1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
|
// SPDX-License-Identifier: GPL-2.0
/*
* This is a maximally equidistributed combined Tausworthe generator
* based on code from GNU Scientific Library 1.5 (30 Jun 2004)
*
* lfsr113 version:
*
* x_n = (s1_n ^ s2_n ^ s3_n ^ s4_n)
*
* s1_{n+1} = (((s1_n & 4294967294) << 18) ^ (((s1_n << 6) ^ s1_n) >> 13))
* s2_{n+1} = (((s2_n & 4294967288) << 2) ^ (((s2_n << 2) ^ s2_n) >> 27))
* s3_{n+1} = (((s3_n & 4294967280) << 7) ^ (((s3_n << 13) ^ s3_n) >> 21))
* s4_{n+1} = (((s4_n & 4294967168) << 13) ^ (((s4_n << 3) ^ s4_n) >> 12))
*
* The period of this generator is about 2^113 (see erratum paper).
*
* From: P. L'Ecuyer, "Maximally Equidistributed Combined Tausworthe
* Generators", Mathematics of Computation, 65, 213 (1996), 203--213:
* http://www.iro.umontreal.ca/~lecuyer/myftp/papers/tausme.ps
* ftp://ftp.iro.umontreal.ca/pub/simulation/lecuyer/papers/tausme.ps
*
* There is an erratum in the paper "Tables of Maximally Equidistributed
* Combined LFSR Generators", Mathematics of Computation, 68, 225 (1999),
* 261--269: http://www.iro.umontreal.ca/~lecuyer/myftp/papers/tausme2.ps
*
* ... the k_j most significant bits of z_j must be non-zero,
* for each j. (Note: this restriction also applies to the
* computer code given in [4], but was mistakenly not mentioned
* in that paper.)
*
* This affects the seeding procedure by imposing the requirement
* s1 > 1, s2 > 7, s3 > 15, s4 > 127.
*/
#include <linux/types.h>
#include <linux/percpu.h>
#include <linux/export.h>
#include <linux/jiffies.h>
#include <linux/random.h>
#include <linux/sched.h>
#include <linux/bitops.h>
#include <linux/slab.h>
#include <asm/unaligned.h>
/**
* prandom_u32_state - seeded pseudo-random number generator.
* @state: pointer to state structure holding seeded state.
*
* This is used for pseudo-randomness with no outside seeding.
* For more random results, use get_random_u32().
*/
u32 prandom_u32_state(struct rnd_state *state)
{
#define TAUSWORTHE(s, a, b, c, d) ((s & c) << d) ^ (((s << a) ^ s) >> b)
state->s1 = TAUSWORTHE(state->s1, 6U, 13U, 4294967294U, 18U);
state->s2 = TAUSWORTHE(state->s2, 2U, 27U, 4294967288U, 2U);
state->s3 = TAUSWORTHE(state->s3, 13U, 21U, 4294967280U, 7U);
state->s4 = TAUSWORTHE(state->s4, 3U, 12U, 4294967168U, 13U);
return (state->s1 ^ state->s2 ^ state->s3 ^ state->s4);
}
EXPORT_SYMBOL(prandom_u32_state);
/**
* prandom_bytes_state - get the requested number of pseudo-random bytes
*
* @state: pointer to state structure holding seeded state.
* @buf: where to copy the pseudo-random bytes to
* @bytes: the requested number of bytes
*
* This is used for pseudo-randomness with no outside seeding.
* For more random results, use get_random_bytes().
*/
void prandom_bytes_state(struct rnd_state *state, void *buf, size_t bytes)
{
u8 *ptr = buf;
while (bytes >= sizeof(u32)) {
put_unaligned(prandom_u32_state(state), (u32 *) ptr);
ptr += sizeof(u32);
bytes -= sizeof(u32);
}
if (bytes > 0) {
u32 rem = prandom_u32_state(state);
do {
*ptr++ = (u8) rem;
bytes--;
rem >>= BITS_PER_BYTE;
} while (bytes > 0);
}
}
EXPORT_SYMBOL(prandom_bytes_state);
static void prandom_warmup(struct rnd_state *state)
{
/* Calling RNG ten times to satisfy recurrence condition */
prandom_u32_state(state);
prandom_u32_state(state);
prandom_u32_state(state);
prandom_u32_state(state);
prandom_u32_state(state);
prandom_u32_state(state);
prandom_u32_state(state);
prandom_u32_state(state);
prandom_u32_state(state);
prandom_u32_state(state);
}
void prandom_seed_full_state(struct rnd_state __percpu *pcpu_state)
{
int i;
for_each_possible_cpu(i) {
struct rnd_state *state = per_cpu_ptr(pcpu_state, i);
u32 seeds[4];
get_random_bytes(&seeds, sizeof(seeds));
state->s1 = __seed(seeds[0], 2U);
state->s2 = __seed(seeds[1], 8U);
state->s3 = __seed(seeds[2], 16U);
state->s4 = __seed(seeds[3], 128U);
prandom_warmup(state);
}
}
EXPORT_SYMBOL(prandom_seed_full_state);
#ifdef CONFIG_RANDOM32_SELFTEST
static struct prandom_test1 {
u32 seed;
u32 result;
} test1[] = {
{ 1U, 3484351685U },
{ 2U, 2623130059U },
{ 3U, 3125133893U },
{ 4U, 984847254U },
};
static struct prandom_test2 {
u32 seed;
u32 iteration;
u32 result;
} test2[] = {
/* Test cases against taus113 from GSL library. */
{ 931557656U, 959U, 2975593782U },
{ 1339693295U, 876U, 3887776532U },
{ 1545556285U, 961U, 1615538833U },
{ 601730776U, 723U, 1776162651U },
{ 1027516047U, 687U, 511983079U },
{ 416526298U, 700U, 916156552U },
{ 1395522032U, 652U, 2222063676U },
{ 366221443U, 617U, 2992857763U },
{ 1539836965U, 714U, 3783265725U },
{ 556206671U, 994U, 799626459U },
{ 684907218U, 799U, 367789491U },
{ 2121230701U, 931U, 2115467001U },
{ 1668516451U, 644U, 3620590685U },
{ 768046066U, 883U, 2034077390U },
{ 1989159136U, 833U, 1195767305U },
{ 536585145U, 996U, 3577259204U },
{ 1008129373U, 642U, 1478080776U },
{ 1740775604U, 939U, 1264980372U },
{ 1967883163U, 508U, 10734624U },
{ 1923019697U, 730U, 3821419629U },
{ 442079932U, 560U, 3440032343U },
{ 1961302714U, 845U, 841962572U },
{ 2030205964U, 962U, 1325144227U },
{ 1160407529U, 507U, 240940858U },
{ 635482502U, 779U, 4200489746U },
{ 1252788931U, 699U, 867195434U },
{ 1961817131U, 719U, 668237657U },
{ 1071468216U, 983U, 917876630U },
{ 1281848367U, 932U, 1003100039U },
{ 582537119U, 780U, 1127273778U },
{ 1973672777U, 853U, 1071368872U },
{ 1896756996U, 762U, 1127851055U },
{ 847917054U, 500U, 1717499075U },
{ 1240520510U, 951U, 2849576657U },
{ 1685071682U, 567U, 1961810396U },
{ 1516232129U, 557U, 3173877U },
{ 1208118903U, 612U, 1613145022U },
{ 1817269927U, 693U, 4279122573U },
{ 1510091701U, 717U, 638191229U },
{ 365916850U, 807U, 600424314U },
{ 399324359U, 702U, 1803598116U },
{ 1318480274U, 779U, 2074237022U },
{ 697758115U, 840U, 1483639402U },
{ 1696507773U, 840U, 577415447U },
{ 2081979121U, 981U, 3041486449U },
{ 955646687U, 742U, 3846494357U },
{ 1250683506U, 749U, 836419859U },
{ 595003102U, 534U, 366794109U },
{ 47485338U, 558U, 3521120834U },
{ 619433479U, 610U, 3991783875U },
{ 704096520U, 518U, 4139493852U },
{ 1712224984U, 606U, 2393312003U },
{ 1318233152U, 922U, 3880361134U },
{ 855572992U, 761U, 1472974787U },
{ 64721421U, 703U, 683860550U },
{ 678931758U, 840U, 380616043U },
{ 692711973U, 778U, 1382361947U },
{ 677703619U, 530U, 2826914161U },
{ 92393223U, 586U, 1522128471U },
{ 1222592920U, 743U, 3466726667U },
{ 358288986U, 695U, 1091956998U },
{ 1935056945U, 958U, 514864477U },
{ 735675993U, 990U, 1294239989U },
{ 1560089402U, 897U, 2238551287U },
{ 70616361U, 829U, 22483098U },
{ 368234700U, 731U, 2913875084U },
{ 20221190U, 879U, 1564152970U },
{ 539444654U, 682U, 1835141259U },
{ 1314987297U, 840U, 1801114136U },
{ 2019295544U, 645U, 3286438930U },
{ 469023838U, 716U, 1637918202U },
{ 1843754496U, 653U, 2562092152U },
{ 400672036U, 809U, 4264212785U },
{ 404722249U, 965U, 2704116999U },
{ 600702209U, 758U, 584979986U },
{ 519953954U, 667U, 2574436237U },
{ 1658071126U, 694U, 2214569490U },
{ 420480037U, 749U, 3430010866U },
{ 690103647U, 969U, 3700758083U },
{ 1029424799U, 937U, 3787746841U },
{ 2012608669U, 506U, 3362628973U },
{ 1535432887U, 998U, 42610943U },
{ 1330635533U, 857U, 3040806504U },
{ 1223800550U, 539U, 3954229517U },
{ 1322411537U, 680U, 3223250324U },
{ 1877847898U, 945U, 2915147143U },
{ 1646356099U, 874U, 965988280U },
{ 805687536U, 744U, 4032277920U },
{ 1948093210U, 633U, 1346597684U },
{ 392609744U, 783U, 1636083295U },
{ 690241304U, 770U, 1201031298U },
{ 1360302965U, 696U, 1665394461U },
{ 1220090946U, 780U, 1316922812U },
{ 447092251U, 500U, 3438743375U },
{ 1613868791U, 592U, 828546883U },
{ 523430951U, 548U, 2552392304U },
{ 726692899U, 810U, 1656872867U },
{ 1364340021U, 836U, 3710513486U },
{ 1986257729U, 931U, 935013962U },
{ 407983964U, 921U, 728767059U },
};
static void prandom_state_selftest_seed(struct rnd_state *state, u32 seed)
{
#define LCG(x) ((x) * 69069U) /* super-duper LCG */
state->s1 = __seed(LCG(seed), 2U);
state->s2 = __seed(LCG(state->s1), 8U);
state->s3 = __seed(LCG(state->s2), 16U);
state->s4 = __seed(LCG(state->s3), 128U);
}
static int __init prandom_state_selftest(void)
{
int i, j, errors = 0, runs = 0;
bool error = false;
for (i = 0; i < ARRAY_SIZE(test1); i++) {
struct rnd_state state;
prandom_state_selftest_seed(&state, test1[i].seed);
prandom_warmup(&state);
if (test1[i].result != prandom_u32_state(&state))
error = true;
}
if (error)
pr_warn("prandom: seed boundary self test failed\n");
else
pr_info("prandom: seed boundary self test passed\n");
for (i = 0; i < ARRAY_SIZE(test2); i++) {
struct rnd_state state;
prandom_state_selftest_seed(&state, test2[i].seed);
prandom_warmup(&state);
for (j = 0; j < test2[i].iteration - 1; j++)
prandom_u32_state(&state);
if (test2[i].result != prandom_u32_state(&state))
errors++;
runs++;
cond_resched();
}
if (errors)
pr_warn("prandom: %d/%d self tests failed\n", errors, runs);
else
pr_info("prandom: %d self tests passed\n", runs);
return 0;
}
core_initcall(prandom_state_selftest);
#endif
|