summaryrefslogtreecommitdiffstats
path: root/sql/gcalc_tools.h
diff options
context:
space:
mode:
Diffstat (limited to 'sql/gcalc_tools.h')
-rw-r--r--sql/gcalc_tools.h359
1 files changed, 359 insertions, 0 deletions
diff --git a/sql/gcalc_tools.h b/sql/gcalc_tools.h
new file mode 100644
index 00000000..bb1f473e
--- /dev/null
+++ b/sql/gcalc_tools.h
@@ -0,0 +1,359 @@
+/* Copyright (c) 2000, 2010 Oracle and/or its affiliates. All rights reserved.
+ Copyright (C) 2011 Monty Program Ab.
+
+ This program is free software; you can redistribute it and/or modify
+ it under the terms of the GNU General Public License as published by
+ the Free Software Foundation; version 2 of the License.
+
+ This program is distributed in the hope that it will be useful,
+ but WITHOUT ANY WARRANTY; without even the implied warranty of
+ MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
+ GNU General Public License for more details.
+
+ You should have received a copy of the GNU General Public License
+ along with this program; if not, write to the Free Software
+ Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1335 USA */
+
+
+#ifndef GCALC_TOOLS_INCLUDED
+#define GCALC_TOOLS_INCLUDED
+
+#include "gcalc_slicescan.h"
+#include "sql_string.h"
+
+
+/*
+ The Gcalc_function class objects are used to check for a binary relation.
+ The relation can be constructed with the prefix notation using predicates as
+ op_not (as !A)
+ op_union ( A || B || C... )
+ op_intersection ( A && B && C ... )
+ op_symdifference ( A+B+C+... == 1 )
+ op_difference ( A && !(B||C||..))
+ with the calls of the add_operation(operation, n_operands) method.
+ The relation is calculated over a set of shapes, that in turn have
+ to be added with the add_new_shape() method. All the 'shapes' can
+ be set to 0 with clear_shapes() method and single value
+ can be changed with the invert_state() method.
+ Then the value of the relation can be calculated with the count() method.
+ Frequently used method is find_function(Gcalc_scan_iterator it) that
+ iterates through the 'it' until the relation becomes TRUE.
+*/
+
+class Gcalc_function
+{
+private:
+ String shapes_buffer;
+ String function_buffer;
+ int *i_states;
+ int *b_states;
+ uint32 cur_object_id;
+ uint n_shapes;
+ int count_internal(const char *cur_func, uint set_type,
+ const char **end);
+public:
+ enum op_type
+ {
+ v_empty= 0x00000000,
+ v_find_t= 0x01000000,
+ v_find_f= 0x02000000,
+ v_t_found= 0x03000000,
+ v_f_found= 0x04000000,
+ v_mask= 0x07000000,
+
+ op_not= 0x80000000,
+ op_shape= 0x00000000,
+ op_union= 0x10000000,
+ op_intersection= 0x20000000,
+ op_symdifference= 0x30000000,
+ op_difference= 0x40000000,
+ op_repeat= 0x50000000,
+ op_border= 0x60000000,
+ op_internals= 0x70000000,
+ op_false= 0x08000000,
+ op_any= 0x78000000 /* The mask to get any of the operations */
+ };
+ enum shape_type
+ {
+ shape_point= 0,
+ shape_line= 1,
+ shape_polygon= 2,
+ shape_hole= 3
+ };
+ enum count_result
+ {
+ result_false= 0,
+ result_true= 1,
+ result_unknown= 2
+ };
+ Gcalc_function() : n_shapes(0) {}
+ gcalc_shape_info add_new_shape(uint32 shape_id, shape_type shape_kind);
+ /*
+ Adds the leaf operation that returns the shape value.
+ Also adds the shape to the list of operands.
+ */
+ int single_shape_op(shape_type shape_kind, gcalc_shape_info *si);
+ void add_operation(uint operation, uint32 n_operands);
+ void add_not_operation(op_type operation, uint32 n_operands);
+ uint32 get_next_expression_pos() { return function_buffer.length(); }
+ void add_operands_to_op(uint32 operation_pos, uint32 n_operands);
+ int repeat_expression(uint32 exp_pos);
+ void set_cur_obj(uint32 cur_obj) { cur_object_id= cur_obj; }
+ int reserve_shape_buffer(uint n_shapes);
+ int reserve_op_buffer(uint n_ops);
+ uint get_nshapes() const { return n_shapes; }
+ shape_type get_shape_kind(gcalc_shape_info si) const
+ {
+ return (shape_type) uint4korr(shapes_buffer.ptr() + (si*4));
+ }
+
+ void set_states(int *shape_states) { i_states= shape_states; }
+ int alloc_states();
+ void invert_i_state(gcalc_shape_info shape) { i_states[shape]^= 1; }
+ void set_i_state(gcalc_shape_info shape) { i_states[shape]= 1; }
+ void clear_i_state(gcalc_shape_info shape) { i_states[shape]= 0; }
+ void set_b_state(gcalc_shape_info shape) { b_states[shape]= 1; }
+ void clear_b_state(gcalc_shape_info shape) { b_states[shape]= 0; }
+ int get_state(gcalc_shape_info shape)
+ { return i_states[shape] | b_states[shape]; }
+ int get_i_state(gcalc_shape_info shape) { return i_states[shape]; }
+ int get_b_state(gcalc_shape_info shape) { return b_states[shape]; }
+ int count()
+ { return count_internal(function_buffer.ptr(), 0, 0); }
+ int count_last()
+ { return count_internal(function_buffer.ptr(), 1, 0); }
+ void clear_i_states();
+ void clear_b_states();
+ void reset();
+
+ int check_function(Gcalc_scan_iterator &scan_it);
+};
+
+
+/*
+ Gcalc_operation_transporter class extends the Gcalc_shape_transporter.
+ In addition to the parent's functionality, it fills the Gcalc_function
+ object so it has the function that determines the proper shape.
+ For example Multipolyline will be represented as an union of polylines.
+*/
+
+class Gcalc_operation_transporter : public Gcalc_shape_transporter
+{
+protected:
+ Gcalc_function *m_fn;
+ gcalc_shape_info m_si;
+public:
+ Gcalc_operation_transporter(Gcalc_function *fn, Gcalc_heap *heap) :
+ Gcalc_shape_transporter(heap), m_fn(fn) {}
+
+ int single_point(double x, double y);
+ int start_line();
+ int complete_line();
+ int start_poly();
+ int complete_poly();
+ int start_ring();
+ int complete_ring();
+ int add_point(double x, double y);
+ int start_collection(int n_objects);
+ int empty_shape();
+};
+
+
+/*
+ When we calculate the result of an spatial operation like
+ Union or Intersection, we receive vertexes of the result
+ one-by-one, and probably need to treat them in variative ways.
+ So, the Gcalc_result_receiver class designed to get these
+ vertexes and construct shapes/objects out of them.
+ and to store the result in an appropriate format
+*/
+
+class Gcalc_result_receiver
+{
+ String buffer;
+ uint32 n_points;
+ Gcalc_function::shape_type common_shapetype;
+ bool collection_result;
+ uint32 n_shapes;
+ uint32 n_holes;
+
+ Gcalc_function::shape_type cur_shape;
+ uint32 shape_pos;
+ double first_x, first_y, prev_x, prev_y;
+ double shape_area;
+public:
+Gcalc_result_receiver() :
+ n_points(0),
+ common_shapetype(Gcalc_function::shape_point),
+ collection_result(FALSE), n_shapes(0), n_holes(0),
+ cur_shape(Gcalc_function::shape_point), shape_pos(0)
+ {}
+ int start_shape(Gcalc_function::shape_type shape);
+ int add_point(double x, double y);
+ int complete_shape();
+ int single_point(double x, double y);
+ int done();
+ void reset();
+
+ const char *result() { return buffer.ptr(); }
+ uint length() { return buffer.length(); }
+ int get_nshapes() { return n_shapes; }
+ int get_nholes() { return n_holes; }
+ int get_result_typeid();
+ uint32 position() { return buffer.length(); }
+ int move_hole(uint32 dest_position, uint32 source_position,
+ uint32 *position_shift);
+};
+
+
+/*
+ Gcalc_operation_reducer class incapsulates the spatial
+ operation functionality. It analyses the slices generated by
+ the slicescan and calculates the shape of the result defined
+ by some Gcalc_function.
+*/
+
+class Gcalc_operation_reducer : public Gcalc_dyn_list
+{
+public:
+ enum modes
+ {
+ /* Numeric values important here - careful with changing */
+ default_mode= 0,
+ prefer_big_with_holes= 1,
+ polygon_selfintersections_allowed= 2, /* allowed in the result */
+ line_selfintersections_allowed= 4 /* allowed in the result */
+ };
+
+ Gcalc_operation_reducer(size_t blk_size=8192);
+ Gcalc_operation_reducer(const Gcalc_operation_reducer &gor);
+ void init(Gcalc_function *fn, modes mode= default_mode);
+ Gcalc_operation_reducer(Gcalc_function *fn, modes mode= default_mode,
+ size_t blk_size=8192);
+ GCALC_DECL_TERMINATED_STATE(killed)
+ int count_slice(Gcalc_scan_iterator *si);
+ int count_all(Gcalc_heap *hp);
+ int get_result(Gcalc_result_receiver *storage);
+ void reset();
+
+#ifndef GCALC_DBUG_OFF
+ int n_res_points;
+#endif /*GCALC_DBUG_OFF*/
+ class res_point : public Gcalc_dyn_list::Item
+ {
+ public:
+ int intersection_point;
+ union
+ {
+ const Gcalc_heap::Info *pi;
+ res_point *first_poly_node;
+ };
+ union
+ {
+ res_point *outer_poly;
+ uint32 poly_position;
+ };
+ res_point *up;
+ res_point *down;
+ res_point *glue;
+ Gcalc_function::shape_type type;
+ Gcalc_dyn_list::Item **prev_hook;
+#ifndef GCALC_DBUG_OFF
+ int point_n;
+#endif /*GCALC_DBUG_OFF*/
+ void set(const Gcalc_scan_iterator *si);
+ res_point *get_next() { return (res_point *)next; }
+ };
+
+ class active_thread : public Gcalc_dyn_list::Item
+ {
+ public:
+ res_point *rp;
+ res_point *thread_start;
+
+ const Gcalc_heap::Info *p1, *p2;
+ res_point *enabled() { return rp; }
+ active_thread *get_next() { return (active_thread *)next; }
+ };
+
+ class poly_instance : public Gcalc_dyn_list::Item
+ {
+ public:
+ uint32 *after_poly_position;
+ poly_instance *get_next() { return (poly_instance *)next; }
+ };
+
+ class line : public Gcalc_dyn_list::Item
+ {
+ public:
+ active_thread *t;
+ int incoming;
+ const Gcalc_scan_iterator::point *p;
+ line *get_next() { return (line *)next; }
+ };
+
+ class poly_border : public Gcalc_dyn_list::Item
+ {
+ public:
+ active_thread *t;
+ int incoming;
+ int prev_state;
+ const Gcalc_scan_iterator::point *p;
+ poly_border *get_next() { return (poly_border *)next; }
+ };
+
+ line *m_lines;
+ Gcalc_dyn_list::Item **m_lines_hook;
+ poly_border *m_poly_borders;
+ Gcalc_dyn_list::Item **m_poly_borders_hook;
+ line *new_line() { return (line *) new_item(); }
+ poly_border *new_poly_border() { return (poly_border *) new_item(); }
+ int add_line(int incoming, active_thread *t,
+ const Gcalc_scan_iterator::point *p);
+ int add_poly_border(int incoming, active_thread *t, int prev_state,
+ const Gcalc_scan_iterator::point *p);
+
+protected:
+ Gcalc_function *m_fn;
+ Gcalc_dyn_list::Item **m_res_hook;
+ res_point *m_result;
+ int m_mode;
+
+ res_point *result_heap;
+ active_thread *m_first_active_thread;
+
+ res_point *add_res_point(Gcalc_function::shape_type type);
+ active_thread *new_active_thread() { return (active_thread *)new_item(); }
+
+ poly_instance *new_poly() { return (poly_instance *) new_item(); }
+
+private:
+ int start_line(active_thread *t, const Gcalc_scan_iterator::point *p,
+ const Gcalc_scan_iterator *si);
+ int end_line(active_thread *t, const Gcalc_scan_iterator *si);
+ int connect_threads(int incoming_a, int incoming_b,
+ active_thread *ta, active_thread *tb,
+ const Gcalc_scan_iterator::point *pa,
+ const Gcalc_scan_iterator::point *pb,
+ active_thread *prev_range,
+ const Gcalc_scan_iterator *si,
+ Gcalc_function::shape_type s_t);
+ int add_single_point(const Gcalc_scan_iterator *si);
+ poly_border *get_pair_border(poly_border *b1);
+ int continue_range(active_thread *t, const Gcalc_heap::Info *p,
+ const Gcalc_heap::Info *p_next);
+ int continue_i_range(active_thread *t,
+ const Gcalc_heap::Info *ii);
+ int end_couple(active_thread *t0, active_thread *t1, const Gcalc_heap::Info *p);
+ int get_single_result(res_point *res, Gcalc_result_receiver *storage);
+ int get_result_thread(res_point *cur, Gcalc_result_receiver *storage,
+ int move_upward, res_point *first_poly_node);
+ int get_polygon_result(res_point *cur, Gcalc_result_receiver *storage,
+ res_point *first_poly_node);
+ int get_line_result(res_point *cur, Gcalc_result_receiver *storage);
+
+ void free_result(res_point *res);
+};
+
+#endif /*GCALC_TOOLS_INCLUDED*/
+