summaryrefslogtreecommitdiffstats
path: root/sql/item_sum.h
diff options
context:
space:
mode:
Diffstat (limited to 'sql/item_sum.h')
-rw-r--r--sql/item_sum.h2101
1 files changed, 2101 insertions, 0 deletions
diff --git a/sql/item_sum.h b/sql/item_sum.h
new file mode 100644
index 00000000..73087340
--- /dev/null
+++ b/sql/item_sum.h
@@ -0,0 +1,2101 @@
+#ifndef ITEM_SUM_INCLUDED
+#define ITEM_SUM_INCLUDED
+/* Copyright (c) 2000, 2013 Oracle and/or its affiliates.
+ Copyright (c) 2008, 2023, MariaDB Corporation.
+
+ This program is free software; you can redistribute it and/or modify
+ it under the terms of the GNU General Public License as published by
+ the Free Software Foundation; version 2 of the License.
+
+ This program is distributed in the hope that it will be useful,
+ but WITHOUT ANY WARRANTY; without even the implied warranty of
+ MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
+ GNU General Public License for more details.
+
+ You should have received a copy of the GNU General Public License
+ along with this program; if not, write to the Free Software
+ Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1335 USA */
+
+
+/* classes for sum functions */
+
+#ifdef USE_PRAGMA_INTERFACE
+#pragma interface /* gcc class implementation */
+#endif
+
+#include <my_tree.h>
+#include "sql_udf.h" /* udf_handler */
+
+class Item_sum;
+class Aggregator_distinct;
+class Aggregator_simple;
+
+/**
+ The abstract base class for the Aggregator_* classes.
+ It implements the data collection functions (setup/add/clear)
+ as either pass-through to the real functionality or
+ as collectors into an Unique (for distinct) structure.
+
+ Note that update_field/reset_field are not in that
+ class, because they're simply not called when
+ GROUP BY/DISTINCT can be handled with help of index on grouped
+ fields (quick_group = 0);
+*/
+
+class Aggregator : public Sql_alloc
+{
+ friend class Item_sum;
+ friend class Item_sum_sum;
+ friend class Item_sum_count;
+ friend class Item_sum_avg;
+
+ /*
+ All members are protected as this class is not usable outside of an
+ Item_sum descendant.
+ */
+protected:
+ /* the aggregate function class to act on */
+ Item_sum *item_sum;
+
+public:
+ Aggregator (Item_sum *arg): item_sum(arg) {}
+ virtual ~Aggregator () = default; /* Keep gcc happy */
+
+ enum Aggregator_type { SIMPLE_AGGREGATOR, DISTINCT_AGGREGATOR };
+ virtual Aggregator_type Aggrtype() = 0;
+
+ /**
+ Called before adding the first row.
+ Allocates and sets up the internal aggregation structures used,
+ e.g. the Unique instance used to calculate distinct.
+ */
+ virtual bool setup(THD *) = 0;
+
+ /**
+ Called when we need to wipe out all the data from the aggregator :
+ all the values acumulated and all the state.
+ Cleans up the internal structures and resets them to their initial state.
+ */
+ virtual void clear() = 0;
+
+ /**
+ Called when there's a new value to be aggregated.
+ Updates the internal state of the aggregator to reflect the new value.
+ */
+ virtual bool add() = 0;
+
+ /**
+ Called when there are no more data and the final value is to be retrieved.
+ Finalises the state of the aggregator, so the final result can be retrieved.
+ */
+ virtual void endup() = 0;
+
+ /** Decimal value of being-aggregated argument */
+ virtual my_decimal *arg_val_decimal(my_decimal * value) = 0;
+ /** Floating point value of being-aggregated argument */
+ virtual double arg_val_real() = 0;
+ /**
+ NULLness of being-aggregated argument.
+
+ @param use_null_value Optimization: to determine if the argument is NULL
+ we must, in the general case, call is_null() on it, which itself might
+ call val_*() on it, which might be costly. If you just have called
+ arg_val*(), you can pass use_null_value=true; this way, arg_is_null()
+ might avoid is_null() and instead do a cheap read of the Item's null_value
+ (updated by arg_val*()).
+ */
+ virtual bool arg_is_null(bool use_null_value) = 0;
+};
+
+
+class st_select_lex;
+class Window_spec;
+
+/**
+ Class Item_sum is the base class used for special expressions that SQL calls
+ 'set functions'. These expressions are formed with the help of aggregate
+ functions such as SUM, MAX, GROUP_CONCAT etc.
+
+ GENERAL NOTES
+
+ A set function cannot be used in certain positions where expressions are
+ accepted. There are some quite explicable restrictions for the usage of
+ set functions.
+
+ In the query:
+ SELECT AVG(b) FROM t1 WHERE SUM(b) > 20 GROUP by a
+ the usage of the set function AVG(b) is legal, while the usage of SUM(b)
+ is illegal. A WHERE condition must contain expressions that can be
+ evaluated for each row of the table. Yet the expression SUM(b) can be
+ evaluated only for each group of rows with the same value of column a.
+ In the query:
+ SELECT AVG(b) FROM t1 WHERE c > 30 GROUP BY a HAVING SUM(b) > 20
+ both set function expressions AVG(b) and SUM(b) are legal.
+
+ We can say that in a query without nested selects an occurrence of a
+ set function in an expression of the SELECT list or/and in the HAVING
+ clause is legal, while in the WHERE clause it's illegal.
+
+ The general rule to detect whether a set function is legal in a query with
+ nested subqueries is much more complicated.
+
+ Consider the the following query:
+ SELECT t1.a FROM t1 GROUP BY t1.a
+ HAVING t1.a > ALL (SELECT t2.c FROM t2 WHERE SUM(t1.b) < t2.c).
+ The set function SUM(b) is used here in the WHERE clause of the subquery.
+ Nevertheless it is legal since it is under the HAVING clause of the query
+ to which this function relates. The expression SUM(t1.b) is evaluated
+ for each group defined in the main query, not for groups of the subquery.
+
+ The problem of finding the query where to aggregate a particular
+ set function is not so simple as it seems to be.
+
+ In the query:
+ SELECT t1.a FROM t1 GROUP BY t1.a
+ HAVING t1.a > ALL(SELECT t2.c FROM t2 GROUP BY t2.c
+ HAVING SUM(t1.a) < t2.c)
+ the set function can be evaluated for both outer and inner selects.
+ If we evaluate SUM(t1.a) for the outer query then we get the value of t1.a
+ multiplied by the cardinality of a group in table t1. In this case
+ in each correlated subquery SUM(t1.a) is used as a constant. But we also
+ can evaluate SUM(t1.a) for the inner query. In this case t1.a will be a
+ constant for each correlated subquery and summation is performed
+ for each group of table t2.
+ (Here it makes sense to remind that the query
+ SELECT c FROM t GROUP BY a HAVING SUM(1) < a
+ is quite legal in our SQL).
+
+ So depending on what query we assign the set function to we
+ can get different result sets.
+
+ The general rule to detect the query where a set function is to be
+ evaluated can be formulated as follows.
+ Consider a set function S(E) where E is an expression with occurrences
+ of column references C1, ..., CN. Resolve these column references against
+ subqueries that contain the set function S(E). Let Q be the innermost
+ subquery of those subqueries. (It should be noted here that S(E)
+ in no way can be evaluated in the subquery embedding the subquery Q,
+ otherwise S(E) would refer to at least one unbound column reference)
+ If S(E) is used in a construct of Q where set functions are allowed then
+ we evaluate S(E) in Q.
+ Otherwise we look for a innermost subquery containing S(E) of those where
+ usage of S(E) is allowed.
+
+ Let's demonstrate how this rule is applied to the following queries.
+
+ 1. SELECT t1.a FROM t1 GROUP BY t1.a
+ HAVING t1.a > ALL(SELECT t2.b FROM t2 GROUP BY t2.b
+ HAVING t2.b > ALL(SELECT t3.c FROM t3 GROUP BY t3.c
+ HAVING SUM(t1.a+t2.b) < t3.c))
+ For this query the set function SUM(t1.a+t2.b) depends on t1.a and t2.b
+ with t1.a defined in the outermost query, and t2.b defined for its
+ subquery. The set function is in the HAVING clause of the subquery and can
+ be evaluated in this subquery.
+
+ 2. SELECT t1.a FROM t1 GROUP BY t1.a
+ HAVING t1.a > ALL(SELECT t2.b FROM t2
+ WHERE t2.b > ALL (SELECT t3.c FROM t3 GROUP BY t3.c
+ HAVING SUM(t1.a+t2.b) < t3.c))
+ Here the set function SUM(t1.a+t2.b)is in the WHERE clause of the second
+ subquery - the most upper subquery where t1.a and t2.b are defined.
+ If we evaluate the function in this subquery we violate the context rules.
+ So we evaluate the function in the third subquery (over table t3) where it
+ is used under the HAVING clause.
+
+ 3. SELECT t1.a FROM t1 GROUP BY t1.a
+ HAVING t1.a > ALL(SELECT t2.b FROM t2
+ WHERE t2.b > ALL (SELECT t3.c FROM t3
+ WHERE SUM(t1.a+t2.b) < t3.c))
+ In this query evaluation of SUM(t1.a+t2.b) is not legal neither in the second
+ nor in the third subqueries. So this query is invalid.
+
+ Mostly set functions cannot be nested. In the query
+ SELECT t1.a from t1 GROUP BY t1.a HAVING AVG(SUM(t1.b)) > 20
+ the expression SUM(b) is not acceptable, though it is under a HAVING clause.
+ Yet it is acceptable in the query:
+ SELECT t.1 FROM t1 GROUP BY t1.a HAVING SUM(t1.b) > 20.
+
+ An argument of a set function does not have to be a reference to a table
+ column as we saw it in examples above. This can be a more complex expression
+ SELECT t1.a FROM t1 GROUP BY t1.a HAVING SUM(t1.b+1) > 20.
+ The expression SUM(t1.b+1) has a very clear semantics in this context:
+ we sum up the values of t1.b+1 where t1.b varies for all values within a
+ group of rows that contain the same t1.a value.
+
+ A set function for an outer query yields a constant within a subquery. So
+ the semantics of the query
+ SELECT t1.a FROM t1 GROUP BY t1.a
+ HAVING t1.a IN (SELECT t2.c FROM t2 GROUP BY t2.c
+ HAVING AVG(t2.c+SUM(t1.b)) > 20)
+ is still clear. For a group of the rows with the same t1.a values we
+ calculate the value of SUM(t1.b). This value 's' is substituted in the
+ the subquery:
+ SELECT t2.c FROM t2 GROUP BY t2.c HAVING AVG(t2.c+s)
+ than returns some result set.
+
+ By the same reason the following query with a subquery
+ SELECT t1.a FROM t1 GROUP BY t1.a
+ HAVING t1.a IN (SELECT t2.c FROM t2 GROUP BY t2.c
+ HAVING AVG(SUM(t1.b)) > 20)
+ is also acceptable.
+
+ IMPLEMENTATION NOTES
+
+ Three methods were added to the class to check the constraints specified
+ in the previous section. These methods utilize several new members.
+
+ The field 'nest_level' contains the number of the level for the subquery
+ containing the set function. The main SELECT is of level 0, its subqueries
+ are of levels 1, the subqueries of the latter are of level 2 and so on.
+
+ The field 'aggr_level' is to contain the nest level of the subquery
+ where the set function is aggregated.
+
+ The field 'max_arg_level' is for the maximum of the nest levels of the
+ unbound column references occurred in the set function. A column reference
+ is unbound within a set function if it is not bound by any subquery
+ used as a subexpression in this function. A column reference is bound by
+ a subquery if it is a reference to the column by which the aggregation
+ of some set function that is used in the subquery is calculated.
+ For the set function used in the query
+ SELECT t1.a FROM t1 GROUP BY t1.a
+ HAVING t1.a > ALL(SELECT t2.b FROM t2 GROUP BY t2.b
+ HAVING t2.b > ALL(SELECT t3.c FROM t3 GROUP BY t3.c
+ HAVING SUM(t1.a+t2.b) < t3.c))
+ the value of max_arg_level is equal to 1 since t1.a is bound in the main
+ query, and t2.b is bound by the first subquery whose nest level is 1.
+ Obviously a set function cannot be aggregated in the subquery whose
+ nest level is less than max_arg_level. (Yet it can be aggregated in the
+ subqueries whose nest level is greater than max_arg_level.)
+ In the query
+ SELECT t.a FROM t1 HAVING AVG(t1.a+(SELECT MIN(t2.c) FROM t2))
+ the value of the max_arg_level for the AVG set function is 0 since
+ the reference t2.c is bound in the subquery.
+
+ The field 'max_sum_func_level' is to contain the maximum of the
+ nest levels of the set functions that are used as subexpressions of
+ the arguments of the given set function, but not aggregated in any
+ subquery within this set function. A nested set function s1 can be
+ used within set function s0 only if s1.max_sum_func_level <
+ s0.max_sum_func_level. Set function s1 is considered as nested
+ for set function s0 if s1 is not calculated in any subquery
+ within s0.
+
+ A set function that is used as a subexpression in an argument of another
+ set function refers to the latter via the field 'in_sum_func'.
+
+ The condition imposed on the usage of set functions are checked when
+ we traverse query subexpressions with the help of the recursive method
+ fix_fields. When we apply this method to an object of the class
+ Item_sum, first, on the descent, we call the method init_sum_func_check
+ that initialize members used at checking. Then, on the ascent, we
+ call the method check_sum_func that validates the set function usage
+ and reports an error if it is illegal.
+ The method register_sum_func serves to link the items for the set functions
+ that are aggregated in the embedding (sub)queries. Circular chains of such
+ functions are attached to the corresponding st_select_lex structures
+ through the field inner_sum_func_list.
+
+ Exploiting the fact that the members mentioned above are used in one
+ recursive function we could have allocated them on the thread stack.
+ Yet we don't do it now.
+
+ We assume that the nesting level of subquries does not exceed 127.
+ TODO: to catch queries where the limit is exceeded to make the
+ code clean here.
+
+ @note
+ The implementation takes into account the used strategy:
+ - Items resolved at optimization phase return 0 from Item_sum::used_tables().
+ - Items that depend on the number of join output records, but not columns of
+ any particular table (like COUNT(*)), returm 0 from Item_sum::used_tables(),
+ but still return false from Item_sum::const_item().
+*/
+
+class Item_sum :public Item_func_or_sum
+{
+ friend class Aggregator_distinct;
+ friend class Aggregator_simple;
+
+protected:
+ /**
+ Aggregator class instance. Not set initially. Allocated only after
+ it is determined if the incoming data are already distinct.
+ */
+ Aggregator *aggr;
+
+private:
+ /**
+ Used in making ROLLUP. Set for the ROLLUP copies of the original
+ Item_sum and passed to create_tmp_field() to cause it to work
+ over the temp table buffer that is referenced by
+ Item_result_field::result_field.
+ */
+ bool force_copy_fields;
+
+ /**
+ Indicates how the aggregate function was specified by the parser :
+ 1 if it was written as AGGREGATE(DISTINCT),
+ 0 if it was AGGREGATE()
+ */
+ bool with_distinct;
+
+ /* TRUE if this is aggregate function of a window function */
+ bool window_func_sum_expr_flag;
+
+public:
+
+ bool has_force_copy_fields() const { return force_copy_fields; }
+ bool has_with_distinct() const { return with_distinct; }
+
+ enum Sumfunctype
+ { COUNT_FUNC, COUNT_DISTINCT_FUNC, SUM_FUNC, SUM_DISTINCT_FUNC, AVG_FUNC,
+ AVG_DISTINCT_FUNC, MIN_FUNC, MAX_FUNC, STD_FUNC,
+ VARIANCE_FUNC, SUM_BIT_FUNC, UDF_SUM_FUNC, GROUP_CONCAT_FUNC,
+ ROW_NUMBER_FUNC, RANK_FUNC, DENSE_RANK_FUNC, PERCENT_RANK_FUNC,
+ CUME_DIST_FUNC, NTILE_FUNC, FIRST_VALUE_FUNC, LAST_VALUE_FUNC,
+ NTH_VALUE_FUNC, LEAD_FUNC, LAG_FUNC, PERCENTILE_CONT_FUNC,
+ PERCENTILE_DISC_FUNC, SP_AGGREGATE_FUNC, JSON_ARRAYAGG_FUNC,
+ JSON_OBJECTAGG_FUNC
+ };
+
+ Item **ref_by; /* pointer to a ref to the object used to register it */
+ Item_sum *next; /* next in the circular chain of registered objects */
+ Item_sum *in_sum_func; /* embedding set function if any */
+ st_select_lex * aggr_sel; /* select where the function is aggregated */
+ int8 nest_level; /* number of the nesting level of the set function */
+ int8 aggr_level; /* nesting level of the aggregating subquery */
+ int8 max_arg_level; /* max level of unbound column references */
+ int8 max_sum_func_level;/* max level of aggregation for embedded functions */
+
+ /*
+ true (the default value) means this aggregate function can be computed
+ with TemporaryTableWithPartialSums algorithm (see end_update()).
+ false means this aggregate function needs OrderedGroupBy algorithm (see
+ end_write_group()).
+ */
+ bool quick_group;
+ /*
+ This list is used by the check for mixing non aggregated fields and
+ sum functions in the ONLY_FULL_GROUP_BY_MODE. We save all outer fields
+ directly or indirectly used under this function it as it's unclear
+ at the moment of fixing outer field whether it's aggregated or not.
+ */
+ List<Item_field> outer_fields;
+
+protected:
+ /*
+ Copy of the arguments list to hold the original set of arguments.
+ Used in EXPLAIN EXTENDED instead of the current argument list because
+ the current argument list can be altered by usage of temporary tables.
+ */
+ Item **orig_args, *tmp_orig_args[2];
+
+ static size_t ram_limitation(THD *thd);
+public:
+ // Methods used by ColumnStore
+ Item **get_orig_args() const { return orig_args; }
+public:
+
+ void mark_as_sum_func();
+ Item_sum(THD *thd): Item_func_or_sum(thd), quick_group(1)
+ {
+ mark_as_sum_func();
+ init_aggregator();
+ }
+ Item_sum(THD *thd, Item *a): Item_func_or_sum(thd, a), quick_group(1),
+ orig_args(tmp_orig_args)
+ {
+ mark_as_sum_func();
+ init_aggregator();
+ }
+ Item_sum(THD *thd, Item *a, Item *b): Item_func_or_sum(thd, a, b),
+ quick_group(1), orig_args(tmp_orig_args)
+ {
+ mark_as_sum_func();
+ init_aggregator();
+ }
+ Item_sum(THD *thd, List<Item> &list);
+ //Copy constructor, need to perform subselects with temporary tables
+ Item_sum(THD *thd, Item_sum *item);
+ enum Type type() const override { return SUM_FUNC_ITEM; }
+ virtual enum Sumfunctype sum_func () const=0;
+ bool is_aggr_sum_func()
+ {
+ switch (sum_func()) {
+ case COUNT_FUNC:
+ case COUNT_DISTINCT_FUNC:
+ case SUM_FUNC:
+ case SUM_DISTINCT_FUNC:
+ case AVG_FUNC:
+ case AVG_DISTINCT_FUNC:
+ case MIN_FUNC:
+ case MAX_FUNC:
+ case STD_FUNC:
+ case VARIANCE_FUNC:
+ case SUM_BIT_FUNC:
+ case UDF_SUM_FUNC:
+ case GROUP_CONCAT_FUNC:
+ case JSON_ARRAYAGG_FUNC:
+ return true;
+ default:
+ return false;
+ }
+ }
+ /**
+ Resets the aggregate value to its default and aggregates the current
+ value of its attribute(s).
+ */
+ inline bool reset_and_add()
+ {
+ aggregator_clear();
+ return aggregator_add();
+ };
+
+ /*
+ Called when new group is started and results are being saved in
+ a temporary table. Similarly to reset_and_add() it resets the
+ value to its default and aggregates the value of its
+ attribute(s), but must also store it in result_field.
+ This set of methods (result_item(), reset_field, update_field()) of
+ Item_sum is used only if quick_group is not null. Otherwise
+ copy_or_same() is used to obtain a copy of this item.
+ */
+ virtual void reset_field()=0;
+ /*
+ Called for each new value in the group, when temporary table is in use.
+ Similar to add(), but uses temporary table field to obtain current value,
+ Updated value is then saved in the field.
+ */
+ virtual void update_field()=0;
+ bool fix_length_and_dec(THD *thd) override
+ {
+ set_maybe_null();
+ null_value=1;
+ return FALSE;
+ }
+ virtual Item *result_item(THD *thd, Field *field);
+
+ void update_used_tables() override;
+ COND *build_equal_items(THD *thd, COND_EQUAL *inherited,
+ bool link_item_fields,
+ COND_EQUAL **cond_equal_ref) override
+ {
+ /*
+ Item_sum (and derivants) of the original WHERE/HAVING clauses
+ should already be replaced to Item_aggregate_ref by the time when
+ build_equal_items() is called. See Item::split_sum_func2().
+ */
+ DBUG_ASSERT(0);
+ return Item::build_equal_items(thd, inherited, link_item_fields,
+ cond_equal_ref);
+ }
+ bool is_null() override { return null_value; }
+ /**
+ make_const()
+ Called if we've managed to calculate the value of this Item in
+ opt_sum_query(), hence it can be considered constant at all subsequent
+ steps.
+ */
+ void make_const ()
+ {
+ used_tables_cache= 0;
+ const_item_cache= true;
+ }
+ void reset_forced_const() { const_item_cache= false; }
+ bool const_during_execution() const override { return false; }
+ void print(String *str, enum_query_type query_type) override;
+ void fix_num_length_and_dec();
+
+ /**
+ Mark an aggregate as having no rows.
+
+ This function is called by the execution engine to assign 'NO ROWS
+ FOUND' value to an aggregate item, when the underlying result set
+ has no rows. Such value, in a general case, may be different from
+ the default value of the item after 'clear()': e.g. a numeric item
+ may be initialized to 0 by clear() and to NULL by
+ no_rows_in_result().
+ */
+ void no_rows_in_result() override
+ {
+ set_aggregator(current_thd, with_distinct ?
+ Aggregator::DISTINCT_AGGREGATOR :
+ Aggregator::SIMPLE_AGGREGATOR);
+ aggregator_clear();
+ }
+ virtual void make_unique() { force_copy_fields= TRUE; }
+ Item *get_tmp_table_item(THD *thd) override;
+ virtual Field *create_tmp_field(MEM_ROOT *root, bool group, TABLE *table);
+ Field *create_tmp_field_ex(MEM_ROOT *root, TABLE *table, Tmp_field_src *src,
+ const Tmp_field_param *param) override
+ {
+ return create_tmp_field(root, param->group(), table);
+ }
+ bool collect_outer_ref_processor(void *param) override;
+ bool init_sum_func_check(THD *thd);
+ bool check_sum_func(THD *thd, Item **ref);
+ bool register_sum_func(THD *thd, Item **ref);
+ st_select_lex *depended_from()
+ { return (nest_level == aggr_level ? 0 : aggr_sel); }
+
+ Item *get_arg(uint i) const { return args[i]; }
+ Item *set_arg(uint i, THD *thd, Item *new_val);
+ uint get_arg_count() const { return arg_count; }
+ virtual Item **get_args() { return fixed() ? orig_args : args; }
+
+ /* Initialization of distinct related members */
+ void init_aggregator()
+ {
+ aggr= NULL;
+ with_distinct= FALSE;
+ force_copy_fields= FALSE;
+ }
+
+ /**
+ Called to initialize the aggregator.
+ */
+
+ inline bool aggregator_setup(THD *thd) { return aggr->setup(thd); };
+
+ /**
+ Called to cleanup the aggregator.
+ */
+
+ inline void aggregator_clear() { aggr->clear(); }
+
+ /**
+ Called to add value to the aggregator.
+ */
+
+ inline bool aggregator_add() { return aggr->add(); };
+
+ /* stores the declared DISTINCT flag (from the parser) */
+ void set_distinct(bool distinct)
+ {
+ with_distinct= distinct;
+ quick_group= with_distinct ? 0 : 1;
+ }
+
+ /*
+ Set the type of aggregation : DISTINCT or not.
+
+ May be called multiple times.
+ */
+
+ int set_aggregator(THD *thd, Aggregator::Aggregator_type aggregator);
+
+ virtual void clear()= 0;
+ virtual bool add()= 0;
+ virtual bool setup(THD *thd) { return false; }
+
+ virtual bool supports_removal() const { return false; }
+ virtual void remove() { DBUG_ASSERT(0); }
+
+ void cleanup() override;
+ bool check_vcol_func_processor(void *arg) override;
+ virtual void setup_window_func(THD *thd, Window_spec *window_spec) {}
+ void mark_as_window_func_sum_expr() { window_func_sum_expr_flag= true; }
+ bool is_window_func_sum_expr() { return window_func_sum_expr_flag; }
+ virtual void setup_caches(THD *thd) {};
+ virtual void set_partition_row_count(ulonglong count) { DBUG_ASSERT(0); }
+};
+
+
+class Unique;
+
+
+/**
+ The distinct aggregator.
+ Implements AGGFN (DISTINCT ..)
+ Collects all the data into an Unique (similarly to what Item_sum
+ does currently when with_distinct=true) and then (if applicable) iterates over
+ the list of unique values and pumps them back into its object
+*/
+
+class Aggregator_distinct : public Aggregator
+{
+ friend class Item_sum_sum;
+
+ /*
+ flag to prevent consecutive runs of endup(). Normally in endup there are
+ expensive calculations (like walking the distinct tree for example)
+ which we must do only once if there are no data changes.
+ We can re-use the data for the second and subsequent val_xxx() calls.
+ endup_done set to TRUE also means that the calculated values for
+ the aggregate functions are correct and don't need recalculation.
+ */
+ bool endup_done;
+
+ /*
+ Used depending on the type of the aggregate function and the presence of
+ blob columns in it:
+ - For COUNT(DISTINCT) and no blob fields this points to a real temporary
+ table. It's used as a hash table.
+ - For AVG/SUM(DISTINCT) or COUNT(DISTINCT) with blob fields only the
+ in-memory data structure of a temporary table is constructed.
+ It's used by the Field classes to transform data into row format.
+ */
+ TABLE *table;
+
+ /*
+ An array of field lengths on row allocated and used only for
+ COUNT(DISTINCT) with multiple columns and no blobs. Used in
+ Aggregator_distinct::composite_key_cmp (called from Unique to compare
+ nodes
+ */
+ uint32 *field_lengths;
+
+ /*
+ Used in conjunction with 'table' to support the access to Field classes
+ for COUNT(DISTINCT). Needed by copy_fields()/copy_funcs().
+ */
+ TMP_TABLE_PARAM *tmp_table_param;
+
+ /*
+ If there are no blobs in the COUNT(DISTINCT) arguments, we can use a tree,
+ which is faster than heap table. In that case, we still use the table
+ to help get things set up, but we insert nothing in it.
+ For AVG/SUM(DISTINCT) we always use this tree (as it takes a single
+ argument) to get the distinct rows.
+ */
+ Unique *tree;
+
+ /*
+ The length of the temp table row. Must be a member of the class as it
+ gets passed down to simple_raw_key_cmp () as a compare function argument
+ to Unique. simple_raw_key_cmp () is used as a fast comparison function
+ when the entire row can be binary compared.
+ */
+ uint tree_key_length;
+
+ /*
+ Set to true if the result is known to be always NULL.
+ If set deactivates creation and usage of the temporary table (in the
+ 'table' member) and the Unique instance (in the 'tree' member) as well as
+ the calculation of the final value on the first call to
+ Item_[sum|avg|count]::val_xxx().
+ */
+ bool always_null;
+
+ /**
+ When feeding back the data in endup() from Unique/temp table back to
+ Item_sum::add() methods we must read the data from Unique (and not
+ recalculate the functions that are given as arguments to the aggregate
+ function.
+ This flag is to tell the arg_*() methods to take the data from the Unique
+ instead of calling the relevant val_..() method.
+ */
+ bool use_distinct_values;
+
+public:
+ Aggregator_distinct (Item_sum *sum) :
+ Aggregator(sum), table(NULL), tmp_table_param(NULL), tree(NULL),
+ always_null(false), use_distinct_values(false) {}
+ virtual ~Aggregator_distinct ();
+ Aggregator_type Aggrtype() { return DISTINCT_AGGREGATOR; }
+
+ bool setup(THD *);
+ void clear();
+ bool add();
+ void endup();
+ virtual my_decimal *arg_val_decimal(my_decimal * value);
+ virtual double arg_val_real();
+ virtual bool arg_is_null(bool use_null_value);
+
+ bool unique_walk_function(void *element);
+ bool unique_walk_function_for_count(void *element);
+ static int composite_key_cmp(void* arg, uchar* key1, uchar* key2);
+};
+
+
+/**
+ The pass-through aggregator.
+ Implements AGGFN (DISTINCT ..) by knowing it gets distinct data on input.
+ So it just pumps them back to the Item_sum descendant class.
+*/
+class Aggregator_simple : public Aggregator
+{
+public:
+
+ Aggregator_simple (Item_sum *sum) :
+ Aggregator(sum) {}
+ Aggregator_type Aggrtype() { return Aggregator::SIMPLE_AGGREGATOR; }
+
+ bool setup(THD * thd) { return item_sum->setup(thd); }
+ void clear() { item_sum->clear(); }
+ bool add() { return item_sum->add(); }
+ void endup() {};
+ virtual my_decimal *arg_val_decimal(my_decimal * value);
+ virtual double arg_val_real();
+ virtual bool arg_is_null(bool use_null_value);
+};
+
+
+class Item_sum_num :public Item_sum
+{
+public:
+ Item_sum_num(THD *thd): Item_sum(thd) {}
+ Item_sum_num(THD *thd, Item *item_par):
+ Item_sum(thd, item_par) {}
+ Item_sum_num(THD *thd, Item *a, Item* b):
+ Item_sum(thd, a, b) {}
+ Item_sum_num(THD *thd, List<Item> &list):
+ Item_sum(thd, list) {}
+ Item_sum_num(THD *thd, Item_sum_num *item):
+ Item_sum(thd, item) {}
+ bool fix_fields(THD *, Item **);
+};
+
+
+class Item_sum_double :public Item_sum_num
+{
+public:
+ Item_sum_double(THD *thd): Item_sum_num(thd) {}
+ Item_sum_double(THD *thd, Item *item_par): Item_sum_num(thd, item_par) {}
+ Item_sum_double(THD *thd, List<Item> &list): Item_sum_num(thd, list) {}
+ Item_sum_double(THD *thd, Item_sum_double *item) :Item_sum_num(thd, item) {}
+ longlong val_int() override
+ {
+ return val_int_from_real();
+ }
+ String *val_str(String*str) override
+ {
+ return val_string_from_real(str);
+ }
+ my_decimal *val_decimal(my_decimal *to) override
+ {
+ return val_decimal_from_real(to);
+ }
+ bool get_date(THD *thd, MYSQL_TIME *ltime, date_mode_t fuzzydate) override
+ {
+ return get_date_from_real(thd, ltime, fuzzydate);
+ }
+ const Type_handler *type_handler() const override
+ { return &type_handler_double; }
+};
+
+
+class Item_sum_int :public Item_sum_num
+{
+public:
+ Item_sum_int(THD *thd): Item_sum_num(thd) {}
+ Item_sum_int(THD *thd, Item *item_par): Item_sum_num(thd, item_par) {}
+ Item_sum_int(THD *thd, List<Item> &list): Item_sum_num(thd, list) {}
+ Item_sum_int(THD *thd, Item_sum_int *item) :Item_sum_num(thd, item) {}
+ double val_real() override { DBUG_ASSERT(fixed()); return (double) val_int(); }
+ String *val_str(String*str) override;
+ my_decimal *val_decimal(my_decimal *) override;
+ bool get_date(THD *thd, MYSQL_TIME *ltime, date_mode_t fuzzydate) override
+ {
+ return get_date_from_int(thd, ltime, fuzzydate);
+ }
+ bool fix_length_and_dec(THD *thd) override
+ {
+ decimals=0;
+ max_length=21;
+ base_flags&= ~item_base_t::MAYBE_NULL;
+ null_value=0;
+ return FALSE; }
+};
+
+
+class Item_sum_sum :public Item_sum_num,
+ public Type_handler_hybrid_field_type
+{
+protected:
+ bool direct_added;
+ bool direct_reseted_field;
+ bool direct_sum_is_null;
+ double direct_sum_real;
+ double sum;
+ my_decimal direct_sum_decimal;
+ my_decimal dec_buffs[2];
+ uint curr_dec_buff;
+ bool fix_length_and_dec(THD *thd) override;
+
+public:
+ Item_sum_sum(THD *thd, Item *item_par, bool distinct):
+ Item_sum_num(thd, item_par), direct_added(FALSE),
+ direct_reseted_field(FALSE)
+ {
+ set_distinct(distinct);
+ }
+ Item_sum_sum(THD *thd, Item_sum_sum *item);
+ enum Sumfunctype sum_func() const override
+ {
+ return has_with_distinct() ? SUM_DISTINCT_FUNC : SUM_FUNC;
+ }
+ void cleanup() override;
+ void direct_add(my_decimal *add_sum_decimal);
+ void direct_add(double add_sum_real, bool add_sum_is_null);
+ void clear() override;
+ bool add() override;
+ double val_real() override;
+ longlong val_int() override;
+ String *val_str(String*str) override;
+ my_decimal *val_decimal(my_decimal *) override;
+ bool get_date(THD *thd, MYSQL_TIME *ltime, date_mode_t fuzzydate) override
+ {
+ return type_handler()->Item_get_date_with_warn(thd, this, ltime, fuzzydate);
+ }
+ const Type_handler *type_handler() const override
+ { return Type_handler_hybrid_field_type::type_handler(); }
+ void fix_length_and_dec_double();
+ void fix_length_and_dec_decimal();
+ void reset_field() override;
+ void update_field() override;
+ void no_rows_in_result() override {}
+ LEX_CSTRING func_name_cstring() const override
+ {
+ static LEX_CSTRING name_distinct= { STRING_WITH_LEN("sum(distinct ")};
+ static LEX_CSTRING name_normal= { STRING_WITH_LEN("sum(") };
+ return has_with_distinct() ? name_distinct : name_normal;
+ }
+ Item *copy_or_same(THD* thd) override;
+ void remove() override;
+ Item *get_copy(THD *thd) override
+ { return get_item_copy<Item_sum_sum>(thd, this); }
+
+ bool supports_removal() const override
+ {
+ return true;
+ }
+
+private:
+ void add_helper(bool perform_removal);
+ ulonglong count;
+};
+
+
+class Item_sum_count :public Item_sum_int
+{
+ bool direct_counted;
+ bool direct_reseted_field;
+ longlong direct_count;
+ longlong count;
+
+ friend class Aggregator_distinct;
+
+ void clear() override;
+ bool add() override;
+ void cleanup() override;
+ void remove() override;
+
+public:
+ Item_sum_count(THD *thd, Item *item_par):
+ Item_sum_int(thd, item_par), direct_counted(FALSE),
+ direct_reseted_field(FALSE), count(0)
+ {}
+
+ /**
+ Constructs an instance for COUNT(DISTINCT)
+
+ @param list a list of the arguments to the aggregate function
+
+ This constructor is called by the parser only for COUNT (DISTINCT).
+ */
+
+ Item_sum_count(THD *thd, List<Item> &list):
+ Item_sum_int(thd, list), direct_counted(FALSE),
+ direct_reseted_field(FALSE), count(0)
+ {
+ set_distinct(TRUE);
+ }
+ Item_sum_count(THD *thd, Item_sum_count *item):
+ Item_sum_int(thd, item), direct_counted(FALSE),
+ direct_reseted_field(FALSE), count(item->count)
+ {}
+ enum Sumfunctype sum_func () const override
+ {
+ return has_with_distinct() ? COUNT_DISTINCT_FUNC : COUNT_FUNC;
+ }
+ void no_rows_in_result() override { count=0; }
+ void make_const(longlong count_arg)
+ {
+ count=count_arg;
+ Item_sum::make_const();
+ }
+ const Type_handler *type_handler() const override
+ { return &type_handler_slonglong; }
+ longlong val_int() override;
+ void reset_field() override;
+ void update_field() override;
+ void direct_add(longlong add_count);
+ LEX_CSTRING func_name_cstring() const override
+ {
+ static LEX_CSTRING name_distinct= { STRING_WITH_LEN("count(distinct ")};
+ static LEX_CSTRING name_normal= { STRING_WITH_LEN("count(") };
+ return has_with_distinct() ? name_distinct : name_normal;
+ }
+ Item *copy_or_same(THD* thd) override;
+ Item *get_copy(THD *thd) override
+ { return get_item_copy<Item_sum_count>(thd, this); }
+
+ bool supports_removal() const override
+ {
+ return true;
+ }
+};
+
+
+class Item_sum_avg :public Item_sum_sum
+{
+public:
+ // TODO-cvicentiu given that Item_sum_sum now uses a counter of its own, in
+ // order to implement remove(), it is possible to remove this member.
+ ulonglong count;
+ uint prec_increment;
+ uint f_precision, f_scale, dec_bin_size;
+
+ Item_sum_avg(THD *thd, Item *item_par, bool distinct):
+ Item_sum_sum(thd, item_par, distinct), count(0)
+ {}
+ Item_sum_avg(THD *thd, Item_sum_avg *item)
+ :Item_sum_sum(thd, item), count(item->count),
+ prec_increment(item->prec_increment) {}
+
+ void fix_length_and_dec_double();
+ void fix_length_and_dec_decimal();
+ bool fix_length_and_dec(THD *thd) override;
+ enum Sumfunctype sum_func () const override
+ {
+ return has_with_distinct() ? AVG_DISTINCT_FUNC : AVG_FUNC;
+ }
+ void clear() override;
+ bool add() override;
+ void remove() override;
+ double val_real() override;
+ // In SPs we might force the "wrong" type with select into a declare variable
+ longlong val_int() override { return val_int_from_real(); }
+ my_decimal *val_decimal(my_decimal *) override;
+ String *val_str(String *str) override;
+ void reset_field() override;
+ void update_field() override;
+ Item *result_item(THD *thd, Field *field) override;
+ void no_rows_in_result() override {}
+ LEX_CSTRING func_name_cstring() const override
+ {
+ static LEX_CSTRING name_distinct= { STRING_WITH_LEN("avg(distinct ")};
+ static LEX_CSTRING name_normal= { STRING_WITH_LEN("avg(") };
+ return has_with_distinct() ? name_distinct : name_normal;
+ }
+ Item *copy_or_same(THD* thd) override;
+ Field *create_tmp_field(MEM_ROOT *root, bool group, TABLE *table) override;
+ void cleanup() override
+ {
+ count= 0;
+ Item_sum_sum::cleanup();
+ }
+ Item *get_copy(THD *thd) override
+ { return get_item_copy<Item_sum_avg>(thd, this); }
+
+ bool supports_removal() const override
+ {
+ return true;
+ }
+};
+
+
+/*
+ variance(a) =
+
+ = sum (ai - avg(a))^2 / count(a) )
+ = sum (ai^2 - 2*ai*avg(a) + avg(a)^2) / count(a)
+ = (sum(ai^2) - sum(2*ai*avg(a)) + sum(avg(a)^2))/count(a) =
+ = (sum(ai^2) - 2*avg(a)*sum(a) + count(a)*avg(a)^2)/count(a) =
+ = (sum(ai^2) - 2*sum(a)*sum(a)/count(a) + count(a)*sum(a)^2/count(a)^2 )/count(a) =
+ = (sum(ai^2) - 2*sum(a)^2/count(a) + sum(a)^2/count(a) )/count(a) =
+ = (sum(ai^2) - sum(a)^2/count(a))/count(a)
+
+But, this falls prey to catastrophic cancellation. Instead, use the recurrence formulas
+
+ M_{1} = x_{1}, ~ M_{k} = M_{k-1} + (x_{k} - M_{k-1}) / k newline
+ S_{1} = 0, ~ S_{k} = S_{k-1} + (x_{k} - M_{k-1}) times (x_{k} - M_{k}) newline
+ for 2 <= k <= n newline
+ ital variance = S_{n} / (n-1)
+
+*/
+
+class Stddev
+{
+ double m_m;
+ double m_s;
+ ulonglong m_count;
+public:
+ Stddev() :m_m(0), m_s(0), m_count(0) { }
+ Stddev(double nr) :m_m(nr), m_s(0.0), m_count(1) { }
+ Stddev(const uchar *);
+ void to_binary(uchar *) const;
+ void recurrence_next(double nr);
+ double result(bool is_simple_variance);
+ ulonglong count() const { return m_count; }
+ static uint32 binary_size()
+ {
+ return (uint32) (sizeof(double) * 2 + sizeof(ulonglong));
+ };
+};
+
+
+
+class Item_sum_variance :public Item_sum_double
+{
+ Stddev m_stddev;
+ bool fix_length_and_dec(THD *thd) override;
+
+public:
+ uint sample;
+ uint prec_increment;
+
+ Item_sum_variance(THD *thd, Item *item_par, uint sample_arg):
+ Item_sum_double(thd, item_par),
+ sample(sample_arg)
+ {}
+ Item_sum_variance(THD *thd, Item_sum_variance *item);
+ Sumfunctype sum_func () const override { return VARIANCE_FUNC; }
+ void fix_length_and_dec_double();
+ void fix_length_and_dec_decimal();
+ void clear() override final;
+ bool add() override final;
+ double val_real() override;
+ void reset_field() override final;
+ void update_field() override final;
+ Item *result_item(THD *thd, Field *field) override;
+ void no_rows_in_result() override final {}
+ LEX_CSTRING func_name_cstring() const override
+ {
+ static LEX_CSTRING name_sample= { STRING_WITH_LEN("var_samp(")};
+ static LEX_CSTRING name_normal= { STRING_WITH_LEN("variance(") };
+ return sample ? name_sample : name_normal;
+ }
+ Item *copy_or_same(THD* thd) override;
+ Field *create_tmp_field(MEM_ROOT *root, bool group, TABLE *table) override
+ final;
+ void cleanup() override final
+ {
+ m_stddev= Stddev();
+ Item_sum_double::cleanup();
+ }
+ Item *get_copy(THD *thd) override
+ { return get_item_copy<Item_sum_variance>(thd, this); }
+};
+
+/*
+ standard_deviation(a) = sqrt(variance(a))
+*/
+
+class Item_sum_std final :public Item_sum_variance
+{
+ public:
+ Item_sum_std(THD *thd, Item *item_par, uint sample_arg):
+ Item_sum_variance(thd, item_par, sample_arg) {}
+ Item_sum_std(THD *thd, Item_sum_std *item)
+ :Item_sum_variance(thd, item)
+ {}
+ enum Sumfunctype sum_func () const override final { return STD_FUNC; }
+ double val_real() override final;
+ Item *result_item(THD *thd, Field *field) override final;
+ LEX_CSTRING func_name_cstring() const override
+ {
+ static LEX_CSTRING std_name= {STRING_WITH_LEN("std(") };
+ static LEX_CSTRING stddev_samp_name= {STRING_WITH_LEN("stddev_samp(") };
+ return sample ? stddev_samp_name : std_name;
+ }
+ Item *copy_or_same(THD* thd) override final;
+ Item *get_copy(THD *thd) override final
+ { return get_item_copy<Item_sum_std>(thd, this); }
+};
+
+
+class Item_sum_hybrid : public Item_sum,
+ public Type_handler_hybrid_field_type
+{
+public:
+ Item_sum_hybrid(THD *thd, Item *item_par):
+ Item_sum(thd, item_par),
+ Type_handler_hybrid_field_type(&type_handler_slonglong)
+ { collation.set(&my_charset_bin); }
+ Item_sum_hybrid(THD *thd, Item *a, Item *b):
+ Item_sum(thd, a, b),
+ Type_handler_hybrid_field_type(&type_handler_slonglong)
+ { collation.set(&my_charset_bin); }
+ Item_sum_hybrid(THD *thd, Item_sum_hybrid *item)
+ :Item_sum(thd, item),
+ Type_handler_hybrid_field_type(item)
+ { }
+ const Type_handler *type_handler() const override
+ { return Type_handler_hybrid_field_type::type_handler(); }
+ bool fix_length_and_dec_generic();
+ bool fix_length_and_dec_numeric(const Type_handler *h);
+ bool fix_length_and_dec_string();
+};
+
+
+// This class is a string or number function depending on num_func
+class Arg_comparator;
+class Item_cache;
+class Item_sum_min_max :public Item_sum_hybrid
+{
+protected:
+ bool direct_added;
+ Item *direct_item;
+ Item_cache *value, *arg_cache;
+ Arg_comparator *cmp;
+ int cmp_sign;
+ bool was_values; // Set if we have found at least one row (for max/min only)
+ bool was_null_value;
+
+public:
+ Item_sum_min_max(THD *thd, Item *item_par,int sign):
+ Item_sum_hybrid(thd, item_par),
+ direct_added(FALSE), value(0), arg_cache(0), cmp(0),
+ cmp_sign(sign), was_values(TRUE)
+ { collation.set(&my_charset_bin); }
+ Item_sum_min_max(THD *thd, Item_sum_min_max *item)
+ :Item_sum_hybrid(thd, item),
+ direct_added(FALSE), value(item->value), arg_cache(0),
+ cmp_sign(item->cmp_sign), was_values(item->was_values)
+ { }
+ bool fix_fields(THD *, Item **) override;
+ bool fix_length_and_dec(THD *thd) override;
+ void setup_hybrid(THD *thd, Item *item, Item *value_arg);
+ void clear() override;
+ void direct_add(Item *item);
+ double val_real() override;
+ longlong val_int() override;
+ my_decimal *val_decimal(my_decimal *) override;
+ bool get_date(THD *thd, MYSQL_TIME *ltime, date_mode_t fuzzydate) override;
+ void reset_field() override;
+ String *val_str(String *) override;
+ bool val_native(THD *thd, Native *) override;
+ const Type_handler *real_type_handler() const override
+ {
+ return get_arg(0)->real_type_handler();
+ }
+ const TYPELIB *get_typelib() const override { return args[0]->get_typelib(); }
+ void update_field() override;
+ void min_max_update_str_field();
+ void min_max_update_real_field();
+ void min_max_update_int_field();
+ void min_max_update_decimal_field();
+ void min_max_update_native_field();
+ void cleanup() override;
+ bool any_value() { return was_values; }
+ void no_rows_in_result() override;
+ void restore_to_before_no_rows_in_result() override;
+ Field *create_tmp_field(MEM_ROOT *root, bool group, TABLE *table) override;
+ void setup_caches(THD *thd) override
+ { setup_hybrid(thd, arguments()[0], NULL); }
+};
+
+
+class Item_sum_min final :public Item_sum_min_max
+{
+public:
+ Item_sum_min(THD *thd, Item *item_par): Item_sum_min_max(thd, item_par, 1) {}
+ Item_sum_min(THD *thd, Item_sum_min *item) :Item_sum_min_max(thd, item) {}
+ enum Sumfunctype sum_func () const override {return MIN_FUNC;}
+
+ bool add() override;
+ LEX_CSTRING func_name_cstring() const override
+ {
+ static LEX_CSTRING sum_name= {STRING_WITH_LEN("min(") };
+ return sum_name;
+ }
+ Item *copy_or_same(THD* thd) override;
+ Item *get_copy(THD *thd) override
+ { return get_item_copy<Item_sum_min>(thd, this); }
+};
+
+
+class Item_sum_max final :public Item_sum_min_max
+{
+public:
+ Item_sum_max(THD *thd, Item *item_par): Item_sum_min_max(thd, item_par, -1) {}
+ Item_sum_max(THD *thd, Item_sum_max *item) :Item_sum_min_max(thd, item) {}
+ enum Sumfunctype sum_func () const override {return MAX_FUNC;}
+
+ bool add() override;
+ LEX_CSTRING func_name_cstring() const override
+ {
+ static LEX_CSTRING sum_name= {STRING_WITH_LEN("max(") };
+ return sum_name;
+ }
+ Item *copy_or_same(THD* thd) override;
+ Item *get_copy(THD *thd) override
+ { return get_item_copy<Item_sum_max>(thd, this); }
+};
+
+
+class Item_sum_bit :public Item_sum_int
+{
+public:
+ Item_sum_bit(THD *thd, Item *item_par, ulonglong reset_arg):
+ Item_sum_int(thd, item_par), reset_bits(reset_arg), bits(reset_arg),
+ as_window_function(FALSE), num_values_added(0) {}
+ Item_sum_bit(THD *thd, Item_sum_bit *item):
+ Item_sum_int(thd, item), reset_bits(item->reset_bits), bits(item->bits),
+ as_window_function(item->as_window_function),
+ num_values_added(item->num_values_added)
+ {
+ if (as_window_function)
+ memcpy(bit_counters, item->bit_counters, sizeof(bit_counters));
+ }
+ enum Sumfunctype sum_func () const override { return SUM_BIT_FUNC;}
+ void clear() override;
+ longlong val_int() override;
+ void reset_field() override;
+ void update_field() override;
+ const Type_handler *type_handler() const override
+ { return &type_handler_ulonglong; }
+ bool fix_length_and_dec(THD *thd) override
+ {
+ if (args[0]->check_type_can_return_int(func_name_cstring()))
+ return true;
+ decimals= 0; max_length=21; unsigned_flag= 1;
+ base_flags&= ~item_base_t::MAYBE_NULL;
+ null_value= 0;
+ return FALSE;
+ }
+ void cleanup() override
+ {
+ bits= reset_bits;
+ if (as_window_function)
+ clear_as_window();
+ Item_sum_int::cleanup();
+ }
+ void setup_window_func(THD *thd __attribute__((unused)),
+ Window_spec *window_spec __attribute__((unused)))
+ override
+ {
+ as_window_function= TRUE;
+ clear_as_window();
+ }
+ void remove() override
+ {
+ if (as_window_function)
+ {
+ remove_as_window(args[0]->val_int());
+ return;
+ }
+ // Unless we're counting bits, we can not remove anything.
+ DBUG_ASSERT(0);
+ }
+
+ bool supports_removal() const override
+ {
+ return true;
+ }
+
+protected:
+ enum bit_counters { NUM_BIT_COUNTERS= 64 };
+ ulonglong reset_bits,bits;
+ /*
+ Marks whether the function is to be computed as a window function.
+ */
+ bool as_window_function;
+ // When used as an aggregate window function, we need to store
+ // this additional information.
+ ulonglong num_values_added;
+ ulonglong bit_counters[NUM_BIT_COUNTERS];
+ bool add_as_window(ulonglong value);
+ bool remove_as_window(ulonglong value);
+ bool clear_as_window();
+ virtual void set_bits_from_counters()= 0;
+};
+
+
+class Item_sum_or final :public Item_sum_bit
+{
+public:
+ Item_sum_or(THD *thd, Item *item_par): Item_sum_bit(thd, item_par, 0) {}
+ Item_sum_or(THD *thd, Item_sum_or *item) :Item_sum_bit(thd, item) {}
+ bool add() override;
+ LEX_CSTRING func_name_cstring() const override
+ {
+ static LEX_CSTRING sum_name= {STRING_WITH_LEN("bit_or(") };
+ return sum_name;
+ }
+ Item *copy_or_same(THD* thd) override;
+ Item *get_copy(THD *thd) override
+ { return get_item_copy<Item_sum_or>(thd, this); }
+
+private:
+ void set_bits_from_counters() override;
+};
+
+
+class Item_sum_and final :public Item_sum_bit
+{
+public:
+ Item_sum_and(THD *thd, Item *item_par):
+ Item_sum_bit(thd, item_par, ULONGLONG_MAX) {}
+ Item_sum_and(THD *thd, Item_sum_and *item) :Item_sum_bit(thd, item) {}
+ bool add() override;
+ LEX_CSTRING func_name_cstring() const override
+ {
+ static LEX_CSTRING sum_min_name= {STRING_WITH_LEN("bit_and(") };
+ return sum_min_name;
+ }
+ Item *copy_or_same(THD* thd) override;
+ Item *get_copy(THD *thd) override
+ { return get_item_copy<Item_sum_and>(thd, this); }
+
+private:
+ void set_bits_from_counters() override;
+};
+
+class Item_sum_xor final :public Item_sum_bit
+{
+public:
+ Item_sum_xor(THD *thd, Item *item_par): Item_sum_bit(thd, item_par, 0) {}
+ Item_sum_xor(THD *thd, Item_sum_xor *item) :Item_sum_bit(thd, item) {}
+ bool add() override;
+ LEX_CSTRING func_name_cstring() const override
+ {
+ static LEX_CSTRING sum_min_name= {STRING_WITH_LEN("bit_xor(") };
+ return sum_min_name;
+ }
+ Item *copy_or_same(THD* thd) override;
+ Item *get_copy(THD *thd) override
+ { return get_item_copy<Item_sum_xor>(thd, this); }
+
+private:
+ void set_bits_from_counters() override;
+};
+
+class sp_head;
+class sp_name;
+class Query_arena;
+struct st_sp_security_context;
+
+/*
+ Item_sum_sp handles STORED AGGREGATE FUNCTIONS
+
+ Each Item_sum_sp represents a custom aggregate function. Inside the
+ function's body, we require at least one occurrence of FETCH GROUP NEXT ROW
+ instruction. This cursor is what makes custom stored aggregates possible.
+
+ During computation the function's add method is called. This in turn performs
+ an execution of the function. The function will execute from the current
+ function context (and instruction), if one exists, or from the start if not.
+ See Item_sp for more details.
+
+ Upon encounter of FETCH GROUP NEXT ROW instruction, the function will pause
+ execution. We assume that the user has performed the necessary additions for
+ a row, between two encounters of FETCH GROUP NEXT ROW.
+
+ Example:
+ create aggregate function f1(x INT) returns int
+ begin
+ declare continue handler for not found return s;
+ declare s int default 0
+ loop
+ fetch group next row;
+ set s = s + x;
+ end loop;
+ end
+
+ The function will always stop after an encounter of FETCH GROUP NEXT ROW,
+ except (!) on first encounter, as the value for the first row in the
+ group is already set in the argument x. This behaviour is done so when
+ a user writes a function, he should "logically" include FETCH GROUP NEXT ROW
+ before any "add" instructions in the stored function. This means however that
+ internally, the first occurrence doesn't stop the function. See the
+ implementation of FETCH GROUP NEXT ROW for details as to how it happens.
+
+ Either way, one should assume that after calling "Item_sum_sp::add()" that
+ the values for that particular row have been added to the aggregation.
+
+ To produce values for val_xxx methods we need an extra syntactic construct.
+ We require a continue handler when "no more rows are available". val_xxx
+ methods force a function return by executing the function again, while
+ setting a server flag that no more rows have been found. This implies
+ that val_xxx methods should only be called once per group however.
+
+ Example:
+ DECLARE CONTINUE HANDLER FOR NOT FOUND RETURN ret_val;
+*/
+class Item_sum_sp :public Item_sum,
+ public Item_sp
+{
+ private:
+ bool execute();
+
+public:
+ Item_sum_sp(THD *thd, Name_resolution_context *context_arg, sp_name *name,
+ sp_head *sp);
+
+ Item_sum_sp(THD *thd, Name_resolution_context *context_arg, sp_name *name,
+ sp_head *sp, List<Item> &list);
+ Item_sum_sp(THD *thd, Item_sum_sp *item);
+
+ enum Sumfunctype sum_func () const override
+ {
+ return SP_AGGREGATE_FUNC;
+ }
+ Field *create_field_for_create_select(MEM_ROOT *root, TABLE *table) override
+ {
+ return create_table_field_from_handler(root, table);
+ }
+ bool fix_length_and_dec(THD *thd) override;
+ bool fix_fields(THD *thd, Item **ref) override;
+ LEX_CSTRING func_name_cstring() const override;
+ const Type_handler *type_handler() const override;
+ bool add() override;
+
+ /* val_xx functions */
+ longlong val_int() override
+ {
+ if(execute())
+ return 0;
+ return sp_result_field->val_int();
+ }
+
+ double val_real() override
+ {
+ if(execute())
+ return 0.0;
+ return sp_result_field->val_real();
+ }
+
+ my_decimal *val_decimal(my_decimal *dec_buf) override
+ {
+ if(execute())
+ return NULL;
+ return sp_result_field->val_decimal(dec_buf);
+ }
+
+ bool val_native(THD *thd, Native *to) override
+ {
+ return (null_value= execute()) || sp_result_field->val_native(to);
+ }
+
+ String *val_str(String *str) override
+ {
+ String buf;
+ char buff[20];
+ buf.set(buff, 20, str->charset());
+ buf.length(0);
+ if (execute())
+ return NULL;
+ /*
+ result_field will set buf pointing to internal buffer
+ of the resul_field. Due to this it will change any time
+ when SP is executed. In order to prevent occasional
+ corruption of returned value, we make here a copy.
+ */
+ sp_result_field->val_str(&buf);
+ str->copy(buf);
+ return str;
+ }
+ void reset_field() override{DBUG_ASSERT(0);}
+ void update_field() override{DBUG_ASSERT(0);}
+ void clear() override;
+ void cleanup() override;
+ bool get_date(THD *thd, MYSQL_TIME *ltime, date_mode_t fuzzydate) override
+ {
+ return execute() || sp_result_field->get_date(ltime, fuzzydate);
+ }
+ inline Field *get_sp_result_field()
+ {
+ return sp_result_field;
+ }
+ Item *get_copy(THD *thd) override
+ { return get_item_copy<Item_sum_sp>(thd, this); }
+ Item *copy_or_same(THD *thd) override;
+};
+
+/* Items to get the value of a stored sum function */
+
+class Item_sum_field :public Item
+{
+protected:
+ Field *field;
+public:
+ Item_sum_field(THD *thd, Item_sum *item)
+ :Item(thd), field(item->result_field)
+ {
+ name= item->name;
+ set_maybe_null();
+ decimals= item->decimals;
+ max_length= item->max_length;
+ unsigned_flag= item->unsigned_flag;
+ }
+ table_map used_tables() const override { return (table_map) 1L; }
+ Field *create_tmp_field_ex(MEM_ROOT *root, TABLE *table, Tmp_field_src *src,
+ const Tmp_field_param *param) override
+ {
+ return create_tmp_field_ex_simple(root, table, src, param);
+ }
+ void save_in_result_field(bool no_conversions) override { DBUG_ASSERT(0); }
+ bool check_vcol_func_processor(void *arg) override
+ {
+ return mark_unsupported_function(name.str, arg, VCOL_IMPOSSIBLE);
+ }
+ bool get_date(THD *thd, MYSQL_TIME *ltime, date_mode_t fuzzydate) override
+ {
+ return type_handler()->Item_get_date_with_warn(thd, this, ltime, fuzzydate);
+ }
+};
+
+
+class Item_avg_field :public Item_sum_field
+{
+protected:
+ uint prec_increment;
+public:
+ Item_avg_field(THD *thd, Item_sum_avg *item)
+ :Item_sum_field(thd, item), prec_increment(item->prec_increment)
+ { }
+ enum Type type() const override { return FIELD_AVG_ITEM; }
+ bool is_null() override { update_null_value(); return null_value; }
+};
+
+
+class Item_avg_field_double :public Item_avg_field
+{
+public:
+ Item_avg_field_double(THD *thd, Item_sum_avg *item)
+ :Item_avg_field(thd, item)
+ { }
+ const Type_handler *type_handler() const override
+ { return &type_handler_double; }
+ longlong val_int() override { return val_int_from_real(); }
+ my_decimal *val_decimal(my_decimal *dec) override
+ { return val_decimal_from_real(dec); }
+ String *val_str(String *str) override
+ { return val_string_from_real(str); }
+ double val_real() override;
+ Item *get_copy(THD *thd) override
+ { return get_item_copy<Item_avg_field_double>(thd, this); }
+};
+
+
+class Item_avg_field_decimal :public Item_avg_field
+{
+ uint f_precision, f_scale, dec_bin_size;
+public:
+ Item_avg_field_decimal(THD *thd, Item_sum_avg *item)
+ :Item_avg_field(thd, item),
+ f_precision(item->f_precision),
+ f_scale(item->f_scale),
+ dec_bin_size(item->dec_bin_size)
+ { }
+ const Type_handler *type_handler() const override
+ { return &type_handler_newdecimal; }
+ double val_real() override
+ {
+ return VDec(this).to_double();
+ }
+ longlong val_int() override
+ {
+ return VDec(this).to_longlong(unsigned_flag);
+ }
+ String *val_str(String *str) override
+ {
+ return VDec(this).to_string_round(str, decimals);
+ }
+ my_decimal *val_decimal(my_decimal *) override;
+ Item *get_copy(THD *thd) override
+ { return get_item_copy<Item_avg_field_decimal>(thd, this); }
+};
+
+
+class Item_variance_field :public Item_sum_field
+{
+ uint sample;
+public:
+ Item_variance_field(THD *thd, Item_sum_variance *item)
+ :Item_sum_field(thd, item), sample(item->sample)
+ { }
+ enum Type type() const override {return FIELD_VARIANCE_ITEM; }
+ double val_real() override;
+ longlong val_int() override { return val_int_from_real(); }
+ String *val_str(String *str) override
+ { return val_string_from_real(str); }
+ my_decimal *val_decimal(my_decimal *dec_buf) override
+ { return val_decimal_from_real(dec_buf); }
+ bool is_null() override { update_null_value(); return null_value; }
+ const Type_handler *type_handler() const override
+ { return &type_handler_double; }
+ Item *get_copy(THD *thd) override
+ { return get_item_copy<Item_variance_field>(thd, this); }
+};
+
+
+class Item_std_field :public Item_variance_field
+{
+public:
+ Item_std_field(THD *thd, Item_sum_std *item)
+ :Item_variance_field(thd, item)
+ { }
+ enum Type type() const override { return FIELD_STD_ITEM; }
+ double val_real() override;
+ Item *get_copy(THD *thd) override
+ { return get_item_copy<Item_std_field>(thd, this); }
+};
+
+
+/*
+ User defined aggregates
+*/
+
+#ifdef HAVE_DLOPEN
+
+class Item_udf_sum : public Item_sum
+{
+protected:
+ udf_handler udf;
+
+public:
+ Item_udf_sum(THD *thd, udf_func *udf_arg):
+ Item_sum(thd), udf(udf_arg)
+ { quick_group=0; }
+ Item_udf_sum(THD *thd, udf_func *udf_arg, List<Item> &list):
+ Item_sum(thd, list), udf(udf_arg)
+ { quick_group=0;}
+ Item_udf_sum(THD *thd, Item_udf_sum *item)
+ :Item_sum(thd, item), udf(item->udf)
+ { udf.not_original= TRUE; }
+ LEX_CSTRING func_name_cstring() const override
+ {
+ const char *tmp= udf.name();
+ return {tmp, strlen(tmp) };
+ }
+ bool fix_fields(THD *thd, Item **ref) override
+ {
+ DBUG_ASSERT(fixed() == 0);
+
+ if (init_sum_func_check(thd))
+ return TRUE;
+
+ base_flags|= item_base_t::FIXED;
+ /*
+ We set const_item_cache to false in constructors.
+ It can be later changed to "true", in a Item_sum::make_const() call.
+ No make_const() calls should have happened so far.
+ */
+ DBUG_ASSERT(!const_item_cache);
+ if (udf.fix_fields(thd, this, this->arg_count, this->args))
+ return TRUE;
+ /**
+ The above call for udf.fix_fields() updates
+ the Used_tables_and_const_cache part of "this" as if it was a regular
+ non-aggregate UDF function and can change both const_item_cache and
+ used_tables_cache members.
+ - The used_tables_cache will be re-calculated in update_used_tables()
+ which is called from check_sum_func() below. So we don't care about
+ its current value.
+ - The const_item_cache must stay "false" until a Item_sum::make_const()
+ call happens, if ever. So we need to reset const_item_cache back to
+ "false" here.
+ */
+ const_item_cache= false;
+ memcpy (orig_args, args, sizeof (Item *) * arg_count);
+ return check_sum_func(thd, ref);
+ }
+ enum Sumfunctype sum_func () const override { return UDF_SUM_FUNC; }
+ virtual bool have_field_update(void) const { return 0; }
+
+ void clear() override;
+ bool add() override;
+ bool supports_removal() const override;
+ void remove() override;
+ void reset_field() override {};
+ void update_field() override {}
+ void cleanup() override;
+ void print(String *str, enum_query_type query_type) override;
+ bool get_date(THD *thd, MYSQL_TIME *ltime, date_mode_t fuzzydate) override
+ {
+ return type_handler()->Item_get_date_with_warn(thd, this, ltime, fuzzydate);
+ }
+};
+
+
+class Item_sum_udf_float :public Item_udf_sum
+{
+ public:
+ Item_sum_udf_float(THD *thd, udf_func *udf_arg):
+ Item_udf_sum(thd, udf_arg) {}
+ Item_sum_udf_float(THD *thd, udf_func *udf_arg, List<Item> &list):
+ Item_udf_sum(thd, udf_arg, list) {}
+ Item_sum_udf_float(THD *thd, Item_sum_udf_float *item)
+ :Item_udf_sum(thd, item) {}
+ longlong val_int() override { return val_int_from_real(); }
+ double val_real() override;
+ String *val_str(String*str) override;
+ my_decimal *val_decimal(my_decimal *) override;
+ const Type_handler *type_handler() const override
+ { return &type_handler_double; }
+ bool fix_length_and_dec(THD *thd) override
+ { fix_num_length_and_dec(); return FALSE; }
+ Item *copy_or_same(THD* thd) override;
+ Item *get_copy(THD *thd) override
+ { return get_item_copy<Item_sum_udf_float>(thd, this); }
+};
+
+
+class Item_sum_udf_int :public Item_udf_sum
+{
+public:
+ Item_sum_udf_int(THD *thd, udf_func *udf_arg):
+ Item_udf_sum(thd, udf_arg) {}
+ Item_sum_udf_int(THD *thd, udf_func *udf_arg, List<Item> &list):
+ Item_udf_sum(thd, udf_arg, list) {}
+ Item_sum_udf_int(THD *thd, Item_sum_udf_int *item)
+ :Item_udf_sum(thd, item) {}
+ longlong val_int() override;
+ double val_real() override
+ { DBUG_ASSERT(fixed()); return (double) Item_sum_udf_int::val_int(); }
+ String *val_str(String*str) override;
+ my_decimal *val_decimal(my_decimal *) override;
+ const Type_handler *type_handler() const override
+ {
+ if (unsigned_flag)
+ return &type_handler_ulonglong;
+ return &type_handler_slonglong;
+ }
+ bool fix_length_and_dec(THD *thd) override { decimals=0; max_length=21; return FALSE; }
+ Item *copy_or_same(THD* thd) override;
+ Item *get_copy(THD *thd) override
+ { return get_item_copy<Item_sum_udf_int>(thd, this); }
+};
+
+
+class Item_sum_udf_str :public Item_udf_sum
+{
+public:
+ Item_sum_udf_str(THD *thd, udf_func *udf_arg):
+ Item_udf_sum(thd, udf_arg) {}
+ Item_sum_udf_str(THD *thd, udf_func *udf_arg, List<Item> &list):
+ Item_udf_sum(thd, udf_arg, list) {}
+ Item_sum_udf_str(THD *thd, Item_sum_udf_str *item)
+ :Item_udf_sum(thd, item) {}
+ String *val_str(String *) override;
+ double val_real() override
+ {
+ int err_not_used;
+ char *end_not_used;
+ String *res;
+ res=val_str(&str_value);
+ return res ? res->charset()->strntod((char*) res->ptr(),res->length(),
+ &end_not_used, &err_not_used) : 0.0;
+ }
+ longlong val_int() override
+ {
+ int err_not_used;
+ char *end;
+ String *res;
+ CHARSET_INFO *cs;
+
+ if (!(res= val_str(&str_value)))
+ return 0; /* Null value */
+ cs= res->charset();
+ end= (char*) res->ptr()+res->length();
+ return cs->strtoll10(res->ptr(), &end, &err_not_used);
+ }
+ my_decimal *val_decimal(my_decimal *dec) override;
+ const Type_handler *type_handler() const override
+ { return string_type_handler(); }
+ bool fix_length_and_dec(THD *thd) override;
+ Item *copy_or_same(THD* thd) override;
+ Item *get_copy(THD *thd) override
+ { return get_item_copy<Item_sum_udf_str>(thd, this); }
+};
+
+
+class Item_sum_udf_decimal :public Item_udf_sum
+{
+public:
+ Item_sum_udf_decimal(THD *thd, udf_func *udf_arg):
+ Item_udf_sum(thd, udf_arg) {}
+ Item_sum_udf_decimal(THD *thd, udf_func *udf_arg, List<Item> &list):
+ Item_udf_sum(thd, udf_arg, list) {}
+ Item_sum_udf_decimal(THD *thd, Item_sum_udf_decimal *item)
+ :Item_udf_sum(thd, item) {}
+ String *val_str(String *str) override
+ {
+ return VDec(this).to_string_round(str, decimals);
+ }
+ double val_real() override
+ {
+ return VDec(this).to_double();
+ }
+ longlong val_int() override
+ {
+ return VDec(this).to_longlong(unsigned_flag);
+ }
+ my_decimal *val_decimal(my_decimal *) override;
+ const Type_handler *type_handler() const override
+ { return &type_handler_newdecimal; }
+ bool fix_length_and_dec(THD *thd) override
+ { fix_num_length_and_dec(); return FALSE; }
+ Item *copy_or_same(THD* thd) override;
+ Item *get_copy(THD *thd) override
+ { return get_item_copy<Item_sum_udf_decimal>(thd, this); }
+};
+
+#else /* Dummy functions to get yy_*.cc files compiled */
+
+class Item_sum_udf_float :public Item_sum_double
+{
+ public:
+ Item_sum_udf_float(THD *thd, udf_func *udf_arg):
+ Item_sum_double(thd) {}
+ Item_sum_udf_float(THD *thd, udf_func *udf_arg, List<Item> &list):
+ Item_sum_double(thd) {}
+ Item_sum_udf_float(THD *thd, Item_sum_udf_float *item)
+ :Item_sum_double(thd, item) {}
+ enum Sumfunctype sum_func () const { return UDF_SUM_FUNC; }
+ double val_real() { DBUG_ASSERT(fixed()); return 0.0; }
+ void clear() {}
+ bool add() { return 0; }
+ void reset_field() { DBUG_ASSERT(0); };
+ void update_field() {}
+};
+
+
+class Item_sum_udf_int :public Item_sum_double
+{
+public:
+ Item_sum_udf_int(THD *thd, udf_func *udf_arg):
+ Item_sum_double(thd) {}
+ Item_sum_udf_int(THD *thd, udf_func *udf_arg, List<Item> &list):
+ Item_sum_double(thd) {}
+ Item_sum_udf_int(THD *thd, Item_sum_udf_int *item)
+ :Item_sum_double(thd, item) {}
+ enum Sumfunctype sum_func () const { return UDF_SUM_FUNC; }
+ longlong val_int() { DBUG_ASSERT(fixed()); return 0; }
+ double val_real() { DBUG_ASSERT(fixed()); return 0; }
+ void clear() {}
+ bool add() { return 0; }
+ void reset_field() { DBUG_ASSERT(0); };
+ void update_field() {}
+};
+
+
+class Item_sum_udf_decimal :public Item_sum_double
+{
+ public:
+ Item_sum_udf_decimal(THD *thd, udf_func *udf_arg):
+ Item_sum_double(thd) {}
+ Item_sum_udf_decimal(THD *thd, udf_func *udf_arg, List<Item> &list):
+ Item_sum_double(thd) {}
+ Item_sum_udf_decimal(THD *thd, Item_sum_udf_float *item)
+ :Item_sum_double(thd, item) {}
+ enum Sumfunctype sum_func () const { return UDF_SUM_FUNC; }
+ double val_real() { DBUG_ASSERT(fixed()); return 0.0; }
+ my_decimal *val_decimal(my_decimal *) { DBUG_ASSERT(fixed()); return 0; }
+ void clear() {}
+ bool add() { return 0; }
+ void reset_field() { DBUG_ASSERT(0); };
+ void update_field() {}
+};
+
+
+class Item_sum_udf_str :public Item_sum_double
+{
+public:
+ Item_sum_udf_str(THD *thd, udf_func *udf_arg):
+ Item_sum_double(thd) {}
+ Item_sum_udf_str(THD *thd, udf_func *udf_arg, List<Item> &list):
+ Item_sum_double(thd) {}
+ Item_sum_udf_str(THD *thd, Item_sum_udf_str *item)
+ :Item_sum_double(thd, item) {}
+ String *val_str(String *)
+ { DBUG_ASSERT(fixed()); null_value=1; return 0; }
+ double val_real() { DBUG_ASSERT(fixed()); null_value=1; return 0.0; }
+ longlong val_int() { DBUG_ASSERT(fixed()); null_value=1; return 0; }
+ bool fix_length_and_dec(THD *thd) override
+ { base_flags|= item_base_t::MAYBE_NULL; max_length=0; return FALSE; }
+ enum Sumfunctype sum_func () const { return UDF_SUM_FUNC; }
+ void clear() {}
+ bool add() { return 0; }
+ void reset_field() { DBUG_ASSERT(0); };
+ void update_field() {}
+};
+
+#endif /* HAVE_DLOPEN */
+
+C_MODE_START
+int group_concat_key_cmp_with_distinct(void* arg, const void* key1,
+ const void* key2);
+int group_concat_key_cmp_with_distinct_with_nulls(void* arg, const void* key1,
+ const void* key2);
+int group_concat_key_cmp_with_order(void* arg, const void* key1,
+ const void* key2);
+int group_concat_key_cmp_with_order_with_nulls(void *arg, const void *key1,
+ const void *key2);
+int dump_leaf_key(void* key_arg,
+ element_count count __attribute__((unused)),
+ void* item_arg);
+C_MODE_END
+
+class Item_func_group_concat : public Item_sum
+{
+protected:
+ TMP_TABLE_PARAM *tmp_table_param;
+ String result;
+ String *separator;
+ TREE tree_base;
+ TREE *tree;
+ size_t tree_len;
+ Item **ref_pointer_array;
+
+ /**
+ If DISTINCT is used with this GROUP_CONCAT, this member is used to filter
+ out duplicates.
+ @see Item_func_group_concat::setup
+ @see Item_func_group_concat::add
+ @see Item_func_group_concat::clear
+ */
+ Unique *unique_filter;
+ TABLE *table;
+ ORDER **order;
+ Name_resolution_context *context;
+ /** The number of ORDER BY items. */
+ uint arg_count_order;
+ /** The number of selected items, aka the expr list. */
+ uint arg_count_field;
+ uint row_count;
+ bool distinct;
+ bool warning_for_row;
+ bool always_null;
+ bool force_copy_fields;
+ /** True if entire result of GROUP_CONCAT has been written to output buffer. */
+ bool result_finalized;
+ /** Limits the rows in the result */
+ Item *row_limit;
+ /** Skips a particular number of rows in from the result*/
+ Item *offset_limit;
+ bool limit_clause;
+ /* copy of the offset limit */
+ ulonglong copy_offset_limit;
+ /*copy of the row limit */
+ ulonglong copy_row_limit;
+
+ /*
+ Following is 0 normal object and pointer to original one for copy
+ (to correctly free resources)
+ */
+ Item_func_group_concat *original;
+
+ /*
+ Used by Item_func_group_concat and Item_func_json_arrayagg. The latter
+ needs null values but the former doesn't.
+ */
+ bool add(bool exclude_nulls);
+
+ friend int group_concat_key_cmp_with_distinct(void* arg, const void* key1,
+ const void* key2);
+ friend int group_concat_key_cmp_with_distinct_with_nulls(void* arg,
+ const void* key1,
+ const void* key2);
+ friend int group_concat_key_cmp_with_order(void* arg, const void* key1,
+ const void* key2);
+ friend int group_concat_key_cmp_with_order_with_nulls(void *arg,
+ const void *key1, const void *key2);
+ friend int dump_leaf_key(void* key_arg,
+ element_count count __attribute__((unused)),
+ void* item_arg);
+
+ bool repack_tree(THD *thd);
+
+ /*
+ Says whether the function should skip NULL arguments
+ or add them to the result.
+ Redefined in JSON_ARRAYAGG.
+ */
+ virtual bool skip_nulls() const { return true; }
+ virtual String *get_str_from_item(Item *i, String *tmp)
+ { return i->val_str(tmp); }
+ virtual String *get_str_from_field(Item *i, Field *f, String *tmp,
+ const uchar *key, size_t offset)
+ { return f->val_str(tmp, key + offset); }
+ virtual void cut_max_length(String *result,
+ uint old_length, uint max_length) const;
+public:
+ // Methods used by ColumnStore
+ bool get_distinct() const { return distinct; }
+ uint get_count_field() const { return arg_count_field; }
+ uint get_order_field() const { return arg_count_order; }
+ const String* get_separator() const { return separator; }
+ ORDER** get_order() const { return order; }
+
+public:
+ Item_func_group_concat(THD *thd, Name_resolution_context *context_arg,
+ bool is_distinct, List<Item> *is_select,
+ const SQL_I_List<ORDER> &is_order, String *is_separator,
+ bool limit_clause, Item *row_limit, Item *offset_limit);
+
+ Item_func_group_concat(THD *thd, Item_func_group_concat *item);
+ ~Item_func_group_concat();
+ void cleanup() override;
+
+ enum Sumfunctype sum_func () const override {return GROUP_CONCAT_FUNC;}
+ LEX_CSTRING func_name_cstring() const override
+ {
+ static LEX_CSTRING sum_name= {STRING_WITH_LEN("group_concat(") };
+ return sum_name;
+ }
+ const Type_handler *type_handler() const override
+ {
+ if (too_big_for_varchar())
+ return &type_handler_blob;
+ return &type_handler_varchar;
+ }
+ void clear() override;
+ bool add() override
+ {
+ return add(skip_nulls());
+ }
+ void reset_field() override { DBUG_ASSERT(0); } // not used
+ void update_field() override { DBUG_ASSERT(0); } // not used
+ bool fix_fields(THD *,Item **) override;
+ bool setup(THD *thd) override;
+ void make_unique() override;
+ double val_real() override
+ {
+ int error;
+ const char *end;
+ String *res;
+ if (!(res= val_str(&str_value)))
+ return 0.0;
+ end= res->ptr() + res->length();
+ return (my_strtod(res->ptr(), (char**) &end, &error));
+ }
+ longlong val_int() override
+ {
+ String *res;
+ char *end_ptr;
+ int error;
+ if (!(res= val_str(&str_value)))
+ return (longlong) 0;
+ end_ptr= (char*) res->ptr()+ res->length();
+ return my_strtoll10(res->ptr(), &end_ptr, &error);
+ }
+ my_decimal *val_decimal(my_decimal *decimal_value) override
+ {
+ return val_decimal_from_string(decimal_value);
+ }
+ bool get_date(THD *thd, MYSQL_TIME *ltime, date_mode_t fuzzydate) override
+ {
+ return get_date_from_string(thd, ltime, fuzzydate);
+ }
+ String *val_str(String *str) override;
+ Item *copy_or_same(THD* thd) override;
+ void no_rows_in_result() override {}
+ void print(String *str, enum_query_type query_type) override;
+ bool change_context_processor(void *cntx) override
+ { context= (Name_resolution_context *)cntx; return FALSE; }
+ Item *get_copy(THD *thd) override
+ { return get_item_copy<Item_func_group_concat>(thd, this); }
+ qsort_cmp2 get_comparator_function_for_distinct();
+ qsort_cmp2 get_comparator_function_for_order_by();
+ uchar* get_record_pointer();
+ uint get_null_bytes();
+
+};
+
+#endif /* ITEM_SUM_INCLUDED */