'\" t .\" Copyright 2002 Walter Harms (walter.harms@informatik.uni-oldenburg.de) .\" .\" SPDX-License-Identifier: GPL-1.0-or-later .\" .\" Based on glibc infopages .\" and Copyright 2008, Linux Foundation, written by Michael Kerrisk .\" .\" Modified 2004-11-15, fixed error noted by Fabian Kreutz .\" .\" .TH tgamma 3 2023-10-31 "Linux man-pages 6.06" .SH NAME tgamma, tgammaf, tgammal \- true gamma function .SH LIBRARY Math library .RI ( libm ", " \-lm ) .SH SYNOPSIS .nf .B #include .P .BI "double tgamma(double " x ); .BI "float tgammaf(float " x ); .BI "long double tgammal(long double " x ); .fi .P .RS -4 Feature Test Macro Requirements for glibc (see .BR feature_test_macros (7)): .RE .P .BR tgamma (), .BR tgammaf (), .BR tgammal (): .nf _ISOC99_SOURCE || _POSIX_C_SOURCE >= 200112L .fi .SH DESCRIPTION These functions calculate the Gamma function of .IR x . .P The Gamma function is defined by .P .RS Gamma(x) = integral from 0 to infinity of t\[ha](x\-1) e\[ha]\-t dt .RE .P It is defined for every real number except for nonpositive integers. For nonnegative integral .I m one has .P .RS Gamma(m+1) = m! .RE .P and, more generally, for all .IR x : .P .RS Gamma(x+1) = x * Gamma(x) .RE .P Furthermore, the following is valid for all values of .I x outside the poles: .P .RS Gamma(x) * Gamma(1 \- x) = PI / sin(PI * x) .RE .SH RETURN VALUE On success, these functions return Gamma(x). .P If .I x is a NaN, a NaN is returned. .P If .I x is positive infinity, positive infinity is returned. .P If .I x is a negative integer, or is negative infinity, a domain error occurs, and a NaN is returned. .P If the result overflows, a range error occurs, and the functions return .BR HUGE_VAL , .BR HUGE_VALF , or .BR HUGE_VALL , respectively, with the correct mathematical sign. .P If the result underflows, a range error occurs, and the functions return 0, with the correct mathematical sign. .P If .I x is \-0 or +0, a pole error occurs, and the functions return .BR HUGE_VAL , .BR HUGE_VALF , or .BR HUGE_VALL , respectively, with the same sign as the 0. .SH ERRORS See .BR math_error (7) for information on how to determine whether an error has occurred when calling these functions. .P The following errors can occur: .TP Domain error: \fIx\fP is a negative integer, or negative infinity .I errno is set to .BR EDOM . An invalid floating-point exception .RB ( FE_INVALID ) is raised (but see BUGS). .TP Pole error: \fIx\fP is +0 or \-0 .I errno is set to .BR ERANGE . A divide-by-zero floating-point exception .RB ( FE_DIVBYZERO ) is raised. .TP Range error: result overflow .I errno is set to .BR ERANGE . An overflow floating-point exception .RB ( FE_OVERFLOW ) is raised. .P glibc also gives the following error which is not specified in C99 or POSIX.1-2001. .TP Range error: result underflow .\" e.g., tgamma(-172.5) on glibc 2.8/x86-32 .\" .I errno .\" is set to .\" .BR ERANGE . An underflow floating-point exception .RB ( FE_UNDERFLOW ) is raised, and .I errno is set to .BR ERANGE . .\" glibc (as at 2.8) also supports an inexact .\" exception for various cases. .SH ATTRIBUTES For an explanation of the terms used in this section, see .BR attributes (7). .TS allbox; lbx lb lb l l l. Interface Attribute Value T{ .na .nh .BR tgamma (), .BR tgammaf (), .BR tgammal () T} Thread safety MT-Safe .TE .SH STANDARDS C11, POSIX.1-2008. .SH HISTORY glibc 2.1. C99, POSIX.1-2001. .SH NOTES This function had to be called "true gamma function" since there is already a function .BR gamma (3) that returns something else (see .BR gamma (3) for details). .SH BUGS Before glibc 2.18, the glibc implementation of these functions did not set .\" https://www.sourceware.org/bugzilla/show_bug.cgi?id=6809 .I errno to .B EDOM when .I x is negative infinity. .P Before glibc 2.19, .\" https://www.sourceware.org/bugzilla/show_bug.cgi?id=6810 the glibc implementation of these functions did not set .I errno to .B ERANGE on an underflow range error. .P .\" In glibc versions 2.3.3 and earlier, an argument of +0 or \-0 incorrectly produced a domain error .RI ( errno set to .B EDOM and an .B FE_INVALID exception raised), rather than a pole error. .SH SEE ALSO .BR gamma (3), .BR lgamma (3)