'\" t .\" Copyright 2002 Walter Harms(walter.harms@informatik.uni-oldenburg.de) .\" and Copyright (C) 2011 Michael Kerrisk .\" .\" SPDX-License-Identifier: GPL-1.0-or-later .\" .TH cacosh 3 2023-10-31 "Linux man-pages 6.06" .SH NAME cacosh, cacoshf, cacoshl \- complex arc hyperbolic cosine .SH LIBRARY Math library .RI ( libm ", " \-lm ) .SH SYNOPSIS .nf .B #include .P .BI "double complex cacosh(double complex " z ); .BI "float complex cacoshf(float complex " z ); .BI "long double complex cacoshl(long double complex " z ); .fi .SH DESCRIPTION These functions calculate the complex arc hyperbolic cosine of .IR z . If \fIy\ =\ cacosh(z)\fP, then \fIz\ =\ ccosh(y)\fP. The imaginary part of .I y is chosen in the interval [\-pi,pi]. The real part of .I y is chosen nonnegative. .P One has: .P .nf cacosh(z) = 2 * clog(csqrt((z + 1) / 2) + csqrt((z \- 1) / 2)) .fi .SH ATTRIBUTES For an explanation of the terms used in this section, see .BR attributes (7). .TS allbox; lbx lb lb l l l. Interface Attribute Value T{ .na .nh .BR cacosh (), .BR cacoshf (), .BR cacoshl () T} Thread safety MT-Safe .TE .SH STANDARDS C11, POSIX.1-2008. .SH HISTORY C99, POSIX.1-2001. glibc 2.1. .SH EXAMPLES .\" SRC BEGIN (cacosh.c) .EX /* Link with "\-lm" */ \& #include #include #include #include \& int main(int argc, char *argv[]) { double complex z, c, f; \& if (argc != 3) { fprintf(stderr, "Usage: %s \en", argv[0]); exit(EXIT_FAILURE); } \& z = atof(argv[1]) + atof(argv[2]) * I; \& c = cacosh(z); printf("cacosh() = %6.3f %6.3f*i\en", creal(c), cimag(c)); \& f = 2 * clog(csqrt((z + 1)/2) + csqrt((z \- 1)/2)); printf("formula = %6.3f %6.3f*i\en", creal(f), cimag(f)); \& exit(EXIT_SUCCESS); } .EE .\" SRC END .SH SEE ALSO .BR acosh (3), .BR cabs (3), .BR ccosh (3), .BR cimag (3), .BR complex (7)