summaryrefslogtreecommitdiffstats
path: root/man7/random.7
diff options
context:
space:
mode:
authorDaniel Baumann <daniel.baumann@progress-linux.org>2024-04-15 19:41:07 +0000
committerDaniel Baumann <daniel.baumann@progress-linux.org>2024-04-15 19:41:07 +0000
commit3af6d22bb3850ab2bac67287e3a3d3b0e32868e5 (patch)
tree3ee7a3ec64525911fa865bb984c86d997d855527 /man7/random.7
parentAdding debian version 6.05.01-1. (diff)
downloadmanpages-3af6d22bb3850ab2bac67287e3a3d3b0e32868e5.tar.xz
manpages-3af6d22bb3850ab2bac67287e3a3d3b0e32868e5.zip
Merging upstream version 6.7.
Signed-off-by: Daniel Baumann <daniel.baumann@progress-linux.org>
Diffstat (limited to 'man7/random.7')
-rw-r--r--man7/random.78
1 files changed, 4 insertions, 4 deletions
diff --git a/man7/random.7 b/man7/random.7
index bca67ce..5ba6d33 100644
--- a/man7/random.7
+++ b/man7/random.7
@@ -9,7 +9,7 @@
.\" The following web page is quite informative:
.\" http://www.2uo.de/myths-about-urandom/
.\"
-.TH random 7 2023-02-10 "Linux man-pages 6.05.01"
+.TH random 7 2023-10-31 "Linux man-pages 6.7"
.SH NAME
random \- overview of interfaces for obtaining randomness
.SH DESCRIPTION
@@ -17,7 +17,7 @@ The kernel random-number generator relies on entropy gathered from
device drivers and other sources of environmental noise to seed
a cryptographically secure pseudorandom number generator (CSPRNG).
It is designed for security, rather than speed.
-.PP
+.P
The following interfaces provide access to output from the kernel CSPRNG:
.IP \[bu] 3
The
@@ -77,7 +77,7 @@ flag.
The cryptographic algorithms used for the
.I urandom
source are quite conservative, and so should be sufficient for all purposes.
-.PP
+.P
The disadvantage of
.B GRND_RANDOM
and reads from
@@ -194,7 +194,7 @@ or Diffie-Hellman private key has an effective key size of 128 bits
(it requires about 2\[ha]128 operations to break) so a key generator
needs only 128 bits (16 bytes) of seed material from
.IR /dev/random .
-.PP
+.P
While some safety margin above that minimum is reasonable, as a guard
against flaws in the CSPRNG algorithm, no cryptographic primitive
available today can hope to promise more than 256 bits of security,