1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
|
// SPDX-License-Identifier: GPL-2.0
/*
* STM32 Low-Power Timer PWM driver
*
* Copyright (C) STMicroelectronics 2017
*
* Author: Gerald Baeza <gerald.baeza@st.com>
*
* Inspired by Gerald Baeza's pwm-stm32 driver
*/
#include <linux/bitfield.h>
#include <linux/mfd/stm32-lptimer.h>
#include <linux/module.h>
#include <linux/of.h>
#include <linux/pinctrl/consumer.h>
#include <linux/platform_device.h>
#include <linux/pwm.h>
struct stm32_pwm_lp {
struct pwm_chip chip;
struct clk *clk;
struct regmap *regmap;
};
static inline struct stm32_pwm_lp *to_stm32_pwm_lp(struct pwm_chip *chip)
{
return container_of(chip, struct stm32_pwm_lp, chip);
}
/* STM32 Low-Power Timer is preceded by a configurable power-of-2 prescaler */
#define STM32_LPTIM_MAX_PRESCALER 128
static int stm32_pwm_lp_apply(struct pwm_chip *chip, struct pwm_device *pwm,
const struct pwm_state *state)
{
struct stm32_pwm_lp *priv = to_stm32_pwm_lp(chip);
unsigned long long prd, div, dty;
struct pwm_state cstate;
u32 val, mask, cfgr, presc = 0;
bool reenable;
int ret;
pwm_get_state(pwm, &cstate);
reenable = !cstate.enabled;
if (!state->enabled) {
if (cstate.enabled) {
/* Disable LP timer */
ret = regmap_write(priv->regmap, STM32_LPTIM_CR, 0);
if (ret)
return ret;
/* disable clock to PWM counter */
clk_disable(priv->clk);
}
return 0;
}
/* Calculate the period and prescaler value */
div = (unsigned long long)clk_get_rate(priv->clk) * state->period;
do_div(div, NSEC_PER_SEC);
if (!div) {
/* Clock is too slow to achieve requested period. */
dev_dbg(priv->chip.dev, "Can't reach %llu ns\n", state->period);
return -EINVAL;
}
prd = div;
while (div > STM32_LPTIM_MAX_ARR) {
presc++;
if ((1 << presc) > STM32_LPTIM_MAX_PRESCALER) {
dev_err(priv->chip.dev, "max prescaler exceeded\n");
return -EINVAL;
}
div = prd >> presc;
}
prd = div;
/* Calculate the duty cycle */
dty = prd * state->duty_cycle;
do_div(dty, state->period);
if (!cstate.enabled) {
/* enable clock to drive PWM counter */
ret = clk_enable(priv->clk);
if (ret)
return ret;
}
ret = regmap_read(priv->regmap, STM32_LPTIM_CFGR, &cfgr);
if (ret)
goto err;
if ((FIELD_GET(STM32_LPTIM_PRESC, cfgr) != presc) ||
(FIELD_GET(STM32_LPTIM_WAVPOL, cfgr) != state->polarity)) {
val = FIELD_PREP(STM32_LPTIM_PRESC, presc);
val |= FIELD_PREP(STM32_LPTIM_WAVPOL, state->polarity);
mask = STM32_LPTIM_PRESC | STM32_LPTIM_WAVPOL;
/* Must disable LP timer to modify CFGR */
reenable = true;
ret = regmap_write(priv->regmap, STM32_LPTIM_CR, 0);
if (ret)
goto err;
ret = regmap_update_bits(priv->regmap, STM32_LPTIM_CFGR, mask,
val);
if (ret)
goto err;
}
if (reenable) {
/* Must (re)enable LP timer to modify CMP & ARR */
ret = regmap_write(priv->regmap, STM32_LPTIM_CR,
STM32_LPTIM_ENABLE);
if (ret)
goto err;
}
ret = regmap_write(priv->regmap, STM32_LPTIM_ARR, prd - 1);
if (ret)
goto err;
ret = regmap_write(priv->regmap, STM32_LPTIM_CMP, prd - (1 + dty));
if (ret)
goto err;
/* ensure CMP & ARR registers are properly written */
ret = regmap_read_poll_timeout(priv->regmap, STM32_LPTIM_ISR, val,
(val & STM32_LPTIM_CMPOK_ARROK) == STM32_LPTIM_CMPOK_ARROK,
100, 1000);
if (ret) {
dev_err(priv->chip.dev, "ARR/CMP registers write issue\n");
goto err;
}
ret = regmap_write(priv->regmap, STM32_LPTIM_ICR,
STM32_LPTIM_CMPOKCF_ARROKCF);
if (ret)
goto err;
if (reenable) {
/* Start LP timer in continuous mode */
ret = regmap_set_bits(priv->regmap, STM32_LPTIM_CR,
STM32_LPTIM_CNTSTRT);
if (ret) {
regmap_write(priv->regmap, STM32_LPTIM_CR, 0);
goto err;
}
}
return 0;
err:
if (!cstate.enabled)
clk_disable(priv->clk);
return ret;
}
static int stm32_pwm_lp_get_state(struct pwm_chip *chip,
struct pwm_device *pwm,
struct pwm_state *state)
{
struct stm32_pwm_lp *priv = to_stm32_pwm_lp(chip);
unsigned long rate = clk_get_rate(priv->clk);
u32 val, presc, prd;
u64 tmp;
regmap_read(priv->regmap, STM32_LPTIM_CR, &val);
state->enabled = !!FIELD_GET(STM32_LPTIM_ENABLE, val);
/* Keep PWM counter clock refcount in sync with PWM initial state */
if (state->enabled)
clk_enable(priv->clk);
regmap_read(priv->regmap, STM32_LPTIM_CFGR, &val);
presc = FIELD_GET(STM32_LPTIM_PRESC, val);
state->polarity = FIELD_GET(STM32_LPTIM_WAVPOL, val);
regmap_read(priv->regmap, STM32_LPTIM_ARR, &prd);
tmp = prd + 1;
tmp = (tmp << presc) * NSEC_PER_SEC;
state->period = DIV_ROUND_CLOSEST_ULL(tmp, rate);
regmap_read(priv->regmap, STM32_LPTIM_CMP, &val);
tmp = prd - val;
tmp = (tmp << presc) * NSEC_PER_SEC;
state->duty_cycle = DIV_ROUND_CLOSEST_ULL(tmp, rate);
return 0;
}
static const struct pwm_ops stm32_pwm_lp_ops = {
.apply = stm32_pwm_lp_apply,
.get_state = stm32_pwm_lp_get_state,
};
static int stm32_pwm_lp_probe(struct platform_device *pdev)
{
struct stm32_lptimer *ddata = dev_get_drvdata(pdev->dev.parent);
struct stm32_pwm_lp *priv;
int ret;
priv = devm_kzalloc(&pdev->dev, sizeof(*priv), GFP_KERNEL);
if (!priv)
return -ENOMEM;
priv->regmap = ddata->regmap;
priv->clk = ddata->clk;
priv->chip.dev = &pdev->dev;
priv->chip.ops = &stm32_pwm_lp_ops;
priv->chip.npwm = 1;
ret = devm_pwmchip_add(&pdev->dev, &priv->chip);
if (ret < 0)
return ret;
platform_set_drvdata(pdev, priv);
return 0;
}
static int __maybe_unused stm32_pwm_lp_suspend(struct device *dev)
{
struct stm32_pwm_lp *priv = dev_get_drvdata(dev);
struct pwm_state state;
pwm_get_state(&priv->chip.pwms[0], &state);
if (state.enabled) {
dev_err(dev, "The consumer didn't stop us (%s)\n",
priv->chip.pwms[0].label);
return -EBUSY;
}
return pinctrl_pm_select_sleep_state(dev);
}
static int __maybe_unused stm32_pwm_lp_resume(struct device *dev)
{
return pinctrl_pm_select_default_state(dev);
}
static SIMPLE_DEV_PM_OPS(stm32_pwm_lp_pm_ops, stm32_pwm_lp_suspend,
stm32_pwm_lp_resume);
static const struct of_device_id stm32_pwm_lp_of_match[] = {
{ .compatible = "st,stm32-pwm-lp", },
{},
};
MODULE_DEVICE_TABLE(of, stm32_pwm_lp_of_match);
static struct platform_driver stm32_pwm_lp_driver = {
.probe = stm32_pwm_lp_probe,
.driver = {
.name = "stm32-pwm-lp",
.of_match_table = stm32_pwm_lp_of_match,
.pm = &stm32_pwm_lp_pm_ops,
},
};
module_platform_driver(stm32_pwm_lp_driver);
MODULE_ALIAS("platform:stm32-pwm-lp");
MODULE_DESCRIPTION("STMicroelectronics STM32 PWM LP driver");
MODULE_LICENSE("GPL v2");
|