diff options
Diffstat (limited to 'sql/gcalc_tools.h')
-rw-r--r-- | sql/gcalc_tools.h | 359 |
1 files changed, 359 insertions, 0 deletions
diff --git a/sql/gcalc_tools.h b/sql/gcalc_tools.h new file mode 100644 index 00000000..bb1f473e --- /dev/null +++ b/sql/gcalc_tools.h @@ -0,0 +1,359 @@ +/* Copyright (c) 2000, 2010 Oracle and/or its affiliates. All rights reserved. + Copyright (C) 2011 Monty Program Ab. + + This program is free software; you can redistribute it and/or modify + it under the terms of the GNU General Public License as published by + the Free Software Foundation; version 2 of the License. + + This program is distributed in the hope that it will be useful, + but WITHOUT ANY WARRANTY; without even the implied warranty of + MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the + GNU General Public License for more details. + + You should have received a copy of the GNU General Public License + along with this program; if not, write to the Free Software + Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1335 USA */ + + +#ifndef GCALC_TOOLS_INCLUDED +#define GCALC_TOOLS_INCLUDED + +#include "gcalc_slicescan.h" +#include "sql_string.h" + + +/* + The Gcalc_function class objects are used to check for a binary relation. + The relation can be constructed with the prefix notation using predicates as + op_not (as !A) + op_union ( A || B || C... ) + op_intersection ( A && B && C ... ) + op_symdifference ( A+B+C+... == 1 ) + op_difference ( A && !(B||C||..)) + with the calls of the add_operation(operation, n_operands) method. + The relation is calculated over a set of shapes, that in turn have + to be added with the add_new_shape() method. All the 'shapes' can + be set to 0 with clear_shapes() method and single value + can be changed with the invert_state() method. + Then the value of the relation can be calculated with the count() method. + Frequently used method is find_function(Gcalc_scan_iterator it) that + iterates through the 'it' until the relation becomes TRUE. +*/ + +class Gcalc_function +{ +private: + String shapes_buffer; + String function_buffer; + int *i_states; + int *b_states; + uint32 cur_object_id; + uint n_shapes; + int count_internal(const char *cur_func, uint set_type, + const char **end); +public: + enum op_type + { + v_empty= 0x00000000, + v_find_t= 0x01000000, + v_find_f= 0x02000000, + v_t_found= 0x03000000, + v_f_found= 0x04000000, + v_mask= 0x07000000, + + op_not= 0x80000000, + op_shape= 0x00000000, + op_union= 0x10000000, + op_intersection= 0x20000000, + op_symdifference= 0x30000000, + op_difference= 0x40000000, + op_repeat= 0x50000000, + op_border= 0x60000000, + op_internals= 0x70000000, + op_false= 0x08000000, + op_any= 0x78000000 /* The mask to get any of the operations */ + }; + enum shape_type + { + shape_point= 0, + shape_line= 1, + shape_polygon= 2, + shape_hole= 3 + }; + enum count_result + { + result_false= 0, + result_true= 1, + result_unknown= 2 + }; + Gcalc_function() : n_shapes(0) {} + gcalc_shape_info add_new_shape(uint32 shape_id, shape_type shape_kind); + /* + Adds the leaf operation that returns the shape value. + Also adds the shape to the list of operands. + */ + int single_shape_op(shape_type shape_kind, gcalc_shape_info *si); + void add_operation(uint operation, uint32 n_operands); + void add_not_operation(op_type operation, uint32 n_operands); + uint32 get_next_expression_pos() { return function_buffer.length(); } + void add_operands_to_op(uint32 operation_pos, uint32 n_operands); + int repeat_expression(uint32 exp_pos); + void set_cur_obj(uint32 cur_obj) { cur_object_id= cur_obj; } + int reserve_shape_buffer(uint n_shapes); + int reserve_op_buffer(uint n_ops); + uint get_nshapes() const { return n_shapes; } + shape_type get_shape_kind(gcalc_shape_info si) const + { + return (shape_type) uint4korr(shapes_buffer.ptr() + (si*4)); + } + + void set_states(int *shape_states) { i_states= shape_states; } + int alloc_states(); + void invert_i_state(gcalc_shape_info shape) { i_states[shape]^= 1; } + void set_i_state(gcalc_shape_info shape) { i_states[shape]= 1; } + void clear_i_state(gcalc_shape_info shape) { i_states[shape]= 0; } + void set_b_state(gcalc_shape_info shape) { b_states[shape]= 1; } + void clear_b_state(gcalc_shape_info shape) { b_states[shape]= 0; } + int get_state(gcalc_shape_info shape) + { return i_states[shape] | b_states[shape]; } + int get_i_state(gcalc_shape_info shape) { return i_states[shape]; } + int get_b_state(gcalc_shape_info shape) { return b_states[shape]; } + int count() + { return count_internal(function_buffer.ptr(), 0, 0); } + int count_last() + { return count_internal(function_buffer.ptr(), 1, 0); } + void clear_i_states(); + void clear_b_states(); + void reset(); + + int check_function(Gcalc_scan_iterator &scan_it); +}; + + +/* + Gcalc_operation_transporter class extends the Gcalc_shape_transporter. + In addition to the parent's functionality, it fills the Gcalc_function + object so it has the function that determines the proper shape. + For example Multipolyline will be represented as an union of polylines. +*/ + +class Gcalc_operation_transporter : public Gcalc_shape_transporter +{ +protected: + Gcalc_function *m_fn; + gcalc_shape_info m_si; +public: + Gcalc_operation_transporter(Gcalc_function *fn, Gcalc_heap *heap) : + Gcalc_shape_transporter(heap), m_fn(fn) {} + + int single_point(double x, double y); + int start_line(); + int complete_line(); + int start_poly(); + int complete_poly(); + int start_ring(); + int complete_ring(); + int add_point(double x, double y); + int start_collection(int n_objects); + int empty_shape(); +}; + + +/* + When we calculate the result of an spatial operation like + Union or Intersection, we receive vertexes of the result + one-by-one, and probably need to treat them in variative ways. + So, the Gcalc_result_receiver class designed to get these + vertexes and construct shapes/objects out of them. + and to store the result in an appropriate format +*/ + +class Gcalc_result_receiver +{ + String buffer; + uint32 n_points; + Gcalc_function::shape_type common_shapetype; + bool collection_result; + uint32 n_shapes; + uint32 n_holes; + + Gcalc_function::shape_type cur_shape; + uint32 shape_pos; + double first_x, first_y, prev_x, prev_y; + double shape_area; +public: +Gcalc_result_receiver() : + n_points(0), + common_shapetype(Gcalc_function::shape_point), + collection_result(FALSE), n_shapes(0), n_holes(0), + cur_shape(Gcalc_function::shape_point), shape_pos(0) + {} + int start_shape(Gcalc_function::shape_type shape); + int add_point(double x, double y); + int complete_shape(); + int single_point(double x, double y); + int done(); + void reset(); + + const char *result() { return buffer.ptr(); } + uint length() { return buffer.length(); } + int get_nshapes() { return n_shapes; } + int get_nholes() { return n_holes; } + int get_result_typeid(); + uint32 position() { return buffer.length(); } + int move_hole(uint32 dest_position, uint32 source_position, + uint32 *position_shift); +}; + + +/* + Gcalc_operation_reducer class incapsulates the spatial + operation functionality. It analyses the slices generated by + the slicescan and calculates the shape of the result defined + by some Gcalc_function. +*/ + +class Gcalc_operation_reducer : public Gcalc_dyn_list +{ +public: + enum modes + { + /* Numeric values important here - careful with changing */ + default_mode= 0, + prefer_big_with_holes= 1, + polygon_selfintersections_allowed= 2, /* allowed in the result */ + line_selfintersections_allowed= 4 /* allowed in the result */ + }; + + Gcalc_operation_reducer(size_t blk_size=8192); + Gcalc_operation_reducer(const Gcalc_operation_reducer &gor); + void init(Gcalc_function *fn, modes mode= default_mode); + Gcalc_operation_reducer(Gcalc_function *fn, modes mode= default_mode, + size_t blk_size=8192); + GCALC_DECL_TERMINATED_STATE(killed) + int count_slice(Gcalc_scan_iterator *si); + int count_all(Gcalc_heap *hp); + int get_result(Gcalc_result_receiver *storage); + void reset(); + +#ifndef GCALC_DBUG_OFF + int n_res_points; +#endif /*GCALC_DBUG_OFF*/ + class res_point : public Gcalc_dyn_list::Item + { + public: + int intersection_point; + union + { + const Gcalc_heap::Info *pi; + res_point *first_poly_node; + }; + union + { + res_point *outer_poly; + uint32 poly_position; + }; + res_point *up; + res_point *down; + res_point *glue; + Gcalc_function::shape_type type; + Gcalc_dyn_list::Item **prev_hook; +#ifndef GCALC_DBUG_OFF + int point_n; +#endif /*GCALC_DBUG_OFF*/ + void set(const Gcalc_scan_iterator *si); + res_point *get_next() { return (res_point *)next; } + }; + + class active_thread : public Gcalc_dyn_list::Item + { + public: + res_point *rp; + res_point *thread_start; + + const Gcalc_heap::Info *p1, *p2; + res_point *enabled() { return rp; } + active_thread *get_next() { return (active_thread *)next; } + }; + + class poly_instance : public Gcalc_dyn_list::Item + { + public: + uint32 *after_poly_position; + poly_instance *get_next() { return (poly_instance *)next; } + }; + + class line : public Gcalc_dyn_list::Item + { + public: + active_thread *t; + int incoming; + const Gcalc_scan_iterator::point *p; + line *get_next() { return (line *)next; } + }; + + class poly_border : public Gcalc_dyn_list::Item + { + public: + active_thread *t; + int incoming; + int prev_state; + const Gcalc_scan_iterator::point *p; + poly_border *get_next() { return (poly_border *)next; } + }; + + line *m_lines; + Gcalc_dyn_list::Item **m_lines_hook; + poly_border *m_poly_borders; + Gcalc_dyn_list::Item **m_poly_borders_hook; + line *new_line() { return (line *) new_item(); } + poly_border *new_poly_border() { return (poly_border *) new_item(); } + int add_line(int incoming, active_thread *t, + const Gcalc_scan_iterator::point *p); + int add_poly_border(int incoming, active_thread *t, int prev_state, + const Gcalc_scan_iterator::point *p); + +protected: + Gcalc_function *m_fn; + Gcalc_dyn_list::Item **m_res_hook; + res_point *m_result; + int m_mode; + + res_point *result_heap; + active_thread *m_first_active_thread; + + res_point *add_res_point(Gcalc_function::shape_type type); + active_thread *new_active_thread() { return (active_thread *)new_item(); } + + poly_instance *new_poly() { return (poly_instance *) new_item(); } + +private: + int start_line(active_thread *t, const Gcalc_scan_iterator::point *p, + const Gcalc_scan_iterator *si); + int end_line(active_thread *t, const Gcalc_scan_iterator *si); + int connect_threads(int incoming_a, int incoming_b, + active_thread *ta, active_thread *tb, + const Gcalc_scan_iterator::point *pa, + const Gcalc_scan_iterator::point *pb, + active_thread *prev_range, + const Gcalc_scan_iterator *si, + Gcalc_function::shape_type s_t); + int add_single_point(const Gcalc_scan_iterator *si); + poly_border *get_pair_border(poly_border *b1); + int continue_range(active_thread *t, const Gcalc_heap::Info *p, + const Gcalc_heap::Info *p_next); + int continue_i_range(active_thread *t, + const Gcalc_heap::Info *ii); + int end_couple(active_thread *t0, active_thread *t1, const Gcalc_heap::Info *p); + int get_single_result(res_point *res, Gcalc_result_receiver *storage); + int get_result_thread(res_point *cur, Gcalc_result_receiver *storage, + int move_upward, res_point *first_poly_node); + int get_polygon_result(res_point *cur, Gcalc_result_receiver *storage, + res_point *first_poly_node); + int get_line_result(res_point *cur, Gcalc_result_receiver *storage); + + void free_result(res_point *res); +}; + +#endif /*GCALC_TOOLS_INCLUDED*/ + |