.\" Copyright 2002 Walter Harms (walter.harms@informatik.uni-oldenburg.de) .\" .\" SPDX-License-Identifier: GPL-1.0-or-later .\" .TH complex 7 2023-10-31 "Linux man-pages 6.06" .SH NAME complex \- basics of complex mathematics .SH LIBRARY Math library .RI ( libm ", " \-lm ) .SH SYNOPSIS .nf .B #include .fi .SH DESCRIPTION Complex numbers are numbers of the form z = a+b*i, where a and b are real numbers and i = sqrt(\-1), so that i*i = \-1. .P There are other ways to represent that number. The pair (a,b) of real numbers may be viewed as a point in the plane, given by X- and Y-coordinates. This same point may also be described by giving the pair of real numbers (r,phi), where r is the distance to the origin O, and phi the angle between the X-axis and the line Oz. Now z = r*exp(i*phi) = r*(cos(phi)+i*sin(phi)). .P The basic operations are defined on z = a+b*i and w = c+d*i as: .TP .B addition: z+w = (a+c) + (b+d)*i .TP .B multiplication: z*w = (a*c \- b*d) + (a*d + b*c)*i .TP .B division: z/w = ((a*c + b*d)/(c*c + d*d)) + ((b*c \- a*d)/(c*c + d*d))*i .P Nearly all math function have a complex counterpart but there are some complex-only functions. .SH EXAMPLES Your C-compiler can work with complex numbers if it supports the C99 standard. The imaginary unit is represented by I. .P .EX /* check that exp(i * pi) == \-1 */ #include /* for atan */ #include #include \& int main(void) { double pi = 4 * atan(1.0); double complex z = cexp(I * pi); printf("%f + %f * i\en", creal(z), cimag(z)); } .EE .SH SEE ALSO .BR cabs (3), .BR cacos (3), .BR cacosh (3), .BR carg (3), .BR casin (3), .BR casinh (3), .BR catan (3), .BR catanh (3), .BR ccos (3), .BR ccosh (3), .BR cerf (3), .BR cexp (3), .BR cexp2 (3), .BR cimag (3), .BR clog (3), .BR clog10 (3), .BR clog2 (3), .BR conj (3), .BR cpow (3), .BR cproj (3), .BR creal (3), .BR csin (3), .BR csinh (3), .BR csqrt (3), .BR ctan (3), .BR ctanh (3)