1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
|
.\" -*- mode: troff; coding: utf-8 -*-
.\" Automatically generated by Pod::Man 5.01 (Pod::Simple 3.43)
.\"
.\" Standard preamble:
.\" ========================================================================
.de Sp \" Vertical space (when we can't use .PP)
.if t .sp .5v
.if n .sp
..
.de Vb \" Begin verbatim text
.ft CW
.nf
.ne \\$1
..
.de Ve \" End verbatim text
.ft R
.fi
..
.\" \*(C` and \*(C' are quotes in nroff, nothing in troff, for use with C<>.
.ie n \{\
. ds C` ""
. ds C' ""
'br\}
.el\{\
. ds C`
. ds C'
'br\}
.\"
.\" Escape single quotes in literal strings from groff's Unicode transform.
.ie \n(.g .ds Aq \(aq
.el .ds Aq '
.\"
.\" If the F register is >0, we'll generate index entries on stderr for
.\" titles (.TH), headers (.SH), subsections (.SS), items (.Ip), and index
.\" entries marked with X<> in POD. Of course, you'll have to process the
.\" output yourself in some meaningful fashion.
.\"
.\" Avoid warning from groff about undefined register 'F'.
.de IX
..
.nr rF 0
.if \n(.g .if rF .nr rF 1
.if (\n(rF:(\n(.g==0)) \{\
. if \nF \{\
. de IX
. tm Index:\\$1\t\\n%\t"\\$2"
..
. if !\nF==2 \{\
. nr % 0
. nr F 2
. \}
. \}
.\}
.rr rF
.\" ========================================================================
.\"
.IX Title "Math::BigRat 3perl"
.TH Math::BigRat 3perl 2024-02-11 "perl v5.38.2" "Perl Programmers Reference Guide"
.\" For nroff, turn off justification. Always turn off hyphenation; it makes
.\" way too many mistakes in technical documents.
.if n .ad l
.nh
.SH NAME
Math::BigRat \- arbitrary size rational number math package
.SH SYNOPSIS
.IX Header "SYNOPSIS"
.Vb 1
\& use Math::BigRat;
\&
\& my $x = Math::BigRat\->new(\*(Aq3/7\*(Aq); $x += \*(Aq5/9\*(Aq;
\&
\& print $x\->bstr(), "\en";
\& print $x ** 2, "\en";
\&
\& my $y = Math::BigRat\->new(\*(Aqinf\*(Aq);
\& print "$y ", ($y\->is_inf ? \*(Aqis\*(Aq : \*(Aqis not\*(Aq), " infinity\en";
\&
\& my $z = Math::BigRat\->new(144); $z\->bsqrt();
.Ve
.SH DESCRIPTION
.IX Header "DESCRIPTION"
Math::BigRat complements Math::BigInt and Math::BigFloat by providing support
for arbitrary big rational numbers.
.SS "MATH LIBRARY"
.IX Subsection "MATH LIBRARY"
You can change the underlying module that does the low-level
math operations by using:
.PP
.Vb 1
\& use Math::BigRat try => \*(AqGMP\*(Aq;
.Ve
.PP
Note: This needs Math::BigInt::GMP installed.
.PP
The following would first try to find Math::BigInt::Foo, then
Math::BigInt::Bar, and when this also fails, revert to Math::BigInt::Calc:
.PP
.Vb 1
\& use Math::BigRat try => \*(AqFoo,Math::BigInt::Bar\*(Aq;
.Ve
.PP
If you want to get warned when the fallback occurs, replace "try" with "lib":
.PP
.Vb 1
\& use Math::BigRat lib => \*(AqFoo,Math::BigInt::Bar\*(Aq;
.Ve
.PP
If you want the code to die instead, replace "try" with "only":
.PP
.Vb 1
\& use Math::BigRat only => \*(AqFoo,Math::BigInt::Bar\*(Aq;
.Ve
.SH METHODS
.IX Header "METHODS"
Any methods not listed here are derived from Math::BigFloat (or
Math::BigInt), so make sure you check these two modules for further
information.
.IP \fBnew()\fR 4
.IX Item "new()"
.Vb 1
\& $x = Math::BigRat\->new(\*(Aq1/3\*(Aq);
.Ve
.Sp
Create a new Math::BigRat object. Input can come in various forms:
.Sp
.Vb 9
\& $x = Math::BigRat\->new(123); # scalars
\& $x = Math::BigRat\->new(\*(Aqinf\*(Aq); # infinity
\& $x = Math::BigRat\->new(\*(Aq123.3\*(Aq); # float
\& $x = Math::BigRat\->new(\*(Aq1/3\*(Aq); # simple string
\& $x = Math::BigRat\->new(\*(Aq1 / 3\*(Aq); # spaced
\& $x = Math::BigRat\->new(\*(Aq1 / 0.1\*(Aq); # w/ floats
\& $x = Math::BigRat\->new(Math::BigInt\->new(3)); # BigInt
\& $x = Math::BigRat\->new(Math::BigFloat\->new(\*(Aq3.1\*(Aq)); # BigFloat
\& $x = Math::BigRat\->new(Math::BigInt::Lite\->new(\*(Aq2\*(Aq)); # BigLite
\&
\& # You can also give D and N as different objects:
\& $x = Math::BigRat\->new(
\& Math::BigInt\->new(\-123),
\& Math::BigInt\->new(7),
\& ); # => \-123/7
.Ve
.IP \fBnumerator()\fR 4
.IX Item "numerator()"
.Vb 1
\& $n = $x\->numerator();
.Ve
.Sp
Returns a copy of the numerator (the part above the line) as signed BigInt.
.IP \fBdenominator()\fR 4
.IX Item "denominator()"
.Vb 1
\& $d = $x\->denominator();
.Ve
.Sp
Returns a copy of the denominator (the part under the line) as positive BigInt.
.IP \fBparts()\fR 4
.IX Item "parts()"
.Vb 1
\& ($n, $d) = $x\->parts();
.Ve
.Sp
Return a list consisting of (signed) numerator and (unsigned) denominator as
BigInts.
.IP \fBdparts()\fR 4
.IX Item "dparts()"
Returns the integer part and the fraction part.
.IP \fBfparts()\fR 4
.IX Item "fparts()"
Returns the smallest possible numerator and denominator so that the numerator
divided by the denominator gives back the original value. For finite numbers,
both values are integers. Mnemonic: fraction.
.IP \fBnumify()\fR 4
.IX Item "numify()"
.Vb 1
\& my $y = $x\->numify();
.Ve
.Sp
Returns the object as a scalar. This will lose some data if the object
cannot be represented by a normal Perl scalar (integer or float), so
use "\fBas_int()\fR" or "\fBas_float()\fR" instead.
.Sp
This routine is automatically used whenever a scalar is required:
.Sp
.Vb 3
\& my $x = Math::BigRat\->new(\*(Aq3/1\*(Aq);
\& @array = (0, 1, 2, 3);
\& $y = $array[$x]; # set $y to 3
.Ve
.IP \fBas_int()\fR 4
.IX Item "as_int()"
.PD 0
.IP \fBas_number()\fR 4
.IX Item "as_number()"
.PD
.Vb 2
\& $x = Math::BigRat\->new(\*(Aq13/7\*(Aq);
\& print $x\->as_int(), "\en"; # \*(Aq1\*(Aq
.Ve
.Sp
Returns a copy of the object as BigInt, truncated to an integer.
.Sp
\&\f(CWas_number()\fR is an alias for \f(CWas_int()\fR.
.IP \fBas_float()\fR 4
.IX Item "as_float()"
.Vb 2
\& $x = Math::BigRat\->new(\*(Aq13/7\*(Aq);
\& print $x\->as_float(), "\en"; # \*(Aq1\*(Aq
\&
\& $x = Math::BigRat\->new(\*(Aq2/3\*(Aq);
\& print $x\->as_float(5), "\en"; # \*(Aq0.66667\*(Aq
.Ve
.Sp
Returns a copy of the object as BigFloat, preserving the
accuracy as wanted, or the default of 40 digits.
.Sp
This method was added in v0.22 of Math::BigRat (April 2008).
.IP \fBas_hex()\fR 4
.IX Item "as_hex()"
.Vb 2
\& $x = Math::BigRat\->new(\*(Aq13\*(Aq);
\& print $x\->as_hex(), "\en"; # \*(Aq0xd\*(Aq
.Ve
.Sp
Returns the BigRat as hexadecimal string. Works only for integers.
.IP \fBas_bin()\fR 4
.IX Item "as_bin()"
.Vb 2
\& $x = Math::BigRat\->new(\*(Aq13\*(Aq);
\& print $x\->as_bin(), "\en"; # \*(Aq0x1101\*(Aq
.Ve
.Sp
Returns the BigRat as binary string. Works only for integers.
.IP \fBas_oct()\fR 4
.IX Item "as_oct()"
.Vb 2
\& $x = Math::BigRat\->new(\*(Aq13\*(Aq);
\& print $x\->as_oct(), "\en"; # \*(Aq015\*(Aq
.Ve
.Sp
Returns the BigRat as octal string. Works only for integers.
.IP \fBfrom_hex()\fR 4
.IX Item "from_hex()"
.Vb 1
\& my $h = Math::BigRat\->from_hex(\*(Aq0x10\*(Aq);
.Ve
.Sp
Create a BigRat from a hexadecimal number in string form.
.IP \fBfrom_oct()\fR 4
.IX Item "from_oct()"
.Vb 1
\& my $o = Math::BigRat\->from_oct(\*(Aq020\*(Aq);
.Ve
.Sp
Create a BigRat from an octal number in string form.
.IP \fBfrom_bin()\fR 4
.IX Item "from_bin()"
.Vb 1
\& my $b = Math::BigRat\->from_bin(\*(Aq0b10000000\*(Aq);
.Ve
.Sp
Create a BigRat from an binary number in string form.
.IP \fBbnan()\fR 4
.IX Item "bnan()"
.Vb 1
\& $x = Math::BigRat\->bnan();
.Ve
.Sp
Creates a new BigRat object representing NaN (Not A Number).
If used on an object, it will set it to NaN:
.Sp
.Vb 1
\& $x\->bnan();
.Ve
.IP \fBbzero()\fR 4
.IX Item "bzero()"
.Vb 1
\& $x = Math::BigRat\->bzero();
.Ve
.Sp
Creates a new BigRat object representing zero.
If used on an object, it will set it to zero:
.Sp
.Vb 1
\& $x\->bzero();
.Ve
.IP \fBbinf()\fR 4
.IX Item "binf()"
.Vb 1
\& $x = Math::BigRat\->binf($sign);
.Ve
.Sp
Creates a new BigRat object representing infinity. The optional argument is
either '\-' or '+', indicating whether you want infinity or minus infinity.
If used on an object, it will set it to infinity:
.Sp
.Vb 2
\& $x\->binf();
\& $x\->binf(\*(Aq\-\*(Aq);
.Ve
.IP \fBbone()\fR 4
.IX Item "bone()"
.Vb 1
\& $x = Math::BigRat\->bone($sign);
.Ve
.Sp
Creates a new BigRat object representing one. The optional argument is
either '\-' or '+', indicating whether you want one or minus one.
If used on an object, it will set it to one:
.Sp
.Vb 2
\& $x\->bone(); # +1
\& $x\->bone(\*(Aq\-\*(Aq); # \-1
.Ve
.IP \fBlength()\fR 4
.IX Item "length()"
.Vb 1
\& $len = $x\->length();
.Ve
.Sp
Return the length of \f(CW$x\fR in digits for integer values.
.IP \fBdigit()\fR 4
.IX Item "digit()"
.Vb 2
\& print Math::BigRat\->new(\*(Aq123/1\*(Aq)\->digit(1); # 1
\& print Math::BigRat\->new(\*(Aq123/1\*(Aq)\->digit(\-1); # 3
.Ve
.Sp
Return the N'ths digit from X when X is an integer value.
.IP \fBbnorm()\fR 4
.IX Item "bnorm()"
.Vb 1
\& $x\->bnorm();
.Ve
.Sp
Reduce the number to the shortest form. This routine is called
automatically whenever it is needed.
.IP \fBbfac()\fR 4
.IX Item "bfac()"
.Vb 1
\& $x\->bfac();
.Ve
.Sp
Calculates the factorial of \f(CW$x\fR. For instance:
.Sp
.Vb 2
\& print Math::BigRat\->new(\*(Aq3/1\*(Aq)\->bfac(), "\en"; # 1*2*3
\& print Math::BigRat\->new(\*(Aq5/1\*(Aq)\->bfac(), "\en"; # 1*2*3*4*5
.Ve
.Sp
Works currently only for integers.
.IP \fBbround()\fR/\fBround()\fR/\fBbfround()\fR 4
.IX Item "bround()/round()/bfround()"
Are not yet implemented.
.IP \fBbmod()\fR 4
.IX Item "bmod()"
.Vb 1
\& $x\->bmod($y);
.Ve
.Sp
Returns \f(CW$x\fR modulo \f(CW$y\fR. When \f(CW$x\fR is finite, and \f(CW$y\fR is finite and non-zero, the
result is identical to the remainder after floored division (F\-division). If,
in addition, both \f(CW$x\fR and \f(CW$y\fR are integers, the result is identical to the result
from Perl's % operator.
.IP \fBbmodinv()\fR 4
.IX Item "bmodinv()"
.Vb 1
\& $x\->bmodinv($mod); # modular multiplicative inverse
.Ve
.Sp
Returns the multiplicative inverse of \f(CW$x\fR modulo \f(CW$mod\fR. If
.Sp
.Vb 1
\& $y = $x \-> copy() \-> bmodinv($mod)
.Ve
.Sp
then \f(CW$y\fR is the number closest to zero, and with the same sign as \f(CW$mod\fR,
satisfying
.Sp
.Vb 1
\& ($x * $y) % $mod = 1 % $mod
.Ve
.Sp
If \f(CW$x\fR and \f(CW$y\fR are non-zero, they must be relative primes, i.e.,
\&\f(CW\*(C`bgcd($y, $mod)==1\*(C'\fR. '\f(CW\*(C`NaN\*(C'\fR' is returned when no modular multiplicative
inverse exists.
.IP \fBbmodpow()\fR 4
.IX Item "bmodpow()"
.Vb 2
\& $num\->bmodpow($exp,$mod); # modular exponentiation
\& # ($num**$exp % $mod)
.Ve
.Sp
Returns the value of \f(CW$num\fR taken to the power \f(CW$exp\fR in the modulus
\&\f(CW$mod\fR using binary exponentiation. \f(CW\*(C`bmodpow\*(C'\fR is far superior to
writing
.Sp
.Vb 1
\& $num ** $exp % $mod
.Ve
.Sp
because it is much faster \- it reduces internal variables into
the modulus whenever possible, so it operates on smaller numbers.
.Sp
\&\f(CW\*(C`bmodpow\*(C'\fR also supports negative exponents.
.Sp
.Vb 1
\& bmodpow($num, \-1, $mod)
.Ve
.Sp
is exactly equivalent to
.Sp
.Vb 1
\& bmodinv($num, $mod)
.Ve
.IP \fBbneg()\fR 4
.IX Item "bneg()"
.Vb 1
\& $x\->bneg();
.Ve
.Sp
Used to negate the object in-place.
.IP \fBis_one()\fR 4
.IX Item "is_one()"
.Vb 1
\& print "$x is 1\en" if $x\->is_one();
.Ve
.Sp
Return true if \f(CW$x\fR is exactly one, otherwise false.
.IP \fBis_zero()\fR 4
.IX Item "is_zero()"
.Vb 1
\& print "$x is 0\en" if $x\->is_zero();
.Ve
.Sp
Return true if \f(CW$x\fR is exactly zero, otherwise false.
.IP \fBis_pos()\fR/\fBis_positive()\fR 4
.IX Item "is_pos()/is_positive()"
.Vb 1
\& print "$x is >= 0\en" if $x\->is_positive();
.Ve
.Sp
Return true if \f(CW$x\fR is positive (greater than or equal to zero), otherwise
false. Please note that '+inf' is also positive, while 'NaN' and '\-inf' aren't.
.Sp
\&\f(CWis_positive()\fR is an alias for \f(CWis_pos()\fR.
.IP \fBis_neg()\fR/\fBis_negative()\fR 4
.IX Item "is_neg()/is_negative()"
.Vb 1
\& print "$x is < 0\en" if $x\->is_negative();
.Ve
.Sp
Return true if \f(CW$x\fR is negative (smaller than zero), otherwise false. Please
note that '\-inf' is also negative, while 'NaN' and '+inf' aren't.
.Sp
\&\f(CWis_negative()\fR is an alias for \f(CWis_neg()\fR.
.IP \fBis_int()\fR 4
.IX Item "is_int()"
.Vb 1
\& print "$x is an integer\en" if $x\->is_int();
.Ve
.Sp
Return true if \f(CW$x\fR has a denominator of 1 (e.g. no fraction parts), otherwise
false. Please note that '\-inf', 'inf' and 'NaN' aren't integer.
.IP \fBis_odd()\fR 4
.IX Item "is_odd()"
.Vb 1
\& print "$x is odd\en" if $x\->is_odd();
.Ve
.Sp
Return true if \f(CW$x\fR is odd, otherwise false.
.IP \fBis_even()\fR 4
.IX Item "is_even()"
.Vb 1
\& print "$x is even\en" if $x\->is_even();
.Ve
.Sp
Return true if \f(CW$x\fR is even, otherwise false.
.IP \fBbceil()\fR 4
.IX Item "bceil()"
.Vb 1
\& $x\->bceil();
.Ve
.Sp
Set \f(CW$x\fR to the next bigger integer value (e.g. truncate the number to integer
and then increment it by one).
.IP \fBbfloor()\fR 4
.IX Item "bfloor()"
.Vb 1
\& $x\->bfloor();
.Ve
.Sp
Truncate \f(CW$x\fR to an integer value.
.IP \fBbint()\fR 4
.IX Item "bint()"
.Vb 1
\& $x\->bint();
.Ve
.Sp
Round \f(CW$x\fR towards zero.
.IP \fBbsqrt()\fR 4
.IX Item "bsqrt()"
.Vb 1
\& $x\->bsqrt();
.Ve
.Sp
Calculate the square root of \f(CW$x\fR.
.IP \fBbroot()\fR 4
.IX Item "broot()"
.Vb 1
\& $x\->broot($n);
.Ve
.Sp
Calculate the N'th root of \f(CW$x\fR.
.IP \fBbadd()\fR 4
.IX Item "badd()"
.Vb 1
\& $x\->badd($y);
.Ve
.Sp
Adds \f(CW$y\fR to \f(CW$x\fR and returns the result.
.IP \fBbmul()\fR 4
.IX Item "bmul()"
.Vb 1
\& $x\->bmul($y);
.Ve
.Sp
Multiplies \f(CW$y\fR to \f(CW$x\fR and returns the result.
.IP \fBbsub()\fR 4
.IX Item "bsub()"
.Vb 1
\& $x\->bsub($y);
.Ve
.Sp
Subtracts \f(CW$y\fR from \f(CW$x\fR and returns the result.
.IP \fBbdiv()\fR 4
.IX Item "bdiv()"
.Vb 2
\& $q = $x\->bdiv($y);
\& ($q, $r) = $x\->bdiv($y);
.Ve
.Sp
In scalar context, divides \f(CW$x\fR by \f(CW$y\fR and returns the result. In list context,
does floored division (F\-division), returning an integer \f(CW$q\fR and a remainder \f(CW$r\fR
so that \f(CW$x\fR = \f(CW$q\fR * \f(CW$y\fR + \f(CW$r\fR. The remainer (modulo) is equal to what is returned
by \f(CW\*(C`$x\->bmod($y)\*(C'\fR.
.IP \fBbinv()\fR 4
.IX Item "binv()"
.Vb 1
\& $x\->binv();
.Ve
.Sp
Inverse of \f(CW$x\fR.
.IP \fBbdec()\fR 4
.IX Item "bdec()"
.Vb 1
\& $x\->bdec();
.Ve
.Sp
Decrements \f(CW$x\fR by 1 and returns the result.
.IP \fBbinc()\fR 4
.IX Item "binc()"
.Vb 1
\& $x\->binc();
.Ve
.Sp
Increments \f(CW$x\fR by 1 and returns the result.
.IP \fBcopy()\fR 4
.IX Item "copy()"
.Vb 1
\& my $z = $x\->copy();
.Ve
.Sp
Makes a deep copy of the object.
.Sp
Please see the documentation in Math::BigInt for further details.
.IP \fBbstr()\fR/\fBbsstr()\fR 4
.IX Item "bstr()/bsstr()"
.Vb 3
\& my $x = Math::BigRat\->new(\*(Aq8/4\*(Aq);
\& print $x\->bstr(), "\en"; # prints 1/2
\& print $x\->bsstr(), "\en"; # prints 1/2
.Ve
.Sp
Return a string representing this object.
.IP \fBbcmp()\fR 4
.IX Item "bcmp()"
.Vb 1
\& $x\->bcmp($y);
.Ve
.Sp
Compares \f(CW$x\fR with \f(CW$y\fR and takes the sign into account.
Returns \-1, 0, 1 or undef.
.IP \fBbacmp()\fR 4
.IX Item "bacmp()"
.Vb 1
\& $x\->bacmp($y);
.Ve
.Sp
Compares \f(CW$x\fR with \f(CW$y\fR while ignoring their sign. Returns \-1, 0, 1 or undef.
.IP \fBbeq()\fR 4
.IX Item "beq()"
.Vb 1
\& $x \-> beq($y);
.Ve
.Sp
Returns true if and only if \f(CW$x\fR is equal to \f(CW$y\fR, and false otherwise.
.IP \fBbne()\fR 4
.IX Item "bne()"
.Vb 1
\& $x \-> bne($y);
.Ve
.Sp
Returns true if and only if \f(CW$x\fR is not equal to \f(CW$y\fR, and false otherwise.
.IP \fBblt()\fR 4
.IX Item "blt()"
.Vb 1
\& $x \-> blt($y);
.Ve
.Sp
Returns true if and only if \f(CW$x\fR is equal to \f(CW$y\fR, and false otherwise.
.IP \fBble()\fR 4
.IX Item "ble()"
.Vb 1
\& $x \-> ble($y);
.Ve
.Sp
Returns true if and only if \f(CW$x\fR is less than or equal to \f(CW$y\fR, and false
otherwise.
.IP \fBbgt()\fR 4
.IX Item "bgt()"
.Vb 1
\& $x \-> bgt($y);
.Ve
.Sp
Returns true if and only if \f(CW$x\fR is greater than \f(CW$y\fR, and false otherwise.
.IP \fBbge()\fR 4
.IX Item "bge()"
.Vb 1
\& $x \-> bge($y);
.Ve
.Sp
Returns true if and only if \f(CW$x\fR is greater than or equal to \f(CW$y\fR, and false
otherwise.
.IP \fBblsft()\fR/\fBbrsft()\fR 4
.IX Item "blsft()/brsft()"
Used to shift numbers left/right.
.Sp
Please see the documentation in Math::BigInt for further details.
.IP \fBband()\fR 4
.IX Item "band()"
.Vb 1
\& $x\->band($y); # bitwise and
.Ve
.IP \fBbior()\fR 4
.IX Item "bior()"
.Vb 1
\& $x\->bior($y); # bitwise inclusive or
.Ve
.IP \fBbxor()\fR 4
.IX Item "bxor()"
.Vb 1
\& $x\->bxor($y); # bitwise exclusive or
.Ve
.IP \fBbnot()\fR 4
.IX Item "bnot()"
.Vb 1
\& $x\->bnot(); # bitwise not (two\*(Aqs complement)
.Ve
.IP \fBbpow()\fR 4
.IX Item "bpow()"
.Vb 1
\& $x\->bpow($y);
.Ve
.Sp
Compute \f(CW$x\fR ** \f(CW$y\fR.
.Sp
Please see the documentation in Math::BigInt for further details.
.IP \fBblog()\fR 4
.IX Item "blog()"
.Vb 1
\& $x\->blog($base, $accuracy); # logarithm of x to the base $base
.Ve
.Sp
If \f(CW$base\fR is not defined, Euler's number (e) is used:
.Sp
.Vb 1
\& print $x\->blog(undef, 100); # log(x) to 100 digits
.Ve
.IP \fBbexp()\fR 4
.IX Item "bexp()"
.Vb 1
\& $x\->bexp($accuracy); # calculate e ** X
.Ve
.Sp
Calculates two integers A and B so that A/B is equal to \f(CW\*(C`e ** $x\*(C'\fR, where \f(CW\*(C`e\*(C'\fR is
Euler's number.
.Sp
This method was added in v0.20 of Math::BigRat (May 2007).
.Sp
See also \f(CWblog()\fR.
.IP \fBbnok()\fR 4
.IX Item "bnok()"
.Vb 1
\& $x\->bnok($y); # x over y (binomial coefficient n over k)
.Ve
.Sp
Calculates the binomial coefficient n over k, also called the "choose"
function. The result is equivalent to:
.Sp
.Vb 3
\& ( n ) n!
\& | \- | = \-\-\-\-\-\-\-
\& ( k ) k!(n\-k)!
.Ve
.Sp
This method was added in v0.20 of Math::BigRat (May 2007).
.IP \fBconfig()\fR 4
.IX Item "config()"
.Vb 2
\& Math::BigRat\->config("trap_nan" => 1); # set
\& $accu = Math::BigRat\->config("accuracy"); # get
.Ve
.Sp
Set or get configuration parameter values. Read-only parameters are marked as
RO. Read-write parameters are marked as RW. The following parameters are
supported.
.Sp
.Vb 10
\& Parameter RO/RW Description
\& Example
\& ============================================================
\& lib RO Name of the math backend library
\& Math::BigInt::Calc
\& lib_version RO Version of the math backend library
\& 0.30
\& class RO The class of config you just called
\& Math::BigRat
\& version RO version number of the class you used
\& 0.10
\& upgrade RW To which class numbers are upgraded
\& undef
\& downgrade RW To which class numbers are downgraded
\& undef
\& precision RW Global precision
\& undef
\& accuracy RW Global accuracy
\& undef
\& round_mode RW Global round mode
\& even
\& div_scale RW Fallback accuracy for div, sqrt etc.
\& 40
\& trap_nan RW Trap NaNs
\& undef
\& trap_inf RW Trap +inf/\-inf
\& undef
.Ve
.SH "NUMERIC LITERALS"
.IX Header "NUMERIC LITERALS"
After \f(CW\*(C`use Math::BigRat \*(Aq:constant\*(Aq\*(C'\fR all numeric literals in the given scope
are converted to \f(CW\*(C`Math::BigRat\*(C'\fR objects. This conversion happens at compile
time. Every non-integer is convert to a NaN.
.PP
For example,
.PP
.Vb 1
\& perl \-MMath::BigRat=:constant \-le \*(Aqprint 2**150\*(Aq
.Ve
.PP
prints the exact value of \f(CW\*(C`2**150\*(C'\fR. Note that without conversion of constants
to objects the expression \f(CW\*(C`2**150\*(C'\fR is calculated using Perl scalars, which
leads to an inaccurate result.
.PP
Please note that strings are not affected, so that
.PP
.Vb 1
\& use Math::BigRat qw/:constant/;
\&
\& $x = "1234567890123456789012345678901234567890"
\& + "123456789123456789";
.Ve
.PP
does give you what you expect. You need an explicit Math::BigRat\->\fBnew()\fR around
at least one of the operands. You should also quote large constants to prevent
loss of precision:
.PP
.Vb 1
\& use Math::BigRat;
\&
\& $x = Math::BigRat\->new("1234567889123456789123456789123456789");
.Ve
.PP
Without the quotes Perl first converts the large number to a floating point
constant at compile time, and then converts the result to a Math::BigRat object
at run time, which results in an inaccurate result.
.SS "Hexadecimal, octal, and binary floating point literals"
.IX Subsection "Hexadecimal, octal, and binary floating point literals"
Perl (and this module) accepts hexadecimal, octal, and binary floating point
literals, but use them with care with Perl versions before v5.32.0, because some
versions of Perl silently give the wrong result. Below are some examples of
different ways to write the number decimal 314.
.PP
Hexadecimal floating point literals:
.PP
.Vb 3
\& 0x1.3ap+8 0X1.3AP+8
\& 0x1.3ap8 0X1.3AP8
\& 0x13a0p\-4 0X13A0P\-4
.Ve
.PP
Octal floating point literals (with "0" prefix):
.PP
.Vb 3
\& 01.164p+8 01.164P+8
\& 01.164p8 01.164P8
\& 011640p\-4 011640P\-4
.Ve
.PP
Octal floating point literals (with "0o" prefix) (requires v5.34.0):
.PP
.Vb 3
\& 0o1.164p+8 0O1.164P+8
\& 0o1.164p8 0O1.164P8
\& 0o11640p\-4 0O11640P\-4
.Ve
.PP
Binary floating point literals:
.PP
.Vb 3
\& 0b1.0011101p+8 0B1.0011101P+8
\& 0b1.0011101p8 0B1.0011101P8
\& 0b10011101000p\-2 0B10011101000P\-2
.Ve
.SH BUGS
.IX Header "BUGS"
Please report any bugs or feature requests to
\&\f(CW\*(C`bug\-math\-bigrat at rt.cpan.org\*(C'\fR, or through the web interface at
<https://rt.cpan.org/Ticket/Create.html?Queue=Math\-BigRat>
(requires login).
We will be notified, and then you'll automatically be notified of progress on
your bug as I make changes.
.SH SUPPORT
.IX Header "SUPPORT"
You can find documentation for this module with the perldoc command.
.PP
.Vb 1
\& perldoc Math::BigRat
.Ve
.PP
You can also look for information at:
.IP \(bu 4
GitHub
.Sp
<https://github.com/pjacklam/p5\-Math\-BigRat>
.IP \(bu 4
RT: CPAN's request tracker
.Sp
<https://rt.cpan.org/Dist/Display.html?Name=Math\-BigRat>
.IP \(bu 4
MetaCPAN
.Sp
<https://metacpan.org/release/Math\-BigRat>
.IP \(bu 4
CPAN Testers Matrix
.Sp
<http://matrix.cpantesters.org/?dist=Math\-BigRat>
.IP \(bu 4
CPAN Ratings
.Sp
<https://cpanratings.perl.org/dist/Math\-BigRat>
.SH LICENSE
.IX Header "LICENSE"
This program is free software; you may redistribute it and/or modify it under
the same terms as Perl itself.
.SH "SEE ALSO"
.IX Header "SEE ALSO"
bigrat, Math::BigFloat and Math::BigInt as well as the backends
Math::BigInt::FastCalc, Math::BigInt::GMP, and Math::BigInt::Pari.
.SH AUTHORS
.IX Header "AUTHORS"
.IP \(bu 4
Tels <http://bloodgate.com/> 2001\-2009.
.IP \(bu 4
Maintained by Peter John Acklam <pjacklam@gmail.com> 2011\-
|