1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
|
// SPDX-License-Identifier: GPL-2.0
#include "bcachefs.h"
#include "btree_locking.h"
#include "btree_update.h"
#include "btree_update_interior.h"
#include "btree_write_buffer.h"
#include "error.h"
#include "journal.h"
#include "journal_reclaim.h"
#include <linux/sort.h>
static int btree_write_buffered_key_cmp(const void *_l, const void *_r)
{
const struct btree_write_buffered_key *l = _l;
const struct btree_write_buffered_key *r = _r;
return cmp_int(l->btree, r->btree) ?:
bpos_cmp(l->k.k.p, r->k.k.p) ?:
cmp_int(l->journal_seq, r->journal_seq) ?:
cmp_int(l->journal_offset, r->journal_offset);
}
static int btree_write_buffered_journal_cmp(const void *_l, const void *_r)
{
const struct btree_write_buffered_key *l = _l;
const struct btree_write_buffered_key *r = _r;
return cmp_int(l->journal_seq, r->journal_seq);
}
static int bch2_btree_write_buffer_flush_one(struct btree_trans *trans,
struct btree_iter *iter,
struct btree_write_buffered_key *wb,
unsigned commit_flags,
bool *write_locked,
size_t *fast)
{
struct bch_fs *c = trans->c;
struct btree_path *path;
int ret;
ret = bch2_btree_iter_traverse(iter);
if (ret)
return ret;
path = iter->path;
if (!*write_locked) {
ret = bch2_btree_node_lock_write(trans, path, &path->l[0].b->c);
if (ret)
return ret;
bch2_btree_node_prep_for_write(trans, path, path->l[0].b);
*write_locked = true;
}
if (!bch2_btree_node_insert_fits(c, path->l[0].b, wb->k.k.u64s)) {
bch2_btree_node_unlock_write(trans, path, path->l[0].b);
*write_locked = false;
goto trans_commit;
}
bch2_btree_insert_key_leaf(trans, path, &wb->k, wb->journal_seq);
(*fast)++;
if (path->ref > 1) {
/*
* We can't clone a path that has write locks: if the path is
* shared, unlock before set_pos(), traverse():
*/
bch2_btree_node_unlock_write(trans, path, path->l[0].b);
*write_locked = false;
}
return 0;
trans_commit:
return bch2_trans_update_seq(trans, wb->journal_seq, iter, &wb->k,
BTREE_UPDATE_INTERNAL_SNAPSHOT_NODE) ?:
bch2_trans_commit(trans, NULL, NULL,
commit_flags|
BTREE_INSERT_NOCHECK_RW|
BTREE_INSERT_NOFAIL|
BTREE_INSERT_JOURNAL_RECLAIM);
}
static union btree_write_buffer_state btree_write_buffer_switch(struct btree_write_buffer *wb)
{
union btree_write_buffer_state old, new;
u64 v = READ_ONCE(wb->state.v);
do {
old.v = new.v = v;
new.nr = 0;
new.idx++;
} while ((v = atomic64_cmpxchg_acquire(&wb->state.counter, old.v, new.v)) != old.v);
while (old.idx == 0 ? wb->state.ref0 : wb->state.ref1)
cpu_relax();
smp_mb();
return old;
}
/*
* Update a btree with a write buffered key using the journal seq of the
* original write buffer insert.
*
* It is not safe to rejournal the key once it has been inserted into the write
* buffer because that may break recovery ordering. For example, the key may
* have already been modified in the active write buffer in a seq that comes
* before the current transaction. If we were to journal this key again and
* crash, recovery would process updates in the wrong order.
*/
static int
btree_write_buffered_insert(struct btree_trans *trans,
struct btree_write_buffered_key *wb)
{
struct btree_iter iter;
int ret;
bch2_trans_iter_init(trans, &iter, wb->btree, bkey_start_pos(&wb->k.k),
BTREE_ITER_CACHED|BTREE_ITER_INTENT);
ret = bch2_btree_iter_traverse(&iter) ?:
bch2_trans_update_seq(trans, wb->journal_seq, &iter, &wb->k,
BTREE_UPDATE_INTERNAL_SNAPSHOT_NODE);
bch2_trans_iter_exit(trans, &iter);
return ret;
}
int __bch2_btree_write_buffer_flush(struct btree_trans *trans, unsigned commit_flags,
bool locked)
{
struct bch_fs *c = trans->c;
struct journal *j = &c->journal;
struct btree_write_buffer *wb = &c->btree_write_buffer;
struct journal_entry_pin pin;
struct btree_write_buffered_key *i, *keys;
struct btree_iter iter = { NULL };
size_t nr = 0, skipped = 0, fast = 0, slowpath = 0;
bool write_locked = false;
union btree_write_buffer_state s;
int ret = 0;
memset(&pin, 0, sizeof(pin));
if (!locked && !mutex_trylock(&wb->flush_lock))
return 0;
bch2_journal_pin_copy(j, &pin, &wb->journal_pin, NULL);
bch2_journal_pin_drop(j, &wb->journal_pin);
s = btree_write_buffer_switch(wb);
keys = wb->keys[s.idx];
nr = s.nr;
if (race_fault())
goto slowpath;
/*
* We first sort so that we can detect and skip redundant updates, and
* then we attempt to flush in sorted btree order, as this is most
* efficient.
*
* However, since we're not flushing in the order they appear in the
* journal we won't be able to drop our journal pin until everything is
* flushed - which means this could deadlock the journal if we weren't
* passing BTREE_INSERT_JOURNAL_RECLAIM. This causes the update to fail
* if it would block taking a journal reservation.
*
* If that happens, simply skip the key so we can optimistically insert
* as many keys as possible in the fast path.
*/
sort(keys, nr, sizeof(keys[0]),
btree_write_buffered_key_cmp, NULL);
for (i = keys; i < keys + nr; i++) {
if (i + 1 < keys + nr &&
i[0].btree == i[1].btree &&
bpos_eq(i[0].k.k.p, i[1].k.k.p)) {
skipped++;
i->journal_seq = 0;
continue;
}
if (write_locked &&
(iter.path->btree_id != i->btree ||
bpos_gt(i->k.k.p, iter.path->l[0].b->key.k.p))) {
bch2_btree_node_unlock_write(trans, iter.path, iter.path->l[0].b);
write_locked = false;
}
if (!iter.path || iter.path->btree_id != i->btree) {
bch2_trans_iter_exit(trans, &iter);
bch2_trans_iter_init(trans, &iter, i->btree, i->k.k.p,
BTREE_ITER_INTENT|BTREE_ITER_ALL_SNAPSHOTS);
}
bch2_btree_iter_set_pos(&iter, i->k.k.p);
iter.path->preserve = false;
do {
ret = bch2_btree_write_buffer_flush_one(trans, &iter, i,
commit_flags, &write_locked, &fast);
if (!write_locked)
bch2_trans_begin(trans);
} while (bch2_err_matches(ret, BCH_ERR_transaction_restart));
if (ret == -BCH_ERR_journal_reclaim_would_deadlock) {
slowpath++;
continue;
}
if (ret)
break;
i->journal_seq = 0;
}
if (write_locked)
bch2_btree_node_unlock_write(trans, iter.path, iter.path->l[0].b);
bch2_trans_iter_exit(trans, &iter);
trace_write_buffer_flush(trans, nr, skipped, fast, wb->size);
if (slowpath)
goto slowpath;
bch2_fs_fatal_err_on(ret, c, "%s: insert error %s", __func__, bch2_err_str(ret));
out:
bch2_journal_pin_drop(j, &pin);
mutex_unlock(&wb->flush_lock);
return ret;
slowpath:
trace_write_buffer_flush_slowpath(trans, i - keys, nr);
/*
* Now sort the rest by journal seq and bump the journal pin as we go.
* The slowpath zapped the seq of keys that were successfully flushed so
* we can skip those here.
*/
sort(keys, nr, sizeof(keys[0]),
btree_write_buffered_journal_cmp,
NULL);
commit_flags &= ~BCH_WATERMARK_MASK;
commit_flags |= BCH_WATERMARK_reclaim;
for (i = keys; i < keys + nr; i++) {
if (!i->journal_seq)
continue;
if (i->journal_seq > pin.seq) {
struct journal_entry_pin pin2;
memset(&pin2, 0, sizeof(pin2));
bch2_journal_pin_add(j, i->journal_seq, &pin2, NULL);
bch2_journal_pin_drop(j, &pin);
bch2_journal_pin_copy(j, &pin, &pin2, NULL);
bch2_journal_pin_drop(j, &pin2);
}
ret = commit_do(trans, NULL, NULL,
commit_flags|
BTREE_INSERT_NOFAIL|
BTREE_INSERT_JOURNAL_RECLAIM,
btree_write_buffered_insert(trans, i));
if (bch2_fs_fatal_err_on(ret, c, "%s: insert error %s", __func__, bch2_err_str(ret)))
break;
}
goto out;
}
int bch2_btree_write_buffer_flush_sync(struct btree_trans *trans)
{
bch2_trans_unlock(trans);
mutex_lock(&trans->c->btree_write_buffer.flush_lock);
return __bch2_btree_write_buffer_flush(trans, 0, true);
}
int bch2_btree_write_buffer_flush(struct btree_trans *trans)
{
return __bch2_btree_write_buffer_flush(trans, 0, false);
}
static int bch2_btree_write_buffer_journal_flush(struct journal *j,
struct journal_entry_pin *_pin, u64 seq)
{
struct bch_fs *c = container_of(j, struct bch_fs, journal);
struct btree_write_buffer *wb = &c->btree_write_buffer;
mutex_lock(&wb->flush_lock);
return bch2_trans_run(c,
__bch2_btree_write_buffer_flush(trans, BTREE_INSERT_NOCHECK_RW, true));
}
static inline u64 btree_write_buffer_ref(int idx)
{
return ((union btree_write_buffer_state) {
.ref0 = idx == 0,
.ref1 = idx == 1,
}).v;
}
int bch2_btree_insert_keys_write_buffer(struct btree_trans *trans)
{
struct bch_fs *c = trans->c;
struct btree_write_buffer *wb = &c->btree_write_buffer;
struct btree_write_buffered_key *i;
union btree_write_buffer_state old, new;
int ret = 0;
u64 v;
trans_for_each_wb_update(trans, i) {
EBUG_ON(i->k.k.u64s > BTREE_WRITE_BUFERED_U64s_MAX);
i->journal_seq = trans->journal_res.seq;
i->journal_offset = trans->journal_res.offset;
}
preempt_disable();
v = READ_ONCE(wb->state.v);
do {
old.v = new.v = v;
new.v += btree_write_buffer_ref(new.idx);
new.nr += trans->nr_wb_updates;
if (new.nr > wb->size) {
ret = -BCH_ERR_btree_insert_need_flush_buffer;
goto out;
}
} while ((v = atomic64_cmpxchg_acquire(&wb->state.counter, old.v, new.v)) != old.v);
memcpy(wb->keys[new.idx] + old.nr,
trans->wb_updates,
sizeof(trans->wb_updates[0]) * trans->nr_wb_updates);
bch2_journal_pin_add(&c->journal, trans->journal_res.seq, &wb->journal_pin,
bch2_btree_write_buffer_journal_flush);
atomic64_sub_return_release(btree_write_buffer_ref(new.idx), &wb->state.counter);
out:
preempt_enable();
return ret;
}
void bch2_fs_btree_write_buffer_exit(struct bch_fs *c)
{
struct btree_write_buffer *wb = &c->btree_write_buffer;
BUG_ON(wb->state.nr && !bch2_journal_error(&c->journal));
kvfree(wb->keys[1]);
kvfree(wb->keys[0]);
}
int bch2_fs_btree_write_buffer_init(struct bch_fs *c)
{
struct btree_write_buffer *wb = &c->btree_write_buffer;
mutex_init(&wb->flush_lock);
wb->size = c->opts.btree_write_buffer_size;
wb->keys[0] = kvmalloc_array(wb->size, sizeof(*wb->keys[0]), GFP_KERNEL);
wb->keys[1] = kvmalloc_array(wb->size, sizeof(*wb->keys[1]), GFP_KERNEL);
if (!wb->keys[0] || !wb->keys[1])
return -BCH_ERR_ENOMEM_fs_btree_write_buffer_init;
return 0;
}
|