1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
|
// SPDX-License-Identifier: GPL-2.0
/*
* Microchip CoreI2C I2C controller driver
*
* Copyright (c) 2018-2022 Microchip Corporation. All rights reserved.
*
* Author: Daire McNamara <daire.mcnamara@microchip.com>
* Author: Conor Dooley <conor.dooley@microchip.com>
*/
#include <linux/clk.h>
#include <linux/clkdev.h>
#include <linux/err.h>
#include <linux/i2c.h>
#include <linux/interrupt.h>
#include <linux/io.h>
#include <linux/kernel.h>
#include <linux/module.h>
#include <linux/platform_device.h>
#define CORE_I2C_CTRL (0x00)
#define CTRL_CR0 BIT(0)
#define CTRL_CR1 BIT(1)
#define CTRL_AA BIT(2)
#define CTRL_SI BIT(3)
#define CTRL_STO BIT(4)
#define CTRL_STA BIT(5)
#define CTRL_ENS1 BIT(6)
#define CTRL_CR2 BIT(7)
#define STATUS_BUS_ERROR (0x00)
#define STATUS_M_START_SENT (0x08)
#define STATUS_M_REPEATED_START_SENT (0x10)
#define STATUS_M_SLAW_ACK (0x18)
#define STATUS_M_SLAW_NACK (0x20)
#define STATUS_M_TX_DATA_ACK (0x28)
#define STATUS_M_TX_DATA_NACK (0x30)
#define STATUS_M_ARB_LOST (0x38)
#define STATUS_M_SLAR_ACK (0x40)
#define STATUS_M_SLAR_NACK (0x48)
#define STATUS_M_RX_DATA_ACKED (0x50)
#define STATUS_M_RX_DATA_NACKED (0x58)
#define STATUS_S_SLAW_ACKED (0x60)
#define STATUS_S_ARB_LOST_SLAW_ACKED (0x68)
#define STATUS_S_GENERAL_CALL_ACKED (0x70)
#define STATUS_S_ARB_LOST_GENERAL_CALL_ACKED (0x78)
#define STATUS_S_RX_DATA_ACKED (0x80)
#define STATUS_S_RX_DATA_NACKED (0x88)
#define STATUS_S_GENERAL_CALL_RX_DATA_ACKED (0x90)
#define STATUS_S_GENERAL_CALL_RX_DATA_NACKED (0x98)
#define STATUS_S_RX_STOP (0xA0)
#define STATUS_S_SLAR_ACKED (0xA8)
#define STATUS_S_ARB_LOST_SLAR_ACKED (0xB0)
#define STATUS_S_TX_DATA_ACK (0xB8)
#define STATUS_S_TX_DATA_NACK (0xC0)
#define STATUS_LAST_DATA_ACK (0xC8)
#define STATUS_M_SMB_MASTER_RESET (0xD0)
#define STATUS_S_SCL_LOW_TIMEOUT (0xD8) /* 25 ms */
#define STATUS_NO_STATE_INFO (0xF8)
#define CORE_I2C_STATUS (0x04)
#define CORE_I2C_DATA (0x08)
#define WRITE_BIT (0x0)
#define READ_BIT (0x1)
#define SLAVE_ADDR_SHIFT (1)
#define CORE_I2C_SLAVE0_ADDR (0x0c)
#define GENERAL_CALL_BIT (0x0)
#define CORE_I2C_SMBUS (0x10)
#define SMBALERT_INT_ENB (0x0)
#define SMBSUS_INT_ENB (0x1)
#define SMBUS_ENB (0x2)
#define SMBALERT_NI_STATUS (0x3)
#define SMBALERT_NO_CTRL (0x4)
#define SMBSUS_NI_STATUS (0x5)
#define SMBSUS_NO_CTRL (0x6)
#define SMBUS_RESET (0x7)
#define CORE_I2C_FREQ (0x14)
#define CORE_I2C_GLITCHREG (0x18)
#define CORE_I2C_SLAVE1_ADDR (0x1c)
#define PCLK_DIV_960 (CTRL_CR2)
#define PCLK_DIV_256 (0)
#define PCLK_DIV_224 (CTRL_CR0)
#define PCLK_DIV_192 (CTRL_CR1)
#define PCLK_DIV_160 (CTRL_CR0 | CTRL_CR1)
#define PCLK_DIV_120 (CTRL_CR0 | CTRL_CR2)
#define PCLK_DIV_60 (CTRL_CR1 | CTRL_CR2)
#define BCLK_DIV_8 (CTRL_CR0 | CTRL_CR1 | CTRL_CR2)
#define CLK_MASK (CTRL_CR0 | CTRL_CR1 | CTRL_CR2)
/**
* struct mchp_corei2c_dev - Microchip CoreI2C device private data
*
* @base: pointer to register struct
* @dev: device reference
* @i2c_clk: clock reference for i2c input clock
* @buf: pointer to msg buffer for easier use
* @msg_complete: xfer completion object
* @adapter: core i2c abstraction
* @msg_err: error code for completed message
* @bus_clk_rate: current i2c bus clock rate
* @isr_status: cached copy of local ISR status
* @msg_len: number of bytes transferred in msg
* @addr: address of the current slave
*/
struct mchp_corei2c_dev {
void __iomem *base;
struct device *dev;
struct clk *i2c_clk;
u8 *buf;
struct completion msg_complete;
struct i2c_adapter adapter;
int msg_err;
u32 bus_clk_rate;
u32 isr_status;
u16 msg_len;
u8 addr;
};
static void mchp_corei2c_core_disable(struct mchp_corei2c_dev *idev)
{
u8 ctrl = readb(idev->base + CORE_I2C_CTRL);
ctrl &= ~CTRL_ENS1;
writeb(ctrl, idev->base + CORE_I2C_CTRL);
}
static void mchp_corei2c_core_enable(struct mchp_corei2c_dev *idev)
{
u8 ctrl = readb(idev->base + CORE_I2C_CTRL);
ctrl |= CTRL_ENS1;
writeb(ctrl, idev->base + CORE_I2C_CTRL);
}
static void mchp_corei2c_reset(struct mchp_corei2c_dev *idev)
{
mchp_corei2c_core_disable(idev);
mchp_corei2c_core_enable(idev);
}
static inline void mchp_corei2c_stop(struct mchp_corei2c_dev *idev)
{
u8 ctrl = readb(idev->base + CORE_I2C_CTRL);
ctrl |= CTRL_STO;
writeb(ctrl, idev->base + CORE_I2C_CTRL);
}
static inline int mchp_corei2c_set_divisor(u32 rate,
struct mchp_corei2c_dev *idev)
{
u8 clkval, ctrl;
if (rate >= 960)
clkval = PCLK_DIV_960;
else if (rate >= 256)
clkval = PCLK_DIV_256;
else if (rate >= 224)
clkval = PCLK_DIV_224;
else if (rate >= 192)
clkval = PCLK_DIV_192;
else if (rate >= 160)
clkval = PCLK_DIV_160;
else if (rate >= 120)
clkval = PCLK_DIV_120;
else if (rate >= 60)
clkval = PCLK_DIV_60;
else if (rate >= 8)
clkval = BCLK_DIV_8;
else
return -EINVAL;
ctrl = readb(idev->base + CORE_I2C_CTRL);
ctrl &= ~CLK_MASK;
ctrl |= clkval;
writeb(ctrl, idev->base + CORE_I2C_CTRL);
ctrl = readb(idev->base + CORE_I2C_CTRL);
if ((ctrl & CLK_MASK) != clkval)
return -EIO;
return 0;
}
static int mchp_corei2c_init(struct mchp_corei2c_dev *idev)
{
u32 clk_rate = clk_get_rate(idev->i2c_clk);
u32 divisor = clk_rate / idev->bus_clk_rate;
int ret;
ret = mchp_corei2c_set_divisor(divisor, idev);
if (ret)
return ret;
mchp_corei2c_reset(idev);
return 0;
}
static void mchp_corei2c_empty_rx(struct mchp_corei2c_dev *idev)
{
u8 ctrl;
if (idev->msg_len > 0) {
*idev->buf++ = readb(idev->base + CORE_I2C_DATA);
idev->msg_len--;
}
if (idev->msg_len <= 1) {
ctrl = readb(idev->base + CORE_I2C_CTRL);
ctrl &= ~CTRL_AA;
writeb(ctrl, idev->base + CORE_I2C_CTRL);
}
}
static int mchp_corei2c_fill_tx(struct mchp_corei2c_dev *idev)
{
if (idev->msg_len > 0)
writeb(*idev->buf++, idev->base + CORE_I2C_DATA);
idev->msg_len--;
return 0;
}
static irqreturn_t mchp_corei2c_handle_isr(struct mchp_corei2c_dev *idev)
{
u32 status = idev->isr_status;
u8 ctrl;
bool last_byte = false, finished = false;
if (!idev->buf)
return IRQ_NONE;
switch (status) {
case STATUS_M_START_SENT:
case STATUS_M_REPEATED_START_SENT:
ctrl = readb(idev->base + CORE_I2C_CTRL);
ctrl &= ~CTRL_STA;
writeb(idev->addr, idev->base + CORE_I2C_DATA);
writeb(ctrl, idev->base + CORE_I2C_CTRL);
if (idev->msg_len == 0)
finished = true;
break;
case STATUS_M_ARB_LOST:
idev->msg_err = -EAGAIN;
finished = true;
break;
case STATUS_M_SLAW_ACK:
case STATUS_M_TX_DATA_ACK:
if (idev->msg_len > 0)
mchp_corei2c_fill_tx(idev);
else
last_byte = true;
break;
case STATUS_M_TX_DATA_NACK:
case STATUS_M_SLAR_NACK:
case STATUS_M_SLAW_NACK:
idev->msg_err = -ENXIO;
last_byte = true;
break;
case STATUS_M_SLAR_ACK:
ctrl = readb(idev->base + CORE_I2C_CTRL);
if (idev->msg_len == 1u) {
ctrl &= ~CTRL_AA;
writeb(ctrl, idev->base + CORE_I2C_CTRL);
} else {
ctrl |= CTRL_AA;
writeb(ctrl, idev->base + CORE_I2C_CTRL);
}
if (idev->msg_len < 1u)
last_byte = true;
break;
case STATUS_M_RX_DATA_ACKED:
mchp_corei2c_empty_rx(idev);
break;
case STATUS_M_RX_DATA_NACKED:
mchp_corei2c_empty_rx(idev);
if (idev->msg_len == 0)
last_byte = true;
break;
default:
break;
}
/* On the last byte to be transmitted, send STOP */
if (last_byte)
mchp_corei2c_stop(idev);
if (last_byte || finished)
complete(&idev->msg_complete);
return IRQ_HANDLED;
}
static irqreturn_t mchp_corei2c_isr(int irq, void *_dev)
{
struct mchp_corei2c_dev *idev = _dev;
irqreturn_t ret = IRQ_NONE;
u8 ctrl;
ctrl = readb(idev->base + CORE_I2C_CTRL);
if (ctrl & CTRL_SI) {
idev->isr_status = readb(idev->base + CORE_I2C_STATUS);
ret = mchp_corei2c_handle_isr(idev);
}
ctrl = readb(idev->base + CORE_I2C_CTRL);
ctrl &= ~CTRL_SI;
writeb(ctrl, idev->base + CORE_I2C_CTRL);
return ret;
}
static int mchp_corei2c_xfer_msg(struct mchp_corei2c_dev *idev,
struct i2c_msg *msg)
{
u8 ctrl;
unsigned long time_left;
idev->addr = i2c_8bit_addr_from_msg(msg);
idev->msg_len = msg->len;
idev->buf = msg->buf;
idev->msg_err = 0;
reinit_completion(&idev->msg_complete);
mchp_corei2c_core_enable(idev);
ctrl = readb(idev->base + CORE_I2C_CTRL);
ctrl |= CTRL_STA;
writeb(ctrl, idev->base + CORE_I2C_CTRL);
time_left = wait_for_completion_timeout(&idev->msg_complete,
idev->adapter.timeout);
if (!time_left)
return -ETIMEDOUT;
return idev->msg_err;
}
static int mchp_corei2c_xfer(struct i2c_adapter *adap, struct i2c_msg *msgs,
int num)
{
struct mchp_corei2c_dev *idev = i2c_get_adapdata(adap);
int i, ret;
for (i = 0; i < num; i++) {
ret = mchp_corei2c_xfer_msg(idev, msgs++);
if (ret)
return ret;
}
return num;
}
static u32 mchp_corei2c_func(struct i2c_adapter *adap)
{
return I2C_FUNC_I2C | I2C_FUNC_SMBUS_EMUL;
}
static const struct i2c_algorithm mchp_corei2c_algo = {
.master_xfer = mchp_corei2c_xfer,
.functionality = mchp_corei2c_func,
};
static int mchp_corei2c_probe(struct platform_device *pdev)
{
struct mchp_corei2c_dev *idev;
struct resource *res;
int irq, ret;
idev = devm_kzalloc(&pdev->dev, sizeof(*idev), GFP_KERNEL);
if (!idev)
return -ENOMEM;
idev->base = devm_platform_get_and_ioremap_resource(pdev, 0, &res);
if (IS_ERR(idev->base))
return PTR_ERR(idev->base);
irq = platform_get_irq(pdev, 0);
if (irq < 0)
return irq;
idev->i2c_clk = devm_clk_get(&pdev->dev, NULL);
if (IS_ERR(idev->i2c_clk))
return dev_err_probe(&pdev->dev, PTR_ERR(idev->i2c_clk),
"missing clock\n");
idev->dev = &pdev->dev;
init_completion(&idev->msg_complete);
ret = device_property_read_u32(idev->dev, "clock-frequency",
&idev->bus_clk_rate);
if (ret || !idev->bus_clk_rate) {
dev_info(&pdev->dev, "default to 100kHz\n");
idev->bus_clk_rate = 100000;
}
if (idev->bus_clk_rate > 400000)
return dev_err_probe(&pdev->dev, -EINVAL,
"clock-frequency too high: %d\n",
idev->bus_clk_rate);
/*
* This driver supports both the hard peripherals & soft FPGA cores.
* The hard peripherals do not have shared IRQs, but we don't have
* control over what way the interrupts are wired for the soft cores.
*/
ret = devm_request_irq(&pdev->dev, irq, mchp_corei2c_isr, IRQF_SHARED,
pdev->name, idev);
if (ret)
return dev_err_probe(&pdev->dev, ret,
"failed to claim irq %d\n", irq);
ret = clk_prepare_enable(idev->i2c_clk);
if (ret)
return dev_err_probe(&pdev->dev, ret,
"failed to enable clock\n");
ret = mchp_corei2c_init(idev);
if (ret) {
clk_disable_unprepare(idev->i2c_clk);
return dev_err_probe(&pdev->dev, ret, "failed to program clock divider\n");
}
i2c_set_adapdata(&idev->adapter, idev);
snprintf(idev->adapter.name, sizeof(idev->adapter.name),
"Microchip I2C hw bus at %08lx", (unsigned long)res->start);
idev->adapter.owner = THIS_MODULE;
idev->adapter.algo = &mchp_corei2c_algo;
idev->adapter.dev.parent = &pdev->dev;
idev->adapter.dev.of_node = pdev->dev.of_node;
idev->adapter.timeout = HZ;
platform_set_drvdata(pdev, idev);
ret = i2c_add_adapter(&idev->adapter);
if (ret) {
clk_disable_unprepare(idev->i2c_clk);
return ret;
}
dev_info(&pdev->dev, "registered CoreI2C bus driver\n");
return 0;
}
static void mchp_corei2c_remove(struct platform_device *pdev)
{
struct mchp_corei2c_dev *idev = platform_get_drvdata(pdev);
clk_disable_unprepare(idev->i2c_clk);
i2c_del_adapter(&idev->adapter);
}
static const struct of_device_id mchp_corei2c_of_match[] = {
{ .compatible = "microchip,mpfs-i2c" },
{ .compatible = "microchip,corei2c-rtl-v7" },
{},
};
MODULE_DEVICE_TABLE(of, mchp_corei2c_of_match);
static struct platform_driver mchp_corei2c_driver = {
.probe = mchp_corei2c_probe,
.remove_new = mchp_corei2c_remove,
.driver = {
.name = "microchip-corei2c",
.of_match_table = mchp_corei2c_of_match,
},
};
module_platform_driver(mchp_corei2c_driver);
MODULE_DESCRIPTION("Microchip CoreI2C bus driver");
MODULE_AUTHOR("Daire McNamara <daire.mcnamara@microchip.com>");
MODULE_AUTHOR("Conor Dooley <conor.dooley@microchip.com>");
MODULE_LICENSE("GPL");
|