1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
|
// SPDX-License-Identifier: GPL-2.0
/*
* Copyright (c) 2022 MediaTek Inc.
* Author: Jianjun Wang <jianjun.wang@mediatek.com>
*/
#include <linux/bitfield.h>
#include <linux/module.h>
#include <linux/nvmem-consumer.h>
#include <linux/of.h>
#include <linux/phy/phy.h>
#include <linux/platform_device.h>
#include <linux/slab.h>
#include "phy-mtk-io.h"
#define PEXTP_ANA_GLB_00_REG 0x9000
/* Internal Resistor Selection of TX Bias Current */
#define EFUSE_GLB_INTR_SEL GENMASK(28, 24)
#define PEXTP_ANA_LN0_TRX_REG 0xa000
#define PEXTP_ANA_TX_REG 0x04
/* TX PMOS impedance selection */
#define EFUSE_LN_TX_PMOS_SEL GENMASK(5, 2)
/* TX NMOS impedance selection */
#define EFUSE_LN_TX_NMOS_SEL GENMASK(11, 8)
#define PEXTP_ANA_RX_REG 0x3c
/* RX impedance selection */
#define EFUSE_LN_RX_SEL GENMASK(3, 0)
#define PEXTP_ANA_LANE_OFFSET 0x100
/**
* struct mtk_pcie_lane_efuse - eFuse data for each lane
* @tx_pmos: TX PMOS impedance selection data
* @tx_nmos: TX NMOS impedance selection data
* @rx_data: RX impedance selection data
* @lane_efuse_supported: software eFuse data is supported for this lane
*/
struct mtk_pcie_lane_efuse {
u32 tx_pmos;
u32 tx_nmos;
u32 rx_data;
bool lane_efuse_supported;
};
/**
* struct mtk_pcie_phy_data - phy data for each SoC
* @num_lanes: supported lane numbers
* @sw_efuse_supported: support software to load eFuse data
*/
struct mtk_pcie_phy_data {
int num_lanes;
bool sw_efuse_supported;
};
/**
* struct mtk_pcie_phy - PCIe phy driver main structure
* @dev: pointer to device
* @phy: pointer to generic phy
* @sif_base: IO mapped register base address of system interface
* @data: pointer to SoC dependent data
* @sw_efuse_en: software eFuse enable status
* @efuse_glb_intr: internal resistor selection of TX bias current data
* @efuse: pointer to eFuse data for each lane
*/
struct mtk_pcie_phy {
struct device *dev;
struct phy *phy;
void __iomem *sif_base;
const struct mtk_pcie_phy_data *data;
bool sw_efuse_en;
u32 efuse_glb_intr;
struct mtk_pcie_lane_efuse *efuse;
};
static void mtk_pcie_efuse_set_lane(struct mtk_pcie_phy *pcie_phy,
unsigned int lane)
{
struct mtk_pcie_lane_efuse *data = &pcie_phy->efuse[lane];
void __iomem *addr;
if (!data->lane_efuse_supported)
return;
addr = pcie_phy->sif_base + PEXTP_ANA_LN0_TRX_REG +
lane * PEXTP_ANA_LANE_OFFSET;
mtk_phy_update_field(addr + PEXTP_ANA_TX_REG, EFUSE_LN_TX_PMOS_SEL,
data->tx_pmos);
mtk_phy_update_field(addr + PEXTP_ANA_TX_REG, EFUSE_LN_TX_NMOS_SEL,
data->tx_nmos);
mtk_phy_update_field(addr + PEXTP_ANA_RX_REG, EFUSE_LN_RX_SEL,
data->rx_data);
}
/**
* mtk_pcie_phy_init() - Initialize the phy
* @phy: the phy to be initialized
*
* Initialize the phy by setting the efuse data.
* The hardware settings will be reset during suspend, it should be
* reinitialized when the consumer calls phy_init() again on resume.
*/
static int mtk_pcie_phy_init(struct phy *phy)
{
struct mtk_pcie_phy *pcie_phy = phy_get_drvdata(phy);
int i;
if (!pcie_phy->sw_efuse_en)
return 0;
/* Set global data */
mtk_phy_update_field(pcie_phy->sif_base + PEXTP_ANA_GLB_00_REG,
EFUSE_GLB_INTR_SEL, pcie_phy->efuse_glb_intr);
for (i = 0; i < pcie_phy->data->num_lanes; i++)
mtk_pcie_efuse_set_lane(pcie_phy, i);
return 0;
}
static const struct phy_ops mtk_pcie_phy_ops = {
.init = mtk_pcie_phy_init,
.owner = THIS_MODULE,
};
static int mtk_pcie_efuse_read_for_lane(struct mtk_pcie_phy *pcie_phy,
unsigned int lane)
{
struct mtk_pcie_lane_efuse *efuse = &pcie_phy->efuse[lane];
struct device *dev = pcie_phy->dev;
char efuse_id[16];
int ret;
snprintf(efuse_id, sizeof(efuse_id), "tx_ln%d_pmos", lane);
ret = nvmem_cell_read_variable_le_u32(dev, efuse_id, &efuse->tx_pmos);
if (ret)
return dev_err_probe(dev, ret, "Failed to read %s\n", efuse_id);
snprintf(efuse_id, sizeof(efuse_id), "tx_ln%d_nmos", lane);
ret = nvmem_cell_read_variable_le_u32(dev, efuse_id, &efuse->tx_nmos);
if (ret)
return dev_err_probe(dev, ret, "Failed to read %s\n", efuse_id);
snprintf(efuse_id, sizeof(efuse_id), "rx_ln%d", lane);
ret = nvmem_cell_read_variable_le_u32(dev, efuse_id, &efuse->rx_data);
if (ret)
return dev_err_probe(dev, ret, "Failed to read %s\n", efuse_id);
if (!(efuse->tx_pmos || efuse->tx_nmos || efuse->rx_data))
return dev_err_probe(dev, -EINVAL,
"No eFuse data found for lane%d, but dts enable it\n",
lane);
efuse->lane_efuse_supported = true;
return 0;
}
static int mtk_pcie_read_efuse(struct mtk_pcie_phy *pcie_phy)
{
struct device *dev = pcie_phy->dev;
bool nvmem_enabled;
int ret, i;
/* nvmem data is optional */
nvmem_enabled = device_property_present(dev, "nvmem-cells");
if (!nvmem_enabled)
return 0;
ret = nvmem_cell_read_variable_le_u32(dev, "glb_intr",
&pcie_phy->efuse_glb_intr);
if (ret)
return dev_err_probe(dev, ret, "Failed to read glb_intr\n");
pcie_phy->sw_efuse_en = true;
pcie_phy->efuse = devm_kzalloc(dev, pcie_phy->data->num_lanes *
sizeof(*pcie_phy->efuse), GFP_KERNEL);
if (!pcie_phy->efuse)
return -ENOMEM;
for (i = 0; i < pcie_phy->data->num_lanes; i++) {
ret = mtk_pcie_efuse_read_for_lane(pcie_phy, i);
if (ret)
return ret;
}
return 0;
}
static int mtk_pcie_phy_probe(struct platform_device *pdev)
{
struct device *dev = &pdev->dev;
struct phy_provider *provider;
struct mtk_pcie_phy *pcie_phy;
int ret;
pcie_phy = devm_kzalloc(dev, sizeof(*pcie_phy), GFP_KERNEL);
if (!pcie_phy)
return -ENOMEM;
pcie_phy->sif_base = devm_platform_ioremap_resource_byname(pdev, "sif");
if (IS_ERR(pcie_phy->sif_base))
return dev_err_probe(dev, PTR_ERR(pcie_phy->sif_base),
"Failed to map phy-sif base\n");
pcie_phy->phy = devm_phy_create(dev, dev->of_node, &mtk_pcie_phy_ops);
if (IS_ERR(pcie_phy->phy))
return dev_err_probe(dev, PTR_ERR(pcie_phy->phy),
"Failed to create PCIe phy\n");
pcie_phy->dev = dev;
pcie_phy->data = of_device_get_match_data(dev);
if (!pcie_phy->data)
return dev_err_probe(dev, -EINVAL, "Failed to get phy data\n");
if (pcie_phy->data->sw_efuse_supported) {
/*
* Failed to read the efuse data is not a fatal problem,
* ignore the failure and keep going.
*/
ret = mtk_pcie_read_efuse(pcie_phy);
if (ret == -EPROBE_DEFER || ret == -ENOMEM)
return ret;
}
phy_set_drvdata(pcie_phy->phy, pcie_phy);
provider = devm_of_phy_provider_register(dev, of_phy_simple_xlate);
if (IS_ERR(provider))
return dev_err_probe(dev, PTR_ERR(provider),
"PCIe phy probe failed\n");
return 0;
}
static const struct mtk_pcie_phy_data mt8195_data = {
.num_lanes = 2,
.sw_efuse_supported = true,
};
static const struct of_device_id mtk_pcie_phy_of_match[] = {
{ .compatible = "mediatek,mt8195-pcie-phy", .data = &mt8195_data },
{ },
};
MODULE_DEVICE_TABLE(of, mtk_pcie_phy_of_match);
static struct platform_driver mtk_pcie_phy_driver = {
.probe = mtk_pcie_phy_probe,
.driver = {
.name = "mtk-pcie-phy",
.of_match_table = mtk_pcie_phy_of_match,
},
};
module_platform_driver(mtk_pcie_phy_driver);
MODULE_DESCRIPTION("MediaTek PCIe PHY driver");
MODULE_AUTHOR("Jianjun Wang <jianjun.wang@mediatek.com>");
MODULE_LICENSE("GPL");
|