summaryrefslogtreecommitdiffstats
path: root/security/selinux/ss/conditional.c
blob: f12476855b27de9ffc6d1ad351b55c64dddacb21 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
/* SPDX-License-Identifier: GPL-2.0-only */
/* Authors: Karl MacMillan <kmacmillan@tresys.com>
 *	    Frank Mayer <mayerf@tresys.com>
 *          Copyright (C) 2003 - 2004 Tresys Technology, LLC
 */

#include <linux/kernel.h>
#include <linux/errno.h>
#include <linux/string.h>
#include <linux/spinlock.h>
#include <linux/slab.h>

#include "security.h"
#include "conditional.h"
#include "services.h"

/*
 * cond_evaluate_expr evaluates a conditional expr
 * in reverse polish notation. It returns true (1), false (0),
 * or undefined (-1). Undefined occurs when the expression
 * exceeds the stack depth of COND_EXPR_MAXDEPTH.
 */
static int cond_evaluate_expr(struct policydb *p, struct cond_expr *expr)
{
	u32 i;
	int s[COND_EXPR_MAXDEPTH];
	int sp = -1;

	if (expr->len == 0)
		return -1;

	for (i = 0; i < expr->len; i++) {
		struct cond_expr_node *node = &expr->nodes[i];

		switch (node->expr_type) {
		case COND_BOOL:
			if (sp == (COND_EXPR_MAXDEPTH - 1))
				return -1;
			sp++;
			s[sp] = p->bool_val_to_struct[node->boolean - 1]->state;
			break;
		case COND_NOT:
			if (sp < 0)
				return -1;
			s[sp] = !s[sp];
			break;
		case COND_OR:
			if (sp < 1)
				return -1;
			sp--;
			s[sp] |= s[sp + 1];
			break;
		case COND_AND:
			if (sp < 1)
				return -1;
			sp--;
			s[sp] &= s[sp + 1];
			break;
		case COND_XOR:
			if (sp < 1)
				return -1;
			sp--;
			s[sp] ^= s[sp + 1];
			break;
		case COND_EQ:
			if (sp < 1)
				return -1;
			sp--;
			s[sp] = (s[sp] == s[sp + 1]);
			break;
		case COND_NEQ:
			if (sp < 1)
				return -1;
			sp--;
			s[sp] = (s[sp] != s[sp + 1]);
			break;
		default:
			return -1;
		}
	}
	return s[0];
}

/*
 * evaluate_cond_node evaluates the conditional stored in
 * a struct cond_node and if the result is different than the
 * current state of the node it sets the rules in the true/false
 * list appropriately. If the result of the expression is undefined
 * all of the rules are disabled for safety.
 */
static void evaluate_cond_node(struct policydb *p, struct cond_node *node)
{
	struct avtab_node *avnode;
	int new_state;
	u32 i;

	new_state = cond_evaluate_expr(p, &node->expr);
	if (new_state != node->cur_state) {
		node->cur_state = new_state;
		if (new_state == -1)
			pr_err("SELinux: expression result was undefined - disabling all rules.\n");
		/* turn the rules on or off */
		for (i = 0; i < node->true_list.len; i++) {
			avnode = node->true_list.nodes[i];
			if (new_state <= 0)
				avnode->key.specified &= ~AVTAB_ENABLED;
			else
				avnode->key.specified |= AVTAB_ENABLED;
		}

		for (i = 0; i < node->false_list.len; i++) {
			avnode = node->false_list.nodes[i];
			/* -1 or 1 */
			if (new_state)
				avnode->key.specified &= ~AVTAB_ENABLED;
			else
				avnode->key.specified |= AVTAB_ENABLED;
		}
	}
}

void evaluate_cond_nodes(struct policydb *p)
{
	u32 i;

	for (i = 0; i < p->cond_list_len; i++)
		evaluate_cond_node(p, &p->cond_list[i]);
}

void cond_policydb_init(struct policydb *p)
{
	p->bool_val_to_struct = NULL;
	p->cond_list = NULL;
	p->cond_list_len = 0;

	avtab_init(&p->te_cond_avtab);
}

static void cond_node_destroy(struct cond_node *node)
{
	kfree(node->expr.nodes);
	/* the avtab_ptr_t nodes are destroyed by the avtab */
	kfree(node->true_list.nodes);
	kfree(node->false_list.nodes);
}

static void cond_list_destroy(struct policydb *p)
{
	u32 i;

	for (i = 0; i < p->cond_list_len; i++)
		cond_node_destroy(&p->cond_list[i]);
	kfree(p->cond_list);
	p->cond_list = NULL;
	p->cond_list_len = 0;
}

void cond_policydb_destroy(struct policydb *p)
{
	kfree(p->bool_val_to_struct);
	avtab_destroy(&p->te_cond_avtab);
	cond_list_destroy(p);
}

int cond_init_bool_indexes(struct policydb *p)
{
	kfree(p->bool_val_to_struct);
	p->bool_val_to_struct = kmalloc_array(
		p->p_bools.nprim, sizeof(*p->bool_val_to_struct), GFP_KERNEL);
	if (!p->bool_val_to_struct)
		return -ENOMEM;
	return 0;
}

int cond_destroy_bool(void *key, void *datum, void *p)
{
	kfree(key);
	kfree(datum);
	return 0;
}

int cond_index_bool(void *key, void *datum, void *datap)
{
	struct policydb *p;
	struct cond_bool_datum *booldatum;

	booldatum = datum;
	p = datap;

	if (!booldatum->value || booldatum->value > p->p_bools.nprim)
		return -EINVAL;

	p->sym_val_to_name[SYM_BOOLS][booldatum->value - 1] = key;
	p->bool_val_to_struct[booldatum->value - 1] = booldatum;

	return 0;
}

static int bool_isvalid(struct cond_bool_datum *b)
{
	if (!(b->state == 0 || b->state == 1))
		return 0;
	return 1;
}

int cond_read_bool(struct policydb *p, struct symtab *s, void *fp)
{
	char *key = NULL;
	struct cond_bool_datum *booldatum;
	__le32 buf[3];
	u32 len;
	int rc;

	booldatum = kzalloc(sizeof(*booldatum), GFP_KERNEL);
	if (!booldatum)
		return -ENOMEM;

	rc = next_entry(buf, fp, sizeof(buf));
	if (rc)
		goto err;

	booldatum->value = le32_to_cpu(buf[0]);
	booldatum->state = le32_to_cpu(buf[1]);

	rc = -EINVAL;
	if (!bool_isvalid(booldatum))
		goto err;

	len = le32_to_cpu(buf[2]);
	if (((len == 0) || (len == (u32)-1)))
		goto err;

	rc = -ENOMEM;
	key = kmalloc(len + 1, GFP_KERNEL);
	if (!key)
		goto err;
	rc = next_entry(key, fp, len);
	if (rc)
		goto err;
	key[len] = '\0';
	rc = symtab_insert(s, key, booldatum);
	if (rc)
		goto err;

	return 0;
err:
	cond_destroy_bool(key, booldatum, NULL);
	return rc;
}

struct cond_insertf_data {
	struct policydb *p;
	struct avtab_node **dst;
	struct cond_av_list *other;
};

static int cond_insertf(struct avtab *a, const struct avtab_key *k,
			const struct avtab_datum *d, void *ptr)
{
	struct cond_insertf_data *data = ptr;
	struct policydb *p = data->p;
	struct cond_av_list *other = data->other;
	struct avtab_node *node_ptr;
	u32 i;
	bool found;

	/*
	 * For type rules we have to make certain there aren't any
	 * conflicting rules by searching the te_avtab and the
	 * cond_te_avtab.
	 */
	if (k->specified & AVTAB_TYPE) {
		if (avtab_search_node(&p->te_avtab, k)) {
			pr_err("SELinux: type rule already exists outside of a conditional.\n");
			return -EINVAL;
		}
		/*
		 * If we are reading the false list other will be a pointer to
		 * the true list. We can have duplicate entries if there is only
		 * 1 other entry and it is in our true list.
		 *
		 * If we are reading the true list (other == NULL) there shouldn't
		 * be any other entries.
		 */
		if (other) {
			node_ptr = avtab_search_node(&p->te_cond_avtab, k);
			if (node_ptr) {
				if (avtab_search_node_next(node_ptr,
							   k->specified)) {
					pr_err("SELinux: too many conflicting type rules.\n");
					return -EINVAL;
				}
				found = false;
				for (i = 0; i < other->len; i++) {
					if (other->nodes[i] == node_ptr) {
						found = true;
						break;
					}
				}
				if (!found) {
					pr_err("SELinux: conflicting type rules.\n");
					return -EINVAL;
				}
			}
		} else {
			if (avtab_search_node(&p->te_cond_avtab, k)) {
				pr_err("SELinux: conflicting type rules when adding type rule for true.\n");
				return -EINVAL;
			}
		}
	}

	node_ptr = avtab_insert_nonunique(&p->te_cond_avtab, k, d);
	if (!node_ptr) {
		pr_err("SELinux: could not insert rule.\n");
		return -ENOMEM;
	}

	*data->dst = node_ptr;
	return 0;
}

static int cond_read_av_list(struct policydb *p, void *fp,
			     struct cond_av_list *list,
			     struct cond_av_list *other)
{
	int rc;
	__le32 buf[1];
	u32 i, len;
	struct cond_insertf_data data;

	rc = next_entry(buf, fp, sizeof(u32));
	if (rc)
		return rc;

	len = le32_to_cpu(buf[0]);
	if (len == 0)
		return 0;

	list->nodes = kcalloc(len, sizeof(*list->nodes), GFP_KERNEL);
	if (!list->nodes)
		return -ENOMEM;

	data.p = p;
	data.other = other;
	for (i = 0; i < len; i++) {
		data.dst = &list->nodes[i];
		rc = avtab_read_item(&p->te_cond_avtab, fp, p, cond_insertf,
				     &data);
		if (rc) {
			kfree(list->nodes);
			list->nodes = NULL;
			return rc;
		}
	}

	list->len = len;
	return 0;
}

static int expr_node_isvalid(struct policydb *p, struct cond_expr_node *expr)
{
	if (expr->expr_type <= 0 || expr->expr_type > COND_LAST) {
		pr_err("SELinux: conditional expressions uses unknown operator.\n");
		return 0;
	}

	if (expr->boolean > p->p_bools.nprim) {
		pr_err("SELinux: conditional expressions uses unknown bool.\n");
		return 0;
	}
	return 1;
}

static int cond_read_node(struct policydb *p, struct cond_node *node, void *fp)
{
	__le32 buf[2];
	u32 i, len;
	int rc;

	rc = next_entry(buf, fp, sizeof(u32) * 2);
	if (rc)
		return rc;

	node->cur_state = le32_to_cpu(buf[0]);

	/* expr */
	len = le32_to_cpu(buf[1]);
	node->expr.nodes = kcalloc(len, sizeof(*node->expr.nodes), GFP_KERNEL);
	if (!node->expr.nodes)
		return -ENOMEM;

	node->expr.len = len;

	for (i = 0; i < len; i++) {
		struct cond_expr_node *expr = &node->expr.nodes[i];

		rc = next_entry(buf, fp, sizeof(u32) * 2);
		if (rc)
			return rc;

		expr->expr_type = le32_to_cpu(buf[0]);
		expr->boolean = le32_to_cpu(buf[1]);

		if (!expr_node_isvalid(p, expr))
			return -EINVAL;
	}

	rc = cond_read_av_list(p, fp, &node->true_list, NULL);
	if (rc)
		return rc;
	return cond_read_av_list(p, fp, &node->false_list, &node->true_list);
}

int cond_read_list(struct policydb *p, void *fp)
{
	__le32 buf[1];
	u32 i, len;
	int rc;

	rc = next_entry(buf, fp, sizeof(buf));
	if (rc)
		return rc;

	len = le32_to_cpu(buf[0]);

	p->cond_list = kcalloc(len, sizeof(*p->cond_list), GFP_KERNEL);
	if (!p->cond_list)
		return -ENOMEM;

	rc = avtab_alloc(&(p->te_cond_avtab), p->te_avtab.nel);
	if (rc)
		goto err;

	p->cond_list_len = len;

	for (i = 0; i < len; i++) {
		rc = cond_read_node(p, &p->cond_list[i], fp);
		if (rc)
			goto err;
	}
	return 0;
err:
	cond_list_destroy(p);
	return rc;
}

int cond_write_bool(void *vkey, void *datum, void *ptr)
{
	char *key = vkey;
	struct cond_bool_datum *booldatum = datum;
	struct policy_data *pd = ptr;
	void *fp = pd->fp;
	__le32 buf[3];
	u32 len;
	int rc;

	len = strlen(key);
	buf[0] = cpu_to_le32(booldatum->value);
	buf[1] = cpu_to_le32(booldatum->state);
	buf[2] = cpu_to_le32(len);
	rc = put_entry(buf, sizeof(u32), 3, fp);
	if (rc)
		return rc;
	rc = put_entry(key, 1, len, fp);
	if (rc)
		return rc;
	return 0;
}

/*
 * cond_write_cond_av_list doesn't write out the av_list nodes.
 * Instead it writes out the key/value pairs from the avtab. This
 * is necessary because there is no way to uniquely identifying rules
 * in the avtab so it is not possible to associate individual rules
 * in the avtab with a conditional without saving them as part of
 * the conditional. This means that the avtab with the conditional
 * rules will not be saved but will be rebuilt on policy load.
 */
static int cond_write_av_list(struct policydb *p, struct cond_av_list *list,
			      struct policy_file *fp)
{
	__le32 buf[1];
	u32 i;
	int rc;

	buf[0] = cpu_to_le32(list->len);
	rc = put_entry(buf, sizeof(u32), 1, fp);
	if (rc)
		return rc;

	for (i = 0; i < list->len; i++) {
		rc = avtab_write_item(p, list->nodes[i], fp);
		if (rc)
			return rc;
	}

	return 0;
}

static int cond_write_node(struct policydb *p, struct cond_node *node,
			   struct policy_file *fp)
{
	__le32 buf[2];
	int rc;
	u32 i;

	buf[0] = cpu_to_le32(node->cur_state);
	rc = put_entry(buf, sizeof(u32), 1, fp);
	if (rc)
		return rc;

	buf[0] = cpu_to_le32(node->expr.len);
	rc = put_entry(buf, sizeof(u32), 1, fp);
	if (rc)
		return rc;

	for (i = 0; i < node->expr.len; i++) {
		buf[0] = cpu_to_le32(node->expr.nodes[i].expr_type);
		buf[1] = cpu_to_le32(node->expr.nodes[i].boolean);
		rc = put_entry(buf, sizeof(u32), 2, fp);
		if (rc)
			return rc;
	}

	rc = cond_write_av_list(p, &node->true_list, fp);
	if (rc)
		return rc;
	rc = cond_write_av_list(p, &node->false_list, fp);
	if (rc)
		return rc;

	return 0;
}

int cond_write_list(struct policydb *p, void *fp)
{
	u32 i;
	__le32 buf[1];
	int rc;

	buf[0] = cpu_to_le32(p->cond_list_len);
	rc = put_entry(buf, sizeof(u32), 1, fp);
	if (rc)
		return rc;

	for (i = 0; i < p->cond_list_len; i++) {
		rc = cond_write_node(p, &p->cond_list[i], fp);
		if (rc)
			return rc;
	}

	return 0;
}

void cond_compute_xperms(struct avtab *ctab, struct avtab_key *key,
			 struct extended_perms_decision *xpermd)
{
	struct avtab_node *node;

	if (!ctab || !key || !xpermd)
		return;

	for (node = avtab_search_node(ctab, key); node;
	     node = avtab_search_node_next(node, key->specified)) {
		if (node->key.specified & AVTAB_ENABLED)
			services_compute_xperms_decision(xpermd, node);
	}
}
/* Determine whether additional permissions are granted by the conditional
 * av table, and if so, add them to the result
 */
void cond_compute_av(struct avtab *ctab, struct avtab_key *key,
		     struct av_decision *avd, struct extended_perms *xperms)
{
	struct avtab_node *node;

	if (!ctab || !key || !avd)
		return;

	for (node = avtab_search_node(ctab, key); node;
	     node = avtab_search_node_next(node, key->specified)) {
		if ((u16)(AVTAB_ALLOWED | AVTAB_ENABLED) ==
		    (node->key.specified & (AVTAB_ALLOWED | AVTAB_ENABLED)))
			avd->allowed |= node->datum.u.data;
		if ((u16)(AVTAB_AUDITDENY | AVTAB_ENABLED) ==
		    (node->key.specified & (AVTAB_AUDITDENY | AVTAB_ENABLED)))
			/* Since a '0' in an auditdeny mask represents a
			 * permission we do NOT want to audit (dontaudit), we use
			 * the '&' operand to ensure that all '0's in the mask
			 * are retained (much unlike the allow and auditallow cases).
			 */
			avd->auditdeny &= node->datum.u.data;
		if ((u16)(AVTAB_AUDITALLOW | AVTAB_ENABLED) ==
		    (node->key.specified & (AVTAB_AUDITALLOW | AVTAB_ENABLED)))
			avd->auditallow |= node->datum.u.data;
		if (xperms && (node->key.specified & AVTAB_ENABLED) &&
		    (node->key.specified & AVTAB_XPERMS))
			services_compute_xperms_drivers(xperms, node);
	}
}

static int cond_dup_av_list(struct cond_av_list *new, struct cond_av_list *orig,
			    struct avtab *avtab)
{
	u32 i;

	memset(new, 0, sizeof(*new));

	new->nodes = kcalloc(orig->len, sizeof(*new->nodes), GFP_KERNEL);
	if (!new->nodes)
		return -ENOMEM;

	for (i = 0; i < orig->len; i++) {
		new->nodes[i] = avtab_insert_nonunique(
			avtab, &orig->nodes[i]->key, &orig->nodes[i]->datum);
		if (!new->nodes[i])
			return -ENOMEM;
		new->len++;
	}

	return 0;
}

static int duplicate_policydb_cond_list(struct policydb *newp,
					struct policydb *origp)
{
	int rc;
	u32 i;

	rc = avtab_alloc_dup(&newp->te_cond_avtab, &origp->te_cond_avtab);
	if (rc)
		return rc;

	newp->cond_list_len = 0;
	newp->cond_list = kcalloc(origp->cond_list_len,
				  sizeof(*newp->cond_list), GFP_KERNEL);
	if (!newp->cond_list)
		goto error;

	for (i = 0; i < origp->cond_list_len; i++) {
		struct cond_node *newn = &newp->cond_list[i];
		struct cond_node *orign = &origp->cond_list[i];

		newp->cond_list_len++;

		newn->cur_state = orign->cur_state;
		newn->expr.nodes =
			kmemdup(orign->expr.nodes,
				orign->expr.len * sizeof(*orign->expr.nodes),
				GFP_KERNEL);
		if (!newn->expr.nodes)
			goto error;

		newn->expr.len = orign->expr.len;

		rc = cond_dup_av_list(&newn->true_list, &orign->true_list,
				      &newp->te_cond_avtab);
		if (rc)
			goto error;

		rc = cond_dup_av_list(&newn->false_list, &orign->false_list,
				      &newp->te_cond_avtab);
		if (rc)
			goto error;
	}

	return 0;

error:
	avtab_destroy(&newp->te_cond_avtab);
	cond_list_destroy(newp);
	return -ENOMEM;
}

static int cond_bools_destroy(void *key, void *datum, void *args)
{
	/* key was not copied so no need to free here */
	kfree(datum);
	return 0;
}

static int cond_bools_copy(struct hashtab_node *new, struct hashtab_node *orig,
			   void *args)
{
	struct cond_bool_datum *datum;

	datum = kmemdup(orig->datum, sizeof(struct cond_bool_datum),
			GFP_KERNEL);
	if (!datum)
		return -ENOMEM;

	new->key = orig->key; /* No need to copy, never modified */
	new->datum = datum;
	return 0;
}

static int cond_bools_index(void *key, void *datum, void *args)
{
	struct cond_bool_datum *booldatum, **cond_bool_array;

	booldatum = datum;
	cond_bool_array = args;
	cond_bool_array[booldatum->value - 1] = booldatum;

	return 0;
}

static int duplicate_policydb_bools(struct policydb *newdb,
				    struct policydb *orig)
{
	struct cond_bool_datum **cond_bool_array;
	int rc;

	cond_bool_array = kmalloc_array(orig->p_bools.nprim,
					sizeof(*orig->bool_val_to_struct),
					GFP_KERNEL);
	if (!cond_bool_array)
		return -ENOMEM;

	rc = hashtab_duplicate(&newdb->p_bools.table, &orig->p_bools.table,
			       cond_bools_copy, cond_bools_destroy, NULL);
	if (rc) {
		kfree(cond_bool_array);
		return -ENOMEM;
	}

	hashtab_map(&newdb->p_bools.table, cond_bools_index, cond_bool_array);
	newdb->bool_val_to_struct = cond_bool_array;

	newdb->p_bools.nprim = orig->p_bools.nprim;

	return 0;
}

void cond_policydb_destroy_dup(struct policydb *p)
{
	hashtab_map(&p->p_bools.table, cond_bools_destroy, NULL);
	hashtab_destroy(&p->p_bools.table);
	cond_policydb_destroy(p);
}

int cond_policydb_dup(struct policydb *new, struct policydb *orig)
{
	cond_policydb_init(new);

	if (duplicate_policydb_bools(new, orig))
		return -ENOMEM;

	if (duplicate_policydb_cond_list(new, orig)) {
		cond_policydb_destroy_dup(new);
		return -ENOMEM;
	}

	return 0;
}