1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
|
.\" -*- mode: troff; coding: utf-8 -*-
.\" Automatically generated by Pod::Man 5.01 (Pod::Simple 3.43)
.\"
.\" Standard preamble:
.\" ========================================================================
.de Sp \" Vertical space (when we can't use .PP)
.if t .sp .5v
.if n .sp
..
.de Vb \" Begin verbatim text
.ft CW
.nf
.ne \\$1
..
.de Ve \" End verbatim text
.ft R
.fi
..
.\" \*(C` and \*(C' are quotes in nroff, nothing in troff, for use with C<>.
.ie n \{\
. ds C` ""
. ds C' ""
'br\}
.el\{\
. ds C`
. ds C'
'br\}
.\"
.\" Escape single quotes in literal strings from groff's Unicode transform.
.ie \n(.g .ds Aq \(aq
.el .ds Aq '
.\"
.\" If the F register is >0, we'll generate index entries on stderr for
.\" titles (.TH), headers (.SH), subsections (.SS), items (.Ip), and index
.\" entries marked with X<> in POD. Of course, you'll have to process the
.\" output yourself in some meaningful fashion.
.\"
.\" Avoid warning from groff about undefined register 'F'.
.de IX
..
.nr rF 0
.if \n(.g .if rF .nr rF 1
.if (\n(rF:(\n(.g==0)) \{\
. if \nF \{\
. de IX
. tm Index:\\$1\t\\n%\t"\\$2"
..
. if !\nF==2 \{\
. nr % 0
. nr F 2
. \}
. \}
.\}
.rr rF
.\" ========================================================================
.\"
.IX Title "bignum 3perl"
.TH bignum 3perl 2024-01-12 "perl v5.38.2" "Perl Programmers Reference Guide"
.\" For nroff, turn off justification. Always turn off hyphenation; it makes
.\" way too many mistakes in technical documents.
.if n .ad l
.nh
.SH NAME
bignum \- transparent big number support for Perl
.SH SYNOPSIS
.IX Header "SYNOPSIS"
.Vb 1
\& use bignum;
\&
\& $x = 2 + 4.5; # Math::BigFloat 6.5
\& print 2 ** 512 * 0.1; # Math::BigFloat 134...09.6
\& print 2 ** 512; # Math::BigInt 134...096
\& print inf + 42; # Math::BigInt inf
\& print NaN * 7; # Math::BigInt NaN
\& print hex("0x1234567890123490"); # Perl v5.10.0 or later
\&
\& {
\& no bignum;
\& print 2 ** 256; # a normal Perl scalar now
\& }
\&
\& # for older Perls, import into current package:
\& use bignum qw/hex oct/;
\& print hex("0x1234567890123490");
\& print oct("01234567890123490");
.Ve
.SH DESCRIPTION
.IX Header "DESCRIPTION"
.SS "Literal numeric constants"
.IX Subsection "Literal numeric constants"
By default, every literal integer becomes a Math::BigInt object, and literal
non-integer becomes a Math::BigFloat object. Whether a numeric literal is
considered an integer or non-integers depends only on the value of the constant,
not on how it is represented. For instance, the constants 3.14e2 and 0x1.3ap8
become Math::BigInt objects, because they both represent the integer value
decimal 314.
.PP
The default \f(CW\*(C`use bignum;\*(C'\fR is equivalent to
.PP
.Vb 1
\& use bignum downgrade => "Math::BigInt", upgrade => "Math::BigFloat";
.Ve
.PP
The classes used for integers and non-integers can be set at compile time with
the \f(CW\*(C`downgrade\*(C'\fR and \f(CW\*(C`upgrade\*(C'\fR options, for example
.PP
.Vb 2
\& # use Math::BigInt for integers and Math::BigRat for non\-integers
\& use bignum upgrade => "Math::BigRat";
.Ve
.PP
Note that disabling downgrading and upgrading does not affect how numeric
literals are converted to objects
.PP
.Vb 4
\& # disable both downgrading and upgrading
\& use bignum downgrade => undef, upgrade => undef;
\& $x = 2.4; # becomes 2.4 as a Math::BigFloat
\& $y = 2; # becomes 2 as a Math::BigInt
.Ve
.SS "Upgrading and downgrading"
.IX Subsection "Upgrading and downgrading"
By default, when the result of a computation is an integer, an Inf, or a NaN,
the result is downgraded even when all the operands are instances of the upgrade
class.
.PP
.Vb 4
\& use bignum;
\& $x = 2.4; # becomes 2.4 as a Math::BigFloat
\& $y = 1.2; # becomes 1.2 as a Math::BigFloat
\& $z = $x / $y; # becomes 2 as a Math::BigInt due to downgrading
.Ve
.PP
Equivalently, by default, when the result of a computation is a finite
non-integer, the result is upgraded even when all the operands are instances of
the downgrade class.
.PP
.Vb 4
\& use bignum;
\& $x = 7; # becomes 7 as a Math::BigInt
\& $y = 2; # becomes 2 as a Math::BigInt
\& $z = $x / $y; # becomes 3.5 as a Math::BigFloat due to upgrading
.Ve
.PP
The classes used for downgrading and upgrading can be set at runtime with the
"\fBdowngrade()\fR" and "\fBupgrade()\fR" methods, but see "CAVEATS" below.
.PP
The upgrade and downgrade classes don't have to be Math::BigInt and
Math::BigFloat. For example, to use Math::BigRat as the upgrade class, use
.PP
.Vb 3
\& use bignum upgrade => "Math::BigRat";
\& $x = 2; # becomes 2 as a Math::BigInt
\& $y = 3.6; # becomes 18/5 as a Math::BigRat
.Ve
.PP
The upgrade and downgrade classes can be modified at runtime
.PP
.Vb 4
\& use bignum;
\& $x = 3; # becomes 3 as a Math::BigInt
\& $y = 2; # becomes 2 as a Math::BigInt
\& $z = $x / $y; # becomes 1.5 as a Math::BigFlaot
\&
\& bignum \-> upgrade("Math::BigRat");
\& $w = $x / $y; # becomes 3/2 as a Math::BigRat
.Ve
.PP
Disabling downgrading doesn't change the fact that literal constant integers are
converted to the downgrade class, it only prevents downgrading as a result of a
computation. E.g.,
.PP
.Vb 5
\& use bignum downgrade => undef;
\& $x = 2; # becomes 2 as a Math::BigInt
\& $y = 2.4; # becomes 2.4 as a Math::BigFloat
\& $z = 1.2; # becomes 1.2 as a Math::BigFloat
\& $w = $x / $y; # becomes 2 as a Math::BigFloat due to no downgrading
.Ve
.PP
If you want all numeric literals, both integers and non-integers, to become
Math::BigFloat objects, use the bigfloat pragma.
.PP
Equivalently, disabling upgrading doesn't change the fact that literal constant
non-integers are converted to the upgrade class, it only prevents upgrading as a
result of a computation. E.g.,
.PP
.Vb 5
\& use bignum upgrade => undef;
\& $x = 2.5; # becomes 2.5 as a Math::BigFloat
\& $y = 7; # becomes 7 as a Math::BigInt
\& $z = 2; # becomes 2 as a Math::BigInt
\& $w = $x / $y; # becomes 3 as a Math::BigInt due to no upgrading
.Ve
.PP
If you want all numeric literals, both integers and non-integers, to become
Math::BigInt objects, use the bigint pragma.
.PP
You can even do
.PP
.Vb 1
\& use bignum upgrade => "Math::BigRat", upgrade => undef;
.Ve
.PP
which converts all integer literals to Math::BigInt objects and all non-integer
literals to Math::BigRat objects. However, when the result of a computation
involving two Math::BigInt objects results in a non-integer (e.g., 7/2), the
result will be truncted to a Math::BigInt rather than being upgraded to a
Math::BigRat, since upgrading is disabled.
.SS Overloading
.IX Subsection "Overloading"
Since all numeric literals become objects, you can call all the usual methods
from Math::BigInt and Math::BigFloat on them. This even works to some extent on
expressions:
.PP
.Vb 3
\& perl \-Mbignum \-le \*(Aq$x = 1234; print $x\->bdec()\*(Aq
\& perl \-Mbignum \-le \*(Aqprint 1234\->copy()\->binc();\*(Aq
\& perl \-Mbignum \-le \*(Aqprint 1234\->copy()\->binc()\->badd(6);\*(Aq
.Ve
.SS Options
.IX Subsection "Options"
\&\f(CW\*(C`bignum\*(C'\fR recognizes some options that can be passed while loading it via via
\&\f(CW\*(C`use\*(C'\fR. The following options exist:
.IP "a or accuracy" 4
.IX Item "a or accuracy"
This sets the accuracy for all math operations. The argument must be greater
than or equal to zero. See Math::BigInt's \fBbround()\fR method for details.
.Sp
.Vb 1
\& perl \-Mbignum=a,50 \-le \*(Aqprint sqrt(20)\*(Aq
.Ve
.Sp
Note that setting precision and accuracy at the same time is not possible.
.IP "p or precision" 4
.IX Item "p or precision"
This sets the precision for all math operations. The argument can be any
integer. Negative values mean a fixed number of digits after the dot, while a
positive value rounds to this digit left from the dot. 0 means round to integer.
See Math::BigInt's \fBbfround()\fR method for details.
.Sp
.Vb 1
\& perl \-Mbignum=p,\-50 \-le \*(Aqprint sqrt(20)\*(Aq
.Ve
.Sp
Note that setting precision and accuracy at the same time is not possible.
.IP "l, lib, try, or only" 4
.IX Item "l, lib, try, or only"
Load a different math lib, see "Math Library".
.Sp
.Vb 4
\& perl \-Mbignum=l,GMP \-e \*(Aqprint 2 ** 512\*(Aq
\& perl \-Mbignum=lib,GMP \-e \*(Aqprint 2 ** 512\*(Aq
\& perl \-Mbignum=try,GMP \-e \*(Aqprint 2 ** 512\*(Aq
\& perl \-Mbignum=only,GMP \-e \*(Aqprint 2 ** 512\*(Aq
.Ve
.IP hex 4
.IX Item "hex"
Override the built-in \fBhex()\fR method with a version that can handle big numbers.
This overrides it by exporting it to the current package. Under Perl v5.10.0 and
higher, this is not so necessary, as \fBhex()\fR is lexically overridden in the
current scope whenever the \f(CW\*(C`bignum\*(C'\fR pragma is active.
.IP oct 4
.IX Item "oct"
Override the built-in \fBoct()\fR method with a version that can handle big numbers.
This overrides it by exporting it to the current package. Under Perl v5.10.0 and
higher, this is not so necessary, as \fBoct()\fR is lexically overridden in the
current scope whenever the \f(CW\*(C`bignum\*(C'\fR pragma is active.
.IP "v or version" 4
.IX Item "v or version"
this prints out the name and version of the modules and then exits.
.Sp
.Vb 1
\& perl \-Mbignum=v
.Ve
.SS "Math Library"
.IX Subsection "Math Library"
Math with the numbers is done (by default) by a backend library module called
Math::BigInt::Calc. The default is equivalent to saying:
.PP
.Vb 1
\& use bignum lib => \*(AqCalc\*(Aq;
.Ve
.PP
you can change this by using:
.PP
.Vb 1
\& use bignum lib => \*(AqGMP\*(Aq;
.Ve
.PP
The following would first try to find Math::BigInt::Foo, then Math::BigInt::Bar,
and if this also fails, revert to Math::BigInt::Calc:
.PP
.Vb 1
\& use bignum lib => \*(AqFoo,Math::BigInt::Bar\*(Aq;
.Ve
.PP
Using c<lib> warns if none of the specified libraries can be found and
Math::BigInt and Math::BigFloat fell back to one of the default
libraries. To suppress this warning, use \f(CW\*(C`try\*(C'\fR instead:
.PP
.Vb 1
\& use bignum try => \*(AqGMP\*(Aq;
.Ve
.PP
If you want the code to die instead of falling back, use \f(CW\*(C`only\*(C'\fR instead:
.PP
.Vb 1
\& use bignum only => \*(AqGMP\*(Aq;
.Ve
.PP
Please see respective module documentation for further details.
.SS "Method calls"
.IX Subsection "Method calls"
Since all numbers are now objects, you can use the methods that are part of the
Math::BigInt and Math::BigFloat API.
.PP
But a warning is in order. When using the following to make a copy of a number,
only a shallow copy will be made.
.PP
.Vb 2
\& $x = 9; $y = $x;
\& $x = $y = 7;
.Ve
.PP
Using the copy or the original with overloaded math is okay, e.g., the following
work:
.PP
.Vb 2
\& $x = 9; $y = $x;
\& print $x + 1, " ", $y,"\en"; # prints 10 9
.Ve
.PP
but calling any method that modifies the number directly will result in \fBboth\fR
the original and the copy being destroyed:
.PP
.Vb 2
\& $x = 9; $y = $x;
\& print $x\->badd(1), " ", $y,"\en"; # prints 10 10
\&
\& $x = 9; $y = $x;
\& print $x\->binc(1), " ", $y,"\en"; # prints 10 10
\&
\& $x = 9; $y = $x;
\& print $x\->bmul(2), " ", $y,"\en"; # prints 18 18
.Ve
.PP
Using methods that do not modify, but test that the contents works:
.PP
.Vb 2
\& $x = 9; $y = $x;
\& $z = 9 if $x\->is_zero(); # works fine
.Ve
.PP
See the documentation about the copy constructor and \f(CW\*(C`=\*(C'\fR in overload, as well
as the documentation in Math::BigFloat for further details.
.SS Methods
.IX Subsection "Methods"
.IP \fBinf()\fR 4
.IX Item "inf()"
A shortcut to return \f(CW\*(C`inf\*(C'\fR as an object. Useful because Perl does not always
handle bareword \f(CW\*(C`inf\*(C'\fR properly.
.IP \fBNaN()\fR 4
.IX Item "NaN()"
A shortcut to return \f(CW\*(C`NaN\*(C'\fR as an object. Useful because Perl does not always
handle bareword \f(CW\*(C`NaN\*(C'\fR properly.
.IP e 4
.IX Item "e"
.Vb 1
\& # perl \-Mbignum=e \-wle \*(Aqprint e\*(Aq
.Ve
.Sp
Returns Euler's number \f(CW\*(C`e\*(C'\fR, aka \fBexp\fR\|(1) (= 2.7182818284...).
.IP PI 4
.IX Item "PI"
.Vb 1
\& # perl \-Mbignum=PI \-wle \*(Aqprint PI\*(Aq
.Ve
.Sp
Returns PI (= 3.1415926532..).
.IP \fBbexp()\fR 4
.IX Item "bexp()"
.Vb 1
\& bexp($power, $accuracy);
.Ve
.Sp
Returns Euler's number \f(CW\*(C`e\*(C'\fR raised to the appropriate power, to the wanted
accuracy.
.Sp
Example:
.Sp
.Vb 1
\& # perl \-Mbignum=bexp \-wle \*(Aqprint bexp(1,80)\*(Aq
.Ve
.IP \fBbpi()\fR 4
.IX Item "bpi()"
.Vb 1
\& bpi($accuracy);
.Ve
.Sp
Returns PI to the wanted accuracy.
.Sp
Example:
.Sp
.Vb 1
\& # perl \-Mbignum=bpi \-wle \*(Aqprint bpi(80)\*(Aq
.Ve
.IP \fBaccuracy()\fR 4
.IX Item "accuracy()"
Set or get the accuracy.
.IP \fBprecision()\fR 4
.IX Item "precision()"
Set or get the precision.
.IP \fBround_mode()\fR 4
.IX Item "round_mode()"
Set or get the rounding mode.
.IP \fBdiv_scale()\fR 4
.IX Item "div_scale()"
Set or get the division scale.
.IP \fBupgrade()\fR 4
.IX Item "upgrade()"
Set or get the class that the downgrade class upgrades to, if any. Set the
upgrade class to \f(CW\*(C`undef\*(C'\fR to disable upgrading. See \f(CW\*(C`/CAVEATS\*(C'\fR below.
.IP \fBdowngrade()\fR 4
.IX Item "downgrade()"
Set or get the class that the upgrade class downgrades to, if any. Set the
downgrade class to \f(CW\*(C`undef\*(C'\fR to disable upgrading. See "CAVEATS" below.
.IP \fBin_effect()\fR 4
.IX Item "in_effect()"
.Vb 1
\& use bignum;
\&
\& print "in effect\en" if bignum::in_effect; # true
\& {
\& no bignum;
\& print "in effect\en" if bignum::in_effect; # false
\& }
.Ve
.Sp
Returns true or false if \f(CW\*(C`bignum\*(C'\fR is in effect in the current scope.
.Sp
This method only works on Perl v5.9.4 or later.
.SH CAVEATS
.IX Header "CAVEATS"
.IP "The \fBupgrade()\fR and \fBdowngrade()\fR methods" 4
.IX Item "The upgrade() and downgrade() methods"
Note that setting both the upgrade and downgrade classes at runtime with the
"\fBupgrade()\fR" and "\fBdowngrade()\fR" methods, might not do what you expect:
.Sp
.Vb 4
\& # Assuming that downgrading and upgrading hasn\*(Aqt been modified so far, so
\& # the downgrade and upgrade classes are Math::BigInt and Math::BigFloat,
\& # respectively, the following sets the upgrade class to Math::BigRat, i.e.,
\& # makes Math::BigInt upgrade to Math::BigRat:
\&
\& bignum \-> upgrade("Math::BigRat");
\&
\& # The following sets the downgrade class to Math::BigInt::Lite, i.e., makes
\& # the new upgrade class Math::BigRat downgrade to Math::BigInt::Lite
\&
\& bignum \-> downgrade("Math::BigInt::Lite");
\&
\& # Note that at this point, it is still Math::BigInt, not Math::BigInt::Lite,
\& # that upgrades to Math::BigRat, so to get Math::BigInt::Lite to upgrade to
\& # Math::BigRat, we need to do the following (again):
\&
\& bignum \-> upgrade("Math::BigRat");
.Ve
.Sp
A simpler way to do this at runtime is to use \fBimport()\fR,
.Sp
.Vb 2
\& bignum \-> import(upgrade => "Math::BigRat",
\& downgrade => "Math::BigInt::Lite");
.Ve
.IP "Hexadecimal, octal, and binary floating point literals" 4
.IX Item "Hexadecimal, octal, and binary floating point literals"
Perl (and this module) accepts hexadecimal, octal, and binary floating point
literals, but use them with care with Perl versions before v5.32.0, because some
versions of Perl silently give the wrong result.
.IP "Operator vs literal overloading" 4
.IX Item "Operator vs literal overloading"
\&\f(CW\*(C`bigrat\*(C'\fR works by overloading handling of integer and floating point literals,
converting them to Math::BigRat objects.
.Sp
This means that arithmetic involving only string values or string literals are
performed using Perl's built-in operators.
.Sp
For example:
.Sp
.Vb 4
\& use bigrat;
\& my $x = "900000000000000009";
\& my $y = "900000000000000007";
\& print $x \- $y;
.Ve
.Sp
outputs \f(CW0\fR on default 32\-bit builds, since \f(CW\*(C`bignum\*(C'\fR never sees the string
literals. To ensure the expression is all treated as \f(CW\*(C`Math::BigFloat\*(C'\fR objects,
use a literal number in the expression:
.Sp
.Vb 1
\& print +(0+$x) \- $y;
.Ve
.IP Ranges 4
.IX Item "Ranges"
Perl does not allow overloading of ranges, so you can neither safely use ranges
with \f(CW\*(C`bignum\*(C'\fR endpoints, nor is the iterator variable a \f(CW\*(C`Math::BigFloat\*(C'\fR.
.Sp
.Vb 7
\& use 5.010;
\& for my $i (12..13) {
\& for my $j (20..21) {
\& say $i ** $j; # produces a floating\-point number,
\& # not an object
\& }
\& }
.Ve
.IP \fBin_effect()\fR 4
.IX Item "in_effect()"
This method only works on Perl v5.9.4 or later.
.IP \fBhex()\fR/\fBoct()\fR 4
.IX Item "hex()/oct()"
\&\f(CW\*(C`bignum\*(C'\fR overrides these routines with versions that can also handle big
integer values. Under Perl prior to version v5.9.4, however, this will not
happen unless you specifically ask for it with the two import tags "hex" and
"oct" \- and then it will be global and cannot be disabled inside a scope with
\&\f(CW\*(C`no bignum\*(C'\fR:
.Sp
.Vb 1
\& use bignum qw/hex oct/;
\&
\& print hex("0x1234567890123456");
\& {
\& no bignum;
\& print hex("0x1234567890123456");
\& }
.Ve
.Sp
The second call to \fBhex()\fR will warn about a non-portable constant.
.Sp
Compare this to:
.Sp
.Vb 1
\& use bignum;
\&
\& # will warn only under Perl older than v5.9.4
\& print hex("0x1234567890123456");
.Ve
.SH EXAMPLES
.IX Header "EXAMPLES"
Some cool command line examples to impress the Python crowd ;)
.PP
.Vb 10
\& perl \-Mbignum \-le \*(Aqprint sqrt(33)\*(Aq
\& perl \-Mbignum \-le \*(Aqprint 2**255\*(Aq
\& perl \-Mbignum \-le \*(Aqprint 4.5+2**255\*(Aq
\& perl \-Mbignum \-le \*(Aqprint 3/7 + 5/7 + 8/3\*(Aq
\& perl \-Mbignum \-le \*(Aqprint 123\->is_odd()\*(Aq
\& perl \-Mbignum \-le \*(Aqprint log(2)\*(Aq
\& perl \-Mbignum \-le \*(Aqprint exp(1)\*(Aq
\& perl \-Mbignum \-le \*(Aqprint 2 ** 0.5\*(Aq
\& perl \-Mbignum=a,65 \-le \*(Aqprint 2 ** 0.2\*(Aq
\& perl \-Mbignum=l,GMP \-le \*(Aqprint 7 ** 7777\*(Aq
.Ve
.SH BUGS
.IX Header "BUGS"
Please report any bugs or feature requests to
\&\f(CW\*(C`bug\-bignum at rt.cpan.org\*(C'\fR, or through the web interface at
<https://rt.cpan.org/Ticket/Create.html?Queue=bignum> (requires login).
We will be notified, and then you'll automatically be notified of
progress on your bug as I make changes.
.SH SUPPORT
.IX Header "SUPPORT"
You can find documentation for this module with the perldoc command.
.PP
.Vb 1
\& perldoc bignum
.Ve
.PP
You can also look for information at:
.IP \(bu 4
GitHub
.Sp
<https://github.com/pjacklam/p5\-bignum>
.IP \(bu 4
RT: CPAN's request tracker
.Sp
<https://rt.cpan.org/Dist/Display.html?Name=bignum>
.IP \(bu 4
MetaCPAN
.Sp
<https://metacpan.org/release/bignum>
.IP \(bu 4
CPAN Testers Matrix
.Sp
<http://matrix.cpantesters.org/?dist=bignum>
.IP \(bu 4
CPAN Ratings
.Sp
<https://cpanratings.perl.org/dist/bignum>
.SH LICENSE
.IX Header "LICENSE"
This program is free software; you may redistribute it and/or modify it under
the same terms as Perl itself.
.SH "SEE ALSO"
.IX Header "SEE ALSO"
bigint and bigrat.
.PP
Math::BigInt, Math::BigFloat, Math::BigRat and Math::Big as well as
Math::BigInt::FastCalc, Math::BigInt::Pari and Math::BigInt::GMP.
.SH AUTHORS
.IX Header "AUTHORS"
.IP \(bu 4
(C) by Tels <http://bloodgate.com/> in early 2002 \- 2007.
.IP \(bu 4
Maintained by Peter John Acklam <pjacklam@gmail.com>, 2014\-.
|