summaryrefslogtreecommitdiffstats
path: root/drivers/pci/endpoint/pci-epf-core.c
blob: 0a28a0b0911b1989dc2a265e0115282db00bc8a3 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
// SPDX-License-Identifier: GPL-2.0
/*
 * PCI Endpoint *Function* (EPF) library
 *
 * Copyright (C) 2017 Texas Instruments
 * Author: Kishon Vijay Abraham I <kishon@ti.com>
 */

#include <linux/device.h>
#include <linux/dma-mapping.h>
#include <linux/slab.h>
#include <linux/module.h>

#include <linux/pci-epc.h>
#include <linux/pci-epf.h>
#include <linux/pci-ep-cfs.h>

static DEFINE_MUTEX(pci_epf_mutex);

static const struct bus_type pci_epf_bus_type;
static const struct device_type pci_epf_type;

/**
 * pci_epf_unbind() - Notify the function driver that the binding between the
 *		      EPF device and EPC device has been lost
 * @epf: the EPF device which has lost the binding with the EPC device
 *
 * Invoke to notify the function driver that the binding between the EPF device
 * and EPC device has been lost.
 */
void pci_epf_unbind(struct pci_epf *epf)
{
	struct pci_epf *epf_vf;

	if (!epf->driver) {
		dev_WARN(&epf->dev, "epf device not bound to driver\n");
		return;
	}

	mutex_lock(&epf->lock);
	list_for_each_entry(epf_vf, &epf->pci_vepf, list) {
		if (epf_vf->is_bound)
			epf_vf->driver->ops->unbind(epf_vf);
	}
	if (epf->is_bound)
		epf->driver->ops->unbind(epf);
	mutex_unlock(&epf->lock);
	module_put(epf->driver->owner);
}
EXPORT_SYMBOL_GPL(pci_epf_unbind);

/**
 * pci_epf_bind() - Notify the function driver that the EPF device has been
 *		    bound to a EPC device
 * @epf: the EPF device which has been bound to the EPC device
 *
 * Invoke to notify the function driver that it has been bound to a EPC device
 */
int pci_epf_bind(struct pci_epf *epf)
{
	struct device *dev = &epf->dev;
	struct pci_epf *epf_vf;
	u8 func_no, vfunc_no;
	struct pci_epc *epc;
	int ret;

	if (!epf->driver) {
		dev_WARN(dev, "epf device not bound to driver\n");
		return -EINVAL;
	}

	if (!try_module_get(epf->driver->owner))
		return -EAGAIN;

	mutex_lock(&epf->lock);
	list_for_each_entry(epf_vf, &epf->pci_vepf, list) {
		vfunc_no = epf_vf->vfunc_no;

		if (vfunc_no < 1) {
			dev_err(dev, "Invalid virtual function number\n");
			ret = -EINVAL;
			goto ret;
		}

		epc = epf->epc;
		func_no = epf->func_no;
		if (!IS_ERR_OR_NULL(epc)) {
			if (!epc->max_vfs) {
				dev_err(dev, "No support for virt function\n");
				ret = -EINVAL;
				goto ret;
			}

			if (vfunc_no > epc->max_vfs[func_no]) {
				dev_err(dev, "PF%d: Exceeds max vfunc number\n",
					func_no);
				ret = -EINVAL;
				goto ret;
			}
		}

		epc = epf->sec_epc;
		func_no = epf->sec_epc_func_no;
		if (!IS_ERR_OR_NULL(epc)) {
			if (!epc->max_vfs) {
				dev_err(dev, "No support for virt function\n");
				ret = -EINVAL;
				goto ret;
			}

			if (vfunc_no > epc->max_vfs[func_no]) {
				dev_err(dev, "PF%d: Exceeds max vfunc number\n",
					func_no);
				ret = -EINVAL;
				goto ret;
			}
		}

		epf_vf->func_no = epf->func_no;
		epf_vf->sec_epc_func_no = epf->sec_epc_func_no;
		epf_vf->epc = epf->epc;
		epf_vf->sec_epc = epf->sec_epc;
		ret = epf_vf->driver->ops->bind(epf_vf);
		if (ret)
			goto ret;
		epf_vf->is_bound = true;
	}

	ret = epf->driver->ops->bind(epf);
	if (ret)
		goto ret;
	epf->is_bound = true;

	mutex_unlock(&epf->lock);
	return 0;

ret:
	mutex_unlock(&epf->lock);
	pci_epf_unbind(epf);

	return ret;
}
EXPORT_SYMBOL_GPL(pci_epf_bind);

/**
 * pci_epf_add_vepf() - associate virtual EP function to physical EP function
 * @epf_pf: the physical EP function to which the virtual EP function should be
 *   associated
 * @epf_vf: the virtual EP function to be added
 *
 * A physical endpoint function can be associated with multiple virtual
 * endpoint functions. Invoke pci_epf_add_epf() to add a virtual PCI endpoint
 * function to a physical PCI endpoint function.
 */
int pci_epf_add_vepf(struct pci_epf *epf_pf, struct pci_epf *epf_vf)
{
	u32 vfunc_no;

	if (IS_ERR_OR_NULL(epf_pf) || IS_ERR_OR_NULL(epf_vf))
		return -EINVAL;

	if (epf_pf->epc || epf_vf->epc || epf_vf->epf_pf)
		return -EBUSY;

	if (epf_pf->sec_epc || epf_vf->sec_epc)
		return -EBUSY;

	mutex_lock(&epf_pf->lock);
	vfunc_no = find_first_zero_bit(&epf_pf->vfunction_num_map,
				       BITS_PER_LONG);
	if (vfunc_no >= BITS_PER_LONG) {
		mutex_unlock(&epf_pf->lock);
		return -EINVAL;
	}

	set_bit(vfunc_no, &epf_pf->vfunction_num_map);
	epf_vf->vfunc_no = vfunc_no;

	epf_vf->epf_pf = epf_pf;
	epf_vf->is_vf = true;

	list_add_tail(&epf_vf->list, &epf_pf->pci_vepf);
	mutex_unlock(&epf_pf->lock);

	return 0;
}
EXPORT_SYMBOL_GPL(pci_epf_add_vepf);

/**
 * pci_epf_remove_vepf() - remove virtual EP function from physical EP function
 * @epf_pf: the physical EP function from which the virtual EP function should
 *   be removed
 * @epf_vf: the virtual EP function to be removed
 *
 * Invoke to remove a virtual endpoint function from the physical endpoint
 * function.
 */
void pci_epf_remove_vepf(struct pci_epf *epf_pf, struct pci_epf *epf_vf)
{
	if (IS_ERR_OR_NULL(epf_pf) || IS_ERR_OR_NULL(epf_vf))
		return;

	mutex_lock(&epf_pf->lock);
	clear_bit(epf_vf->vfunc_no, &epf_pf->vfunction_num_map);
	list_del(&epf_vf->list);
	mutex_unlock(&epf_pf->lock);
}
EXPORT_SYMBOL_GPL(pci_epf_remove_vepf);

/**
 * pci_epf_free_space() - free the allocated PCI EPF register space
 * @epf: the EPF device from whom to free the memory
 * @addr: the virtual address of the PCI EPF register space
 * @bar: the BAR number corresponding to the register space
 * @type: Identifies if the allocated space is for primary EPC or secondary EPC
 *
 * Invoke to free the allocated PCI EPF register space.
 */
void pci_epf_free_space(struct pci_epf *epf, void *addr, enum pci_barno bar,
			enum pci_epc_interface_type type)
{
	struct device *dev;
	struct pci_epf_bar *epf_bar;
	struct pci_epc *epc;

	if (!addr)
		return;

	if (type == PRIMARY_INTERFACE) {
		epc = epf->epc;
		epf_bar = epf->bar;
	} else {
		epc = epf->sec_epc;
		epf_bar = epf->sec_epc_bar;
	}

	dev = epc->dev.parent;
	dma_free_coherent(dev, epf_bar[bar].size, addr,
			  epf_bar[bar].phys_addr);

	epf_bar[bar].phys_addr = 0;
	epf_bar[bar].addr = NULL;
	epf_bar[bar].size = 0;
	epf_bar[bar].barno = 0;
	epf_bar[bar].flags = 0;
}
EXPORT_SYMBOL_GPL(pci_epf_free_space);

/**
 * pci_epf_alloc_space() - allocate memory for the PCI EPF register space
 * @epf: the EPF device to whom allocate the memory
 * @size: the size of the memory that has to be allocated
 * @bar: the BAR number corresponding to the allocated register space
 * @epc_features: the features provided by the EPC specific to this EPF
 * @type: Identifies if the allocation is for primary EPC or secondary EPC
 *
 * Invoke to allocate memory for the PCI EPF register space.
 */
void *pci_epf_alloc_space(struct pci_epf *epf, size_t size, enum pci_barno bar,
			  const struct pci_epc_features *epc_features,
			  enum pci_epc_interface_type type)
{
	u64 bar_fixed_size = epc_features->bar[bar].fixed_size;
	size_t align = epc_features->align;
	struct pci_epf_bar *epf_bar;
	dma_addr_t phys_addr;
	struct pci_epc *epc;
	struct device *dev;
	void *space;

	if (size < 128)
		size = 128;

	if (epc_features->bar[bar].type == BAR_FIXED && bar_fixed_size) {
		if (size > bar_fixed_size) {
			dev_err(&epf->dev,
				"requested BAR size is larger than fixed size\n");
			return NULL;
		}
		size = bar_fixed_size;
	}

	if (align)
		size = ALIGN(size, align);
	else
		size = roundup_pow_of_two(size);

	if (type == PRIMARY_INTERFACE) {
		epc = epf->epc;
		epf_bar = epf->bar;
	} else {
		epc = epf->sec_epc;
		epf_bar = epf->sec_epc_bar;
	}

	dev = epc->dev.parent;
	space = dma_alloc_coherent(dev, size, &phys_addr, GFP_KERNEL);
	if (!space) {
		dev_err(dev, "failed to allocate mem space\n");
		return NULL;
	}

	epf_bar[bar].phys_addr = phys_addr;
	epf_bar[bar].addr = space;
	epf_bar[bar].size = size;
	epf_bar[bar].barno = bar;
	epf_bar[bar].flags |= upper_32_bits(size) ?
				PCI_BASE_ADDRESS_MEM_TYPE_64 :
				PCI_BASE_ADDRESS_MEM_TYPE_32;

	return space;
}
EXPORT_SYMBOL_GPL(pci_epf_alloc_space);

static void pci_epf_remove_cfs(struct pci_epf_driver *driver)
{
	struct config_group *group, *tmp;

	if (!IS_ENABLED(CONFIG_PCI_ENDPOINT_CONFIGFS))
		return;

	mutex_lock(&pci_epf_mutex);
	list_for_each_entry_safe(group, tmp, &driver->epf_group, group_entry)
		pci_ep_cfs_remove_epf_group(group);
	list_del(&driver->epf_group);
	mutex_unlock(&pci_epf_mutex);
}

/**
 * pci_epf_unregister_driver() - unregister the PCI EPF driver
 * @driver: the PCI EPF driver that has to be unregistered
 *
 * Invoke to unregister the PCI EPF driver.
 */
void pci_epf_unregister_driver(struct pci_epf_driver *driver)
{
	pci_epf_remove_cfs(driver);
	driver_unregister(&driver->driver);
}
EXPORT_SYMBOL_GPL(pci_epf_unregister_driver);

static int pci_epf_add_cfs(struct pci_epf_driver *driver)
{
	struct config_group *group;
	const struct pci_epf_device_id *id;

	if (!IS_ENABLED(CONFIG_PCI_ENDPOINT_CONFIGFS))
		return 0;

	INIT_LIST_HEAD(&driver->epf_group);

	id = driver->id_table;
	while (id->name[0]) {
		group = pci_ep_cfs_add_epf_group(id->name);
		if (IS_ERR(group)) {
			pci_epf_remove_cfs(driver);
			return PTR_ERR(group);
		}

		mutex_lock(&pci_epf_mutex);
		list_add_tail(&group->group_entry, &driver->epf_group);
		mutex_unlock(&pci_epf_mutex);
		id++;
	}

	return 0;
}

/**
 * __pci_epf_register_driver() - register a new PCI EPF driver
 * @driver: structure representing PCI EPF driver
 * @owner: the owner of the module that registers the PCI EPF driver
 *
 * Invoke to register a new PCI EPF driver.
 */
int __pci_epf_register_driver(struct pci_epf_driver *driver,
			      struct module *owner)
{
	int ret;

	if (!driver->ops)
		return -EINVAL;

	if (!driver->ops->bind || !driver->ops->unbind)
		return -EINVAL;

	driver->driver.bus = &pci_epf_bus_type;
	driver->driver.owner = owner;

	ret = driver_register(&driver->driver);
	if (ret)
		return ret;

	pci_epf_add_cfs(driver);

	return 0;
}
EXPORT_SYMBOL_GPL(__pci_epf_register_driver);

/**
 * pci_epf_destroy() - destroy the created PCI EPF device
 * @epf: the PCI EPF device that has to be destroyed.
 *
 * Invoke to destroy the PCI EPF device created by invoking pci_epf_create().
 */
void pci_epf_destroy(struct pci_epf *epf)
{
	device_unregister(&epf->dev);
}
EXPORT_SYMBOL_GPL(pci_epf_destroy);

/**
 * pci_epf_create() - create a new PCI EPF device
 * @name: the name of the PCI EPF device. This name will be used to bind the
 *	  EPF device to a EPF driver
 *
 * Invoke to create a new PCI EPF device by providing the name of the function
 * device.
 */
struct pci_epf *pci_epf_create(const char *name)
{
	int ret;
	struct pci_epf *epf;
	struct device *dev;
	int len;

	epf = kzalloc(sizeof(*epf), GFP_KERNEL);
	if (!epf)
		return ERR_PTR(-ENOMEM);

	len = strchrnul(name, '.') - name;
	epf->name = kstrndup(name, len, GFP_KERNEL);
	if (!epf->name) {
		kfree(epf);
		return ERR_PTR(-ENOMEM);
	}

	/* VFs are numbered starting with 1. So set BIT(0) by default */
	epf->vfunction_num_map = 1;
	INIT_LIST_HEAD(&epf->pci_vepf);

	dev = &epf->dev;
	device_initialize(dev);
	dev->bus = &pci_epf_bus_type;
	dev->type = &pci_epf_type;
	mutex_init(&epf->lock);

	ret = dev_set_name(dev, "%s", name);
	if (ret) {
		put_device(dev);
		return ERR_PTR(ret);
	}

	ret = device_add(dev);
	if (ret) {
		put_device(dev);
		return ERR_PTR(ret);
	}

	return epf;
}
EXPORT_SYMBOL_GPL(pci_epf_create);

static void pci_epf_dev_release(struct device *dev)
{
	struct pci_epf *epf = to_pci_epf(dev);

	kfree(epf->name);
	kfree(epf);
}

static const struct device_type pci_epf_type = {
	.release	= pci_epf_dev_release,
};

static const struct pci_epf_device_id *
pci_epf_match_id(const struct pci_epf_device_id *id, const struct pci_epf *epf)
{
	while (id->name[0]) {
		if (strcmp(epf->name, id->name) == 0)
			return id;
		id++;
	}

	return NULL;
}

static int pci_epf_device_match(struct device *dev, struct device_driver *drv)
{
	struct pci_epf *epf = to_pci_epf(dev);
	struct pci_epf_driver *driver = to_pci_epf_driver(drv);

	if (driver->id_table)
		return !!pci_epf_match_id(driver->id_table, epf);

	return !strcmp(epf->name, drv->name);
}

static int pci_epf_device_probe(struct device *dev)
{
	struct pci_epf *epf = to_pci_epf(dev);
	struct pci_epf_driver *driver = to_pci_epf_driver(dev->driver);

	if (!driver->probe)
		return -ENODEV;

	epf->driver = driver;

	return driver->probe(epf, pci_epf_match_id(driver->id_table, epf));
}

static void pci_epf_device_remove(struct device *dev)
{
	struct pci_epf *epf = to_pci_epf(dev);
	struct pci_epf_driver *driver = to_pci_epf_driver(dev->driver);

	if (driver->remove)
		driver->remove(epf);
	epf->driver = NULL;
}

static const struct bus_type pci_epf_bus_type = {
	.name		= "pci-epf",
	.match		= pci_epf_device_match,
	.probe		= pci_epf_device_probe,
	.remove		= pci_epf_device_remove,
};

static int __init pci_epf_init(void)
{
	int ret;

	ret = bus_register(&pci_epf_bus_type);
	if (ret) {
		pr_err("failed to register pci epf bus --> %d\n", ret);
		return ret;
	}

	return 0;
}
module_init(pci_epf_init);

static void __exit pci_epf_exit(void)
{
	bus_unregister(&pci_epf_bus_type);
}
module_exit(pci_epf_exit);

MODULE_DESCRIPTION("PCI EPF Library");
MODULE_AUTHOR("Kishon Vijay Abraham I <kishon@ti.com>");