1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
|
/* SPDX-License-Identifier: GPL-2.0 */
/*
* Convert sample address to data type using DWARF debug info.
*
* Written by Namhyung Kim <namhyung@kernel.org>
*/
#include <stdio.h>
#include <stdlib.h>
#include <inttypes.h>
#include "annotate.h"
#include "annotate-data.h"
#include "debuginfo.h"
#include "debug.h"
#include "dso.h"
#include "dwarf-regs.h"
#include "evsel.h"
#include "evlist.h"
#include "map.h"
#include "map_symbol.h"
#include "strbuf.h"
#include "symbol.h"
#include "symbol_conf.h"
/*
* Compare type name and size to maintain them in a tree.
* I'm not sure if DWARF would have information of a single type in many
* different places (compilation units). If not, it could compare the
* offset of the type entry in the .debug_info section.
*/
static int data_type_cmp(const void *_key, const struct rb_node *node)
{
const struct annotated_data_type *key = _key;
struct annotated_data_type *type;
type = rb_entry(node, struct annotated_data_type, node);
if (key->self.size != type->self.size)
return key->self.size - type->self.size;
return strcmp(key->self.type_name, type->self.type_name);
}
static bool data_type_less(struct rb_node *node_a, const struct rb_node *node_b)
{
struct annotated_data_type *a, *b;
a = rb_entry(node_a, struct annotated_data_type, node);
b = rb_entry(node_b, struct annotated_data_type, node);
if (a->self.size != b->self.size)
return a->self.size < b->self.size;
return strcmp(a->self.type_name, b->self.type_name) < 0;
}
/* Recursively add new members for struct/union */
static int __add_member_cb(Dwarf_Die *die, void *arg)
{
struct annotated_member *parent = arg;
struct annotated_member *member;
Dwarf_Die member_type, die_mem;
Dwarf_Word size, loc;
Dwarf_Attribute attr;
struct strbuf sb;
int tag;
if (dwarf_tag(die) != DW_TAG_member)
return DIE_FIND_CB_SIBLING;
member = zalloc(sizeof(*member));
if (member == NULL)
return DIE_FIND_CB_END;
strbuf_init(&sb, 32);
die_get_typename(die, &sb);
die_get_real_type(die, &member_type);
if (dwarf_aggregate_size(&member_type, &size) < 0)
size = 0;
if (!dwarf_attr_integrate(die, DW_AT_data_member_location, &attr))
loc = 0;
else
dwarf_formudata(&attr, &loc);
member->type_name = strbuf_detach(&sb, NULL);
/* member->var_name can be NULL */
if (dwarf_diename(die))
member->var_name = strdup(dwarf_diename(die));
member->size = size;
member->offset = loc + parent->offset;
INIT_LIST_HEAD(&member->children);
list_add_tail(&member->node, &parent->children);
tag = dwarf_tag(&member_type);
switch (tag) {
case DW_TAG_structure_type:
case DW_TAG_union_type:
die_find_child(&member_type, __add_member_cb, member, &die_mem);
break;
default:
break;
}
return DIE_FIND_CB_SIBLING;
}
static void add_member_types(struct annotated_data_type *parent, Dwarf_Die *type)
{
Dwarf_Die die_mem;
die_find_child(type, __add_member_cb, &parent->self, &die_mem);
}
static void delete_members(struct annotated_member *member)
{
struct annotated_member *child, *tmp;
list_for_each_entry_safe(child, tmp, &member->children, node) {
list_del(&child->node);
delete_members(child);
free(child->type_name);
free(child->var_name);
free(child);
}
}
static struct annotated_data_type *dso__findnew_data_type(struct dso *dso,
Dwarf_Die *type_die)
{
struct annotated_data_type *result = NULL;
struct annotated_data_type key;
struct rb_node *node;
struct strbuf sb;
char *type_name;
Dwarf_Word size;
strbuf_init(&sb, 32);
if (die_get_typename_from_type(type_die, &sb) < 0)
strbuf_add(&sb, "(unknown type)", 14);
type_name = strbuf_detach(&sb, NULL);
dwarf_aggregate_size(type_die, &size);
/* Check existing nodes in dso->data_types tree */
key.self.type_name = type_name;
key.self.size = size;
node = rb_find(&key, &dso->data_types, data_type_cmp);
if (node) {
result = rb_entry(node, struct annotated_data_type, node);
free(type_name);
return result;
}
/* If not, add a new one */
result = zalloc(sizeof(*result));
if (result == NULL) {
free(type_name);
return NULL;
}
result->self.type_name = type_name;
result->self.size = size;
INIT_LIST_HEAD(&result->self.children);
if (symbol_conf.annotate_data_member)
add_member_types(result, type_die);
rb_add(&result->node, &dso->data_types, data_type_less);
return result;
}
static bool find_cu_die(struct debuginfo *di, u64 pc, Dwarf_Die *cu_die)
{
Dwarf_Off off, next_off;
size_t header_size;
if (dwarf_addrdie(di->dbg, pc, cu_die) != NULL)
return cu_die;
/*
* There are some kernels don't have full aranges and contain only a few
* aranges entries. Fallback to iterate all CU entries in .debug_info
* in case it's missing.
*/
off = 0;
while (dwarf_nextcu(di->dbg, off, &next_off, &header_size,
NULL, NULL, NULL) == 0) {
if (dwarf_offdie(di->dbg, off + header_size, cu_die) &&
dwarf_haspc(cu_die, pc))
return true;
off = next_off;
}
return false;
}
/* The type info will be saved in @type_die */
static int check_variable(Dwarf_Die *var_die, Dwarf_Die *type_die, int offset,
bool is_pointer)
{
Dwarf_Word size;
/* Get the type of the variable */
if (die_get_real_type(var_die, type_die) == NULL) {
pr_debug("variable has no type\n");
ann_data_stat.no_typeinfo++;
return -1;
}
/*
* Usually it expects a pointer type for a memory access.
* Convert to a real type it points to. But global variables
* and local variables are accessed directly without a pointer.
*/
if (is_pointer) {
if ((dwarf_tag(type_die) != DW_TAG_pointer_type &&
dwarf_tag(type_die) != DW_TAG_array_type) ||
die_get_real_type(type_die, type_die) == NULL) {
pr_debug("no pointer or no type\n");
ann_data_stat.no_typeinfo++;
return -1;
}
}
/* Get the size of the actual type */
if (dwarf_aggregate_size(type_die, &size) < 0) {
pr_debug("type size is unknown\n");
ann_data_stat.invalid_size++;
return -1;
}
/* Minimal sanity check */
if ((unsigned)offset >= size) {
pr_debug("offset: %d is bigger than size: %" PRIu64 "\n", offset, size);
ann_data_stat.bad_offset++;
return -1;
}
return 0;
}
/* The result will be saved in @type_die */
static int find_data_type_die(struct debuginfo *di, u64 pc, u64 addr,
const char *var_name, struct annotated_op_loc *loc,
Dwarf_Die *type_die)
{
Dwarf_Die cu_die, var_die;
Dwarf_Die *scopes = NULL;
int reg, offset;
int ret = -1;
int i, nr_scopes;
int fbreg = -1;
bool is_fbreg = false;
int fb_offset = 0;
/* Get a compile_unit for this address */
if (!find_cu_die(di, pc, &cu_die)) {
pr_debug("cannot find CU for address %" PRIx64 "\n", pc);
ann_data_stat.no_cuinfo++;
return -1;
}
reg = loc->reg1;
offset = loc->offset;
if (reg == DWARF_REG_PC) {
if (die_find_variable_by_addr(&cu_die, pc, addr, &var_die, &offset)) {
ret = check_variable(&var_die, type_die, offset,
/*is_pointer=*/false);
loc->offset = offset;
goto out;
}
if (var_name && die_find_variable_at(&cu_die, var_name, pc,
&var_die)) {
ret = check_variable(&var_die, type_die, 0,
/*is_pointer=*/false);
/* loc->offset will be updated by the caller */
goto out;
}
}
/* Get a list of nested scopes - i.e. (inlined) functions and blocks. */
nr_scopes = die_get_scopes(&cu_die, pc, &scopes);
if (reg != DWARF_REG_PC && dwarf_hasattr(&scopes[0], DW_AT_frame_base)) {
Dwarf_Attribute attr;
Dwarf_Block block;
/* Check if the 'reg' is assigned as frame base register */
if (dwarf_attr(&scopes[0], DW_AT_frame_base, &attr) != NULL &&
dwarf_formblock(&attr, &block) == 0 && block.length == 1) {
switch (*block.data) {
case DW_OP_reg0 ... DW_OP_reg31:
fbreg = *block.data - DW_OP_reg0;
break;
case DW_OP_call_frame_cfa:
if (die_get_cfa(di->dbg, pc, &fbreg,
&fb_offset) < 0)
fbreg = -1;
break;
default:
break;
}
}
}
retry:
is_fbreg = (reg == fbreg);
if (is_fbreg)
offset = loc->offset - fb_offset;
/* Search from the inner-most scope to the outer */
for (i = nr_scopes - 1; i >= 0; i--) {
if (reg == DWARF_REG_PC) {
if (!die_find_variable_by_addr(&scopes[i], pc, addr,
&var_die, &offset))
continue;
} else {
/* Look up variables/parameters in this scope */
if (!die_find_variable_by_reg(&scopes[i], pc, reg,
&offset, is_fbreg, &var_die))
continue;
}
/* Found a variable, see if it's correct */
ret = check_variable(&var_die, type_die, offset,
reg != DWARF_REG_PC && !is_fbreg);
loc->offset = offset;
goto out;
}
if (loc->multi_regs && reg == loc->reg1 && loc->reg1 != loc->reg2) {
reg = loc->reg2;
goto retry;
}
if (ret < 0)
ann_data_stat.no_var++;
out:
free(scopes);
return ret;
}
/**
* find_data_type - Return a data type at the location
* @ms: map and symbol at the location
* @ip: instruction address of the memory access
* @loc: instruction operand location
* @addr: data address of the memory access
* @var_name: global variable name
*
* This functions searches the debug information of the binary to get the data
* type it accesses. The exact location is expressed by (@ip, reg, offset)
* for pointer variables or (@ip, @addr) for global variables. Note that global
* variables might update the @loc->offset after finding the start of the variable.
* If it cannot find a global variable by address, it tried to fine a declaration
* of the variable using @var_name. In that case, @loc->offset won't be updated.
*
* It return %NULL if not found.
*/
struct annotated_data_type *find_data_type(struct map_symbol *ms, u64 ip,
struct annotated_op_loc *loc, u64 addr,
const char *var_name)
{
struct annotated_data_type *result = NULL;
struct dso *dso = map__dso(ms->map);
struct debuginfo *di;
Dwarf_Die type_die;
u64 pc;
di = debuginfo__new(dso->long_name);
if (di == NULL) {
pr_debug("cannot get the debug info\n");
return NULL;
}
/*
* IP is a relative instruction address from the start of the map, as
* it can be randomized/relocated, it needs to translate to PC which is
* a file address for DWARF processing.
*/
pc = map__rip_2objdump(ms->map, ip);
if (find_data_type_die(di, pc, addr, var_name, loc, &type_die) < 0)
goto out;
result = dso__findnew_data_type(dso, &type_die);
out:
debuginfo__delete(di);
return result;
}
static int alloc_data_type_histograms(struct annotated_data_type *adt, int nr_entries)
{
int i;
size_t sz = sizeof(struct type_hist);
sz += sizeof(struct type_hist_entry) * adt->self.size;
/* Allocate a table of pointers for each event */
adt->nr_histograms = nr_entries;
adt->histograms = calloc(nr_entries, sizeof(*adt->histograms));
if (adt->histograms == NULL)
return -ENOMEM;
/*
* Each histogram is allocated for the whole size of the type.
* TODO: Probably we can move the histogram to members.
*/
for (i = 0; i < nr_entries; i++) {
adt->histograms[i] = zalloc(sz);
if (adt->histograms[i] == NULL)
goto err;
}
return 0;
err:
while (--i >= 0)
free(adt->histograms[i]);
free(adt->histograms);
return -ENOMEM;
}
static void delete_data_type_histograms(struct annotated_data_type *adt)
{
for (int i = 0; i < adt->nr_histograms; i++)
free(adt->histograms[i]);
free(adt->histograms);
}
void annotated_data_type__tree_delete(struct rb_root *root)
{
struct annotated_data_type *pos;
while (!RB_EMPTY_ROOT(root)) {
struct rb_node *node = rb_first(root);
rb_erase(node, root);
pos = rb_entry(node, struct annotated_data_type, node);
delete_members(&pos->self);
delete_data_type_histograms(pos);
free(pos->self.type_name);
free(pos);
}
}
/**
* annotated_data_type__update_samples - Update histogram
* @adt: Data type to update
* @evsel: Event to update
* @offset: Offset in the type
* @nr_samples: Number of samples at this offset
* @period: Event count at this offset
*
* This function updates type histogram at @ofs for @evsel. Samples are
* aggregated before calling this function so it can be called with more
* than one samples at a certain offset.
*/
int annotated_data_type__update_samples(struct annotated_data_type *adt,
struct evsel *evsel, int offset,
int nr_samples, u64 period)
{
struct type_hist *h;
if (adt == NULL)
return 0;
if (adt->histograms == NULL) {
int nr = evsel->evlist->core.nr_entries;
if (alloc_data_type_histograms(adt, nr) < 0)
return -1;
}
if (offset < 0 || offset >= adt->self.size)
return -1;
h = adt->histograms[evsel->core.idx];
h->nr_samples += nr_samples;
h->addr[offset].nr_samples += nr_samples;
h->period += period;
h->addr[offset].period += period;
return 0;
}
|