diff options
author | Daniel Baumann <daniel.baumann@progress-linux.org> | 2024-04-15 19:41:07 +0000 |
---|---|---|
committer | Daniel Baumann <daniel.baumann@progress-linux.org> | 2024-04-15 19:41:07 +0000 |
commit | 3af6d22bb3850ab2bac67287e3a3d3b0e32868e5 (patch) | |
tree | 3ee7a3ec64525911fa865bb984c86d997d855527 /man3/ceil.3 | |
parent | Adding debian version 6.05.01-1. (diff) | |
download | manpages-3af6d22bb3850ab2bac67287e3a3d3b0e32868e5.tar.xz manpages-3af6d22bb3850ab2bac67287e3a3d3b0e32868e5.zip |
Merging upstream version 6.7.
Signed-off-by: Daniel Baumann <daniel.baumann@progress-linux.org>
Diffstat (limited to 'man3/ceil.3')
-rw-r--r-- | man3/ceil.3 | 17 |
1 files changed, 8 insertions, 9 deletions
diff --git a/man3/ceil.3 b/man3/ceil.3 index d72711f..60a86c0 100644 --- a/man3/ceil.3 +++ b/man3/ceil.3 @@ -5,7 +5,7 @@ .\" .\" SPDX-License-Identifier: Linux-man-pages-copyleft .\" -.TH ceil 3 2023-07-20 "Linux man-pages 6.05.01" +.TH ceil 3 2023-10-31 "Linux man-pages 6.7" .SH NAME ceil, ceilf, ceill \- ceiling function: smallest integral value not less than argument @@ -15,17 +15,17 @@ Math library .SH SYNOPSIS .nf .B #include <math.h> -.PP +.P .BI "double ceil(double " x ); .BI "float ceilf(float " x ); .BI "long double ceill(long double " x ); .fi -.PP +.P .RS -4 Feature Test Macro Requirements for glibc (see .BR feature_test_macros (7)): .RE -.PP +.P .BR ceilf (), .BR ceill (): .nf @@ -36,7 +36,7 @@ Feature Test Macro Requirements for glibc (see .SH DESCRIPTION These functions return the smallest integral value that is not less than .IR x . -.PP +.P For example, .I ceil(0.5) is 1.0, and @@ -45,7 +45,7 @@ is 0.0. .SH RETURN VALUE These functions return the ceiling of .IR x . -.PP +.P If .I x is integral, +0, \-0, NaN, or infinite, @@ -70,12 +70,11 @@ T{ .BR ceill () T} Thread safety MT-Safe .TE -.sp 1 .SH STANDARDS C11, POSIX.1-2008. .SH HISTORY C99, POSIX.1-2001. -.PP +.P The variant returning .I double also conforms to @@ -98,7 +97,7 @@ the maximum value of the exponent is 127 (respectively, 1023), and the number of mantissa bits including the implicit bit is 24 (respectively, 53).) -.PP +.P The integral value returned by these functions may be too large to store in an integer type .RI ( int , |