summaryrefslogtreecommitdiffstats
path: root/man3/fpclassify.3
blob: 8e72dd3e69776f42a7f1f854a425b267ffc0d16f (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
'\" t
.\" Copyright 2002 Walter Harms (walter.harms@informatik.uni-oldenburg.de)
.\"
.\" SPDX-License-Identifier: GPL-1.0-or-later
.\"
.\" This was done with the help of the glibc manual.
.\"
.\" 2004-10-31, aeb, corrected
.TH fpclassify 3 2023-10-31 "Linux man-pages 6.7"
.SH NAME
fpclassify, isfinite, isnormal, isnan, isinf \- floating-point
classification macros
.SH LIBRARY
Math library
.RI ( libm ", " \-lm )
.SH SYNOPSIS
.nf
.B #include <math.h>
.P
.BI "int fpclassify(" x );
.BI "int isfinite(" x );
.BI "int isnormal(" x );
.BI "int isnan(" x );
.BI "int isinf(" x );
.fi
.P
.RS -4
Feature Test Macro Requirements for glibc (see
.BR feature_test_macros (7)):
.RE
.P
.\" I haven't fully grokked the source to determine the FTM requirements;
.\" in part, the following has been tested by experiment.
.BR fpclassify (),
.BR isfinite (),
.BR isnormal ():
.nf
    _ISOC99_SOURCE || _POSIX_C_SOURCE >= 200112L
.fi
.P
.BR isnan ():
.nf
    _ISOC99_SOURCE || _POSIX_C_SOURCE >= 200112L
        || _XOPEN_SOURCE
        || /* Since glibc 2.19: */ _DEFAULT_SOURCE
        || /* glibc <= 2.19: */ _BSD_SOURCE || _SVID_SOURCE
.fi
.P
.BR isinf ():
.nf
    _ISOC99_SOURCE || _POSIX_C_SOURCE >= 200112L
        || /* Since glibc 2.19: */ _DEFAULT_SOURCE
        || /* glibc <= 2.19: */ _BSD_SOURCE || _SVID_SOURCE
.fi
.SH DESCRIPTION
Floating point numbers can have special values, such as
infinite or NaN.
With the macro
.BI fpclassify( x )
you can find out what type
.I x
is.
The macro takes any floating-point expression as argument.
The result is one of the following values:
.TP 14
.B FP_NAN
.I x
is "Not a Number".
.TP
.B FP_INFINITE
.I x
is either positive infinity or negative infinity.
.TP
.B FP_ZERO
.I x
is zero.
.TP
.B FP_SUBNORMAL
.I x
is too small to be represented in normalized format.
.TP
.B FP_NORMAL
if nothing of the above is correct then it must be a
normal floating-point number.
.P
The other macros provide a short answer to some standard questions.
.TP 14
.BI isfinite( x )
returns a nonzero value if
.br
(fpclassify(x) != FP_NAN && fpclassify(x) != FP_INFINITE)
.TP
.BI isnormal( x )
returns a nonzero value if
(fpclassify(x) == FP_NORMAL)
.TP
.BI isnan( x )
returns a nonzero value if
(fpclassify(x) == FP_NAN)
.TP
.BI isinf( x )
returns 1 if
.I x
is positive infinity, and \-1 if
.I x
is negative infinity.
.SH ATTRIBUTES
For an explanation of the terms used in this section, see
.BR attributes (7).
.TS
allbox;
lbx lb lb
l l l.
Interface	Attribute	Value
T{
.na
.nh
.BR fpclassify (),
.BR isfinite (),
.BR isnormal (),
.BR isnan (),
.BR isinf ()
T}	Thread safety	MT-Safe
.TE
.SH STANDARDS
C11, POSIX.1-2008.
.SH HISTORY
POSIX.1-2001, C99.
.P
In glibc 2.01 and earlier,
.BR isinf ()
returns a nonzero value (actually: 1) if
.I x
is positive infinity or negative infinity.
(This is all that C99 requires.)
.SH NOTES
For
.BR isinf (),
the standards merely say that the return value is nonzero
if and only if the argument has an infinite value.
.SH SEE ALSO
.BR finite (3),
.BR INFINITY (3),
.BR isgreater (3),
.BR signbit (3)