1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
|
// SPDX-License-Identifier: GPL-2.0 OR BSD-3-Clause
/*
* Copyright (C) 2013-2014, 2018-2019, 2022-2024 Intel Corporation
* Copyright (C) 2013-2014 Intel Mobile Communications GmbH
*/
#include "mvm.h"
/* For counting bound interfaces */
struct iwl_mvm_active_iface_iterator_data {
struct ieee80211_vif *ignore_vif;
struct ieee80211_sta *sta_vif_ap_sta;
enum iwl_sf_state sta_vif_state;
u32 num_active_macs;
};
/*
* Count bound interfaces which are not p2p, besides data->ignore_vif.
* data->station_vif will point to one bound vif of type station, if exists.
*/
static void iwl_mvm_bound_iface_iterator(void *_data, u8 *mac,
struct ieee80211_vif *vif)
{
struct iwl_mvm_active_iface_iterator_data *data = _data;
struct iwl_mvm_vif *mvmvif = iwl_mvm_vif_from_mac80211(vif);
if (vif == data->ignore_vif || !mvmvif->deflink.phy_ctxt ||
vif->type == NL80211_IFTYPE_P2P_DEVICE)
return;
data->num_active_macs++;
if (vif->type == NL80211_IFTYPE_STATION) {
data->sta_vif_ap_sta = mvmvif->ap_sta;
if (vif->cfg.assoc)
data->sta_vif_state = SF_FULL_ON;
else
data->sta_vif_state = SF_INIT_OFF;
}
}
/*
* Aging and idle timeouts for the different possible scenarios
* in default configuration
*/
static const
__le32 sf_full_timeout_def[SF_NUM_SCENARIO][SF_NUM_TIMEOUT_TYPES] = {
{
cpu_to_le32(SF_SINGLE_UNICAST_AGING_TIMER_DEF),
cpu_to_le32(SF_SINGLE_UNICAST_IDLE_TIMER_DEF)
},
{
cpu_to_le32(SF_AGG_UNICAST_AGING_TIMER_DEF),
cpu_to_le32(SF_AGG_UNICAST_IDLE_TIMER_DEF)
},
{
cpu_to_le32(SF_MCAST_AGING_TIMER_DEF),
cpu_to_le32(SF_MCAST_IDLE_TIMER_DEF)
},
{
cpu_to_le32(SF_BA_AGING_TIMER_DEF),
cpu_to_le32(SF_BA_IDLE_TIMER_DEF)
},
{
cpu_to_le32(SF_TX_RE_AGING_TIMER_DEF),
cpu_to_le32(SF_TX_RE_IDLE_TIMER_DEF)
},
};
/*
* Aging and idle timeouts for the different possible scenarios
* in single BSS MAC configuration.
*/
static const __le32 sf_full_timeout[SF_NUM_SCENARIO][SF_NUM_TIMEOUT_TYPES] = {
{
cpu_to_le32(SF_SINGLE_UNICAST_AGING_TIMER),
cpu_to_le32(SF_SINGLE_UNICAST_IDLE_TIMER)
},
{
cpu_to_le32(SF_AGG_UNICAST_AGING_TIMER),
cpu_to_le32(SF_AGG_UNICAST_IDLE_TIMER)
},
{
cpu_to_le32(SF_MCAST_AGING_TIMER),
cpu_to_le32(SF_MCAST_IDLE_TIMER)
},
{
cpu_to_le32(SF_BA_AGING_TIMER),
cpu_to_le32(SF_BA_IDLE_TIMER)
},
{
cpu_to_le32(SF_TX_RE_AGING_TIMER),
cpu_to_le32(SF_TX_RE_IDLE_TIMER)
},
};
static void iwl_mvm_fill_sf_command(struct iwl_mvm *mvm,
struct iwl_sf_cfg_cmd *sf_cmd,
struct ieee80211_sta *sta)
{
int i, j, watermark;
u8 max_rx_nss = 0;
bool is_legacy = true;
struct ieee80211_link_sta *link_sta;
unsigned int link_id;
sf_cmd->watermark[SF_LONG_DELAY_ON] = cpu_to_le32(SF_W_MARK_SCAN);
/*
* If we are in association flow - check antenna configuration
* capabilities of the AP station, and choose the watermark accordingly.
*/
if (sta) {
/* find the maximal NSS number among all links (if relevant) */
rcu_read_lock();
for (link_id = 0; link_id < ARRAY_SIZE(sta->link); link_id++) {
link_sta = rcu_dereference(sta->link[link_id]);
if (!link_sta)
continue;
if (link_sta->ht_cap.ht_supported ||
link_sta->vht_cap.vht_supported ||
link_sta->eht_cap.has_eht ||
link_sta->he_cap.has_he) {
is_legacy = false;
max_rx_nss = max(max_rx_nss, link_sta->rx_nss);
}
}
rcu_read_unlock();
if (!is_legacy) {
switch (max_rx_nss) {
case 1:
watermark = SF_W_MARK_SISO;
break;
case 2:
watermark = SF_W_MARK_MIMO2;
break;
default:
watermark = SF_W_MARK_MIMO3;
break;
}
} else {
watermark = SF_W_MARK_LEGACY;
}
/* default watermark value for unassociated mode. */
} else {
watermark = SF_W_MARK_MIMO2;
}
sf_cmd->watermark[SF_FULL_ON] = cpu_to_le32(watermark);
for (i = 0; i < SF_NUM_SCENARIO; i++) {
for (j = 0; j < SF_NUM_TIMEOUT_TYPES; j++) {
sf_cmd->long_delay_timeouts[i][j] =
cpu_to_le32(SF_LONG_DELAY_AGING_TIMER);
}
}
if (sta) {
BUILD_BUG_ON(sizeof(sf_full_timeout) !=
sizeof(__le32) * SF_NUM_SCENARIO *
SF_NUM_TIMEOUT_TYPES);
memcpy(sf_cmd->full_on_timeouts, sf_full_timeout,
sizeof(sf_full_timeout));
} else {
BUILD_BUG_ON(sizeof(sf_full_timeout_def) !=
sizeof(__le32) * SF_NUM_SCENARIO *
SF_NUM_TIMEOUT_TYPES);
memcpy(sf_cmd->full_on_timeouts, sf_full_timeout_def,
sizeof(sf_full_timeout_def));
}
}
static int iwl_mvm_sf_config(struct iwl_mvm *mvm, struct ieee80211_sta *sta,
enum iwl_sf_state new_state)
{
struct iwl_sf_cfg_cmd sf_cmd = {
.state = cpu_to_le32(new_state),
};
int ret = 0;
/*
* If an associated AP sta changed its antenna configuration, the state
* will remain FULL_ON but SF parameters need to be reconsidered.
*/
if (new_state != SF_FULL_ON && mvm->sf_state == new_state)
return 0;
switch (new_state) {
case SF_UNINIT:
iwl_mvm_fill_sf_command(mvm, &sf_cmd, NULL);
break;
case SF_FULL_ON:
if (!sta) {
IWL_ERR(mvm,
"No station: Cannot switch SF to FULL_ON\n");
return -EINVAL;
}
iwl_mvm_fill_sf_command(mvm, &sf_cmd, sta);
break;
case SF_INIT_OFF:
iwl_mvm_fill_sf_command(mvm, &sf_cmd, NULL);
break;
default:
WARN_ONCE(1, "Invalid state: %d. not sending Smart Fifo cmd\n",
new_state);
return -EINVAL;
}
ret = iwl_mvm_send_cmd_pdu(mvm, REPLY_SF_CFG_CMD, CMD_ASYNC,
sizeof(sf_cmd), &sf_cmd);
if (!ret)
mvm->sf_state = new_state;
return ret;
}
/*
* Update Smart fifo:
* Count bound interfaces that are not to be removed, ignoring p2p devices,
* and set new state accordingly.
*/
int iwl_mvm_sf_update(struct iwl_mvm *mvm, struct ieee80211_vif *changed_vif,
bool remove_vif)
{
enum iwl_sf_state new_state;
struct iwl_mvm_vif *mvmvif = NULL;
struct iwl_mvm_active_iface_iterator_data data = {
.ignore_vif = changed_vif,
.sta_vif_state = SF_UNINIT,
};
struct ieee80211_sta *sta = NULL;
if (fw_has_api(&mvm->fw->ucode_capa,
IWL_UCODE_TLV_API_SMART_FIFO_OFFLOAD))
return 0;
/*
* Ignore the call if we are in HW Restart flow, or if the handled
* vif is a p2p device.
*/
if (test_bit(IWL_MVM_STATUS_IN_HW_RESTART, &mvm->status) ||
(changed_vif && changed_vif->type == NL80211_IFTYPE_P2P_DEVICE))
return 0;
ieee80211_iterate_active_interfaces_atomic(mvm->hw,
IEEE80211_IFACE_ITER_NORMAL,
iwl_mvm_bound_iface_iterator,
&data);
/* If changed_vif exists and is not to be removed, add to the count */
if (changed_vif && !remove_vif)
data.num_active_macs++;
switch (data.num_active_macs) {
case 0:
/* If there are no active macs - change state to SF_INIT_OFF */
new_state = SF_INIT_OFF;
break;
case 1:
if (remove_vif) {
/* The one active mac left is of type station
* and we filled the relevant data during iteration
*/
new_state = data.sta_vif_state;
sta = data.sta_vif_ap_sta;
} else {
if (WARN_ON(!changed_vif))
return -EINVAL;
if (changed_vif->type != NL80211_IFTYPE_STATION) {
new_state = SF_UNINIT;
} else if (changed_vif->cfg.assoc &&
changed_vif->bss_conf.dtim_period) {
mvmvif = iwl_mvm_vif_from_mac80211(changed_vif);
sta = mvmvif->ap_sta;
new_state = SF_FULL_ON;
} else {
new_state = SF_INIT_OFF;
}
}
break;
default:
/* If there are multiple active macs - change to SF_UNINIT */
new_state = SF_UNINIT;
}
return iwl_mvm_sf_config(mvm, sta, new_state);
}
|