'\" t .\" Copyright (C) 2006 Michael Kerrisk .\" .\" SPDX-License-Identifier: Linux-man-pages-copyleft .\" .TH sem_wait 3 2023-03-30 "Linux man-pages 6.04" .SH NAME sem_wait, sem_timedwait, sem_trywait \- lock a semaphore .SH LIBRARY POSIX threads library .RI ( libpthread ", " \-lpthread ) .SH SYNOPSIS .nf .B #include .PP .BI "int sem_wait(sem_t *" sem ); .BI "int sem_trywait(sem_t *" sem ); .BI "int sem_timedwait(sem_t *restrict " sem , .BI " const struct timespec *restrict " abs_timeout ); .fi .PP .RS -4 Feature Test Macro Requirements for glibc (see .BR feature_test_macros (7)): .RE .PP .BR sem_timedwait (): .nf _POSIX_C_SOURCE >= 200112L .fi .SH DESCRIPTION .BR sem_wait () decrements (locks) the semaphore pointed to by .IR sem . If the semaphore's value is greater than zero, then the decrement proceeds, and the function returns, immediately. If the semaphore currently has the value zero, then the call blocks until either it becomes possible to perform the decrement (i.e., the semaphore value rises above zero), or a signal handler interrupts the call. .PP .BR sem_trywait () is the same as .BR sem_wait (), except that if the decrement cannot be immediately performed, then call returns an error .RI ( errno set to .BR EAGAIN ) instead of blocking. .PP .BR sem_timedwait () is the same as .BR sem_wait (), except that .I abs_timeout specifies a limit on the amount of time that the call should block if the decrement cannot be immediately performed. The .I abs_timeout argument points to a .BR timespec (3) structure that specifies an absolute timeout in seconds and nanoseconds since the Epoch, 1970-01-01 00:00:00 +0000 (UTC). .PP If the timeout has already expired by the time of the call, and the semaphore could not be locked immediately, then .BR sem_timedwait () fails with a timeout error .RI ( errno set to .BR ETIMEDOUT ). .PP If the operation can be performed immediately, then .BR sem_timedwait () never fails with a timeout error, regardless of the value of .IR abs_timeout . Furthermore, the validity of .I abs_timeout is not checked in this case. .SH RETURN VALUE All of these functions return 0 on success; on error, the value of the semaphore is left unchanged, \-1 is returned, and .I errno is set to indicate the error. .SH ERRORS .TP .B EAGAIN .RB ( sem_trywait ()) The operation could not be performed without blocking (i.e., the semaphore currently has the value zero). .TP .B EINTR The call was interrupted by a signal handler; see .BR signal (7). .TP .B EINVAL .I sem is not a valid semaphore. .TP .B EINVAL .RB ( sem_timedwait ()) The value of .I abs_timeout.tv_nsecs is less than 0, or greater than or equal to 1000 million. .TP .B ETIMEDOUT .RB ( sem_timedwait ()) The call timed out before the semaphore could be locked. .\" POSIX.1-2001 also allows EDEADLK -- "A deadlock condition .\" was detected", but this does not occur on Linux(?). .SH ATTRIBUTES For an explanation of the terms used in this section, see .BR attributes (7). .ad l .nh .TS allbox; lbx lb lb l l l. Interface Attribute Value T{ .BR sem_wait (), .BR sem_trywait (), .BR sem_timedwait () T} Thread safety MT-Safe .TE .hy .ad .sp 1 .SH STANDARDS POSIX.1-2008. .SH HISTORY POSIX.1-2001. .SH EXAMPLES The (somewhat trivial) program shown below operates on an unnamed semaphore. The program expects two command-line arguments. The first argument specifies a seconds value that is used to set an alarm timer to generate a .B SIGALRM signal. This handler performs a .BR sem_post (3) to increment the semaphore that is being waited on in .I main() using .BR sem_timedwait (). The second command-line argument specifies the length of the timeout, in seconds, for .BR sem_timedwait (). The following shows what happens on two different runs of the program: .PP .in +4n .EX .RB "$" " ./a.out 2 3" About to call sem_timedwait() sem_post() from handler sem_timedwait() succeeded .RB "$" " ./a.out 2 1" About to call sem_timedwait() sem_timedwait() timed out .EE .in .SS Program source \& .\" SRC BEGIN (sem_wait.c) .EX #include #include #include #include #include #include #include #include sem_t sem; #define handle_error(msg) \e do { perror(msg); exit(EXIT_FAILURE); } while (0) static void handler(int sig) { write(STDOUT_FILENO, "sem_post() from handler\en", 24); if (sem_post(&sem) == \-1) { write(STDERR_FILENO, "sem_post() failed\en", 18); _exit(EXIT_FAILURE); } } int main(int argc, char *argv[]) { struct sigaction sa; struct timespec ts; int s; if (argc != 3) { fprintf(stderr, "Usage: %s \en", argv[0]); exit(EXIT_FAILURE); } if (sem_init(&sem, 0, 0) == \-1) handle_error("sem_init"); /* Establish SIGALRM handler; set alarm timer using argv[1]. */ sa.sa_handler = handler; sigemptyset(&sa.sa_mask); sa.sa_flags = 0; if (sigaction(SIGALRM, &sa, NULL) == \-1) handle_error("sigaction"); alarm(atoi(argv[1])); /* Calculate relative interval as current time plus number of seconds given argv[2]. */ if (clock_gettime(CLOCK_REALTIME, &ts) == \-1) handle_error("clock_gettime"); ts.tv_sec += atoi(argv[2]); printf("%s() about to call sem_timedwait()\en", __func__); while ((s = sem_timedwait(&sem, &ts)) == \-1 && errno == EINTR) continue; /* Restart if interrupted by handler. */ /* Check what happened. */ if (s == \-1) { if (errno == ETIMEDOUT) printf("sem_timedwait() timed out\en"); else perror("sem_timedwait"); } else printf("sem_timedwait() succeeded\en"); exit((s == 0) ? EXIT_SUCCESS : EXIT_FAILURE); } .EE .\" SRC END .SH SEE ALSO .BR clock_gettime (2), .BR sem_getvalue (3), .BR sem_post (3), .BR timespec (3), .BR sem_overview (7), .BR time (7)