summaryrefslogtreecommitdiffstats
path: root/drivers/rtc/rtc-zynqmp.c
blob: 08ed171bdab43a832c09abc1ed1edcdbac99615c (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
// SPDX-License-Identifier: GPL-2.0
/*
 * Xilinx Zynq Ultrascale+ MPSoC Real Time Clock Driver
 *
 * Copyright (C) 2015 Xilinx, Inc.
 *
 */

#include <linux/clk.h>
#include <linux/delay.h>
#include <linux/init.h>
#include <linux/io.h>
#include <linux/module.h>
#include <linux/of.h>
#include <linux/platform_device.h>
#include <linux/rtc.h>

/* RTC Registers */
#define RTC_SET_TM_WR		0x00
#define RTC_SET_TM_RD		0x04
#define RTC_CALIB_WR		0x08
#define RTC_CALIB_RD		0x0C
#define RTC_CUR_TM		0x10
#define RTC_CUR_TICK		0x14
#define RTC_ALRM		0x18
#define RTC_INT_STS		0x20
#define RTC_INT_MASK		0x24
#define RTC_INT_EN		0x28
#define RTC_INT_DIS		0x2C
#define RTC_CTRL		0x40

#define RTC_FR_EN		BIT(20)
#define RTC_FR_DATSHIFT		16
#define RTC_TICK_MASK		0xFFFF
#define RTC_INT_SEC		BIT(0)
#define RTC_INT_ALRM		BIT(1)
#define RTC_OSC_EN		BIT(24)
#define RTC_BATT_EN		BIT(31)

#define RTC_CALIB_DEF		0x7FFF
#define RTC_CALIB_MASK		0x1FFFFF
#define RTC_ALRM_MASK          BIT(1)
#define RTC_MSEC               1000
#define RTC_FR_MASK		0xF0000
#define RTC_FR_MAX_TICKS	16
#define RTC_PPB			1000000000LL
#define RTC_MIN_OFFSET		-32768000
#define RTC_MAX_OFFSET		32767000

struct xlnx_rtc_dev {
	struct rtc_device	*rtc;
	void __iomem		*reg_base;
	int			alarm_irq;
	int			sec_irq;
	struct clk		*rtc_clk;
	unsigned int		freq;
};

static int xlnx_rtc_set_time(struct device *dev, struct rtc_time *tm)
{
	struct xlnx_rtc_dev *xrtcdev = dev_get_drvdata(dev);
	unsigned long new_time;

	/*
	 * The value written will be updated after 1 sec into the
	 * seconds read register, so we need to program time +1 sec
	 * to get the correct time on read.
	 */
	new_time = rtc_tm_to_time64(tm) + 1;

	writel(new_time, xrtcdev->reg_base + RTC_SET_TM_WR);

	/*
	 * Clear the rtc interrupt status register after setting the
	 * time. During a read_time function, the code should read the
	 * RTC_INT_STATUS register and if bit 0 is still 0, it means
	 * that one second has not elapsed yet since RTC was set and
	 * the current time should be read from SET_TIME_READ register;
	 * otherwise, CURRENT_TIME register is read to report the time
	 */
	writel(RTC_INT_SEC, xrtcdev->reg_base + RTC_INT_STS);

	return 0;
}

static int xlnx_rtc_read_time(struct device *dev, struct rtc_time *tm)
{
	u32 status;
	unsigned long read_time;
	struct xlnx_rtc_dev *xrtcdev = dev_get_drvdata(dev);

	status = readl(xrtcdev->reg_base + RTC_INT_STS);

	if (status & RTC_INT_SEC) {
		/*
		 * RTC has updated the CURRENT_TIME with the time written into
		 * SET_TIME_WRITE register.
		 */
		read_time = readl(xrtcdev->reg_base + RTC_CUR_TM);
	} else {
		/*
		 * Time written in SET_TIME_WRITE has not yet updated into
		 * the seconds read register, so read the time from the
		 * SET_TIME_WRITE instead of CURRENT_TIME register.
		 * Since we add +1 sec while writing, we need to -1 sec while
		 * reading.
		 */
		read_time = readl(xrtcdev->reg_base + RTC_SET_TM_RD) - 1;
	}
	rtc_time64_to_tm(read_time, tm);

	return 0;
}

static int xlnx_rtc_read_alarm(struct device *dev, struct rtc_wkalrm *alrm)
{
	struct xlnx_rtc_dev *xrtcdev = dev_get_drvdata(dev);

	rtc_time64_to_tm(readl(xrtcdev->reg_base + RTC_ALRM), &alrm->time);
	alrm->enabled = readl(xrtcdev->reg_base + RTC_INT_MASK) & RTC_INT_ALRM;

	return 0;
}

static int xlnx_rtc_alarm_irq_enable(struct device *dev, u32 enabled)
{
	struct xlnx_rtc_dev *xrtcdev = dev_get_drvdata(dev);
	unsigned int status;
	ulong timeout;

	timeout = jiffies + msecs_to_jiffies(RTC_MSEC);

	if (enabled) {
		while (1) {
			status = readl(xrtcdev->reg_base + RTC_INT_STS);
			if (!((status & RTC_ALRM_MASK) == RTC_ALRM_MASK))
				break;

			if (time_after_eq(jiffies, timeout)) {
				dev_err(dev, "Time out occur, while clearing alarm status bit\n");
				return -ETIMEDOUT;
			}
			writel(RTC_INT_ALRM, xrtcdev->reg_base + RTC_INT_STS);
		}

		writel(RTC_INT_ALRM, xrtcdev->reg_base + RTC_INT_EN);
	} else {
		writel(RTC_INT_ALRM, xrtcdev->reg_base + RTC_INT_DIS);
	}

	return 0;
}

static int xlnx_rtc_set_alarm(struct device *dev, struct rtc_wkalrm *alrm)
{
	struct xlnx_rtc_dev *xrtcdev = dev_get_drvdata(dev);
	unsigned long alarm_time;

	alarm_time = rtc_tm_to_time64(&alrm->time);

	writel((u32)alarm_time, (xrtcdev->reg_base + RTC_ALRM));

	xlnx_rtc_alarm_irq_enable(dev, alrm->enabled);

	return 0;
}

static void xlnx_init_rtc(struct xlnx_rtc_dev *xrtcdev)
{
	u32 rtc_ctrl;

	/* Enable RTC switch to battery when VCC_PSAUX is not available */
	rtc_ctrl = readl(xrtcdev->reg_base + RTC_CTRL);
	rtc_ctrl |= RTC_BATT_EN;
	writel(rtc_ctrl, xrtcdev->reg_base + RTC_CTRL);
}

static int xlnx_rtc_read_offset(struct device *dev, long *offset)
{
	struct xlnx_rtc_dev *xrtcdev = dev_get_drvdata(dev);
	unsigned long long rtc_ppb = RTC_PPB;
	unsigned int tick_mult = do_div(rtc_ppb, xrtcdev->freq);
	unsigned int calibval;
	long offset_val;

	calibval = readl(xrtcdev->reg_base + RTC_CALIB_RD);
	/* Offset with seconds ticks */
	offset_val = calibval & RTC_TICK_MASK;
	offset_val = offset_val - RTC_CALIB_DEF;
	offset_val = offset_val * tick_mult;

	/* Offset with fractional ticks */
	if (calibval & RTC_FR_EN)
		offset_val += ((calibval & RTC_FR_MASK) >> RTC_FR_DATSHIFT)
			* (tick_mult / RTC_FR_MAX_TICKS);
	*offset = offset_val;

	return 0;
}

static int xlnx_rtc_set_offset(struct device *dev, long offset)
{
	struct xlnx_rtc_dev *xrtcdev = dev_get_drvdata(dev);
	unsigned long long rtc_ppb = RTC_PPB;
	unsigned int tick_mult = do_div(rtc_ppb, xrtcdev->freq);
	unsigned char fract_tick = 0;
	unsigned int calibval;
	short int  max_tick;
	int fract_offset;

	if (offset < RTC_MIN_OFFSET || offset > RTC_MAX_OFFSET)
		return -ERANGE;

	/* Number ticks for given offset */
	max_tick = div_s64_rem(offset, tick_mult, &fract_offset);

	/* Number fractional ticks for given offset */
	if (fract_offset) {
		if (fract_offset < 0) {
			fract_offset = fract_offset + tick_mult;
			max_tick--;
		}
		if (fract_offset > (tick_mult / RTC_FR_MAX_TICKS)) {
			for (fract_tick = 1; fract_tick < 16; fract_tick++) {
				if (fract_offset <=
				    (fract_tick *
				     (tick_mult / RTC_FR_MAX_TICKS)))
					break;
			}
		}
	}

	/* Zynqmp RTC uses second and fractional tick
	 * counters for compensation
	 */
	calibval = max_tick + RTC_CALIB_DEF;

	if (fract_tick)
		calibval |= RTC_FR_EN;

	calibval |= (fract_tick << RTC_FR_DATSHIFT);

	writel(calibval, (xrtcdev->reg_base + RTC_CALIB_WR));

	return 0;
}

static const struct rtc_class_ops xlnx_rtc_ops = {
	.set_time	  = xlnx_rtc_set_time,
	.read_time	  = xlnx_rtc_read_time,
	.read_alarm	  = xlnx_rtc_read_alarm,
	.set_alarm	  = xlnx_rtc_set_alarm,
	.alarm_irq_enable = xlnx_rtc_alarm_irq_enable,
	.read_offset	  = xlnx_rtc_read_offset,
	.set_offset	  = xlnx_rtc_set_offset,
};

static irqreturn_t xlnx_rtc_interrupt(int irq, void *id)
{
	struct xlnx_rtc_dev *xrtcdev = (struct xlnx_rtc_dev *)id;
	unsigned int status;

	status = readl(xrtcdev->reg_base + RTC_INT_STS);
	/* Check if interrupt asserted */
	if (!(status & (RTC_INT_SEC | RTC_INT_ALRM)))
		return IRQ_NONE;

	/* Disable RTC_INT_ALRM interrupt only */
	writel(RTC_INT_ALRM, xrtcdev->reg_base + RTC_INT_DIS);

	if (status & RTC_INT_ALRM)
		rtc_update_irq(xrtcdev->rtc, 1, RTC_IRQF | RTC_AF);

	return IRQ_HANDLED;
}

static int xlnx_rtc_probe(struct platform_device *pdev)
{
	struct xlnx_rtc_dev *xrtcdev;
	int ret;

	xrtcdev = devm_kzalloc(&pdev->dev, sizeof(*xrtcdev), GFP_KERNEL);
	if (!xrtcdev)
		return -ENOMEM;

	platform_set_drvdata(pdev, xrtcdev);

	xrtcdev->rtc = devm_rtc_allocate_device(&pdev->dev);
	if (IS_ERR(xrtcdev->rtc))
		return PTR_ERR(xrtcdev->rtc);

	xrtcdev->rtc->ops = &xlnx_rtc_ops;
	xrtcdev->rtc->range_max = U32_MAX;

	xrtcdev->reg_base = devm_platform_ioremap_resource(pdev, 0);
	if (IS_ERR(xrtcdev->reg_base))
		return PTR_ERR(xrtcdev->reg_base);

	xrtcdev->alarm_irq = platform_get_irq_byname(pdev, "alarm");
	if (xrtcdev->alarm_irq < 0)
		return xrtcdev->alarm_irq;
	ret = devm_request_irq(&pdev->dev, xrtcdev->alarm_irq,
			       xlnx_rtc_interrupt, 0,
			       dev_name(&pdev->dev), xrtcdev);
	if (ret) {
		dev_err(&pdev->dev, "request irq failed\n");
		return ret;
	}

	xrtcdev->sec_irq = platform_get_irq_byname(pdev, "sec");
	if (xrtcdev->sec_irq < 0)
		return xrtcdev->sec_irq;
	ret = devm_request_irq(&pdev->dev, xrtcdev->sec_irq,
			       xlnx_rtc_interrupt, 0,
			       dev_name(&pdev->dev), xrtcdev);
	if (ret) {
		dev_err(&pdev->dev, "request irq failed\n");
		return ret;
	}

	/* Getting the rtc_clk info */
	xrtcdev->rtc_clk = devm_clk_get_optional(&pdev->dev, "rtc_clk");
	if (IS_ERR(xrtcdev->rtc_clk)) {
		if (PTR_ERR(xrtcdev->rtc_clk) != -EPROBE_DEFER)
			dev_warn(&pdev->dev, "Device clock not found.\n");
	}
	xrtcdev->freq = clk_get_rate(xrtcdev->rtc_clk);
	if (!xrtcdev->freq) {
		ret = of_property_read_u32(pdev->dev.of_node, "calibration",
					   &xrtcdev->freq);
		if (ret)
			xrtcdev->freq = RTC_CALIB_DEF;
	}
	ret = readl(xrtcdev->reg_base + RTC_CALIB_RD);
	if (!ret)
		writel(xrtcdev->freq, (xrtcdev->reg_base + RTC_CALIB_WR));

	xlnx_init_rtc(xrtcdev);

	device_init_wakeup(&pdev->dev, 1);

	return devm_rtc_register_device(xrtcdev->rtc);
}

static void xlnx_rtc_remove(struct platform_device *pdev)
{
	xlnx_rtc_alarm_irq_enable(&pdev->dev, 0);
	device_init_wakeup(&pdev->dev, 0);
}

static int __maybe_unused xlnx_rtc_suspend(struct device *dev)
{
	struct xlnx_rtc_dev *xrtcdev = dev_get_drvdata(dev);

	if (device_may_wakeup(dev))
		enable_irq_wake(xrtcdev->alarm_irq);
	else
		xlnx_rtc_alarm_irq_enable(dev, 0);

	return 0;
}

static int __maybe_unused xlnx_rtc_resume(struct device *dev)
{
	struct xlnx_rtc_dev *xrtcdev = dev_get_drvdata(dev);

	if (device_may_wakeup(dev))
		disable_irq_wake(xrtcdev->alarm_irq);
	else
		xlnx_rtc_alarm_irq_enable(dev, 1);

	return 0;
}

static SIMPLE_DEV_PM_OPS(xlnx_rtc_pm_ops, xlnx_rtc_suspend, xlnx_rtc_resume);

static const struct of_device_id xlnx_rtc_of_match[] = {
	{.compatible = "xlnx,zynqmp-rtc" },
	{ }
};
MODULE_DEVICE_TABLE(of, xlnx_rtc_of_match);

static struct platform_driver xlnx_rtc_driver = {
	.probe		= xlnx_rtc_probe,
	.remove_new	= xlnx_rtc_remove,
	.driver		= {
		.name	= KBUILD_MODNAME,
		.pm	= &xlnx_rtc_pm_ops,
		.of_match_table	= xlnx_rtc_of_match,
	},
};

module_platform_driver(xlnx_rtc_driver);

MODULE_DESCRIPTION("Xilinx Zynq MPSoC RTC driver");
MODULE_AUTHOR("Xilinx Inc.");
MODULE_LICENSE("GPL v2");