summaryrefslogtreecommitdiffstats
path: root/drivers/i3c/master/mipi-i3c-hci/pio.c
blob: d0272aa93599c2599b4cdb35bca3acb3f1dcb30c (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
// SPDX-License-Identifier: BSD-3-Clause
/*
 * Copyright (c) 2020, MIPI Alliance, Inc.
 *
 * Author: Nicolas Pitre <npitre@baylibre.com>
 */

#include <linux/bitfield.h>
#include <linux/device.h>
#include <linux/errno.h>
#include <linux/i3c/master.h>
#include <linux/io.h>

#include "hci.h"
#include "cmd.h"
#include "ibi.h"


/*
 * PIO Access Area
 */

#define pio_reg_read(r)		readl(hci->PIO_regs + (PIO_##r))
#define pio_reg_write(r, v)	writel(v, hci->PIO_regs + (PIO_##r))

#define PIO_COMMAND_QUEUE_PORT		0x00
#define PIO_RESPONSE_QUEUE_PORT		0x04
#define PIO_XFER_DATA_PORT		0x08
#define PIO_IBI_PORT			0x0c

#define PIO_QUEUE_THLD_CTRL		0x10
#define QUEUE_IBI_STATUS_THLD		GENMASK(31, 24)
#define QUEUE_IBI_DATA_THLD		GENMASK(23, 16)
#define QUEUE_RESP_BUF_THLD		GENMASK(15, 8)
#define QUEUE_CMD_EMPTY_BUF_THLD	GENMASK(7, 0)

#define PIO_DATA_BUFFER_THLD_CTRL	0x14
#define DATA_RX_START_THLD		GENMASK(26, 24)
#define DATA_TX_START_THLD		GENMASK(18, 16)
#define DATA_RX_BUF_THLD		GENMASK(10, 8)
#define DATA_TX_BUF_THLD		GENMASK(2, 0)

#define PIO_QUEUE_SIZE			0x18
#define TX_DATA_BUFFER_SIZE		GENMASK(31, 24)
#define RX_DATA_BUFFER_SIZE		GENMASK(23, 16)
#define IBI_STATUS_SIZE			GENMASK(15, 8)
#define CR_QUEUE_SIZE			GENMASK(7, 0)

#define PIO_INTR_STATUS			0x20
#define PIO_INTR_STATUS_ENABLE		0x24
#define PIO_INTR_SIGNAL_ENABLE		0x28
#define PIO_INTR_FORCE			0x2c
#define STAT_TRANSFER_BLOCKED		BIT(25)
#define STAT_PERR_RESP_UFLOW		BIT(24)
#define STAT_PERR_CMD_OFLOW		BIT(23)
#define STAT_PERR_IBI_UFLOW		BIT(22)
#define STAT_PERR_RX_UFLOW		BIT(21)
#define STAT_PERR_TX_OFLOW		BIT(20)
#define STAT_ERR_RESP_QUEUE_FULL	BIT(19)
#define STAT_WARN_RESP_QUEUE_FULL	BIT(18)
#define STAT_ERR_IBI_QUEUE_FULL		BIT(17)
#define STAT_WARN_IBI_QUEUE_FULL	BIT(16)
#define STAT_ERR_RX_DATA_FULL		BIT(15)
#define STAT_WARN_RX_DATA_FULL		BIT(14)
#define STAT_ERR_TX_DATA_EMPTY		BIT(13)
#define STAT_WARN_TX_DATA_EMPTY		BIT(12)
#define STAT_TRANSFER_ERR		BIT(9)
#define STAT_WARN_INS_STOP_MODE		BIT(7)
#define STAT_TRANSFER_ABORT		BIT(5)
#define STAT_RESP_READY			BIT(4)
#define STAT_CMD_QUEUE_READY		BIT(3)
#define STAT_IBI_STATUS_THLD		BIT(2)
#define STAT_RX_THLD			BIT(1)
#define STAT_TX_THLD			BIT(0)

#define PIO_QUEUE_CUR_STATUS		0x38
#define CUR_IBI_Q_LEVEL			GENMASK(28, 20)
#define CUR_RESP_Q_LEVEL		GENMASK(18, 10)
#define CUR_CMD_Q_EMPTY_LEVEL		GENMASK(8, 0)

#define PIO_DATA_BUFFER_CUR_STATUS	0x3c
#define CUR_RX_BUF_LVL			GENMASK(26, 16)
#define CUR_TX_BUF_LVL			GENMASK(10, 0)

/*
 * Handy status bit combinations
 */

#define STAT_LATENCY_WARNINGS		(STAT_WARN_RESP_QUEUE_FULL | \
					 STAT_WARN_IBI_QUEUE_FULL | \
					 STAT_WARN_RX_DATA_FULL | \
					 STAT_WARN_TX_DATA_EMPTY | \
					 STAT_WARN_INS_STOP_MODE)

#define STAT_LATENCY_ERRORS		(STAT_ERR_RESP_QUEUE_FULL | \
					 STAT_ERR_IBI_QUEUE_FULL | \
					 STAT_ERR_RX_DATA_FULL | \
					 STAT_ERR_TX_DATA_EMPTY)

#define STAT_PROG_ERRORS		(STAT_TRANSFER_BLOCKED | \
					 STAT_PERR_RESP_UFLOW | \
					 STAT_PERR_CMD_OFLOW | \
					 STAT_PERR_IBI_UFLOW | \
					 STAT_PERR_RX_UFLOW | \
					 STAT_PERR_TX_OFLOW)

#define STAT_ALL_ERRORS			(STAT_TRANSFER_ABORT | \
					 STAT_TRANSFER_ERR | \
					 STAT_LATENCY_ERRORS | \
					 STAT_PROG_ERRORS)

struct hci_pio_dev_ibi_data {
	struct i3c_generic_ibi_pool *pool;
	unsigned int max_len;
};

struct hci_pio_ibi_data {
	struct i3c_ibi_slot *slot;
	void *data_ptr;
	unsigned int addr;
	unsigned int seg_len, seg_cnt;
	unsigned int max_len;
	bool last_seg;
};

struct hci_pio_data {
	spinlock_t lock;
	struct hci_xfer *curr_xfer, *xfer_queue;
	struct hci_xfer *curr_rx, *rx_queue;
	struct hci_xfer *curr_tx, *tx_queue;
	struct hci_xfer *curr_resp, *resp_queue;
	struct hci_pio_ibi_data ibi;
	unsigned int rx_thresh_size, tx_thresh_size;
	unsigned int max_ibi_thresh;
	u32 reg_queue_thresh;
	u32 enabled_irqs;
};

static int hci_pio_init(struct i3c_hci *hci)
{
	struct hci_pio_data *pio;
	u32 val, size_val, rx_thresh, tx_thresh, ibi_val;

	pio = kzalloc(sizeof(*pio), GFP_KERNEL);
	if (!pio)
		return -ENOMEM;

	hci->io_data = pio;
	spin_lock_init(&pio->lock);

	size_val = pio_reg_read(QUEUE_SIZE);
	dev_info(&hci->master.dev, "CMD/RESP FIFO = %ld entries\n",
		 FIELD_GET(CR_QUEUE_SIZE, size_val));
	dev_info(&hci->master.dev, "IBI FIFO = %ld bytes\n",
		 4 * FIELD_GET(IBI_STATUS_SIZE, size_val));
	dev_info(&hci->master.dev, "RX data FIFO = %d bytes\n",
		 4 * (2 << FIELD_GET(RX_DATA_BUFFER_SIZE, size_val)));
	dev_info(&hci->master.dev, "TX data FIFO = %d bytes\n",
		 4 * (2 << FIELD_GET(TX_DATA_BUFFER_SIZE, size_val)));

	/*
	 * Let's initialize data thresholds to half of the actual FIFO size.
	 * The start thresholds aren't used (set to 0) as the FIFO is always
	 * serviced before the corresponding command is queued.
	 */
	rx_thresh = FIELD_GET(RX_DATA_BUFFER_SIZE, size_val);
	tx_thresh = FIELD_GET(TX_DATA_BUFFER_SIZE, size_val);
	if (hci->version_major == 1) {
		/* those are expressed as 2^[n+1), so just sub 1 if not 0 */
		if (rx_thresh)
			rx_thresh -= 1;
		if (tx_thresh)
			tx_thresh -= 1;
		pio->rx_thresh_size = 2 << rx_thresh;
		pio->tx_thresh_size = 2 << tx_thresh;
	} else {
		/* size is 2^(n+1) and threshold is 2^n i.e. already halved */
		pio->rx_thresh_size = 1 << rx_thresh;
		pio->tx_thresh_size = 1 << tx_thresh;
	}
	val = FIELD_PREP(DATA_RX_BUF_THLD,   rx_thresh) |
	      FIELD_PREP(DATA_TX_BUF_THLD,   tx_thresh);
	pio_reg_write(DATA_BUFFER_THLD_CTRL, val);

	/*
	 * Let's raise an interrupt as soon as there is one free cmd slot
	 * or one available response or IBI. For IBI data let's use half the
	 * IBI queue size within allowed bounds.
	 */
	ibi_val = FIELD_GET(IBI_STATUS_SIZE, size_val);
	pio->max_ibi_thresh = clamp_val(ibi_val/2, 1, 63);
	val = FIELD_PREP(QUEUE_IBI_STATUS_THLD, 1) |
	      FIELD_PREP(QUEUE_IBI_DATA_THLD, pio->max_ibi_thresh) |
	      FIELD_PREP(QUEUE_RESP_BUF_THLD, 1) |
	      FIELD_PREP(QUEUE_CMD_EMPTY_BUF_THLD, 1);
	pio_reg_write(QUEUE_THLD_CTRL, val);
	pio->reg_queue_thresh = val;

	/* Disable all IRQs but allow all status bits */
	pio_reg_write(INTR_SIGNAL_ENABLE, 0x0);
	pio_reg_write(INTR_STATUS_ENABLE, 0xffffffff);

	/* Always accept error interrupts (will be activated on first xfer) */
	pio->enabled_irqs = STAT_ALL_ERRORS;

	return 0;
}

static void hci_pio_cleanup(struct i3c_hci *hci)
{
	struct hci_pio_data *pio = hci->io_data;

	pio_reg_write(INTR_SIGNAL_ENABLE, 0x0);

	if (pio) {
		DBG("status = %#x/%#x",
		    pio_reg_read(INTR_STATUS), pio_reg_read(INTR_SIGNAL_ENABLE));
		BUG_ON(pio->curr_xfer);
		BUG_ON(pio->curr_rx);
		BUG_ON(pio->curr_tx);
		BUG_ON(pio->curr_resp);
		kfree(pio);
		hci->io_data = NULL;
	}
}

static void hci_pio_write_cmd(struct i3c_hci *hci, struct hci_xfer *xfer)
{
	DBG("cmd_desc[%d] = 0x%08x", 0, xfer->cmd_desc[0]);
	DBG("cmd_desc[%d] = 0x%08x", 1, xfer->cmd_desc[1]);
	pio_reg_write(COMMAND_QUEUE_PORT, xfer->cmd_desc[0]);
	pio_reg_write(COMMAND_QUEUE_PORT, xfer->cmd_desc[1]);
	if (hci->cmd == &mipi_i3c_hci_cmd_v2) {
		DBG("cmd_desc[%d] = 0x%08x", 2, xfer->cmd_desc[2]);
		DBG("cmd_desc[%d] = 0x%08x", 3, xfer->cmd_desc[3]);
		pio_reg_write(COMMAND_QUEUE_PORT, xfer->cmd_desc[2]);
		pio_reg_write(COMMAND_QUEUE_PORT, xfer->cmd_desc[3]);
	}
}

static bool hci_pio_do_rx(struct i3c_hci *hci, struct hci_pio_data *pio)
{
	struct hci_xfer *xfer = pio->curr_rx;
	unsigned int nr_words;
	u32 *p;

	p = xfer->data;
	p += (xfer->data_len - xfer->data_left) / 4;

	while (xfer->data_left >= 4) {
		/* bail out if FIFO hasn't reached the threshold value yet */
		if (!(pio_reg_read(INTR_STATUS) & STAT_RX_THLD))
			return false;
		nr_words = min(xfer->data_left / 4, pio->rx_thresh_size);
		/* extract data from FIFO */
		xfer->data_left -= nr_words * 4;
		DBG("now %d left %d", nr_words * 4, xfer->data_left);
		while (nr_words--)
			*p++ = pio_reg_read(XFER_DATA_PORT);
	}

	/* trailing data is retrieved upon response reception */
	return !xfer->data_left;
}

static void hci_pio_do_trailing_rx(struct i3c_hci *hci,
				   struct hci_pio_data *pio, unsigned int count)
{
	struct hci_xfer *xfer = pio->curr_rx;
	u32 *p;

	DBG("%d remaining", count);

	p = xfer->data;
	p += (xfer->data_len - xfer->data_left) / 4;

	if (count >= 4) {
		unsigned int nr_words = count / 4;
		/* extract data from FIFO */
		xfer->data_left -= nr_words * 4;
		DBG("now %d left %d", nr_words * 4, xfer->data_left);
		while (nr_words--)
			*p++ = pio_reg_read(XFER_DATA_PORT);
	}

	count &= 3;
	if (count) {
		/*
		 * There are trailing bytes in the last word.
		 * Fetch it and extract bytes in an endian independent way.
		 * Unlike the TX case, we must not write memory past the
		 * end of the destination buffer.
		 */
		u8 *p_byte = (u8 *)p;
		u32 data = pio_reg_read(XFER_DATA_PORT);

		xfer->data_word_before_partial = data;
		xfer->data_left -= count;
		data = (__force u32) cpu_to_le32(data);
		while (count--) {
			*p_byte++ = data;
			data >>= 8;
		}
	}
}

static bool hci_pio_do_tx(struct i3c_hci *hci, struct hci_pio_data *pio)
{
	struct hci_xfer *xfer = pio->curr_tx;
	unsigned int nr_words;
	u32 *p;

	p = xfer->data;
	p += (xfer->data_len - xfer->data_left) / 4;

	while (xfer->data_left >= 4) {
		/* bail out if FIFO free space is below set threshold */
		if (!(pio_reg_read(INTR_STATUS) & STAT_TX_THLD))
			return false;
		/* we can fill up to that TX threshold */
		nr_words = min(xfer->data_left / 4, pio->tx_thresh_size);
		/* push data into the FIFO */
		xfer->data_left -= nr_words * 4;
		DBG("now %d left %d", nr_words * 4, xfer->data_left);
		while (nr_words--)
			pio_reg_write(XFER_DATA_PORT, *p++);
	}

	if (xfer->data_left) {
		/*
		 * There are trailing bytes to send. We can simply load
		 * them from memory as a word which will keep those bytes
		 * in their proper place even on a BE system. This will
		 * also get some bytes past the actual buffer but no one
		 * should care as they won't be sent out.
		 */
		if (!(pio_reg_read(INTR_STATUS) & STAT_TX_THLD))
			return false;
		DBG("trailing %d", xfer->data_left);
		pio_reg_write(XFER_DATA_PORT, *p);
		xfer->data_left = 0;
	}

	return true;
}

static bool hci_pio_process_rx(struct i3c_hci *hci, struct hci_pio_data *pio)
{
	while (pio->curr_rx && hci_pio_do_rx(hci, pio))
		pio->curr_rx = pio->curr_rx->next_data;
	return !pio->curr_rx;
}

static bool hci_pio_process_tx(struct i3c_hci *hci, struct hci_pio_data *pio)
{
	while (pio->curr_tx && hci_pio_do_tx(hci, pio))
		pio->curr_tx = pio->curr_tx->next_data;
	return !pio->curr_tx;
}

static void hci_pio_queue_data(struct i3c_hci *hci, struct hci_pio_data *pio)
{
	struct hci_xfer *xfer = pio->curr_xfer;
	struct hci_xfer *prev_queue_tail;

	if (!xfer->data) {
		xfer->data_len = xfer->data_left = 0;
		return;
	}

	if (xfer->rnw) {
		prev_queue_tail = pio->rx_queue;
		pio->rx_queue = xfer;
		if (pio->curr_rx) {
			prev_queue_tail->next_data = xfer;
		} else {
			pio->curr_rx = xfer;
			if (!hci_pio_process_rx(hci, pio))
				pio->enabled_irqs |= STAT_RX_THLD;
		}
	} else {
		prev_queue_tail = pio->tx_queue;
		pio->tx_queue = xfer;
		if (pio->curr_tx) {
			prev_queue_tail->next_data = xfer;
		} else {
			pio->curr_tx = xfer;
			if (!hci_pio_process_tx(hci, pio))
				pio->enabled_irqs |= STAT_TX_THLD;
		}
	}
}

static void hci_pio_push_to_next_rx(struct i3c_hci *hci, struct hci_xfer *xfer,
				    unsigned int words_to_keep)
{
	u32 *from = xfer->data;
	u32 from_last;
	unsigned int received, count;

	received = (xfer->data_len - xfer->data_left) / 4;
	if ((xfer->data_len - xfer->data_left) & 3) {
		from_last = xfer->data_word_before_partial;
		received += 1;
	} else {
		from_last = from[received];
	}
	from += words_to_keep;
	count = received - words_to_keep;

	while (count) {
		unsigned int room, left, chunk, bytes_to_move;
		u32 last_word;

		xfer = xfer->next_data;
		if (!xfer) {
			dev_err(&hci->master.dev, "pushing RX data to unexistent xfer\n");
			return;
		}

		room = DIV_ROUND_UP(xfer->data_len, 4);
		left = DIV_ROUND_UP(xfer->data_left, 4);
		chunk = min(count, room);
		if (chunk > left) {
			hci_pio_push_to_next_rx(hci, xfer, chunk - left);
			left = chunk;
			xfer->data_left = left * 4;
		}

		bytes_to_move = xfer->data_len - xfer->data_left;
		if (bytes_to_move & 3) {
			/* preserve word  to become partial */
			u32 *p = xfer->data;

			xfer->data_word_before_partial = p[bytes_to_move / 4];
		}
		memmove(xfer->data + chunk, xfer->data, bytes_to_move);

		/* treat last word specially because of partial word issues */
		chunk -= 1;

		memcpy(xfer->data, from, chunk * 4);
		xfer->data_left -= chunk * 4;
		from += chunk;
		count -= chunk;

		last_word = (count == 1) ? from_last : *from++;
		if (xfer->data_left < 4) {
			/*
			 * Like in hci_pio_do_trailing_rx(), preserve original
			 * word to be stored partially then store bytes it
			 * in an endian independent way.
			 */
			u8 *p_byte = xfer->data;

			p_byte += chunk * 4;
			xfer->data_word_before_partial = last_word;
			last_word = (__force u32) cpu_to_le32(last_word);
			while (xfer->data_left--) {
				*p_byte++ = last_word;
				last_word >>= 8;
			}
		} else {
			u32 *p = xfer->data;

			p[chunk] = last_word;
			xfer->data_left -= 4;
		}
		count--;
	}
}

static void hci_pio_err(struct i3c_hci *hci, struct hci_pio_data *pio,
			u32 status);

static bool hci_pio_process_resp(struct i3c_hci *hci, struct hci_pio_data *pio)
{
	while (pio->curr_resp &&
	       (pio_reg_read(INTR_STATUS) & STAT_RESP_READY)) {
		struct hci_xfer *xfer = pio->curr_resp;
		u32 resp = pio_reg_read(RESPONSE_QUEUE_PORT);
		unsigned int tid = RESP_TID(resp);

		DBG("resp = 0x%08x", resp);
		if (tid != xfer->cmd_tid) {
			dev_err(&hci->master.dev,
				"response tid=%d when expecting %d\n",
				tid, xfer->cmd_tid);
			/* let's pretend it is a prog error... any of them  */
			hci_pio_err(hci, pio, STAT_PROG_ERRORS);
			return false;
		}
		xfer->response = resp;

		if (pio->curr_rx == xfer) {
			/*
			 * Response availability implies RX completion.
			 * Retrieve trailing RX data if any.
			 * Note that short reads are possible.
			 */
			unsigned int received, expected, to_keep;

			received = xfer->data_len - xfer->data_left;
			expected = RESP_DATA_LENGTH(xfer->response);
			if (expected > received) {
				hci_pio_do_trailing_rx(hci, pio,
						       expected - received);
			} else if (received > expected) {
				/* we consumed data meant for next xfer */
				to_keep = DIV_ROUND_UP(expected, 4);
				hci_pio_push_to_next_rx(hci, xfer, to_keep);
			}

			/* then process the RX list pointer */
			if (hci_pio_process_rx(hci, pio))
				pio->enabled_irqs &= ~STAT_RX_THLD;
		}

		/*
		 * We're about to give back ownership of the xfer structure
		 * to the waiting instance. Make sure no reference to it
		 * still exists.
		 */
		if (pio->curr_rx == xfer) {
			DBG("short RX ?");
			pio->curr_rx = pio->curr_rx->next_data;
		} else if (pio->curr_tx == xfer) {
			DBG("short TX ?");
			pio->curr_tx = pio->curr_tx->next_data;
		} else if (xfer->data_left) {
			DBG("PIO xfer count = %d after response",
			    xfer->data_left);
		}

		pio->curr_resp = xfer->next_resp;
		if (xfer->completion)
			complete(xfer->completion);
	}
	return !pio->curr_resp;
}

static void hci_pio_queue_resp(struct i3c_hci *hci, struct hci_pio_data *pio)
{
	struct hci_xfer *xfer = pio->curr_xfer;
	struct hci_xfer *prev_queue_tail;

	if (!(xfer->cmd_desc[0] & CMD_0_ROC))
		return;

	prev_queue_tail = pio->resp_queue;
	pio->resp_queue = xfer;
	if (pio->curr_resp) {
		prev_queue_tail->next_resp = xfer;
	} else {
		pio->curr_resp = xfer;
		if (!hci_pio_process_resp(hci, pio))
			pio->enabled_irqs |= STAT_RESP_READY;
	}
}

static bool hci_pio_process_cmd(struct i3c_hci *hci, struct hci_pio_data *pio)
{
	while (pio->curr_xfer &&
	       (pio_reg_read(INTR_STATUS) & STAT_CMD_QUEUE_READY)) {
		/*
		 * Always process the data FIFO before sending the command
		 * so needed TX data or RX space is available upfront.
		 */
		hci_pio_queue_data(hci, pio);
		/*
		 * Then queue our response request. This will also process
		 * the response FIFO in case it got suddenly filled up
		 * with results from previous commands.
		 */
		hci_pio_queue_resp(hci, pio);
		/*
		 * Finally send the command.
		 */
		hci_pio_write_cmd(hci, pio->curr_xfer);
		/*
		 * And move on.
		 */
		pio->curr_xfer = pio->curr_xfer->next_xfer;
	}
	return !pio->curr_xfer;
}

static int hci_pio_queue_xfer(struct i3c_hci *hci, struct hci_xfer *xfer, int n)
{
	struct hci_pio_data *pio = hci->io_data;
	struct hci_xfer *prev_queue_tail;
	int i;

	DBG("n = %d", n);

	/* link xfer instances together and initialize data count */
	for (i = 0; i < n; i++) {
		xfer[i].next_xfer = (i + 1 < n) ? &xfer[i + 1] : NULL;
		xfer[i].next_data = NULL;
		xfer[i].next_resp = NULL;
		xfer[i].data_left = xfer[i].data_len;
	}

	spin_lock_irq(&pio->lock);
	prev_queue_tail = pio->xfer_queue;
	pio->xfer_queue = &xfer[n - 1];
	if (pio->curr_xfer) {
		prev_queue_tail->next_xfer = xfer;
	} else {
		pio->curr_xfer = xfer;
		if (!hci_pio_process_cmd(hci, pio))
			pio->enabled_irqs |= STAT_CMD_QUEUE_READY;
		pio_reg_write(INTR_SIGNAL_ENABLE, pio->enabled_irqs);
		DBG("status = %#x/%#x",
		    pio_reg_read(INTR_STATUS), pio_reg_read(INTR_SIGNAL_ENABLE));
	}
	spin_unlock_irq(&pio->lock);
	return 0;
}

static bool hci_pio_dequeue_xfer_common(struct i3c_hci *hci,
					struct hci_pio_data *pio,
					struct hci_xfer *xfer, int n)
{
	struct hci_xfer *p, **p_prev_next;
	int i;

	/*
	 * To safely dequeue a transfer request, it must be either entirely
	 * processed, or not yet processed at all. If our request tail is
	 * reachable from either the data or resp list that means the command
	 * was submitted and not yet completed.
	 */
	for (p = pio->curr_resp; p; p = p->next_resp)
		for (i = 0; i < n; i++)
			if (p == &xfer[i])
				goto pio_screwed;
	for (p = pio->curr_rx; p; p = p->next_data)
		for (i = 0; i < n; i++)
			if (p == &xfer[i])
				goto pio_screwed;
	for (p = pio->curr_tx; p; p = p->next_data)
		for (i = 0; i < n; i++)
			if (p == &xfer[i])
				goto pio_screwed;

	/*
	 * The command was completed, or wasn't yet submitted.
	 * Unlink it from the que if the later.
	 */
	p_prev_next = &pio->curr_xfer;
	for (p = pio->curr_xfer; p; p = p->next_xfer) {
		if (p == &xfer[0]) {
			*p_prev_next = xfer[n - 1].next_xfer;
			break;
		}
		p_prev_next = &p->next_xfer;
	}

	/* return true if we actually unqueued something */
	return !!p;

pio_screwed:
	/*
	 * Life is tough. We must invalidate the hardware state and
	 * discard everything that is still queued.
	 */
	for (p = pio->curr_resp; p; p = p->next_resp) {
		p->response = FIELD_PREP(RESP_ERR_FIELD, RESP_ERR_HC_TERMINATED);
		if (p->completion)
			complete(p->completion);
	}
	for (p = pio->curr_xfer; p; p = p->next_xfer) {
		p->response = FIELD_PREP(RESP_ERR_FIELD, RESP_ERR_HC_TERMINATED);
		if (p->completion)
			complete(p->completion);
	}
	pio->curr_xfer = pio->curr_rx = pio->curr_tx = pio->curr_resp = NULL;

	return true;
}

static bool hci_pio_dequeue_xfer(struct i3c_hci *hci, struct hci_xfer *xfer, int n)
{
	struct hci_pio_data *pio = hci->io_data;
	int ret;

	spin_lock_irq(&pio->lock);
	DBG("n=%d status=%#x/%#x", n,
	    pio_reg_read(INTR_STATUS), pio_reg_read(INTR_SIGNAL_ENABLE));
	DBG("main_status = %#x/%#x",
	    readl(hci->base_regs + 0x20), readl(hci->base_regs + 0x28));

	ret = hci_pio_dequeue_xfer_common(hci, pio, xfer, n);
	spin_unlock_irq(&pio->lock);
	return ret;
}

static void hci_pio_err(struct i3c_hci *hci, struct hci_pio_data *pio,
			u32 status)
{
	/* TODO: this ought to be more sophisticated eventually */

	if (pio_reg_read(INTR_STATUS) & STAT_RESP_READY) {
		/* this may happen when an error is signaled with ROC unset */
		u32 resp = pio_reg_read(RESPONSE_QUEUE_PORT);

		dev_err(&hci->master.dev,
			"orphan response (%#x) on error\n", resp);
	}

	/* dump states on programming errors */
	if (status & STAT_PROG_ERRORS) {
		u32 queue = pio_reg_read(QUEUE_CUR_STATUS);
		u32 data = pio_reg_read(DATA_BUFFER_CUR_STATUS);

		dev_err(&hci->master.dev,
			"prog error %#lx (C/R/I = %ld/%ld/%ld, TX/RX = %ld/%ld)\n",
			status & STAT_PROG_ERRORS,
			FIELD_GET(CUR_CMD_Q_EMPTY_LEVEL, queue),
			FIELD_GET(CUR_RESP_Q_LEVEL, queue),
			FIELD_GET(CUR_IBI_Q_LEVEL, queue),
			FIELD_GET(CUR_TX_BUF_LVL, data),
			FIELD_GET(CUR_RX_BUF_LVL, data));
	}

	/* just bust out everything with pending responses for now */
	hci_pio_dequeue_xfer_common(hci, pio, pio->curr_resp, 1);
	/* ... and half-way TX transfers if any */
	if (pio->curr_tx && pio->curr_tx->data_left != pio->curr_tx->data_len)
		hci_pio_dequeue_xfer_common(hci, pio, pio->curr_tx, 1);
	/* then reset the hardware */
	mipi_i3c_hci_pio_reset(hci);
	mipi_i3c_hci_resume(hci);

	DBG("status=%#x/%#x",
	    pio_reg_read(INTR_STATUS), pio_reg_read(INTR_SIGNAL_ENABLE));
}

static void hci_pio_set_ibi_thresh(struct i3c_hci *hci,
				   struct hci_pio_data *pio,
				   unsigned int thresh_val)
{
	u32 regval = pio->reg_queue_thresh;

	regval &= ~QUEUE_IBI_STATUS_THLD;
	regval |= FIELD_PREP(QUEUE_IBI_STATUS_THLD, thresh_val);
	/* write the threshold reg only if it changes */
	if (regval != pio->reg_queue_thresh) {
		pio_reg_write(QUEUE_THLD_CTRL, regval);
		pio->reg_queue_thresh = regval;
		DBG("%d", thresh_val);
	}
}

static bool hci_pio_get_ibi_segment(struct i3c_hci *hci,
				    struct hci_pio_data *pio)
{
	struct hci_pio_ibi_data *ibi = &pio->ibi;
	unsigned int nr_words, thresh_val;
	u32 *p;

	p = ibi->data_ptr;
	p += (ibi->seg_len - ibi->seg_cnt) / 4;

	while ((nr_words = ibi->seg_cnt/4)) {
		/* determine our IBI queue threshold value */
		thresh_val = min(nr_words, pio->max_ibi_thresh);
		hci_pio_set_ibi_thresh(hci, pio, thresh_val);
		/* bail out if we don't have that amount of data ready */
		if (!(pio_reg_read(INTR_STATUS) & STAT_IBI_STATUS_THLD))
			return false;
		/* extract the data from the IBI port */
		nr_words = thresh_val;
		ibi->seg_cnt -= nr_words * 4;
		DBG("now %d left %d", nr_words * 4, ibi->seg_cnt);
		while (nr_words--)
			*p++ = pio_reg_read(IBI_PORT);
	}

	if (ibi->seg_cnt) {
		/*
		 * There are trailing bytes in the last word.
		 * Fetch it and extract bytes in an endian independent way.
		 * Unlike the TX case, we must not write past the end of
		 * the destination buffer.
		 */
		u32 data;
		u8 *p_byte = (u8 *)p;

		hci_pio_set_ibi_thresh(hci, pio, 1);
		if (!(pio_reg_read(INTR_STATUS) & STAT_IBI_STATUS_THLD))
			return false;
		DBG("trailing %d", ibi->seg_cnt);
		data = pio_reg_read(IBI_PORT);
		data = (__force u32) cpu_to_le32(data);
		while (ibi->seg_cnt--) {
			*p_byte++ = data;
			data >>= 8;
		}
	}

	return true;
}

static bool hci_pio_prep_new_ibi(struct i3c_hci *hci, struct hci_pio_data *pio)
{
	struct hci_pio_ibi_data *ibi = &pio->ibi;
	struct i3c_dev_desc *dev;
	struct i3c_hci_dev_data *dev_data;
	struct hci_pio_dev_ibi_data *dev_ibi;
	u32 ibi_status;

	/*
	 * We have a new IBI. Try to set up its payload retrieval.
	 * When returning true, the IBI data has to be consumed whether
	 * or not we are set up to capture it. If we return true with
	 * ibi->slot == NULL that means the data payload has to be
	 * drained out of the IBI port and dropped.
	 */

	ibi_status = pio_reg_read(IBI_PORT);
	DBG("status = %#x", ibi_status);
	ibi->addr = FIELD_GET(IBI_TARGET_ADDR, ibi_status);
	if (ibi_status & IBI_ERROR) {
		dev_err(&hci->master.dev, "IBI error from %#x\n", ibi->addr);
		return false;
	}

	ibi->last_seg = ibi_status & IBI_LAST_STATUS;
	ibi->seg_len = FIELD_GET(IBI_DATA_LENGTH, ibi_status);
	ibi->seg_cnt = ibi->seg_len;

	dev = i3c_hci_addr_to_dev(hci, ibi->addr);
	if (!dev) {
		dev_err(&hci->master.dev,
			"IBI for unknown device %#x\n", ibi->addr);
		return true;
	}

	dev_data = i3c_dev_get_master_data(dev);
	dev_ibi = dev_data->ibi_data;
	ibi->max_len = dev_ibi->max_len;

	if (ibi->seg_len > ibi->max_len) {
		dev_err(&hci->master.dev, "IBI payload too big (%d > %d)\n",
			ibi->seg_len, ibi->max_len);
		return true;
	}

	ibi->slot = i3c_generic_ibi_get_free_slot(dev_ibi->pool);
	if (!ibi->slot) {
		dev_err(&hci->master.dev, "no free slot for IBI\n");
	} else {
		ibi->slot->len = 0;
		ibi->data_ptr = ibi->slot->data;
	}
	return true;
}

static void hci_pio_free_ibi_slot(struct i3c_hci *hci, struct hci_pio_data *pio)
{
	struct hci_pio_ibi_data *ibi = &pio->ibi;
	struct hci_pio_dev_ibi_data *dev_ibi;

	if (ibi->slot) {
		dev_ibi = ibi->slot->dev->common.master_priv;
		i3c_generic_ibi_recycle_slot(dev_ibi->pool, ibi->slot);
		ibi->slot = NULL;
	}
}

static bool hci_pio_process_ibi(struct i3c_hci *hci, struct hci_pio_data *pio)
{
	struct hci_pio_ibi_data *ibi = &pio->ibi;

	if (!ibi->slot && !ibi->seg_cnt && ibi->last_seg)
		if (!hci_pio_prep_new_ibi(hci, pio))
			return false;

	for (;;) {
		u32 ibi_status;
		unsigned int ibi_addr;

		if (ibi->slot) {
			if (!hci_pio_get_ibi_segment(hci, pio))
				return false;
			ibi->slot->len += ibi->seg_len;
			ibi->data_ptr += ibi->seg_len;
			if (ibi->last_seg) {
				/* was the last segment: submit it and leave */
				i3c_master_queue_ibi(ibi->slot->dev, ibi->slot);
				ibi->slot = NULL;
				hci_pio_set_ibi_thresh(hci, pio, 1);
				return true;
			}
		} else if (ibi->seg_cnt) {
			/*
			 * No slot but a non-zero count. This is the result
			 * of some error and the payload must be drained.
			 * This normally does not happen therefore no need
			 * to be extra optimized here.
			 */
			hci_pio_set_ibi_thresh(hci, pio, 1);
			do {
				if (!(pio_reg_read(INTR_STATUS) & STAT_IBI_STATUS_THLD))
					return false;
				pio_reg_read(IBI_PORT);
			} while (--ibi->seg_cnt);
			if (ibi->last_seg)
				return true;
		}

		/* try to move to the next segment right away */
		hci_pio_set_ibi_thresh(hci, pio, 1);
		if (!(pio_reg_read(INTR_STATUS) & STAT_IBI_STATUS_THLD))
			return false;
		ibi_status = pio_reg_read(IBI_PORT);
		ibi_addr = FIELD_GET(IBI_TARGET_ADDR, ibi_status);
		if (ibi->addr != ibi_addr) {
			/* target address changed before last segment */
			dev_err(&hci->master.dev,
				"unexp IBI address changed from %d to %d\n",
				ibi->addr, ibi_addr);
			hci_pio_free_ibi_slot(hci, pio);
		}
		ibi->last_seg = ibi_status & IBI_LAST_STATUS;
		ibi->seg_len = FIELD_GET(IBI_DATA_LENGTH, ibi_status);
		ibi->seg_cnt = ibi->seg_len;
		if (ibi->slot && ibi->slot->len + ibi->seg_len > ibi->max_len) {
			dev_err(&hci->master.dev,
				"IBI payload too big (%d > %d)\n",
				ibi->slot->len + ibi->seg_len, ibi->max_len);
			hci_pio_free_ibi_slot(hci, pio);
		}
	}

	return false;
}

static int hci_pio_request_ibi(struct i3c_hci *hci, struct i3c_dev_desc *dev,
			       const struct i3c_ibi_setup *req)
{
	struct i3c_hci_dev_data *dev_data = i3c_dev_get_master_data(dev);
	struct i3c_generic_ibi_pool *pool;
	struct hci_pio_dev_ibi_data *dev_ibi;

	dev_ibi = kmalloc(sizeof(*dev_ibi), GFP_KERNEL);
	if (!dev_ibi)
		return -ENOMEM;
	pool = i3c_generic_ibi_alloc_pool(dev, req);
	if (IS_ERR(pool)) {
		kfree(dev_ibi);
		return PTR_ERR(pool);
	}
	dev_ibi->pool = pool;
	dev_ibi->max_len = req->max_payload_len;
	dev_data->ibi_data = dev_ibi;
	return 0;
}

static void hci_pio_free_ibi(struct i3c_hci *hci, struct i3c_dev_desc *dev)
{
	struct i3c_hci_dev_data *dev_data = i3c_dev_get_master_data(dev);
	struct hci_pio_dev_ibi_data *dev_ibi = dev_data->ibi_data;

	dev_data->ibi_data = NULL;
	i3c_generic_ibi_free_pool(dev_ibi->pool);
	kfree(dev_ibi);
}

static void hci_pio_recycle_ibi_slot(struct i3c_hci *hci,
				    struct i3c_dev_desc *dev,
				    struct i3c_ibi_slot *slot)
{
	struct i3c_hci_dev_data *dev_data = i3c_dev_get_master_data(dev);
	struct hci_pio_dev_ibi_data *dev_ibi = dev_data->ibi_data;

	i3c_generic_ibi_recycle_slot(dev_ibi->pool, slot);
}

static bool hci_pio_irq_handler(struct i3c_hci *hci, unsigned int unused)
{
	struct hci_pio_data *pio = hci->io_data;
	u32 status;

	spin_lock(&pio->lock);
	status = pio_reg_read(INTR_STATUS);
	DBG("(in) status: %#x/%#x", status, pio->enabled_irqs);
	status &= pio->enabled_irqs | STAT_LATENCY_WARNINGS;
	if (!status) {
		spin_unlock(&pio->lock);
		return false;
	}

	if (status & STAT_IBI_STATUS_THLD)
		hci_pio_process_ibi(hci, pio);

	if (status & STAT_RX_THLD)
		if (hci_pio_process_rx(hci, pio))
			pio->enabled_irqs &= ~STAT_RX_THLD;
	if (status & STAT_TX_THLD)
		if (hci_pio_process_tx(hci, pio))
			pio->enabled_irqs &= ~STAT_TX_THLD;
	if (status & STAT_RESP_READY)
		if (hci_pio_process_resp(hci, pio))
			pio->enabled_irqs &= ~STAT_RESP_READY;

	if (unlikely(status & STAT_LATENCY_WARNINGS)) {
		pio_reg_write(INTR_STATUS, status & STAT_LATENCY_WARNINGS);
		dev_warn_ratelimited(&hci->master.dev,
				     "encountered warning condition %#lx\n",
				     status & STAT_LATENCY_WARNINGS);
	}

	if (unlikely(status & STAT_ALL_ERRORS)) {
		pio_reg_write(INTR_STATUS, status & STAT_ALL_ERRORS);
		hci_pio_err(hci, pio, status & STAT_ALL_ERRORS);
	}

	if (status & STAT_CMD_QUEUE_READY)
		if (hci_pio_process_cmd(hci, pio))
			pio->enabled_irqs &= ~STAT_CMD_QUEUE_READY;

	pio_reg_write(INTR_SIGNAL_ENABLE, pio->enabled_irqs);
	DBG("(out) status: %#x/%#x",
	    pio_reg_read(INTR_STATUS), pio_reg_read(INTR_SIGNAL_ENABLE));
	spin_unlock(&pio->lock);
	return true;
}

const struct hci_io_ops mipi_i3c_hci_pio = {
	.init			= hci_pio_init,
	.cleanup		= hci_pio_cleanup,
	.queue_xfer		= hci_pio_queue_xfer,
	.dequeue_xfer		= hci_pio_dequeue_xfer,
	.irq_handler		= hci_pio_irq_handler,
	.request_ibi		= hci_pio_request_ibi,
	.free_ibi		= hci_pio_free_ibi,
	.recycle_ibi_slot	= hci_pio_recycle_ibi_slot,
};