AXI_DMAC_REG_DEST_ADDRESS	0x410
#define AXI_DMAC_REG_SRC_ADDRESS	0x414
#define AXI_DMAC_REG_X_LENGTH		0x418
#define AXI_DMAC_REG_Y_LENGTH		0x41c
#define AXI_DMAC_REG_DEST_STRIDE	0x420
#define AXI_DMAC_REG_SRC_STRIDE		0x424
#define AXI_DMAC_REG_TRANSFER_DONE	0x428
#define AXI_DMAC_REG_ACTIVE_TRANSFER_ID 0x42c
#define AXI_DMAC_REG_STATUS		0x430
#define AXI_DMAC_REG_CURRENT_SRC_ADDR	0x434
#define AXI_DMAC_REG_CURRENT_DEST_ADDR	0x438
#define AXI_DMAC_REG_PARTIAL_XFER_LEN	0x44c
#define AXI_DMAC_REG_PARTIAL_XFER_ID	0x450
#define AXI_DMAC_REG_CURRENT_SG_ID	0x454
#define AXI_DMAC_REG_SG_ADDRESS		0x47c
#define AXI_DMAC_REG_SG_ADDRESS_HIGH	0x4bc

#define AXI_DMAC_CTRL_ENABLE		BIT(0)
#define AXI_DMAC_CTRL_PAUSE		BIT(1)
#define AXI_DMAC_CTRL_ENABLE_SG		BIT(2)

#define AXI_DMAC_IRQ_SOT		BIT(0)
#define AXI_DMAC_IRQ_EOT		BIT(1)

#define AXI_DMAC_FLAG_CYCLIC		BIT(0)
#define AXI_DMAC_FLAG_LAST		BIT(1)
#define AXI_DMAC_FLAG_PARTIAL_REPORT	BIT(2)

#define AXI_DMAC_FLAG_PARTIAL_XFER_DONE BIT(31)

/* The maximum ID allocated by the hardware is 31 */
#define AXI_DMAC_SG_UNUSED 32U

/* Flags for axi_dmac_hw_desc.flags */
#define AXI_DMAC_HW_FLAG_LAST		BIT(0)
#define AXI_DMAC_HW_FLAG_IRQ		BIT(1)

struct axi_dmac_hw_desc {
	u32 flags;
	u32 id;
	u64 dest_addr;
	u64 src_addr;
	u64 next_sg_addr;
	u32 y_len;
	u32 x_len;
	u32 src_stride;
	u32 dst_stride;
	u64 __pad[2];
};

struct axi_dmac_sg {
	unsigned int partial_len;
	bool schedule_when_free;

	struct axi_dmac_hw_desc *hw;
	dma_addr_t hw_phys;
};

struct axi_dmac_desc {
	struct virt_dma_desc vdesc;
	struct axi_dmac_chan *chan;

	bool cyclic;
	bool have_partial_xfer;

	unsigned int num_submitted;
	unsigned int num_completed;
	unsigned int num_sgs;
	struct axi_dmac_sg sg[] __counted_by(num_sgs);
};

struct axi_dmac_chan {
	struct virt_dma_chan vchan;

	struct axi_dmac_desc *next_desc;
	struct list_head active_descs;
	enum dma_transfer_direction direction;

	unsigned int src_width;
	unsigned int dest_width;
	unsigned int src_type;
	unsigned int dest_type;

	unsigned int max_length;
	unsigned int address_align_mask;
	unsigned int length_align_mask;

	bool hw_partial_xfer;
	bool hw_cyclic;
	bool hw_2d;
	bool hw_sg;
};

struct axi_dmac {
	void __iomem *base;
	int irq;

	struct clk *clk;

	struct dma_device dma_dev;
	struct axi_dmac_chan chan;
};

static struct axi_dmac *chan_to_axi_dmac(struct axi_dmac_chan *chan)
{
	return container_of(chan->vchan.chan.device, struct axi_dmac,
		dma_dev);
}

static struct axi_dmac_chan *to_axi_dmac_chan(struct dma_chan *c)
{
	return container_of(c, struct axi_dmac_chan, vchan.chan);
}

static struct axi_dmac_desc *to_axi_dmac_desc(struct virt_dma_desc *vdesc)
{
	return container_of(vdesc, struct axi_dmac_desc, vdesc);
}

static void axi_dmac_write(struct axi_dmac *axi_dmac, unsigned int reg,
	unsigned int val)
{
	writel(val, axi_dmac->base + reg);
}

static int axi_dmac_read(struct axi_dmac *axi_dmac, unsigned int reg)
{
	return readl(axi_dmac->base + reg);
}

static int axi_dmac_src_is_mem(struct axi_dmac_chan *chan)
{
	return chan->src_type == AXI_DMAC_BUS_TYPE_AXI_MM;
}

static int axi_dmac_dest_is_mem(struct axi_dmac_chan *chan)
{
	return chan->dest_type == AXI_DMAC_BUS_TYPE_AXI_MM;
}

static bool axi_dmac_check_len(struct axi_dmac_chan *chan, unsigned int len)
{
	if (len == 0)
		return false;
	if ((len & chan->length_align_mask) != 0) /* Not aligned */
		return false;
	return true;
}

static bool axi_dmac_check_addr(struct axi_dmac_chan *chan, dma_addr_t addr)
{
	if ((addr & chan->address_align_mask) != 0) /* Not aligned */
		return false;
	return true;
}

static void axi_dmac_start_transfer(struct axi_dmac_chan *chan)
{
	struct axi_dmac *dmac = chan_to_axi_dmac(chan);
	struct virt_dma_desc *vdesc;
	struct axi_dmac_desc *desc;
	struct axi_dmac_sg *sg;
	unsigned int flags = 0;
	unsigned int val;

	if (!chan->hw_sg) {
		val = axi_dmac_read(dmac, AXI_DMAC_REG_START_TRANSFER);
		if (val) /* Queue is full, wait for the next SOT IRQ */
			return;
	}

	desc = chan->next_desc;

	if (!desc) {
		vdesc = vchan_next_desc(&chan->vchan);
		if (!vdesc)
			return;
		list_move_tail(&vdesc->node, &chan->active_descs);
		desc = to_axi_dmac_desc(vdesc);
	}
	sg = &desc->sg[desc->num_submitted];

	/* Already queued in cyclic mode. Wait for it to finish */
	if (sg->hw->id != AXI_DMAC_SG_UNUSED) {
		sg->schedule_when_free = true;
		return;
	}

	if (chan->hw_sg) {
		chan->next_desc = NULL;
	} else if (++desc->num_submitted == desc->num_sgs ||
		   desc->have_partial_xfer) {
		if (desc->cyclic)
			desc->num_submitted = 0; /* Start again */
		else
			chan->next_desc = NULL;
		flags |= AXI_DMAC_FLAG_LAST;
	} else {
		chan->next_desc = desc;
	}

	sg->hw->id = axi_dmac_read(dmac, AXI_DMAC_REG_TRANSFER_ID);

	if (!chan->hw_sg) {
		if (axi_dmac_dest_is_mem(chan)) {
			axi_dmac_write(dmac, AXI_DMAC_REG_DEST_ADDRESS, sg->hw->dest_addr);
			axi_dmac_write(dmac, AXI_DMAC_REG_DEST_STRIDE, sg->hw->dst_stride);
		}

		if (axi_dmac_src_is_mem(chan)) {
			axi_dmac_write(dmac, AXI_DMAC_REG_SRC_ADDRESS, sg->hw->src_addr);
			axi_dmac_write(dmac, AXI_DMAC_REG_SRC_STRIDE, sg->hw->src_stride);
		}
	}

	/*
	 * If the hardware supports cyclic transfers and there is no callback to
	 * call, enable hw cyclic mode to avoid unnecessary interrupts.
	 */
	if (chan->hw_cyclic && desc->cyclic && !desc->vdesc.tx.callback) {
		if (chan->hw_sg)
			desc->sg[desc->num_sgs - 1].hw->flags &= ~AXI_DMAC_HW_FLAG_IRQ;
		else if (desc->num_sgs == 1)
			flags |= AXI_DMAC_FLAG_CYCLIC;
	}

	if (chan->hw_partial_xfer)
		flags |= AXI_DMAC_FLAG_PARTIAL_REPORT;

	if (chan->hw_sg) {
		axi_dmac_write(dmac, AXI_DMAC_REG_SG_ADDRESS, (u32)sg->hw_phys);
		axi_dmac_write(dmac, AXI_DMAC_REG_SG_ADDRESS_HIGH,
			       (u64)sg->hw_phys >> 32);
	} else {
		axi_dmac_write(dmac, AXI_DMAC_REG_X_LENGTH, sg->hw->x_len);
		axi_dmac_write(dmac, AXI_DMAC_REG_Y_LENGTH, sg->hw->y_len);
	}
	axi_dmac_write(dmac, AXI_DMAC_REG_FLAGS, flags);
	axi_dmac_write(dmac, AXI_DMAC_REG_START_TRANSFER, 1);
}

static struct axi_dmac_desc *axi_dmac_active_desc(struct axi_dmac_chan *chan)
{
	return list_first_entry_or_null(&chan->active_descs,
		struct axi_dmac_desc, vdesc.node);
}

static inline unsigned int axi_dmac_total_sg_bytes(struct axi_dmac_chan *chan,
	struct axi_dmac_sg *sg)
{
	if (chan->hw_2d)
		return (sg->hw->x_len + 1) * (sg->hw->y_len + 1);
	else
		return (sg->hw->x_len + 1);
}

static void axi_dmac_dequeue_partial_xfers(struct axi_dmac_chan *chan)
{
	struct axi_dmac *dmac = chan_to_axi_dmac(chan);
	struct axi_dmac_desc *desc;
	struct axi_dmac_sg *sg;
	u32 xfer_done, len, id, i;
	bool found_sg;

	do {
		len = axi_dmac_read(dmac, AXI_DMAC_REG_PARTIAL_XFER_LEN);
		id  = axi_dmac_read(dmac, AXI_DMAC_REG_PARTIAL_XFER_ID);

		found_sg = false;
		list_for_each_entry(desc, &chan->active_descs, vdesc.node) {
			for (i = 0; i < desc->num_sgs; i++) {
				sg = &desc->sg[i];
				if (sg->hw->id == AXI_DMAC_SG_UNUSED)
					continue;
				if (sg->hw->id == id) {
					desc->have_partial_xfer = true;
					sg->partial_len = len;
					found_sg = true;
					break;
				}
			}
			if (found_sg)
				break;
		}

		if (found_sg) {
			dev_dbg(dmac->dma_dev.dev,
				"Found partial segment id=%u, len=%u\n",
				id, len);
		} else {
			dev_warn(dmac->dma_dev.dev,
				 "Not found partial segment id=%u, len=%u\n",
				 id, len);
		}

		/* Check if we have any more partial transfers */
		xfer_done = axi_dmac_read(dmac, AXI_DMAC_REG_TRANSFER_DONE);
		xfer_done = !(xfer_done & AXI_DMAC_FLAG_PARTIAL_XFER_DONE);

	} while (!xfer_done);
}

static void axi_dmac_compute_residue(struct axi_dmac_chan *chan,
	struct axi_dmac_desc *active)
{
	struct dmaengine_result *rslt = &active->vdesc.tx_result;
	unsigned int start = active->num_completed - 1;
	struct axi_dmac_sg *sg;
	unsigned int i, total;

	rslt->result = DMA_TRANS_NOERROR;
	rslt->residue = 0;

	if (chan->hw_sg)
		return;

	/*
	 * We get here if the last completed segment is partial, which
	 * means we can compute the residue from that segment onwards
	 */
	for (i = start; i < active->num_sgs; i++) {
		sg = &active->sg[i];
		total = axi_dmac_total_sg_bytes(chan, sg);
		rslt->residue += (total - sg->partial_len);
	}
}

static bool axi_dmac_transfer_done(struct axi_dmac_chan *chan,
	unsigned int completed_transfers)
{
	struct axi_dmac_desc *active;
	struct axi_dmac_sg *sg;
	bool start_next = false;

	active = axi_dmac_active_desc(chan);
	if (!active)
		return false;

	if (chan->hw_partial_xfer &&
	    (completed_transfers & AXI_DMAC_FLAG_PARTIAL_XFER_DONE))
		axi_dmac_dequeue_partial_xfers(chan);

	if (chan->hw_sg) {
		if (active->cyclic) {
			vchan_cyclic_callback(&active->vdesc);
		} else {
			list_del(&active->vdesc.node);
			vchan_cookie_complete(&active->vdesc);
			active = axi_dmac_active_desc(chan);
			start_next = !!active;
		}
	} else {
		do {
			sg = &active->sg[active->num_completed];
			if (sg->hw->id == AXI_DMAC_SG_UNUSED) /* Not yet submitted */
				break;
			if (!(BIT(sg->hw->id) & completed_transfers))
				break;
			active->num_completed++;
			sg->hw->id = AXI_DMAC_SG_UNUSED;
			if (sg->schedule_when_free) {
				sg->schedule_when_free = false;
				start_next = true;
			}

			if (sg->partial_len)
				axi_dmac_compute_residue(chan, active);

			if (active->cyclic)
				vchan_cyclic_callback(&active->vdesc);

			if (active->num_completed == active->num_sgs ||
			    sg->partial_len) {
				if (active->cyclic) {
					active->num_completed = 0; /* wrap around */
				} else {
					list_del(&active->vdesc.node);
					vchan_cookie_complete(&active->vdesc);
					active = axi_dmac_active_desc(chan);
				}
			}
		} while (active);
	}

	return start_next;
}

static irqreturn_t axi_dmac_interrupt_handler(int irq, void *devid)
{
	struct axi_dmac *dmac = devid;
	unsigned int pending;
	bool start_next = false;

	pending = axi_dmac_read(dmac, AXI_DMAC_REG_IRQ_PENDING);
	if (!pending)
		return IRQ_NONE;

	axi_dmac_write(dmac, AXI_DMAC_REG_IRQ_PENDING, pending);

	spin_lock(&dmac->chan.vchan.lock);
	/* One or more transfers have finished */
	if (pending & AXI_DMAC_IRQ_EOT) {
		unsigned int completed;

		completed = axi_dmac_read(dmac, AXI_DMAC_REG_TRANSFER_DONE);
		start_next = axi_dmac_transfer_done(&dmac->chan, completed);
	}
	/* Space has become available in the descriptor queue */
	if ((pending & AXI_DMAC_IRQ_SOT) || start_next)
		axi_dmac_start_transfer(&dmac->chan);
	spin_unlock(&dmac->chan.vchan.lock);

	return IRQ_HANDLED;
}

static int axi_dmac_terminate_all(struct dma_chan *c)
{
	struct axi_dmac_chan *chan = to_axi_dmac_chan(c);
	struct axi_dmac *dmac = chan_to_axi_dmac(chan);
	unsigned long flags;
	LIST_HEAD(head);

	spin_lock_irqsave(&chan->vchan.lock, flags);
	axi_dmac_write(dmac, AXI_DMAC_REG_CTRL, 0);
	chan->next_desc = NULL;
	vchan_get_all_descriptors(&chan->vchan, &head);
	list_splice_tail_init(&chan->active_descs, &head);
	spin_unlock_irqrestore(&chan->vchan.lock, flags);

	vchan_dma_desc_free_list(&chan->vchan, &head);

	return 0;
}

static void axi_dmac_synchronize(struct dma_chan *c)
{
	struct axi_dmac_chan *chan = to_axi_dmac_chan(c);

	vchan_synchronize(&chan->vchan);
}

static void axi_dmac_issue_pending(struct dma_chan *c)
{
	struct axi_dmac_chan *chan = to_axi_dmac_chan(c);
	struct axi_dmac *dmac = chan_to_axi_dmac(chan);
	unsigned long flags;
	u32 ctrl = AXI_DMAC_CTRL_ENABLE;

	if (chan->hw_sg)
		ctrl |= AXI_DMAC_CTRL_ENABLE_SG;

	axi_dmac_write(dmac, AXI_DMAC_REG_CTRL, ctrl);

	spin_lock_irqsave(&chan->vchan.lock, flags);
	if (vchan_issue_pending(&chan->vchan))
		axi_dmac_start_transfer(chan);
	spin_unlock_irqrestore(&chan->vchan.lock, flags);
}

static struct axi_dmac_desc *
axi_dmac_alloc_desc(struct axi_dmac_chan *chan, unsigned int num_sgs)
{
	struct axi_dmac *dmac = chan_to_axi_dmac(chan);
	struct device *dev = dmac->dma_dev.dev;
	struct axi_dmac_hw_desc *hws;
	struct axi_dmac_desc *desc;
	dma_addr_t hw_phys;
	unsigned int i;

	desc = kzalloc(struct_size(desc, sg, num_sgs), GFP_NOWAIT);
	if (!desc)
		return NULL;
	desc->num_sgs = num_sgs;
	desc->chan = chan;

	hws = dma_alloc_coherent(dev, PAGE_ALIGN(num_sgs * sizeof(*hws)),
				&hw_phys, GFP_ATOMIC);
	if (!hws) {
		kfree(desc);
		return NULL;
	}

	for (i = 0; i < num_sgs; i++) {
		desc->sg[i].hw = &hws[i];
		desc->sg[i].hw_phys = hw_phys + i * sizeof(*hws);

		hws[i].id = AXI_DMAC_SG_UNUSED;
		hws[i].flags = 0;

		/* Link hardware descriptors */
		hws[i].next_sg_addr = hw_phys + (i + 1) * sizeof(*hws);
	}

	/* The last hardware descriptor will trigger an interrupt */
	desc->sg[num_sgs - 1].hw->flags = AXI_DMAC_HW_FLAG_LAST | AXI_DMAC_HW_FLAG_IRQ;

	return desc;
}

static void axi_dmac_free_desc(struct axi_dmac_desc *desc)
{
	struct axi_dmac *dmac = chan_to_axi_dmac(desc->chan);
	struct device *dev = dmac->dma_dev.dev;
	struct axi_dmac_hw_desc *hw = desc->sg[0].hw;
	dma_addr_t hw_phys = desc->sg[0].hw_phys;

	dma_free_coherent(dev, PAGE_ALIGN(desc->num_sgs * sizeof(*hw)),
			  hw, hw_phys);
	kfree(desc);
}

static struct axi_dmac_sg *axi_dmac_fill_linear_sg(struct axi_dmac_chan *chan,
	enum dma_transfer_direction direction, dma_addr_t addr,
	unsigned int num_periods, unsigned int period_len,
	struct axi_dmac_sg *sg)
{
	unsigned int num_segments, i;
	unsigned int segment_size;
	unsigned int len;

	/* Split into multiple equally sized segments if necessary */
	num_segments = DIV_ROUND_UP(period_len, chan->max_length);
	segment_size = DIV_ROUND_UP(period_len, num_segments);
	/* Take care of alignment */
	segment_size = ((segment_size - 1) | chan->length_align_mask) + 1;

	for (i = 0; i < num_periods; i++) {
		for (len = period_len; len > segment_size; sg++) {
			if (direction == DMA_DEV_TO_MEM)
				sg->hw->dest_addr = addr;
			else
				sg->hw->src_addr = addr;
			sg->hw->x_len = segment_size - 1;
			sg->hw->y_len = 0;
			sg->hw->flags = 0;
			addr += segment_size;
			len -= segment_size;
		}

		if (direction == DMA_DEV_TO_MEM)
			sg->hw->dest_addr = addr;
		else
			sg->hw->src_addr = addr;
		sg->hw->x_len = len - 1;
		sg->hw->y_len = 0;
		sg++;
		addr += len;
	}

	return sg;
}

static struct dma_async_tx_descriptor *axi_dmac_prep_slave_sg(
	struct dma_chan *c, struct scatterlist *sgl,
	unsigned int sg_len, enum dma_transfer_direction direction,
	unsigned long flags, void *context)
{
	struct axi_dmac_chan *chan = to_axi_dmac_chan(c);
	struct axi_dmac_desc *desc;
	struct axi_dmac_sg *dsg;
	struct scatterlist *sg;
	unsigned int num_sgs;
	unsigned int i;

	if (direction != chan->direction)
		return NULL;

	num_sgs = 0;
	for_each_sg(sgl, sg, sg_len, i)
		num_sgs += DIV_ROUND_UP(sg_dma_len(sg), chan->max_length);

	desc = axi_dmac_alloc_desc(chan, num_sgs);
	if (!desc)
		return NULL;

	dsg = desc->sg;

	for_each_sg(sgl, sg, sg_len, i) {
		if (!axi_dmac_check_addr(chan, sg_dma_address(sg)) ||
		    !axi_dmac_check_len(chan, sg_dma_len(sg))) {
			axi_dmac_free_desc(desc);
			return NULL;
		}

		dsg = axi_dmac_fill_linear_sg(chan, direction, sg_dma_address(sg), 1,
			sg_dma_len(sg), dsg);
	}

	desc->cyclic = false;

	return vchan_tx_prep(&chan->vchan, &desc->vdesc, flags);
}

static struct dma_async_tx_descriptor *axi_dmac_prep_dma_cyclic(
	struct dma_chan *c, dma_addr_t buf_addr, size_t buf_len,
	size_t period_len, enum dma_transfer_direction direction,
	unsigned long flags)
{
	struct axi_dmac_chan *chan = to_axi_dmac_chan(c);
	struct axi_dmac_desc *desc;
	unsigned int num_periods, num_segments, num_sgs;

	if (direction != chan->direction)
		return NULL;

	if (!axi_dmac_check_len(chan, buf_len) ||
	    !axi_dmac_check_addr(chan, buf_addr))
		return NULL;

	if (period_len == 0 || buf_len % period_len)
		return NULL;

	num_periods = buf_len / period_len;
	num_segments = DIV_ROUND_UP(period_len, chan->max_length);
	num_sgs = num_periods * num_segments;

	desc = axi_dmac_alloc_desc(chan, num_sgs);
	if (!desc)
		return NULL;

	/* Chain the last descriptor to the first, and remove its "last" flag */
	desc->sg[num_sgs - 1].hw->next_sg_addr = desc->sg[0].hw_phys;
	desc->sg[num_sgs - 1].hw->flags &= ~AXI_DMAC_HW_FLAG_LAST;

	axi_dmac_fill_linear_sg(chan, direction, buf_addr, num_periods,
		period_len, desc->sg);

	desc->cyclic = true;

	return vchan_tx_prep(&chan->vchan, &desc->vdesc, flags);
}

static struct dma_async_tx_descriptor *axi_dmac_prep_interleaved(
	struct dma_chan *c, struct dma_interleaved_template *xt,
	unsigned long flags)
{
	struct axi_dmac_chan *chan = to_axi_dmac_chan(c);
	struct axi_dmac_desc *desc;
	size_t dst_icg, src_icg;

	if (xt->frame_size != 1)
		return NULL;

	if (xt->dir != chan->direction)
		return NULL;

	if (axi_dmac_src_is_mem(chan)) {
		if (!xt->src_inc || !axi_dmac_check_addr(chan, xt->src_start))
			return NULL;
	}

	if (axi_dmac_dest_is_mem(chan)) {
		if (!xt->dst_inc || !axi_dmac_check_addr(chan, xt->dst_start))
			return NULL;
	}

	dst_icg = dmaengine_get_dst_icg(xt, &xt->sgl[0]);
	src_icg = dmaengine_get_src_icg(xt, &xt->sgl[0]);

	if (chan->hw_2d) {
		if (!axi_dmac_check_len(chan, xt->sgl[0].size) ||
		    xt->numf == 0)
			return NULL;
		if (xt->sgl[0].size + dst_icg > chan->max_length ||
		    xt->sgl[0].size + src_icg > chan->max_length)
			return NULL;
	} else {
		if (dst_icg != 0 || src_icg != 0)
			return NULL;
		if (chan->max_length / xt->sgl[0].size < xt->numf)
			return NULL;
		if (!axi_dmac_check_len(chan, xt->sgl[0].size * xt->numf))
			return NULL;
	}

	desc = axi_dmac_alloc_desc(chan, 1);
	if (!desc)
		return NULL;

	if (axi_dmac_src_is_mem(chan)) {
		desc->sg[0].hw->src_addr = xt->src_start;
		desc->sg[0].hw->src_stride = xt->sgl[0].size + src_icg;
	}

	if (axi_dmac_dest_is_mem(chan)) {
		desc->sg[0].hw->dest_addr = xt->dst_start;
		desc->sg[0].hw->dst_stride = xt->sgl[0].size + dst_icg;
	}

	if (chan->hw_2d) {
		desc->sg[0].hw->x_len = xt->sgl[0].size - 1;
		desc->sg[0].hw->y_len = xt->numf - 1;
	} else {
		desc->sg[0].hw->x_len = xt->sgl[0].size * xt->numf - 1;
		desc->sg[0].hw->y_len = 0;
	}

	if (flags & DMA_CYCLIC)
		desc->cyclic = true;

	return vchan_tx_prep(&chan->vchan, &desc->vdesc, flags);
}

static void axi_dmac_free_chan_resources(struct dma_chan *c)
{
	vchan_free_chan_resources(to_virt_chan(c));
}

static void axi_dmac_desc_free(struct virt_dma_desc *vdesc)
{
	axi_dmac_free_desc(to_axi_dmac_desc(vdesc));
}

static bool axi_dmac_regmap_rdwr(struct device *dev, unsigned int reg)
{
	switch (reg) {
	case AXI_DMAC_REG_IRQ_MASK:
	case AXI_DMAC_REG_IRQ_SOURCE:
	case AXI_DMAC_REG_IRQ_PENDING:
	case AXI_DMAC_REG_CTRL:
	case AXI_DMAC_REG_TRANSFER_ID:
	case AXI_DMAC_REG_START_TRANSFER:
	case AXI_DMAC_REG_FLAGS:
	case AXI_DMAC_REG_DEST_ADDRESS:
	case AXI_DMAC_REG_SRC_ADDRESS:
	case AXI_DMAC_REG_X_LENGTH:
	case AXI_DMAC_REG_Y_LENGTH:
	case AXI_DMAC_REG_DEST_STRIDE:
	case AXI_DMAC_REG_SRC_STRIDE:
	case AXI_DMAC_REG_TRANSFER_DONE:
	case AXI_DMAC_REG_ACTIVE_TRANSFER_ID:
	case AXI_DMAC_REG_STATUS:
	case AXI_DMAC_REG_CURRENT_SRC_ADDR:
	case AXI_DMAC_REG_CURRENT_DEST_ADDR:
	case AXI_DMAC_REG_PARTIAL_XFER_LEN:
	case AXI_DMAC_REG_PARTIAL_XFER_ID:
	case AXI_DMAC_REG_CURRENT_SG_ID:
	case AXI_DMAC_REG_SG_ADDRESS:
	case AXI_DMAC_REG_SG_ADDRESS_HIGH:
		return true;
	default:
		return false;
	}
}

static const struct regmap_config axi_dmac_regmap_config = {
	.reg_bits = 32,
	.val_bits = 32,
	.reg_stride = 4,
	.max_register = AXI_DMAC_REG_PARTIAL_XFER_ID,
	.readable_reg = axi_dmac_regmap_rdwr,
	.writeable_reg = axi_dmac_regmap_rdwr,
};

static void axi_dmac_adjust_chan_params(struct axi_dmac_chan *chan)
{
	chan->address_align_mask = max(chan->dest_width, chan->src_width) - 1;

	if (axi_dmac_dest_is_mem(chan) && axi_dmac_src_is_mem(chan))
		chan->direction = DMA_MEM_TO_MEM;
	else if (!axi_dmac_dest_is_mem(chan) && axi_dmac_src_is_mem(chan))
		chan->direction = DMA_MEM_TO_DEV;
	else if (axi_dmac_dest_is_mem(chan) && !axi_dmac_src_is_mem(chan))
		chan->direction = DMA_DEV_TO_MEM;
	else
		chan->direction = DMA_DEV_TO_DEV;
}

/*
 * The configuration stored in the devicetree matches the configuration
 * parameters of the peripheral instance and allows the driver to know which
 * features are implemented and how it should behave.
 */
static int axi_dmac_parse_chan_dt(struct device_node *of_chan,
	struct axi_dmac_chan *chan)
{
	u32 val;
	int ret;

	ret = of_property_read_u32(of_chan, "reg", &val);
	if (ret)
		return ret;

	/* We only support 1 channel for now */
	if (val != 0)
		return -EINVAL;

	ret = of_property_read_u32(of_chan, "adi,source-bus-type", &val);
	if (ret)
		return ret;
	if (val > AXI_DMAC_BUS_TYPE_FIFO)
		return -EINVAL;
	chan->src_type = val;

	ret = of_property_read_u32(of_chan, "adi,destination-bus-type", &val);
	if (ret)
		return ret;
	if (val > AXI_DMAC_BUS_TYPE_FIFO)
		return -EINVAL;
	chan->dest_type = val;

	ret = of_property_read_u32(of_chan, "adi,source-bus-width", &val);
	if (ret)
		return ret;
	chan->src_width = val / 8;

	ret = of_property_read_u32(of_chan, "adi,destination-bus-width", &val);
	if (ret)
		return ret;
	chan->dest_width = val / 8;

	axi_dmac_adjust_chan_params(chan);

	return 0;
}

static int axi_dmac_parse_dt(struct device *dev, struct axi_dmac *dmac)
{
	struct device_node *of_channels, *of_chan;
	int ret;

	of_channels = of_get_child_by_name(dev->of_node, "adi,channels");
	if (of_channels == NULL)
		return -ENODEV;

	for_each_child_of_node(of_channels, of_chan) {
		ret = axi_dmac_parse_chan_dt(of_chan, &dmac->chan);
		if (ret) {
			of_node_put(of_chan);
			of_node_put(of_channels);
			return -EINVAL;
		}
	}
	of_node_put(of_channels);

	return 0;
}

static int axi_dmac_read_chan_config(struct device *dev, struct axi_dmac *dmac)
{
	struct axi_dmac_chan *chan = &dmac->chan;
	unsigned int val, desc;

	desc = axi_dmac_read(dmac, AXI_DMAC_REG_INTERFACE_DESC);
	if (desc == 0) {
		dev_err(dev, "DMA interface register reads zero\n");
		return -EFAULT;
	}

	val = AXI_DMAC_DMA_SRC_TYPE_GET(desc);
	if (val > AXI_DMAC_BUS_TYPE_FIFO) {
		dev_err(dev, "Invalid source bus type read: %d\n", val);
		return -EINVAL;
	}
	chan->src_type = val;

	val = AXI_DMAC_DMA_DST_TYPE_GET(desc);
	if (val > AXI_DMAC_BUS_TYPE_FIFO) {
		dev_err(dev, "Invalid destination bus type read: %d\n", val);
		return -EINVAL;
	}
	chan->dest_type = val;

	val = AXI_DMAC_DMA_SRC_WIDTH_GET(desc);
	if (val == 0) {
		dev_err(dev, "Source bus width is zero\n");
		return -EINVAL;
	}
	/* widths are stored in log2 */
	chan->src_width = 1 << val;

	val = AXI_DMAC_DMA_DST_WIDTH_GET(desc);
	if (val == 0) {
		dev_err(dev, "Destination bus width is zero\n");
		return -EINVAL;
	}
	chan->dest_width = 1 << val;

	axi_dmac_adjust_chan_params(chan);

	return 0;
}

static int axi_dmac_detect_caps(struct axi_dmac *dmac, unsigned int version)
{
	struct axi_dmac_chan *chan = &dmac->chan;

	axi_dmac_write(dmac, AXI_DMAC_REG_FLAGS, AXI_DMAC_FLAG_CYCLIC);
	if (axi_dmac_read(dmac, AXI_DMAC_REG_FLAGS) == AXI_DMAC_FLAG_CYCLIC)
		chan->hw_cyclic = true;

	axi_dmac_write(dmac, AXI_DMAC_REG_SG_ADDRESS, 0xffffffff);
	if (axi_dmac_read(dmac, AXI_DMAC_REG_SG_ADDRESS))
		chan->hw_sg = true;

	axi_dmac_write(dmac, AXI_DMAC_REG_Y_LENGTH, 1);
	if (axi_dmac_read(dmac, AXI_DMAC_REG_Y_LENGTH) == 1)
		chan->hw_2d = true;

	axi_dmac_write(dmac, AXI_DMAC_REG_X_LENGTH, 0xffffffff);
	chan->max_length = axi_dmac_read(dmac, AXI_DMAC_REG_X_LENGTH);
	if (chan->max_length != UINT_MAX)
		chan->max_length++;

	axi_dmac_write(dmac, AXI_DMAC_REG_DEST_ADDRESS, 0xffffffff);
	if (axi_dmac_read(dmac, AXI_DMAC_REG_DEST_ADDRESS) == 0 &&
	    chan->dest_type == AXI_DMAC_BUS_TYPE_AXI_MM) {
		dev_err(dmac->dma_dev.dev,
			"Destination memory-mapped interface not supported.");
		return -ENODEV;
	}

	axi_dmac_write(dmac, AXI_DMAC_REG_SRC_ADDRESS, 0xffffffff);
	if (axi_dmac_read(dmac, AXI_DMAC_REG_SRC_ADDRESS) == 0 &&
	    chan->src_type == AXI_DMAC_BUS_TYPE_AXI_MM) {
		dev_err(dmac->dma_dev.dev,
			"Source memory-mapped interface not supported.");
		return -ENODEV;
	}

	if (version >= ADI_AXI_PCORE_VER(4, 2, 'a'))
		chan->hw_partial_xfer = true;

	if (version >= ADI_AXI_PCORE_VER(4, 1, 'a')) {
		axi_dmac_write(dmac, AXI_DMAC_REG_X_LENGTH, 0x00);
		chan->length_align_mask =
			axi_dmac_read(dmac, AXI_DMAC_REG_X_LENGTH);
	} else {
		chan->length_align_mask = chan->address_align_mask;
	}

	return 0;
}

static int axi_dmac_probe(struct platform_device *pdev)
{
	struct dma_device *dma_dev;
	struct axi_dmac *dmac;
	struct regmap *regmap;
	unsigned int version;
	u32 irq_mask = 0;
	int ret;

	dmac = devm_kzalloc(&pdev->dev, sizeof(*dmac), GFP_KERNEL);
	if (!dmac)
		return -ENOMEM;

	dmac->irq = platform_get_irq(pdev, 0);
	if (dmac->irq < 0)
		return dmac->irq;
	if (dmac->irq == 0)
		return -EINVAL;

	dmac->base = devm_platform_ioremap_resource(pdev, 0);
	if (IS_ERR(dmac->base))
		return PTR_ERR(dmac->base);

	dmac->clk = devm_clk_get(&pdev->dev, NULL);
	if (IS_ERR(dmac->clk))
		return PTR_ERR(dmac->clk);

	ret = clk_prepare_enable(dmac->clk);
	if (ret < 0)
		return ret;

	version = axi_dmac_read(dmac, ADI_AXI_REG_VERSION);

	if (version >= ADI_AXI_PCORE_VER(4, 3, 'a'))
		ret = axi_dmac_read_chan_config(&pdev->dev, dmac);
	else
		ret = axi_dmac_parse_dt(&pdev->dev, dmac);

	if (ret < 0)
		goto err_clk_disable;

	INIT_LIST_HEAD(&dmac->chan.active_descs);

	dma_set_max_seg_size(&pdev->dev, UINT_MAX);

	dma_dev = &dmac->dma_dev;
	dma_cap_set(DMA_SLAVE, dma_dev->cap_mask);
	dma_cap_set(DMA_CYCLIC, dma_dev->cap_mask);
	dma_cap_set(DMA_INTERLEAVE, dma_dev->cap_mask);
	dma_dev->device_free_chan_resources = axi_dmac_free_chan_resources;
	dma_dev->device_tx_status = dma_cookie_status;
	dma_dev->device_issue_pending = axi_dmac_issue_pending;
	dma_dev->device_prep_slave_sg = axi_dmac_prep_slave_sg;
	dma_dev->device_prep_dma_cyclic = axi_dmac_prep_dma_cyclic;
	dma_dev->device_prep_interleaved_dma = axi_dmac_prep_interleaved;
	dma_dev->device_terminate_all = axi_dmac_terminate_all;
	dma_dev->device_synchronize = axi_dmac_synchronize;
	dma_dev->dev = &pdev->dev;
	dma_dev->src_addr_widths = BIT(dmac->chan.src_width);
	dma_dev->dst_addr_widths = BIT(dmac->chan.dest_width);
	dma_dev->directions = BIT(dmac->chan.direction);
	dma_dev->residue_granularity = DMA_RESIDUE_GRANULARITY_DESCRIPTOR;
	dma_dev->max_sg_burst = 31; /* 31 SGs maximum in one burst */
	INIT_LIST_HEAD(&dma_dev->channels);

	dmac->chan.vchan.desc_free = axi_dmac_desc_free;
	vchan_init(&dmac->chan.vchan, dma_dev);

	ret = axi_dmac_detect_caps(dmac, version);
	if (ret)
		goto err_clk_disable;

	dma_dev->copy_align = (dmac->chan.address_align_mask + 1);

	if (dmac->chan.hw_sg)
		irq_mask |= AXI_DMAC_IRQ_SOT;

	axi_dmac_write(dmac, AXI_DMAC_REG_IRQ_MASK, irq_mask);

	if (of_dma_is_coherent(pdev->dev.of_node)) {
		ret = axi_dmac_read(dmac, AXI_DMAC_REG_COHERENCY_DESC);

		if (version < ADI_AXI_PCORE_VER(4, 4, 'a') ||
		    !AXI_DMAC_DST_COHERENT_GET(ret)) {
			dev_err(dmac->dma_dev.dev,
				"Coherent DMA not supported in hardware");
			ret = -EINVAL;
			goto err_clk_disable;
		}
	}

	ret = dma_async_device_register(dma_dev);
	if (ret)
		goto err_clk_disable;

	ret = of_dma_controller_register(pdev->dev.of_node,
		of_dma_xlate_by_chan_id, dma_dev);
	if (ret)
		goto err_unregister_device;

	ret = request_irq(dmac->irq, axi_dmac_interrupt_handler, IRQF_SHARED,
		dev_name(&pdev->dev), dmac);
	if (ret)
		goto err_unregister_of;

	platform_set_drvdata(pdev, dmac);

	regmap = devm_regmap_init_mmio(&pdev->dev, dmac->base,
		 &axi_dmac_regmap_config);
	if (IS_ERR(regmap)) {
		ret = PTR_ERR(regmap);
		goto err_free_irq;
	}

	return 0;

err_free_irq:
	free_irq(dmac->irq, dmac);
err_unregister_of:
	of_dma_controller_free(pdev->dev.of_node);
err_unregister_device:
	dma_async_device_unregister(&dmac->dma_dev);
err_clk_disable:
	clk_disable_unprepare(dmac->clk);

	return ret;
}

static void axi_dmac_remove(struct platform_device *pdev)
{
	struct axi_dmac *dmac = platform_get_drvdata(pdev);

	free_irq(dmac->irq, dmac);
	of_dma_controller_free(pdev->dev.of_node);
	tasklet_kill(&dmac->chan.vchan.task);
	dma_async_device_unregister(&dmac->dma_dev);
	clk_disable_unprepare(dmac->clk);
}

static const struct of_device_id axi_dmac_of_match_table[] = {
	{ .compatible = "adi,axi-dmac-1.00.a" },
	{ },
};
MODULE_DEVICE_TABLE(of, axi_dmac_of_match_table);

static struct platform_driver axi_dmac_driver = {
	.driver = {
		.name = "dma-axi-dmac",
		.of_match_table = axi_dmac_of_match_table,
	},
	.probe = axi_dmac_probe,
	.remove_new = axi_dmac_remove,
};
module_platform_driver(axi_dmac_driver);

MODULE_AUTHOR("Lars-Peter Clausen <lars@metafoo.de>");
MODULE_DESCRIPTION("DMA controller driver for the AXI-DMAC controller");
MODULE_LICENSE("GPL v2");