summaryrefslogtreecommitdiffstats
path: root/upstream/archlinux/man3/Math::BigRat.3perl
diff options
context:
space:
mode:
Diffstat (limited to 'upstream/archlinux/man3/Math::BigRat.3perl')
-rw-r--r--upstream/archlinux/man3/Math::BigRat.3perl884
1 files changed, 884 insertions, 0 deletions
diff --git a/upstream/archlinux/man3/Math::BigRat.3perl b/upstream/archlinux/man3/Math::BigRat.3perl
new file mode 100644
index 00000000..1ad10107
--- /dev/null
+++ b/upstream/archlinux/man3/Math::BigRat.3perl
@@ -0,0 +1,884 @@
+.\" -*- mode: troff; coding: utf-8 -*-
+.\" Automatically generated by Pod::Man 5.01 (Pod::Simple 3.43)
+.\"
+.\" Standard preamble:
+.\" ========================================================================
+.de Sp \" Vertical space (when we can't use .PP)
+.if t .sp .5v
+.if n .sp
+..
+.de Vb \" Begin verbatim text
+.ft CW
+.nf
+.ne \\$1
+..
+.de Ve \" End verbatim text
+.ft R
+.fi
+..
+.\" \*(C` and \*(C' are quotes in nroff, nothing in troff, for use with C<>.
+.ie n \{\
+. ds C` ""
+. ds C' ""
+'br\}
+.el\{\
+. ds C`
+. ds C'
+'br\}
+.\"
+.\" Escape single quotes in literal strings from groff's Unicode transform.
+.ie \n(.g .ds Aq \(aq
+.el .ds Aq '
+.\"
+.\" If the F register is >0, we'll generate index entries on stderr for
+.\" titles (.TH), headers (.SH), subsections (.SS), items (.Ip), and index
+.\" entries marked with X<> in POD. Of course, you'll have to process the
+.\" output yourself in some meaningful fashion.
+.\"
+.\" Avoid warning from groff about undefined register 'F'.
+.de IX
+..
+.nr rF 0
+.if \n(.g .if rF .nr rF 1
+.if (\n(rF:(\n(.g==0)) \{\
+. if \nF \{\
+. de IX
+. tm Index:\\$1\t\\n%\t"\\$2"
+..
+. if !\nF==2 \{\
+. nr % 0
+. nr F 2
+. \}
+. \}
+.\}
+.rr rF
+.\" ========================================================================
+.\"
+.IX Title "Math::BigRat 3perl"
+.TH Math::BigRat 3perl 2024-02-11 "perl v5.38.2" "Perl Programmers Reference Guide"
+.\" For nroff, turn off justification. Always turn off hyphenation; it makes
+.\" way too many mistakes in technical documents.
+.if n .ad l
+.nh
+.SH NAME
+Math::BigRat \- arbitrary size rational number math package
+.SH SYNOPSIS
+.IX Header "SYNOPSIS"
+.Vb 1
+\& use Math::BigRat;
+\&
+\& my $x = Math::BigRat\->new(\*(Aq3/7\*(Aq); $x += \*(Aq5/9\*(Aq;
+\&
+\& print $x\->bstr(), "\en";
+\& print $x ** 2, "\en";
+\&
+\& my $y = Math::BigRat\->new(\*(Aqinf\*(Aq);
+\& print "$y ", ($y\->is_inf ? \*(Aqis\*(Aq : \*(Aqis not\*(Aq), " infinity\en";
+\&
+\& my $z = Math::BigRat\->new(144); $z\->bsqrt();
+.Ve
+.SH DESCRIPTION
+.IX Header "DESCRIPTION"
+Math::BigRat complements Math::BigInt and Math::BigFloat by providing support
+for arbitrary big rational numbers.
+.SS "MATH LIBRARY"
+.IX Subsection "MATH LIBRARY"
+You can change the underlying module that does the low-level
+math operations by using:
+.PP
+.Vb 1
+\& use Math::BigRat try => \*(AqGMP\*(Aq;
+.Ve
+.PP
+Note: This needs Math::BigInt::GMP installed.
+.PP
+The following would first try to find Math::BigInt::Foo, then
+Math::BigInt::Bar, and when this also fails, revert to Math::BigInt::Calc:
+.PP
+.Vb 1
+\& use Math::BigRat try => \*(AqFoo,Math::BigInt::Bar\*(Aq;
+.Ve
+.PP
+If you want to get warned when the fallback occurs, replace "try" with "lib":
+.PP
+.Vb 1
+\& use Math::BigRat lib => \*(AqFoo,Math::BigInt::Bar\*(Aq;
+.Ve
+.PP
+If you want the code to die instead, replace "try" with "only":
+.PP
+.Vb 1
+\& use Math::BigRat only => \*(AqFoo,Math::BigInt::Bar\*(Aq;
+.Ve
+.SH METHODS
+.IX Header "METHODS"
+Any methods not listed here are derived from Math::BigFloat (or
+Math::BigInt), so make sure you check these two modules for further
+information.
+.IP \fBnew()\fR 4
+.IX Item "new()"
+.Vb 1
+\& $x = Math::BigRat\->new(\*(Aq1/3\*(Aq);
+.Ve
+.Sp
+Create a new Math::BigRat object. Input can come in various forms:
+.Sp
+.Vb 9
+\& $x = Math::BigRat\->new(123); # scalars
+\& $x = Math::BigRat\->new(\*(Aqinf\*(Aq); # infinity
+\& $x = Math::BigRat\->new(\*(Aq123.3\*(Aq); # float
+\& $x = Math::BigRat\->new(\*(Aq1/3\*(Aq); # simple string
+\& $x = Math::BigRat\->new(\*(Aq1 / 3\*(Aq); # spaced
+\& $x = Math::BigRat\->new(\*(Aq1 / 0.1\*(Aq); # w/ floats
+\& $x = Math::BigRat\->new(Math::BigInt\->new(3)); # BigInt
+\& $x = Math::BigRat\->new(Math::BigFloat\->new(\*(Aq3.1\*(Aq)); # BigFloat
+\& $x = Math::BigRat\->new(Math::BigInt::Lite\->new(\*(Aq2\*(Aq)); # BigLite
+\&
+\& # You can also give D and N as different objects:
+\& $x = Math::BigRat\->new(
+\& Math::BigInt\->new(\-123),
+\& Math::BigInt\->new(7),
+\& ); # => \-123/7
+.Ve
+.IP \fBnumerator()\fR 4
+.IX Item "numerator()"
+.Vb 1
+\& $n = $x\->numerator();
+.Ve
+.Sp
+Returns a copy of the numerator (the part above the line) as signed BigInt.
+.IP \fBdenominator()\fR 4
+.IX Item "denominator()"
+.Vb 1
+\& $d = $x\->denominator();
+.Ve
+.Sp
+Returns a copy of the denominator (the part under the line) as positive BigInt.
+.IP \fBparts()\fR 4
+.IX Item "parts()"
+.Vb 1
+\& ($n, $d) = $x\->parts();
+.Ve
+.Sp
+Return a list consisting of (signed) numerator and (unsigned) denominator as
+BigInts.
+.IP \fBdparts()\fR 4
+.IX Item "dparts()"
+Returns the integer part and the fraction part.
+.IP \fBfparts()\fR 4
+.IX Item "fparts()"
+Returns the smallest possible numerator and denominator so that the numerator
+divided by the denominator gives back the original value. For finite numbers,
+both values are integers. Mnemonic: fraction.
+.IP \fBnumify()\fR 4
+.IX Item "numify()"
+.Vb 1
+\& my $y = $x\->numify();
+.Ve
+.Sp
+Returns the object as a scalar. This will lose some data if the object
+cannot be represented by a normal Perl scalar (integer or float), so
+use "\fBas_int()\fR" or "\fBas_float()\fR" instead.
+.Sp
+This routine is automatically used whenever a scalar is required:
+.Sp
+.Vb 3
+\& my $x = Math::BigRat\->new(\*(Aq3/1\*(Aq);
+\& @array = (0, 1, 2, 3);
+\& $y = $array[$x]; # set $y to 3
+.Ve
+.IP \fBas_int()\fR 4
+.IX Item "as_int()"
+.PD 0
+.IP \fBas_number()\fR 4
+.IX Item "as_number()"
+.PD
+.Vb 2
+\& $x = Math::BigRat\->new(\*(Aq13/7\*(Aq);
+\& print $x\->as_int(), "\en"; # \*(Aq1\*(Aq
+.Ve
+.Sp
+Returns a copy of the object as BigInt, truncated to an integer.
+.Sp
+\&\f(CWas_number()\fR is an alias for \f(CWas_int()\fR.
+.IP \fBas_float()\fR 4
+.IX Item "as_float()"
+.Vb 2
+\& $x = Math::BigRat\->new(\*(Aq13/7\*(Aq);
+\& print $x\->as_float(), "\en"; # \*(Aq1\*(Aq
+\&
+\& $x = Math::BigRat\->new(\*(Aq2/3\*(Aq);
+\& print $x\->as_float(5), "\en"; # \*(Aq0.66667\*(Aq
+.Ve
+.Sp
+Returns a copy of the object as BigFloat, preserving the
+accuracy as wanted, or the default of 40 digits.
+.Sp
+This method was added in v0.22 of Math::BigRat (April 2008).
+.IP \fBas_hex()\fR 4
+.IX Item "as_hex()"
+.Vb 2
+\& $x = Math::BigRat\->new(\*(Aq13\*(Aq);
+\& print $x\->as_hex(), "\en"; # \*(Aq0xd\*(Aq
+.Ve
+.Sp
+Returns the BigRat as hexadecimal string. Works only for integers.
+.IP \fBas_bin()\fR 4
+.IX Item "as_bin()"
+.Vb 2
+\& $x = Math::BigRat\->new(\*(Aq13\*(Aq);
+\& print $x\->as_bin(), "\en"; # \*(Aq0x1101\*(Aq
+.Ve
+.Sp
+Returns the BigRat as binary string. Works only for integers.
+.IP \fBas_oct()\fR 4
+.IX Item "as_oct()"
+.Vb 2
+\& $x = Math::BigRat\->new(\*(Aq13\*(Aq);
+\& print $x\->as_oct(), "\en"; # \*(Aq015\*(Aq
+.Ve
+.Sp
+Returns the BigRat as octal string. Works only for integers.
+.IP \fBfrom_hex()\fR 4
+.IX Item "from_hex()"
+.Vb 1
+\& my $h = Math::BigRat\->from_hex(\*(Aq0x10\*(Aq);
+.Ve
+.Sp
+Create a BigRat from a hexadecimal number in string form.
+.IP \fBfrom_oct()\fR 4
+.IX Item "from_oct()"
+.Vb 1
+\& my $o = Math::BigRat\->from_oct(\*(Aq020\*(Aq);
+.Ve
+.Sp
+Create a BigRat from an octal number in string form.
+.IP \fBfrom_bin()\fR 4
+.IX Item "from_bin()"
+.Vb 1
+\& my $b = Math::BigRat\->from_bin(\*(Aq0b10000000\*(Aq);
+.Ve
+.Sp
+Create a BigRat from an binary number in string form.
+.IP \fBbnan()\fR 4
+.IX Item "bnan()"
+.Vb 1
+\& $x = Math::BigRat\->bnan();
+.Ve
+.Sp
+Creates a new BigRat object representing NaN (Not A Number).
+If used on an object, it will set it to NaN:
+.Sp
+.Vb 1
+\& $x\->bnan();
+.Ve
+.IP \fBbzero()\fR 4
+.IX Item "bzero()"
+.Vb 1
+\& $x = Math::BigRat\->bzero();
+.Ve
+.Sp
+Creates a new BigRat object representing zero.
+If used on an object, it will set it to zero:
+.Sp
+.Vb 1
+\& $x\->bzero();
+.Ve
+.IP \fBbinf()\fR 4
+.IX Item "binf()"
+.Vb 1
+\& $x = Math::BigRat\->binf($sign);
+.Ve
+.Sp
+Creates a new BigRat object representing infinity. The optional argument is
+either '\-' or '+', indicating whether you want infinity or minus infinity.
+If used on an object, it will set it to infinity:
+.Sp
+.Vb 2
+\& $x\->binf();
+\& $x\->binf(\*(Aq\-\*(Aq);
+.Ve
+.IP \fBbone()\fR 4
+.IX Item "bone()"
+.Vb 1
+\& $x = Math::BigRat\->bone($sign);
+.Ve
+.Sp
+Creates a new BigRat object representing one. The optional argument is
+either '\-' or '+', indicating whether you want one or minus one.
+If used on an object, it will set it to one:
+.Sp
+.Vb 2
+\& $x\->bone(); # +1
+\& $x\->bone(\*(Aq\-\*(Aq); # \-1
+.Ve
+.IP \fBlength()\fR 4
+.IX Item "length()"
+.Vb 1
+\& $len = $x\->length();
+.Ve
+.Sp
+Return the length of \f(CW$x\fR in digits for integer values.
+.IP \fBdigit()\fR 4
+.IX Item "digit()"
+.Vb 2
+\& print Math::BigRat\->new(\*(Aq123/1\*(Aq)\->digit(1); # 1
+\& print Math::BigRat\->new(\*(Aq123/1\*(Aq)\->digit(\-1); # 3
+.Ve
+.Sp
+Return the N'ths digit from X when X is an integer value.
+.IP \fBbnorm()\fR 4
+.IX Item "bnorm()"
+.Vb 1
+\& $x\->bnorm();
+.Ve
+.Sp
+Reduce the number to the shortest form. This routine is called
+automatically whenever it is needed.
+.IP \fBbfac()\fR 4
+.IX Item "bfac()"
+.Vb 1
+\& $x\->bfac();
+.Ve
+.Sp
+Calculates the factorial of \f(CW$x\fR. For instance:
+.Sp
+.Vb 2
+\& print Math::BigRat\->new(\*(Aq3/1\*(Aq)\->bfac(), "\en"; # 1*2*3
+\& print Math::BigRat\->new(\*(Aq5/1\*(Aq)\->bfac(), "\en"; # 1*2*3*4*5
+.Ve
+.Sp
+Works currently only for integers.
+.IP \fBbround()\fR/\fBround()\fR/\fBbfround()\fR 4
+.IX Item "bround()/round()/bfround()"
+Are not yet implemented.
+.IP \fBbmod()\fR 4
+.IX Item "bmod()"
+.Vb 1
+\& $x\->bmod($y);
+.Ve
+.Sp
+Returns \f(CW$x\fR modulo \f(CW$y\fR. When \f(CW$x\fR is finite, and \f(CW$y\fR is finite and non-zero, the
+result is identical to the remainder after floored division (F\-division). If,
+in addition, both \f(CW$x\fR and \f(CW$y\fR are integers, the result is identical to the result
+from Perl's % operator.
+.IP \fBbmodinv()\fR 4
+.IX Item "bmodinv()"
+.Vb 1
+\& $x\->bmodinv($mod); # modular multiplicative inverse
+.Ve
+.Sp
+Returns the multiplicative inverse of \f(CW$x\fR modulo \f(CW$mod\fR. If
+.Sp
+.Vb 1
+\& $y = $x \-> copy() \-> bmodinv($mod)
+.Ve
+.Sp
+then \f(CW$y\fR is the number closest to zero, and with the same sign as \f(CW$mod\fR,
+satisfying
+.Sp
+.Vb 1
+\& ($x * $y) % $mod = 1 % $mod
+.Ve
+.Sp
+If \f(CW$x\fR and \f(CW$y\fR are non-zero, they must be relative primes, i.e.,
+\&\f(CW\*(C`bgcd($y, $mod)==1\*(C'\fR. '\f(CW\*(C`NaN\*(C'\fR' is returned when no modular multiplicative
+inverse exists.
+.IP \fBbmodpow()\fR 4
+.IX Item "bmodpow()"
+.Vb 2
+\& $num\->bmodpow($exp,$mod); # modular exponentiation
+\& # ($num**$exp % $mod)
+.Ve
+.Sp
+Returns the value of \f(CW$num\fR taken to the power \f(CW$exp\fR in the modulus
+\&\f(CW$mod\fR using binary exponentiation. \f(CW\*(C`bmodpow\*(C'\fR is far superior to
+writing
+.Sp
+.Vb 1
+\& $num ** $exp % $mod
+.Ve
+.Sp
+because it is much faster \- it reduces internal variables into
+the modulus whenever possible, so it operates on smaller numbers.
+.Sp
+\&\f(CW\*(C`bmodpow\*(C'\fR also supports negative exponents.
+.Sp
+.Vb 1
+\& bmodpow($num, \-1, $mod)
+.Ve
+.Sp
+is exactly equivalent to
+.Sp
+.Vb 1
+\& bmodinv($num, $mod)
+.Ve
+.IP \fBbneg()\fR 4
+.IX Item "bneg()"
+.Vb 1
+\& $x\->bneg();
+.Ve
+.Sp
+Used to negate the object in-place.
+.IP \fBis_one()\fR 4
+.IX Item "is_one()"
+.Vb 1
+\& print "$x is 1\en" if $x\->is_one();
+.Ve
+.Sp
+Return true if \f(CW$x\fR is exactly one, otherwise false.
+.IP \fBis_zero()\fR 4
+.IX Item "is_zero()"
+.Vb 1
+\& print "$x is 0\en" if $x\->is_zero();
+.Ve
+.Sp
+Return true if \f(CW$x\fR is exactly zero, otherwise false.
+.IP \fBis_pos()\fR/\fBis_positive()\fR 4
+.IX Item "is_pos()/is_positive()"
+.Vb 1
+\& print "$x is >= 0\en" if $x\->is_positive();
+.Ve
+.Sp
+Return true if \f(CW$x\fR is positive (greater than or equal to zero), otherwise
+false. Please note that '+inf' is also positive, while 'NaN' and '\-inf' aren't.
+.Sp
+\&\f(CWis_positive()\fR is an alias for \f(CWis_pos()\fR.
+.IP \fBis_neg()\fR/\fBis_negative()\fR 4
+.IX Item "is_neg()/is_negative()"
+.Vb 1
+\& print "$x is < 0\en" if $x\->is_negative();
+.Ve
+.Sp
+Return true if \f(CW$x\fR is negative (smaller than zero), otherwise false. Please
+note that '\-inf' is also negative, while 'NaN' and '+inf' aren't.
+.Sp
+\&\f(CWis_negative()\fR is an alias for \f(CWis_neg()\fR.
+.IP \fBis_int()\fR 4
+.IX Item "is_int()"
+.Vb 1
+\& print "$x is an integer\en" if $x\->is_int();
+.Ve
+.Sp
+Return true if \f(CW$x\fR has a denominator of 1 (e.g. no fraction parts), otherwise
+false. Please note that '\-inf', 'inf' and 'NaN' aren't integer.
+.IP \fBis_odd()\fR 4
+.IX Item "is_odd()"
+.Vb 1
+\& print "$x is odd\en" if $x\->is_odd();
+.Ve
+.Sp
+Return true if \f(CW$x\fR is odd, otherwise false.
+.IP \fBis_even()\fR 4
+.IX Item "is_even()"
+.Vb 1
+\& print "$x is even\en" if $x\->is_even();
+.Ve
+.Sp
+Return true if \f(CW$x\fR is even, otherwise false.
+.IP \fBbceil()\fR 4
+.IX Item "bceil()"
+.Vb 1
+\& $x\->bceil();
+.Ve
+.Sp
+Set \f(CW$x\fR to the next bigger integer value (e.g. truncate the number to integer
+and then increment it by one).
+.IP \fBbfloor()\fR 4
+.IX Item "bfloor()"
+.Vb 1
+\& $x\->bfloor();
+.Ve
+.Sp
+Truncate \f(CW$x\fR to an integer value.
+.IP \fBbint()\fR 4
+.IX Item "bint()"
+.Vb 1
+\& $x\->bint();
+.Ve
+.Sp
+Round \f(CW$x\fR towards zero.
+.IP \fBbsqrt()\fR 4
+.IX Item "bsqrt()"
+.Vb 1
+\& $x\->bsqrt();
+.Ve
+.Sp
+Calculate the square root of \f(CW$x\fR.
+.IP \fBbroot()\fR 4
+.IX Item "broot()"
+.Vb 1
+\& $x\->broot($n);
+.Ve
+.Sp
+Calculate the N'th root of \f(CW$x\fR.
+.IP \fBbadd()\fR 4
+.IX Item "badd()"
+.Vb 1
+\& $x\->badd($y);
+.Ve
+.Sp
+Adds \f(CW$y\fR to \f(CW$x\fR and returns the result.
+.IP \fBbmul()\fR 4
+.IX Item "bmul()"
+.Vb 1
+\& $x\->bmul($y);
+.Ve
+.Sp
+Multiplies \f(CW$y\fR to \f(CW$x\fR and returns the result.
+.IP \fBbsub()\fR 4
+.IX Item "bsub()"
+.Vb 1
+\& $x\->bsub($y);
+.Ve
+.Sp
+Subtracts \f(CW$y\fR from \f(CW$x\fR and returns the result.
+.IP \fBbdiv()\fR 4
+.IX Item "bdiv()"
+.Vb 2
+\& $q = $x\->bdiv($y);
+\& ($q, $r) = $x\->bdiv($y);
+.Ve
+.Sp
+In scalar context, divides \f(CW$x\fR by \f(CW$y\fR and returns the result. In list context,
+does floored division (F\-division), returning an integer \f(CW$q\fR and a remainder \f(CW$r\fR
+so that \f(CW$x\fR = \f(CW$q\fR * \f(CW$y\fR + \f(CW$r\fR. The remainer (modulo) is equal to what is returned
+by \f(CW\*(C`$x\->bmod($y)\*(C'\fR.
+.IP \fBbinv()\fR 4
+.IX Item "binv()"
+.Vb 1
+\& $x\->binv();
+.Ve
+.Sp
+Inverse of \f(CW$x\fR.
+.IP \fBbdec()\fR 4
+.IX Item "bdec()"
+.Vb 1
+\& $x\->bdec();
+.Ve
+.Sp
+Decrements \f(CW$x\fR by 1 and returns the result.
+.IP \fBbinc()\fR 4
+.IX Item "binc()"
+.Vb 1
+\& $x\->binc();
+.Ve
+.Sp
+Increments \f(CW$x\fR by 1 and returns the result.
+.IP \fBcopy()\fR 4
+.IX Item "copy()"
+.Vb 1
+\& my $z = $x\->copy();
+.Ve
+.Sp
+Makes a deep copy of the object.
+.Sp
+Please see the documentation in Math::BigInt for further details.
+.IP \fBbstr()\fR/\fBbsstr()\fR 4
+.IX Item "bstr()/bsstr()"
+.Vb 3
+\& my $x = Math::BigRat\->new(\*(Aq8/4\*(Aq);
+\& print $x\->bstr(), "\en"; # prints 1/2
+\& print $x\->bsstr(), "\en"; # prints 1/2
+.Ve
+.Sp
+Return a string representing this object.
+.IP \fBbcmp()\fR 4
+.IX Item "bcmp()"
+.Vb 1
+\& $x\->bcmp($y);
+.Ve
+.Sp
+Compares \f(CW$x\fR with \f(CW$y\fR and takes the sign into account.
+Returns \-1, 0, 1 or undef.
+.IP \fBbacmp()\fR 4
+.IX Item "bacmp()"
+.Vb 1
+\& $x\->bacmp($y);
+.Ve
+.Sp
+Compares \f(CW$x\fR with \f(CW$y\fR while ignoring their sign. Returns \-1, 0, 1 or undef.
+.IP \fBbeq()\fR 4
+.IX Item "beq()"
+.Vb 1
+\& $x \-> beq($y);
+.Ve
+.Sp
+Returns true if and only if \f(CW$x\fR is equal to \f(CW$y\fR, and false otherwise.
+.IP \fBbne()\fR 4
+.IX Item "bne()"
+.Vb 1
+\& $x \-> bne($y);
+.Ve
+.Sp
+Returns true if and only if \f(CW$x\fR is not equal to \f(CW$y\fR, and false otherwise.
+.IP \fBblt()\fR 4
+.IX Item "blt()"
+.Vb 1
+\& $x \-> blt($y);
+.Ve
+.Sp
+Returns true if and only if \f(CW$x\fR is equal to \f(CW$y\fR, and false otherwise.
+.IP \fBble()\fR 4
+.IX Item "ble()"
+.Vb 1
+\& $x \-> ble($y);
+.Ve
+.Sp
+Returns true if and only if \f(CW$x\fR is less than or equal to \f(CW$y\fR, and false
+otherwise.
+.IP \fBbgt()\fR 4
+.IX Item "bgt()"
+.Vb 1
+\& $x \-> bgt($y);
+.Ve
+.Sp
+Returns true if and only if \f(CW$x\fR is greater than \f(CW$y\fR, and false otherwise.
+.IP \fBbge()\fR 4
+.IX Item "bge()"
+.Vb 1
+\& $x \-> bge($y);
+.Ve
+.Sp
+Returns true if and only if \f(CW$x\fR is greater than or equal to \f(CW$y\fR, and false
+otherwise.
+.IP \fBblsft()\fR/\fBbrsft()\fR 4
+.IX Item "blsft()/brsft()"
+Used to shift numbers left/right.
+.Sp
+Please see the documentation in Math::BigInt for further details.
+.IP \fBband()\fR 4
+.IX Item "band()"
+.Vb 1
+\& $x\->band($y); # bitwise and
+.Ve
+.IP \fBbior()\fR 4
+.IX Item "bior()"
+.Vb 1
+\& $x\->bior($y); # bitwise inclusive or
+.Ve
+.IP \fBbxor()\fR 4
+.IX Item "bxor()"
+.Vb 1
+\& $x\->bxor($y); # bitwise exclusive or
+.Ve
+.IP \fBbnot()\fR 4
+.IX Item "bnot()"
+.Vb 1
+\& $x\->bnot(); # bitwise not (two\*(Aqs complement)
+.Ve
+.IP \fBbpow()\fR 4
+.IX Item "bpow()"
+.Vb 1
+\& $x\->bpow($y);
+.Ve
+.Sp
+Compute \f(CW$x\fR ** \f(CW$y\fR.
+.Sp
+Please see the documentation in Math::BigInt for further details.
+.IP \fBblog()\fR 4
+.IX Item "blog()"
+.Vb 1
+\& $x\->blog($base, $accuracy); # logarithm of x to the base $base
+.Ve
+.Sp
+If \f(CW$base\fR is not defined, Euler's number (e) is used:
+.Sp
+.Vb 1
+\& print $x\->blog(undef, 100); # log(x) to 100 digits
+.Ve
+.IP \fBbexp()\fR 4
+.IX Item "bexp()"
+.Vb 1
+\& $x\->bexp($accuracy); # calculate e ** X
+.Ve
+.Sp
+Calculates two integers A and B so that A/B is equal to \f(CW\*(C`e ** $x\*(C'\fR, where \f(CW\*(C`e\*(C'\fR is
+Euler's number.
+.Sp
+This method was added in v0.20 of Math::BigRat (May 2007).
+.Sp
+See also \f(CWblog()\fR.
+.IP \fBbnok()\fR 4
+.IX Item "bnok()"
+.Vb 1
+\& $x\->bnok($y); # x over y (binomial coefficient n over k)
+.Ve
+.Sp
+Calculates the binomial coefficient n over k, also called the "choose"
+function. The result is equivalent to:
+.Sp
+.Vb 3
+\& ( n ) n!
+\& | \- | = \-\-\-\-\-\-\-
+\& ( k ) k!(n\-k)!
+.Ve
+.Sp
+This method was added in v0.20 of Math::BigRat (May 2007).
+.IP \fBconfig()\fR 4
+.IX Item "config()"
+.Vb 2
+\& Math::BigRat\->config("trap_nan" => 1); # set
+\& $accu = Math::BigRat\->config("accuracy"); # get
+.Ve
+.Sp
+Set or get configuration parameter values. Read-only parameters are marked as
+RO. Read-write parameters are marked as RW. The following parameters are
+supported.
+.Sp
+.Vb 10
+\& Parameter RO/RW Description
+\& Example
+\& ============================================================
+\& lib RO Name of the math backend library
+\& Math::BigInt::Calc
+\& lib_version RO Version of the math backend library
+\& 0.30
+\& class RO The class of config you just called
+\& Math::BigRat
+\& version RO version number of the class you used
+\& 0.10
+\& upgrade RW To which class numbers are upgraded
+\& undef
+\& downgrade RW To which class numbers are downgraded
+\& undef
+\& precision RW Global precision
+\& undef
+\& accuracy RW Global accuracy
+\& undef
+\& round_mode RW Global round mode
+\& even
+\& div_scale RW Fallback accuracy for div, sqrt etc.
+\& 40
+\& trap_nan RW Trap NaNs
+\& undef
+\& trap_inf RW Trap +inf/\-inf
+\& undef
+.Ve
+.SH "NUMERIC LITERALS"
+.IX Header "NUMERIC LITERALS"
+After \f(CW\*(C`use Math::BigRat \*(Aq:constant\*(Aq\*(C'\fR all numeric literals in the given scope
+are converted to \f(CW\*(C`Math::BigRat\*(C'\fR objects. This conversion happens at compile
+time. Every non-integer is convert to a NaN.
+.PP
+For example,
+.PP
+.Vb 1
+\& perl \-MMath::BigRat=:constant \-le \*(Aqprint 2**150\*(Aq
+.Ve
+.PP
+prints the exact value of \f(CW\*(C`2**150\*(C'\fR. Note that without conversion of constants
+to objects the expression \f(CW\*(C`2**150\*(C'\fR is calculated using Perl scalars, which
+leads to an inaccurate result.
+.PP
+Please note that strings are not affected, so that
+.PP
+.Vb 1
+\& use Math::BigRat qw/:constant/;
+\&
+\& $x = "1234567890123456789012345678901234567890"
+\& + "123456789123456789";
+.Ve
+.PP
+does give you what you expect. You need an explicit Math::BigRat\->\fBnew()\fR around
+at least one of the operands. You should also quote large constants to prevent
+loss of precision:
+.PP
+.Vb 1
+\& use Math::BigRat;
+\&
+\& $x = Math::BigRat\->new("1234567889123456789123456789123456789");
+.Ve
+.PP
+Without the quotes Perl first converts the large number to a floating point
+constant at compile time, and then converts the result to a Math::BigRat object
+at run time, which results in an inaccurate result.
+.SS "Hexadecimal, octal, and binary floating point literals"
+.IX Subsection "Hexadecimal, octal, and binary floating point literals"
+Perl (and this module) accepts hexadecimal, octal, and binary floating point
+literals, but use them with care with Perl versions before v5.32.0, because some
+versions of Perl silently give the wrong result. Below are some examples of
+different ways to write the number decimal 314.
+.PP
+Hexadecimal floating point literals:
+.PP
+.Vb 3
+\& 0x1.3ap+8 0X1.3AP+8
+\& 0x1.3ap8 0X1.3AP8
+\& 0x13a0p\-4 0X13A0P\-4
+.Ve
+.PP
+Octal floating point literals (with "0" prefix):
+.PP
+.Vb 3
+\& 01.164p+8 01.164P+8
+\& 01.164p8 01.164P8
+\& 011640p\-4 011640P\-4
+.Ve
+.PP
+Octal floating point literals (with "0o" prefix) (requires v5.34.0):
+.PP
+.Vb 3
+\& 0o1.164p+8 0O1.164P+8
+\& 0o1.164p8 0O1.164P8
+\& 0o11640p\-4 0O11640P\-4
+.Ve
+.PP
+Binary floating point literals:
+.PP
+.Vb 3
+\& 0b1.0011101p+8 0B1.0011101P+8
+\& 0b1.0011101p8 0B1.0011101P8
+\& 0b10011101000p\-2 0B10011101000P\-2
+.Ve
+.SH BUGS
+.IX Header "BUGS"
+Please report any bugs or feature requests to
+\&\f(CW\*(C`bug\-math\-bigrat at rt.cpan.org\*(C'\fR, or through the web interface at
+<https://rt.cpan.org/Ticket/Create.html?Queue=Math\-BigRat>
+(requires login).
+We will be notified, and then you'll automatically be notified of progress on
+your bug as I make changes.
+.SH SUPPORT
+.IX Header "SUPPORT"
+You can find documentation for this module with the perldoc command.
+.PP
+.Vb 1
+\& perldoc Math::BigRat
+.Ve
+.PP
+You can also look for information at:
+.IP \(bu 4
+GitHub
+.Sp
+<https://github.com/pjacklam/p5\-Math\-BigRat>
+.IP \(bu 4
+RT: CPAN's request tracker
+.Sp
+<https://rt.cpan.org/Dist/Display.html?Name=Math\-BigRat>
+.IP \(bu 4
+MetaCPAN
+.Sp
+<https://metacpan.org/release/Math\-BigRat>
+.IP \(bu 4
+CPAN Testers Matrix
+.Sp
+<http://matrix.cpantesters.org/?dist=Math\-BigRat>
+.IP \(bu 4
+CPAN Ratings
+.Sp
+<https://cpanratings.perl.org/dist/Math\-BigRat>
+.SH LICENSE
+.IX Header "LICENSE"
+This program is free software; you may redistribute it and/or modify it under
+the same terms as Perl itself.
+.SH "SEE ALSO"
+.IX Header "SEE ALSO"
+bigrat, Math::BigFloat and Math::BigInt as well as the backends
+Math::BigInt::FastCalc, Math::BigInt::GMP, and Math::BigInt::Pari.
+.SH AUTHORS
+.IX Header "AUTHORS"
+.IP \(bu 4
+Tels <http://bloodgate.com/> 2001\-2009.
+.IP \(bu 4
+Maintained by Peter John Acklam <pjacklam@gmail.com> 2011\-