1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
|
/* Lzlib - Compression library for the lzip format
Copyright (C) 2009-2024 Antonio Diaz Diaz.
This library is free software. Redistribution and use in source and
binary forms, with or without modification, are permitted provided
that the following conditions are met:
1. Redistributions of source code must retain the above copyright
notice, this list of conditions, and the following disclaimer.
2. Redistributions in binary form must reproduce the above copyright
notice, this list of conditions, and the following disclaimer in the
documentation and/or other materials provided with the distribution.
This library is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
*/
enum { rd_min_available_bytes = 10 };
struct Range_decoder
{
struct Circular_buffer cb; /* input buffer */
unsigned long long member_position;
uint32_t code;
uint32_t range;
bool at_stream_end;
bool reload_pending;
};
static inline bool Rd_init( struct Range_decoder * const rdec )
{
if( !Cb_init( &rdec->cb, 65536 + rd_min_available_bytes ) ) return false;
rdec->member_position = 0;
rdec->code = 0;
rdec->range = 0xFFFFFFFFU;
rdec->at_stream_end = false;
rdec->reload_pending = false;
return true;
}
static inline void Rd_free( struct Range_decoder * const rdec )
{ Cb_free( &rdec->cb ); }
static inline bool Rd_finished( const struct Range_decoder * const rdec )
{ return rdec->at_stream_end && Cb_empty( &rdec->cb ); }
static inline void Rd_finish( struct Range_decoder * const rdec )
{ rdec->at_stream_end = true; }
static inline bool Rd_enough_available_bytes( const struct Range_decoder * const rdec )
{ return Cb_used_bytes( &rdec->cb ) >= rd_min_available_bytes; }
static inline unsigned Rd_available_bytes( const struct Range_decoder * const rdec )
{ return Cb_used_bytes( &rdec->cb ); }
static inline unsigned Rd_free_bytes( const struct Range_decoder * const rdec )
{ return rdec->at_stream_end ? 0 : Cb_free_bytes( &rdec->cb ); }
static inline unsigned long long Rd_purge( struct Range_decoder * const rdec )
{
const unsigned long long size =
rdec->member_position + Cb_used_bytes( &rdec->cb );
Cb_reset( &rdec->cb );
rdec->member_position = 0; rdec->at_stream_end = true;
return size;
}
static inline void Rd_reset( struct Range_decoder * const rdec )
{ Cb_reset( &rdec->cb );
rdec->member_position = 0; rdec->at_stream_end = false; }
/* Seek for a member header and update 'get'. Set '*skippedp' to the number
of bytes skipped. Return true if a valid header is found.
*/
static bool Rd_find_header( struct Range_decoder * const rdec,
unsigned * const skippedp )
{
*skippedp = 0;
while( rdec->cb.get != rdec->cb.put )
{
if( rdec->cb.buffer[rdec->cb.get] == lzip_magic[0] )
{
unsigned get = rdec->cb.get;
int i;
Lzip_header header;
for( i = 0; i < Lh_size; ++i )
{
if( get == rdec->cb.put ) return false; /* not enough data */
header[i] = rdec->cb.buffer[get];
if( ++get >= rdec->cb.buffer_size ) get = 0;
}
if( Lh_check( header ) ) return true;
}
if( ++rdec->cb.get >= rdec->cb.buffer_size ) rdec->cb.get = 0;
++*skippedp;
}
return false;
}
static inline int Rd_write_data( struct Range_decoder * const rdec,
const uint8_t * const inbuf, const int size )
{
if( rdec->at_stream_end || size <= 0 ) return 0;
return Cb_write_data( &rdec->cb, inbuf, size );
}
static inline uint8_t Rd_get_byte( struct Range_decoder * const rdec )
{
/* 0xFF avoids decoder error if member is truncated at EOS marker */
if( Rd_finished( rdec ) ) return 0xFF;
++rdec->member_position;
return Cb_get_byte( &rdec->cb );
}
static inline int Rd_read_data( struct Range_decoder * const rdec,
uint8_t * const outbuf, const int size )
{
const int sz = Cb_read_data( &rdec->cb, outbuf, size );
if( sz > 0 ) rdec->member_position += sz;
return sz;
}
static inline bool Rd_unread_data( struct Range_decoder * const rdec,
const unsigned size )
{
if( size > rdec->member_position || !Cb_unread_data( &rdec->cb, size ) )
return false;
rdec->member_position -= size;
return true;
}
static bool Rd_try_reload( struct Range_decoder * const rdec )
{
if( rdec->reload_pending && Rd_available_bytes( rdec ) >= 5 )
{
rdec->reload_pending = false;
rdec->code = 0;
rdec->range = 0xFFFFFFFFU;
Rd_get_byte( rdec ); /* discard first byte of the LZMA stream */
int i; for( i = 0; i < 4; ++i )
rdec->code = (rdec->code << 8) | Rd_get_byte( rdec );
}
return !rdec->reload_pending;
}
static inline void Rd_normalize( struct Range_decoder * const rdec )
{
if( rdec->range <= 0x00FFFFFFU )
{ rdec->range <<= 8; rdec->code = (rdec->code << 8) | Rd_get_byte( rdec ); }
}
static inline unsigned Rd_decode( struct Range_decoder * const rdec,
const int num_bits )
{
unsigned symbol = 0;
int i;
for( i = num_bits; i > 0; --i )
{
Rd_normalize( rdec );
rdec->range >>= 1;
/* symbol <<= 1; */
/* if( rdec->code >= rdec->range ) { rdec->code -= rdec->range; symbol |= 1; } */
const bool bit = ( rdec->code >= rdec->range );
symbol <<= 1; symbol += bit;
rdec->code -= rdec->range & ( 0U - bit );
}
return symbol;
}
static inline unsigned Rd_decode_bit( struct Range_decoder * const rdec,
Bit_model * const probability )
{
Rd_normalize( rdec );
const uint32_t bound = ( rdec->range >> bit_model_total_bits ) * *probability;
if( rdec->code < bound )
{
rdec->range = bound;
*probability += ( bit_model_total - *probability ) >> bit_model_move_bits;
return 0;
}
else
{
rdec->code -= bound;
rdec->range -= bound;
*probability -= *probability >> bit_model_move_bits;
return 1;
}
}
static inline void Rd_decode_symbol_bit( struct Range_decoder * const rdec,
Bit_model * const probability, unsigned * symbol )
{
Rd_normalize( rdec );
*symbol <<= 1;
const uint32_t bound = ( rdec->range >> bit_model_total_bits ) * *probability;
if( rdec->code < bound )
{
rdec->range = bound;
*probability += ( bit_model_total - *probability ) >> bit_model_move_bits;
}
else
{
rdec->code -= bound;
rdec->range -= bound;
*probability -= *probability >> bit_model_move_bits;
*symbol |= 1;
}
}
static inline void Rd_decode_symbol_bit_reversed( struct Range_decoder * const rdec,
Bit_model * const probability, unsigned * model,
unsigned * symbol, const int i )
{
Rd_normalize( rdec );
*model <<= 1;
const uint32_t bound = ( rdec->range >> bit_model_total_bits ) * *probability;
if( rdec->code < bound )
{
rdec->range = bound;
*probability += ( bit_model_total - *probability ) >> bit_model_move_bits;
}
else
{
rdec->code -= bound;
rdec->range -= bound;
*probability -= *probability >> bit_model_move_bits;
*model |= 1;
*symbol |= 1 << i;
}
}
static inline unsigned Rd_decode_tree6( struct Range_decoder * const rdec,
Bit_model bm[] )
{
unsigned symbol = 1;
Rd_decode_symbol_bit( rdec, &bm[symbol], &symbol );
Rd_decode_symbol_bit( rdec, &bm[symbol], &symbol );
Rd_decode_symbol_bit( rdec, &bm[symbol], &symbol );
Rd_decode_symbol_bit( rdec, &bm[symbol], &symbol );
Rd_decode_symbol_bit( rdec, &bm[symbol], &symbol );
Rd_decode_symbol_bit( rdec, &bm[symbol], &symbol );
return symbol & 0x3F;
}
static inline unsigned Rd_decode_tree8( struct Range_decoder * const rdec,
Bit_model bm[] )
{
unsigned symbol = 1;
Rd_decode_symbol_bit( rdec, &bm[symbol], &symbol );
Rd_decode_symbol_bit( rdec, &bm[symbol], &symbol );
Rd_decode_symbol_bit( rdec, &bm[symbol], &symbol );
Rd_decode_symbol_bit( rdec, &bm[symbol], &symbol );
Rd_decode_symbol_bit( rdec, &bm[symbol], &symbol );
Rd_decode_symbol_bit( rdec, &bm[symbol], &symbol );
Rd_decode_symbol_bit( rdec, &bm[symbol], &symbol );
Rd_decode_symbol_bit( rdec, &bm[symbol], &symbol );
return symbol & 0xFF;
}
static inline unsigned
Rd_decode_tree_reversed( struct Range_decoder * const rdec,
Bit_model bm[], const int num_bits )
{
unsigned model = 1;
unsigned symbol = 0;
int i;
for( i = 0; i < num_bits; ++i )
Rd_decode_symbol_bit_reversed( rdec, &bm[model], &model, &symbol, i );
return symbol;
}
static inline unsigned
Rd_decode_tree_reversed4( struct Range_decoder * const rdec, Bit_model bm[] )
{
unsigned model = 1;
unsigned symbol = 0;
Rd_decode_symbol_bit_reversed( rdec, &bm[model], &model, &symbol, 0 );
Rd_decode_symbol_bit_reversed( rdec, &bm[model], &model, &symbol, 1 );
Rd_decode_symbol_bit_reversed( rdec, &bm[model], &model, &symbol, 2 );
Rd_decode_symbol_bit_reversed( rdec, &bm[model], &model, &symbol, 3 );
return symbol;
}
static inline unsigned Rd_decode_matched( struct Range_decoder * const rdec,
Bit_model bm[], unsigned match_byte )
{
unsigned symbol = 1;
unsigned mask = 0x100;
while( true )
{
const unsigned match_bit = ( match_byte <<= 1 ) & mask;
const unsigned bit = Rd_decode_bit( rdec, &bm[symbol+match_bit+mask] );
symbol <<= 1; symbol += bit;
if( symbol > 0xFF ) return symbol & 0xFF;
mask &= ~(match_bit ^ (bit << 8)); /* if( match_bit != bit ) mask = 0; */
}
}
static inline unsigned Rd_decode_len( struct Range_decoder * const rdec,
struct Len_model * const lm,
const int pos_state )
{
Bit_model * bm;
unsigned mask, offset, symbol = 1;
if( Rd_decode_bit( rdec, &lm->choice1 ) == 0 )
{ bm = lm->bm_low[pos_state]; mask = 7; offset = 0; goto len3; }
if( Rd_decode_bit( rdec, &lm->choice2 ) == 0 )
{ bm = lm->bm_mid[pos_state]; mask = 7; offset = len_low_symbols; goto len3; }
bm = lm->bm_high; mask = 0xFF; offset = len_low_symbols + len_mid_symbols;
Rd_decode_symbol_bit( rdec, &bm[symbol], &symbol );
Rd_decode_symbol_bit( rdec, &bm[symbol], &symbol );
Rd_decode_symbol_bit( rdec, &bm[symbol], &symbol );
Rd_decode_symbol_bit( rdec, &bm[symbol], &symbol );
Rd_decode_symbol_bit( rdec, &bm[symbol], &symbol );
len3:
Rd_decode_symbol_bit( rdec, &bm[symbol], &symbol );
Rd_decode_symbol_bit( rdec, &bm[symbol], &symbol );
Rd_decode_symbol_bit( rdec, &bm[symbol], &symbol );
return ( symbol & mask ) + min_match_len + offset;
}
enum { lzd_min_free_bytes = max_match_len };
struct LZ_decoder
{
struct Circular_buffer cb;
unsigned long long partial_data_pos;
struct Range_decoder * rdec;
unsigned dictionary_size;
uint32_t crc;
bool check_trailer_pending;
bool member_finished;
bool pos_wrapped;
unsigned rep0; /* rep[0-3] latest four distances */
unsigned rep1; /* used for efficient coding of */
unsigned rep2; /* repeated distances */
unsigned rep3;
State state;
Bit_model bm_literal[1<<literal_context_bits][0x300];
Bit_model bm_match[states][pos_states];
Bit_model bm_rep[states];
Bit_model bm_rep0[states];
Bit_model bm_rep1[states];
Bit_model bm_rep2[states];
Bit_model bm_len[states][pos_states];
Bit_model bm_dis_slot[len_states][1<<dis_slot_bits];
Bit_model bm_dis[modeled_distances-end_dis_model+1];
Bit_model bm_align[dis_align_size];
struct Len_model match_len_model;
struct Len_model rep_len_model;
};
static inline bool LZd_enough_free_bytes( const struct LZ_decoder * const d )
{ return Cb_free_bytes( &d->cb ) >= lzd_min_free_bytes; }
static inline uint8_t LZd_peek_prev( const struct LZ_decoder * const d )
{ return d->cb.buffer[((d->cb.put > 0) ? d->cb.put : d->cb.buffer_size)-1]; }
static inline uint8_t LZd_peek( const struct LZ_decoder * const d,
const unsigned distance )
{
const unsigned i = ( ( d->cb.put > distance ) ? 0 : d->cb.buffer_size ) +
d->cb.put - distance - 1;
return d->cb.buffer[i];
}
static inline void LZd_put_byte( struct LZ_decoder * const d, const uint8_t b )
{
CRC32_update_byte( &d->crc, b );
d->cb.buffer[d->cb.put] = b;
if( ++d->cb.put >= d->cb.buffer_size )
{ d->partial_data_pos += d->cb.put; d->cb.put = 0; d->pos_wrapped = true; }
}
static inline void LZd_copy_block( struct LZ_decoder * const d,
const unsigned distance, unsigned len )
{
unsigned lpos = d->cb.put, i = lpos - distance - 1;
bool fast, fast2;
if( lpos > distance )
{
fast = ( len < d->cb.buffer_size - lpos );
fast2 = ( fast && len <= lpos - i );
}
else
{
i += d->cb.buffer_size;
fast = ( len < d->cb.buffer_size - i ); /* (i == pos) may happen */
fast2 = ( fast && len <= i - lpos );
}
if( fast ) /* no wrap */
{
const unsigned tlen = len;
if( fast2 ) /* no wrap, no overlap */
memcpy( d->cb.buffer + lpos, d->cb.buffer + i, len );
else
for( ; len > 0; --len ) d->cb.buffer[lpos++] = d->cb.buffer[i++];
CRC32_update_buf( &d->crc, d->cb.buffer + d->cb.put, tlen );
d->cb.put += tlen;
}
else for( ; len > 0; --len )
{
LZd_put_byte( d, d->cb.buffer[i] );
if( ++i >= d->cb.buffer_size ) i = 0;
}
}
static inline bool LZd_init( struct LZ_decoder * const d,
struct Range_decoder * const rde,
const unsigned dict_size )
{
if( !Cb_init( &d->cb, max( 65536, dict_size ) + lzd_min_free_bytes ) )
return false;
d->partial_data_pos = 0;
d->rdec = rde;
d->dictionary_size = dict_size;
d->crc = 0xFFFFFFFFU;
d->check_trailer_pending = false;
d->member_finished = false;
d->pos_wrapped = false;
/* prev_byte of first byte; also for LZd_peek( 0 ) on corrupt file */
d->cb.buffer[d->cb.buffer_size-1] = 0;
d->rep0 = 0;
d->rep1 = 0;
d->rep2 = 0;
d->rep3 = 0;
d->state = 0;
Bm_array_init( d->bm_literal[0], (1 << literal_context_bits) * 0x300 );
Bm_array_init( d->bm_match[0], states * pos_states );
Bm_array_init( d->bm_rep, states );
Bm_array_init( d->bm_rep0, states );
Bm_array_init( d->bm_rep1, states );
Bm_array_init( d->bm_rep2, states );
Bm_array_init( d->bm_len[0], states * pos_states );
Bm_array_init( d->bm_dis_slot[0], len_states * (1 << dis_slot_bits) );
Bm_array_init( d->bm_dis, modeled_distances - end_dis_model + 1 );
Bm_array_init( d->bm_align, dis_align_size );
Lm_init( &d->match_len_model );
Lm_init( &d->rep_len_model );
return true;
}
static inline void LZd_free( struct LZ_decoder * const d )
{ Cb_free( &d->cb ); }
static inline bool LZd_member_finished( const struct LZ_decoder * const d )
{ return d->member_finished && Cb_empty( &d->cb ); }
static inline unsigned LZd_crc( const struct LZ_decoder * const d )
{ return d->crc ^ 0xFFFFFFFFU; }
static inline unsigned long long
LZd_data_position( const struct LZ_decoder * const d )
{ return d->partial_data_pos + d->cb.put; }
|