summaryrefslogtreecommitdiffstats
path: root/sql/sql_select.cc
diff options
context:
space:
mode:
Diffstat (limited to 'sql/sql_select.cc')
-rw-r--r--sql/sql_select.cc32034
1 files changed, 32034 insertions, 0 deletions
diff --git a/sql/sql_select.cc b/sql/sql_select.cc
new file mode 100644
index 00000000..f4cbed58
--- /dev/null
+++ b/sql/sql_select.cc
@@ -0,0 +1,32034 @@
+/* Copyright (c) 2000, 2016, Oracle and/or its affiliates.
+ Copyright (c) 2009, 2022, MariaDB Corporation.
+
+ This program is free software; you can redistribute it and/or modify
+ it under the terms of the GNU General Public License as published by
+ the Free Software Foundation; version 2 of the License.
+
+ This program is distributed in the hope that it will be useful,
+ but WITHOUT ANY WARRANTY; without even the implied warranty of
+ MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
+ GNU General Public License for more details.
+
+ You should have received a copy of the GNU General Public License
+ along with this program; if not, write to the Free Software
+ Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1335 USA */
+
+/**
+ @file
+
+ @brief
+ mysql_select and join optimization
+
+
+ @defgroup Query_Optimizer Query Optimizer
+ @{
+*/
+
+#ifdef USE_PRAGMA_IMPLEMENTATION
+#pragma implementation // gcc: Class implementation
+#endif
+
+#include "mariadb.h"
+#include "sql_priv.h"
+#include "unireg.h"
+#include "sql_select.h"
+#include "sql_cache.h" // query_cache_*
+#include "sql_table.h" // primary_key_name
+#include "probes_mysql.h"
+#include "key.h" // key_copy, key_cmp, key_cmp_if_same
+#include "lock.h" // mysql_unlock_some_tables,
+ // mysql_unlock_read_tables
+#include "sql_show.h" // append_identifier
+#include "sql_base.h" // setup_wild, setup_fields, fill_record
+#include "sql_parse.h" // check_stack_overrun
+#include "sql_partition.h" // make_used_partitions_str
+#include "sql_test.h" // print_where, print_keyuse_array,
+ // print_sjm, print_plan, TEST_join
+#include "records.h" // init_read_record, end_read_record
+#include "filesort.h" // filesort_free_buffers
+#include "sql_union.h" // mysql_union
+#include "opt_subselect.h"
+#include "sql_derived.h"
+#include "sql_statistics.h"
+#include "sql_cte.h"
+#include "sql_window.h"
+#include "tztime.h"
+
+#include "debug_sync.h" // DEBUG_SYNC
+#include <m_ctype.h>
+#include <my_bit.h>
+#include <hash.h>
+#include <ft_global.h>
+#include "sys_vars_shared.h"
+#include "sp_head.h"
+#include "sp_rcontext.h"
+#include "rowid_filter.h"
+#include "select_handler.h"
+#include "my_json_writer.h"
+#include "opt_trace.h"
+#include "derived_handler.h"
+#include "create_tmp_table.h"
+
+/*
+ A key part number that means we're using a fulltext scan.
+
+ In order not to confuse it with regular equalities, we need to pick
+ a number that's greater than MAX_REF_PARTS.
+
+ Hash Join code stores field->field_index in KEYUSE::keypart, so the
+ number needs to be bigger than MAX_FIELDS, also.
+
+ CAUTION: sql_test.cc has its own definition of FT_KEYPART.
+*/
+#define FT_KEYPART (MAX_FIELDS+10)
+
+const char *join_type_str[]={ "UNKNOWN","system","const","eq_ref","ref",
+ "MAYBE_REF","ALL","range","index","fulltext",
+ "ref_or_null","unique_subquery","index_subquery",
+ "index_merge", "hash_ALL", "hash_range",
+ "hash_index", "hash_index_merge" };
+
+LEX_CSTRING group_key= {STRING_WITH_LEN("group_key")};
+LEX_CSTRING distinct_key= {STRING_WITH_LEN("distinct_key")};
+
+struct st_sargable_param;
+
+static bool make_join_statistics(JOIN *join, List<TABLE_LIST> &leaves,
+ DYNAMIC_ARRAY *keyuse);
+static bool update_ref_and_keys(THD *thd, DYNAMIC_ARRAY *keyuse,
+ JOIN_TAB *join_tab,
+ uint tables, COND *conds,
+ table_map table_map, SELECT_LEX *select_lex,
+ SARGABLE_PARAM **sargables);
+static int sort_keyuse(KEYUSE *a,KEYUSE *b);
+static bool are_tables_local(JOIN_TAB *jtab, table_map used_tables);
+static bool create_ref_for_key(JOIN *join, JOIN_TAB *j, KEYUSE *org_keyuse,
+ bool allow_full_scan, table_map used_tables);
+static bool get_quick_record_count(THD *thd, SQL_SELECT *select,
+ TABLE *table,
+ const key_map *keys,ha_rows limit,
+ ha_rows *quick_count);
+static void optimize_straight_join(JOIN *join, table_map join_tables);
+static bool greedy_search(JOIN *join, table_map remaining_tables,
+ uint depth, uint use_cond_selectivity);
+
+enum enum_best_search {
+ SEARCH_ABORT= -2,
+ SEARCH_ERROR= -1,
+ SEARCH_OK= 0,
+ SEARCH_FOUND_EDGE=1
+};
+
+static enum_best_search
+best_extension_by_limited_search(JOIN *join,
+ table_map remaining_tables,
+ uint idx, double record_count,
+ double read_time, uint depth,
+ uint use_cond_selectivity,
+ table_map *processed_eq_ref_tables);
+static uint determine_search_depth(JOIN* join);
+C_MODE_START
+static int join_tab_cmp(const void *dummy, const void* ptr1, const void* ptr2);
+static int join_tab_cmp_straight(const void *dummy, const void* ptr1, const void* ptr2);
+static int join_tab_cmp_embedded_first(const void *emb, const void* ptr1, const void *ptr2);
+C_MODE_END
+static uint cache_record_length(JOIN *join,uint index);
+static store_key *get_store_key(THD *thd,
+ KEYUSE *keyuse, table_map used_tables,
+ KEY_PART_INFO *key_part, uchar *key_buff,
+ uint maybe_null);
+static bool make_outerjoin_info(JOIN *join);
+static Item*
+make_cond_after_sjm(THD *thd, Item *root_cond, Item *cond, table_map tables,
+ table_map sjm_tables, bool inside_or_clause);
+static bool make_join_select(JOIN *join,SQL_SELECT *select,COND *item);
+static void revise_cache_usage(JOIN_TAB *join_tab);
+static bool make_join_readinfo(JOIN *join, ulonglong options, uint no_jbuf_after);
+static bool only_eq_ref_tables(JOIN *join, ORDER *order, table_map tables);
+static void update_depend_map(JOIN *join);
+static void update_depend_map_for_order(JOIN *join, ORDER *order);
+static ORDER *remove_const(JOIN *join,ORDER *first_order,COND *cond,
+ bool change_list, bool *simple_order);
+static int return_zero_rows(JOIN *join, select_result *res,
+ List<TABLE_LIST> *tables,
+ List<Item> *fields, bool send_row,
+ ulonglong select_options, const char *info,
+ Item *having, List<Item> *all_fields);
+static COND *build_equal_items(JOIN *join, COND *cond,
+ COND_EQUAL *inherited,
+ List<TABLE_LIST> *join_list,
+ bool ignore_on_conds,
+ COND_EQUAL **cond_equal_ref,
+ bool link_equal_fields= FALSE);
+static COND* substitute_for_best_equal_field(THD *thd, JOIN_TAB *context_tab,
+ COND *cond,
+ COND_EQUAL *cond_equal,
+ void *table_join_idx,
+ bool do_substitution);
+static COND *simplify_joins(JOIN *join, List<TABLE_LIST> *join_list,
+ COND *conds, bool top, bool in_sj);
+static bool check_interleaving_with_nj(JOIN_TAB *next);
+static void restore_prev_nj_state(JOIN_TAB *last);
+static uint reset_nj_counters(JOIN *join, List<TABLE_LIST> *join_list);
+static uint build_bitmap_for_nested_joins(List<TABLE_LIST> *join_list,
+ uint first_unused);
+
+static COND *optimize_cond(JOIN *join, COND *conds,
+ List<TABLE_LIST> *join_list,
+ bool ignore_on_conds,
+ Item::cond_result *cond_value,
+ COND_EQUAL **cond_equal,
+ int flags= 0);
+bool const_expression_in_where(COND *conds,Item *item, Item **comp_item);
+static int do_select(JOIN *join, Procedure *procedure);
+
+static enum_nested_loop_state evaluate_join_record(JOIN *, JOIN_TAB *, int);
+static enum_nested_loop_state
+evaluate_null_complemented_join_record(JOIN *join, JOIN_TAB *join_tab);
+static enum_nested_loop_state
+end_send(JOIN *join, JOIN_TAB *join_tab, bool end_of_records);
+static enum_nested_loop_state
+end_write(JOIN *join, JOIN_TAB *join_tab, bool end_of_records);
+static enum_nested_loop_state
+end_update(JOIN *join, JOIN_TAB *join_tab, bool end_of_records);
+static enum_nested_loop_state
+end_unique_update(JOIN *join, JOIN_TAB *join_tab, bool end_of_records);
+
+static int join_read_const_table(THD *thd, JOIN_TAB *tab, POSITION *pos);
+static int join_read_system(JOIN_TAB *tab);
+static int join_read_const(JOIN_TAB *tab);
+static int join_read_key(JOIN_TAB *tab);
+static void join_read_key_unlock_row(st_join_table *tab);
+static void join_const_unlock_row(JOIN_TAB *tab);
+static int join_read_always_key(JOIN_TAB *tab);
+static int join_read_last_key(JOIN_TAB *tab);
+static int join_no_more_records(READ_RECORD *info);
+static int join_read_next(READ_RECORD *info);
+static int join_init_quick_read_record(JOIN_TAB *tab);
+static quick_select_return test_if_quick_select(JOIN_TAB *tab);
+static int test_if_use_dynamic_range_scan(JOIN_TAB *join_tab);
+static int join_read_first(JOIN_TAB *tab);
+static int join_read_next(READ_RECORD *info);
+static int join_read_next_same(READ_RECORD *info);
+static int join_read_last(JOIN_TAB *tab);
+static int join_read_prev_same(READ_RECORD *info);
+static int join_read_prev(READ_RECORD *info);
+static int join_ft_read_first(JOIN_TAB *tab);
+static int join_ft_read_next(READ_RECORD *info);
+int join_read_always_key_or_null(JOIN_TAB *tab);
+int join_read_next_same_or_null(READ_RECORD *info);
+static COND *make_cond_for_table(THD *thd, Item *cond,table_map table,
+ table_map used_table,
+ int join_tab_idx_arg,
+ bool exclude_expensive_cond,
+ bool retain_ref_cond);
+static COND *make_cond_for_table_from_pred(THD *thd, Item *root_cond,
+ Item *cond,
+ table_map tables,
+ table_map used_table,
+ int join_tab_idx_arg,
+ bool exclude_expensive_cond,
+ bool retain_ref_cond,
+ bool is_top_and_level);
+
+static Item* part_of_refkey(TABLE *form,Field *field);
+uint find_shortest_key(TABLE *table, const key_map *usable_keys);
+static bool test_if_cheaper_ordering(const JOIN_TAB *tab,
+ ORDER *order, TABLE *table,
+ key_map usable_keys, int key,
+ ha_rows select_limit,
+ int *new_key, int *new_key_direction,
+ ha_rows *new_select_limit,
+ uint *new_used_key_parts= NULL,
+ uint *saved_best_key_parts= NULL);
+static int test_if_order_by_key(JOIN *, ORDER *, TABLE *, uint, uint *);
+static bool test_if_skip_sort_order(JOIN_TAB *tab,ORDER *order,
+ ha_rows select_limit, bool no_changes,
+ const key_map *map,
+ bool *fatal_error);
+static bool list_contains_unique_index(TABLE *table,
+ bool (*find_func) (Field *, void *), void *data);
+static bool find_field_in_item_list (Field *field, void *data);
+static bool find_field_in_order_list (Field *field, void *data);
+int create_sort_index(THD *thd, JOIN *join, JOIN_TAB *tab, Filesort *fsort);
+static int remove_dup_with_compare(THD *thd, TABLE *entry, Field **field,
+ SORT_FIELD *sortorder, ulong keylength,
+ Item *having);
+static int remove_dup_with_hash_index(THD *thd,TABLE *table,
+ uint field_count, Field **first_field,
+ SORT_FIELD *sortorder,
+ ulong key_length,Item *having);
+static bool cmp_buffer_with_ref(THD *thd, TABLE *table, TABLE_REF *tab_ref);
+static bool setup_new_fields(THD *thd, List<Item> &fields,
+ List<Item> &all_fields, ORDER *new_order);
+static ORDER *create_distinct_group(THD *thd, Ref_ptr_array ref_pointer_array,
+ ORDER *order, List<Item> &fields,
+ List<Item> &all_fields,
+ bool *all_order_by_fields_used);
+static bool test_if_subpart(ORDER *group_by, ORDER *order_by);
+static TABLE *get_sort_by_table(ORDER *a,ORDER *b,List<TABLE_LIST> &tables,
+ table_map const_tables);
+static void calc_group_buffer(JOIN *join, ORDER *group);
+static bool make_group_fields(JOIN *main_join, JOIN *curr_join);
+static bool alloc_group_fields(JOIN *join, ORDER *group);
+static bool alloc_order_fields(JOIN *join, ORDER *group,
+ uint max_number_of_elements);
+// Create list for using with tempory table
+static bool change_to_use_tmp_fields(THD *thd, Ref_ptr_array ref_pointer_array,
+ List<Item> &new_list1,
+ List<Item> &new_list2,
+ uint elements, List<Item> &items);
+// Create list for using with tempory table
+static bool change_refs_to_tmp_fields(THD *thd, Ref_ptr_array ref_pointer_array,
+ List<Item> &new_list1,
+ List<Item> &new_list2,
+ uint elements, List<Item> &items);
+static void init_tmptable_sum_functions(Item_sum **func);
+static void update_tmptable_sum_func(Item_sum **func,TABLE *tmp_table);
+static void copy_sum_funcs(Item_sum **func_ptr, Item_sum **end);
+static bool add_ref_to_table_cond(THD *thd, JOIN_TAB *join_tab);
+static bool setup_sum_funcs(THD *thd, Item_sum **func_ptr);
+static bool prepare_sum_aggregators(THD *thd, Item_sum **func_ptr,
+ bool need_distinct);
+static bool init_sum_functions(Item_sum **func, Item_sum **end);
+static bool update_sum_func(Item_sum **func);
+static void select_describe(JOIN *join, bool need_tmp_table,bool need_order,
+ bool distinct, const char *message=NullS);
+static void add_group_and_distinct_keys(JOIN *join, JOIN_TAB *join_tab);
+static uint make_join_orderinfo(JOIN *join);
+static bool generate_derived_keys(DYNAMIC_ARRAY *keyuse_array);
+
+Item_equal *find_item_equal(COND_EQUAL *cond_equal, Field *field,
+ bool *inherited_fl);
+JOIN_TAB *first_depth_first_tab(JOIN* join);
+JOIN_TAB *next_depth_first_tab(JOIN* join, JOIN_TAB* tab);
+
+static JOIN_TAB *next_breadth_first_tab(JOIN_TAB *first_top_tab,
+ uint n_top_tabs_count, JOIN_TAB *tab);
+static bool find_order_in_list(THD *, Ref_ptr_array, TABLE_LIST *, ORDER *,
+ List<Item> &, List<Item> &, bool, bool, bool);
+
+static double table_cond_selectivity(JOIN *join, uint idx, JOIN_TAB *s,
+ table_map rem_tables);
+void set_postjoin_aggr_write_func(JOIN_TAB *tab);
+
+static Item **get_sargable_cond(JOIN *join, TABLE *table);
+
+bool is_eq_cond_injected_for_split_opt(Item_func_eq *eq_item);
+
+void print_list_item(String *str, List_item *list,
+ enum_query_type query_type);
+
+static
+bool build_notnull_conds_for_range_scans(JOIN *join, COND *cond,
+ table_map allowed);
+static
+void build_notnull_conds_for_inner_nest_of_outer_join(JOIN *join,
+ TABLE_LIST *nest_tbl);
+static void fix_items_after_optimize(THD *thd, SELECT_LEX *select_lex);
+static void optimize_rownum(THD *thd, SELECT_LEX_UNIT *unit, Item *cond);
+static bool process_direct_rownum_comparison(THD *thd, SELECT_LEX_UNIT *unit,
+ Item *cond);
+
+#ifndef DBUG_OFF
+
+/*
+ SHOW EXPLAIN testing: wait for, and serve n_calls APC requests.
+*/
+void dbug_serve_apcs(THD *thd, int n_calls)
+{
+ const char *save_proc_info= thd->proc_info;
+
+ /* Busy-wait for n_calls APC requests to arrive and be processed */
+ int n_apcs= thd->apc_target.n_calls_processed + n_calls;
+ while (thd->apc_target.n_calls_processed < n_apcs)
+ {
+ /* This is so that mysqltest knows we're ready to serve requests: */
+ thd_proc_info(thd, "show_explain_trap");
+ my_sleep(30000);
+ thd_proc_info(thd, save_proc_info);
+ if (unlikely(thd->check_killed(1)))
+ break;
+ }
+}
+
+
+/*
+ Debugging: check if @name=value, comparing as integer
+
+ Intended usage:
+
+ DBUG_EXECUTE_IF("show_explain_probe_2",
+ if (dbug_user_var_equals_int(thd, "select_id", select_id))
+ dbug_serve_apcs(thd, 1);
+ );
+
+*/
+
+bool dbug_user_var_equals_int(THD *thd, const char *name, int value)
+{
+ user_var_entry *var;
+ LEX_CSTRING varname= { name, strlen(name)};
+ if ((var= get_variable(&thd->user_vars, &varname, FALSE)))
+ {
+ bool null_value;
+ longlong var_value= var->val_int(&null_value);
+ if (!null_value && var_value == value)
+ return TRUE;
+ }
+ return FALSE;
+}
+
+/*
+ Debugging : check if @name= value, comparing as string
+
+ Intended usage :
+
+ DBUG_EXECUTE_IF("log_slow_statement_end",
+ if (dbug_user_var_equals_str(thd, "show_explain_probe_query",
+ thd->query()))
+ dbug_serve_apcs(thd, 1);
+ );
+*/
+
+bool dbug_user_var_equals_str(THD *thd, const char *name, const char* value)
+{
+ user_var_entry *var;
+ LEX_CSTRING varname= {name, strlen(name)};
+ if ((var= get_variable(&thd->user_vars, &varname, FALSE)))
+ {
+ bool null_value;
+ String str;
+ auto var_value= var->val_str(&null_value, &str, 10)->ptr();
+ if (!null_value && !strncmp(var_value, value, strlen(value)))
+ return TRUE;
+ }
+ return FALSE;
+}
+#endif /* DBUG_OFF */
+
+/*
+ Intialize POSITION structure.
+*/
+
+POSITION::POSITION()
+{
+ table= 0;
+ records_read= cond_selectivity= read_time= 0.0;
+ prefix_record_count= 0.0;
+ key= 0;
+ use_join_buffer= 0;
+ sj_strategy= SJ_OPT_NONE;
+ n_sj_tables= 0;
+ spl_plan= 0;
+ range_rowid_filter_info= 0;
+ ref_depend_map= dups_producing_tables= 0;
+ inner_tables_handled_with_other_sjs= 0;
+ type= JT_UNKNOWN;
+ key_dependent= 0;
+ dups_weedout_picker.set_empty();
+ firstmatch_picker.set_empty();
+ loosescan_picker.set_empty();
+ sjmat_picker.set_empty();
+}
+
+
+void JOIN::init(THD *thd_arg, List<Item> &fields_arg,
+ ulonglong select_options_arg, select_result *result_arg)
+{
+ join_tab= 0;
+ table= 0;
+ table_count= 0;
+ top_join_tab_count= 0;
+ const_tables= 0;
+ const_table_map= found_const_table_map= not_usable_rowid_map= 0;
+ aggr_tables= 0;
+ eliminated_tables= 0;
+ join_list= 0;
+ implicit_grouping= FALSE;
+ sort_and_group= 0;
+ first_record= 0;
+ do_send_rows= 1;
+ duplicate_rows= send_records= 0;
+ found_records= accepted_rows= 0;
+ fetch_limit= HA_POS_ERROR;
+ thd= thd_arg;
+ sum_funcs= sum_funcs2= 0;
+ procedure= 0;
+ having= tmp_having= having_history= 0;
+ having_is_correlated= false;
+ group_list_for_estimates= 0;
+ select_options= select_options_arg;
+ result= result_arg;
+ lock= thd_arg->lock;
+ select_lex= 0; //for safety
+ select_distinct= MY_TEST(select_options & SELECT_DISTINCT);
+ no_order= 0;
+ simple_order= 0;
+ simple_group= 0;
+ ordered_index_usage= ordered_index_void;
+ need_distinct= 0;
+ skip_sort_order= 0;
+ with_two_phase_optimization= 0;
+ save_qep= 0;
+ spl_opt_info= 0;
+ ext_keyuses_for_splitting= 0;
+ spl_opt_info= 0;
+ need_tmp= 0;
+ hidden_group_fields= 0; /*safety*/
+ error= 0;
+ select= 0;
+ return_tab= 0;
+ ref_ptrs.reset();
+ items0.reset();
+ items1.reset();
+ items2.reset();
+ items3.reset();
+ zero_result_cause= 0;
+ optimization_state= JOIN::NOT_OPTIMIZED;
+ have_query_plan= QEP_NOT_PRESENT_YET;
+ initialized= 0;
+ cleaned= 0;
+ cond_equal= 0;
+ having_equal= 0;
+ exec_const_cond= 0;
+ group_optimized_away= 0;
+ no_rows_in_result_called= 0;
+ positions= best_positions= 0;
+ pushdown_query= 0;
+ original_join_tab= 0;
+ explain= NULL;
+ tmp_table_keep_current_rowid= 0;
+ allowed_top_level_tables= 0;
+
+ all_fields= fields_arg;
+ if (&fields_list != &fields_arg) /* Avoid valgrind-warning */
+ fields_list= fields_arg;
+ non_agg_fields.empty();
+ bzero((char*) &keyuse,sizeof(keyuse));
+ having_value= Item::COND_UNDEF;
+ tmp_table_param.init();
+ tmp_table_param.end_write_records= HA_POS_ERROR;
+ rollup.state= ROLLUP::STATE_NONE;
+
+ no_const_tables= FALSE;
+ first_select= sub_select;
+ set_group_rpa= false;
+ group_sent= 0;
+
+ outer_ref_cond= pseudo_bits_cond= NULL;
+ in_to_exists_where= NULL;
+ in_to_exists_having= NULL;
+ emb_sjm_nest= NULL;
+ sjm_lookup_tables= 0;
+ sjm_scan_tables= 0;
+ is_orig_degenerated= false;
+ with_ties_order_count= 0;
+};
+
+
+static void trace_table_dependencies(THD *thd,
+ JOIN_TAB *join_tabs, uint table_count)
+{
+ DBUG_ASSERT(thd->trace_started());
+ Json_writer_object trace_wrapper(thd);
+ Json_writer_array trace_dep(thd, "table_dependencies");
+
+ for (uint i= 0; i < table_count; i++)
+ {
+ TABLE_LIST *table_ref= join_tabs[i].tab_list;
+ Json_writer_object trace_one_table(thd);
+ trace_one_table.add_table_name(&join_tabs[i]);
+ trace_one_table.add("row_may_be_null",
+ (bool)table_ref->table->maybe_null);
+ const table_map map= table_ref->get_map();
+ DBUG_ASSERT(map < (1ULL << table_count));
+ for (uint j= 0; j < table_count; j++)
+ {
+ if (map & (1ULL << j))
+ {
+ trace_one_table.add("map_bit", j);
+ break;
+ }
+ }
+ Json_writer_array depends_on(thd, "depends_on_map_bits");
+ Table_map_iterator it(join_tabs[i].dependent);
+ uint dep_bit;
+ while ((dep_bit= it++) != Table_map_iterator::BITMAP_END)
+ depends_on.add(static_cast<longlong>(dep_bit));
+ }
+}
+
+
+/**
+ This handles SELECT with and without UNION.
+*/
+
+bool handle_select(THD *thd, LEX *lex, select_result *result,
+ ulonglong setup_tables_done_option)
+{
+ bool res;
+ SELECT_LEX *select_lex= lex->first_select_lex();
+ DBUG_ENTER("handle_select");
+ MYSQL_SELECT_START(thd->query());
+
+ if (select_lex->master_unit()->is_unit_op() ||
+ select_lex->master_unit()->fake_select_lex)
+ res= mysql_union(thd, lex, result, &lex->unit, setup_tables_done_option);
+ else
+ {
+ SELECT_LEX_UNIT *unit= &lex->unit;
+ unit->set_limit(unit->global_parameters());
+ /*
+ 'options' of mysql_select will be set in JOIN, as far as JOIN for
+ every PS/SP execution new, we will not need reset this flag if
+ setup_tables_done_option changed for next rexecution
+ */
+ res= mysql_select(thd,
+ select_lex->table_list.first,
+ select_lex->item_list,
+ select_lex->where,
+ select_lex->order_list.elements +
+ select_lex->group_list.elements,
+ select_lex->order_list.first,
+ select_lex->group_list.first,
+ select_lex->having,
+ lex->proc_list.first,
+ select_lex->options | thd->variables.option_bits |
+ setup_tables_done_option,
+ result, unit, select_lex);
+ }
+ DBUG_PRINT("info",("res: %d is_error(): %d", res,
+ thd->is_error()));
+ res|= thd->is_error();
+ if (unlikely(res))
+ result->abort_result_set();
+ if (unlikely(thd->killed == ABORT_QUERY && !thd->no_errors))
+ {
+ /*
+ If LIMIT ROWS EXAMINED interrupted query execution, issue a warning,
+ continue with normal processing and produce an incomplete query result.
+ */
+ bool saved_abort_on_warning= thd->abort_on_warning;
+ thd->abort_on_warning= false;
+ push_warning_printf(thd, Sql_condition::WARN_LEVEL_WARN,
+ ER_QUERY_RESULT_INCOMPLETE,
+ ER_THD(thd, ER_QUERY_RESULT_INCOMPLETE),
+ "LIMIT ROWS EXAMINED",
+ thd->lex->limit_rows_examined->val_uint());
+ thd->abort_on_warning= saved_abort_on_warning;
+ thd->reset_killed();
+ }
+ /* Disable LIMIT ROWS EXAMINED after query execution. */
+ thd->lex->limit_rows_examined_cnt= ULONGLONG_MAX;
+
+ MYSQL_SELECT_DONE((int) res, (ulong) thd->limit_found_rows);
+ DBUG_RETURN(res);
+}
+
+
+/**
+ Fix fields referenced from inner selects.
+
+ @param thd Thread handle
+ @param all_fields List of all fields used in select
+ @param select Current select
+ @param ref_pointer_array Array of references to Items used in current select
+ @param group_list GROUP BY list (is NULL by default)
+
+ @details
+ The function serves 3 purposes
+
+ - adds fields referenced from inner query blocks to the current select list
+
+ - Decides which class to use to reference the items (Item_ref or
+ Item_direct_ref)
+
+ - fixes references (Item_ref objects) to these fields.
+
+ If a field isn't already on the select list and the ref_pointer_array
+ is provided then it is added to the all_fields list and the pointer to
+ it is saved in the ref_pointer_array.
+
+ The class to access the outer field is determined by the following rules:
+
+ -#. If the outer field isn't used under an aggregate function then the
+ Item_ref class should be used.
+
+ -#. If the outer field is used under an aggregate function and this
+ function is, in turn, aggregated in the query block where the outer
+ field was resolved or some query nested therein, then the
+ Item_direct_ref class should be used. Also it should be used if we are
+ grouping by a subquery that references this outer field.
+
+ The resolution is done here and not at the fix_fields() stage as
+ it can be done only after aggregate functions are fixed and pulled up to
+ selects where they are to be aggregated.
+
+ When the class is chosen it substitutes the original field in the
+ Item_outer_ref object.
+
+ After this we proceed with fixing references (Item_outer_ref objects) to
+ this field from inner subqueries.
+
+ @return Status
+ @retval true An error occurred.
+ @retval false OK.
+ */
+
+bool
+fix_inner_refs(THD *thd, List<Item> &all_fields, SELECT_LEX *select,
+ Ref_ptr_array ref_pointer_array)
+{
+ Item_outer_ref *ref;
+
+ /*
+ Mark the references from the inner_refs_list that are occurred in
+ the group by expressions. Those references will contain direct
+ references to the referred fields. The markers are set in
+ the found_in_group_by field of the references from the list.
+ */
+ List_iterator_fast <Item_outer_ref> ref_it(select->inner_refs_list);
+ for (ORDER *group= select->join->group_list; group; group= group->next)
+ {
+ (*group->item)->walk(&Item::check_inner_refs_processor, TRUE, &ref_it);
+ }
+
+ while ((ref= ref_it++))
+ {
+ bool direct_ref= false;
+ Item *item= ref->outer_ref;
+ Item **item_ref= ref->ref;
+ Item_ref *new_ref;
+ /*
+ TODO: this field item already might be present in the select list.
+ In this case instead of adding new field item we could use an
+ existing one. The change will lead to less operations for copying fields,
+ smaller temporary tables and less data passed through filesort.
+ */
+ if (!ref_pointer_array.is_null() && !ref->found_in_select_list)
+ {
+ int el= all_fields.elements;
+ ref_pointer_array[el]= item;
+ /* Add the field item to the select list of the current select. */
+ all_fields.push_front(item, thd->mem_root);
+ /*
+ If it's needed reset each Item_ref item that refers this field with
+ a new reference taken from ref_pointer_array.
+ */
+ item_ref= &ref_pointer_array[el];
+ }
+
+ if (ref->in_sum_func)
+ {
+ Item_sum *sum_func;
+ if (ref->in_sum_func->nest_level > select->nest_level)
+ direct_ref= TRUE;
+ else
+ {
+ for (sum_func= ref->in_sum_func; sum_func &&
+ sum_func->aggr_level >= select->nest_level;
+ sum_func= sum_func->in_sum_func)
+ {
+ if (sum_func->aggr_level == select->nest_level)
+ {
+ direct_ref= TRUE;
+ break;
+ }
+ }
+ }
+ }
+ else if (ref->found_in_group_by)
+ direct_ref= TRUE;
+
+ new_ref= direct_ref ?
+ new (thd->mem_root) Item_direct_ref(thd, ref->context, item_ref, ref->table_name,
+ ref->field_name, ref->alias_name_used) :
+ new (thd->mem_root) Item_ref(thd, ref->context, item_ref, ref->table_name,
+ ref->field_name, ref->alias_name_used);
+ if (!new_ref)
+ return TRUE;
+ ref->outer_ref= new_ref;
+ ref->ref= &ref->outer_ref;
+
+ if (ref->fix_fields_if_needed(thd, 0))
+ return TRUE;
+ thd->lex->used_tables|= item->used_tables();
+ thd->lex->current_select->select_list_tables|= item->used_tables();
+ }
+ return false;
+}
+
+/**
+ The following clauses are redundant for subqueries:
+
+ DISTINCT
+ GROUP BY if there are no aggregate functions and no HAVING
+ clause
+
+ Because redundant clauses are removed both from JOIN and
+ select_lex, the removal is permanent. Thus, it only makes sense to
+ call this function for normal queries and on first execution of
+ SP/PS
+
+ @param subq_select_lex select_lex that is part of a subquery
+ predicate. This object and the associated
+ join is modified.
+*/
+
+static
+void remove_redundant_subquery_clauses(st_select_lex *subq_select_lex)
+{
+ DBUG_ENTER("remove_redundant_subquery_clauses");
+ Item_subselect *subq_predicate= subq_select_lex->master_unit()->item;
+ /*
+ The removal should happen for IN, ALL, ANY and EXISTS subqueries,
+ which means all but single row subqueries. Example single row
+ subqueries:
+ a) SELECT * FROM t1 WHERE t1.a = (<single row subquery>)
+ b) SELECT a, (<single row subquery) FROM t1
+ */
+ if (subq_predicate->substype() == Item_subselect::SINGLEROW_SUBS)
+ DBUG_VOID_RETURN;
+
+ /* A subquery that is not single row should be one of IN/ALL/ANY/EXISTS. */
+ DBUG_ASSERT (subq_predicate->substype() == Item_subselect::EXISTS_SUBS ||
+ subq_predicate->is_in_predicate());
+
+ if (subq_select_lex->options & SELECT_DISTINCT)
+ {
+ subq_select_lex->join->select_distinct= false;
+ subq_select_lex->options&= ~SELECT_DISTINCT;
+ DBUG_PRINT("info", ("DISTINCT removed"));
+ }
+
+ /*
+ Remove GROUP BY if there are no aggregate functions and no HAVING
+ clause
+ */
+ if (subq_select_lex->group_list.elements &&
+ !subq_select_lex->with_sum_func && !subq_select_lex->join->having)
+ {
+ for (ORDER *ord= subq_select_lex->group_list.first; ord; ord= ord->next)
+ {
+ /*
+ Do not remove the item if it is used in select list and then referred
+ from GROUP BY clause by its name or number. Example:
+
+ select (select ... ) as SUBQ ... group by SUBQ
+
+ Here SUBQ cannot be removed.
+ */
+ if (!ord->in_field_list)
+ {
+ (*ord->item)->walk(&Item::eliminate_subselect_processor, FALSE, NULL);
+ /*
+ Remove from the JOIN::all_fields list any reference to the elements
+ of the eliminated GROUP BY list unless it is 'in_field_list'.
+ This is needed in order not to confuse JOIN::make_aggr_tables_info()
+ when it constructs different structure for execution phase.
+ */
+ List_iterator<Item> li(subq_select_lex->join->all_fields);
+ Item *item;
+ while ((item= li++))
+ {
+ if (item == *ord->item)
+ li.remove();
+ }
+ }
+ }
+ subq_select_lex->join->group_list= NULL;
+ subq_select_lex->group_list.empty();
+ DBUG_PRINT("info", ("GROUP BY removed"));
+ }
+
+ /*
+ TODO: This would prevent processing quries with ORDER BY ... LIMIT
+ therefore we disable this optimization for now.
+ Remove GROUP BY if there are no aggregate functions and no HAVING
+ clause
+ if (subq_select_lex->group_list.elements &&
+ !subq_select_lex->with_sum_func && !subq_select_lex->join->having)
+ {
+ subq_select_lex->join->group_list= NULL;
+ subq_select_lex->group_list.empty();
+ }
+ */
+ DBUG_VOID_RETURN;
+}
+
+
+/**
+ Function to setup clauses without sum functions.
+*/
+static inline int
+setup_without_group(THD *thd, Ref_ptr_array ref_pointer_array,
+ TABLE_LIST *tables,
+ List<TABLE_LIST> &leaves,
+ List<Item> &fields,
+ List<Item> &all_fields,
+ COND **conds,
+ ORDER *order,
+ ORDER *group,
+ List<Window_spec> &win_specs,
+ List<Item_window_func> &win_funcs,
+ bool *hidden_group_fields)
+{
+ int res;
+ enum_parsing_place save_place;
+ st_select_lex *const select= thd->lex->current_select;
+ nesting_map save_allow_sum_func= thd->lex->allow_sum_func;
+ /*
+ Need to stave the value, so we can turn off only any new non_agg_field_used
+ additions coming from the WHERE
+ */
+ const bool saved_non_agg_field_used= select->non_agg_field_used();
+ DBUG_ENTER("setup_without_group");
+
+ thd->lex->allow_sum_func.clear_bit(select->nest_level);
+ res= setup_conds(thd, tables, leaves, conds);
+
+ /* it's not wrong to have non-aggregated columns in a WHERE */
+ select->set_non_agg_field_used(saved_non_agg_field_used);
+
+ thd->lex->allow_sum_func.set_bit(select->nest_level);
+
+ save_place= thd->lex->current_select->context_analysis_place;
+ thd->lex->current_select->context_analysis_place= IN_ORDER_BY;
+ res= res || setup_order(thd, ref_pointer_array, tables, fields, all_fields,
+ order);
+ thd->lex->allow_sum_func.clear_bit(select->nest_level);
+ thd->lex->current_select->context_analysis_place= IN_GROUP_BY;
+ res= res || setup_group(thd, ref_pointer_array, tables, fields, all_fields,
+ group, hidden_group_fields);
+ thd->lex->current_select->context_analysis_place= save_place;
+ thd->lex->allow_sum_func.set_bit(select->nest_level);
+ res= res || setup_windows(thd, ref_pointer_array, tables, fields, all_fields,
+ win_specs, win_funcs);
+ thd->lex->allow_sum_func= save_allow_sum_func;
+ DBUG_RETURN(res);
+}
+
+bool vers_select_conds_t::init_from_sysvar(THD *thd)
+{
+ vers_asof_timestamp_t &in= thd->variables.vers_asof_timestamp;
+ type= (vers_system_time_t) in.type;
+ delete_history= false;
+ start.unit= VERS_TIMESTAMP;
+ if (type != SYSTEM_TIME_UNSPECIFIED && type != SYSTEM_TIME_ALL)
+ {
+ DBUG_ASSERT(type == SYSTEM_TIME_AS_OF);
+ Datetime dt(in.unix_time, in.second_part, thd->variables.time_zone);
+
+ start.item= new (thd->mem_root)
+ Item_datetime_literal(thd, &dt, TIME_SECOND_PART_DIGITS);
+ if (!start.item)
+ return true;
+ }
+ else
+ start.item= NULL;
+ end.empty();
+ return false;
+}
+
+void vers_select_conds_t::print(String *str, enum_query_type query_type) const
+{
+ switch (orig_type) {
+ case SYSTEM_TIME_UNSPECIFIED:
+ break;
+ case SYSTEM_TIME_AS_OF:
+ start.print(str, query_type, STRING_WITH_LEN(" FOR SYSTEM_TIME AS OF "));
+ break;
+ case SYSTEM_TIME_FROM_TO:
+ start.print(str, query_type, STRING_WITH_LEN(" FOR SYSTEM_TIME FROM "));
+ end.print(str, query_type, STRING_WITH_LEN(" TO "));
+ break;
+ case SYSTEM_TIME_BETWEEN:
+ start.print(str, query_type, STRING_WITH_LEN(" FOR SYSTEM_TIME BETWEEN "));
+ end.print(str, query_type, STRING_WITH_LEN(" AND "));
+ break;
+ case SYSTEM_TIME_BEFORE:
+ start.print(str, query_type, STRING_WITH_LEN(" FOR SYSTEM_TIME BEFORE "));
+ break;
+ case SYSTEM_TIME_HISTORY:
+ // nothing to add
+ break;
+ case SYSTEM_TIME_ALL:
+ str->append(STRING_WITH_LEN(" FOR SYSTEM_TIME ALL"));
+ break;
+ }
+}
+
+static
+Item* period_get_condition(THD *thd, TABLE_LIST *table, SELECT_LEX *select,
+ vers_select_conds_t *conds, bool timestamp)
+{
+ DBUG_ASSERT(table);
+ DBUG_ASSERT(table->table);
+#define newx new (thd->mem_root)
+ TABLE_SHARE *share= table->table->s;
+ const TABLE_SHARE::period_info_t *period= conds->period;
+
+ const LEX_CSTRING &fstart= period->start_field(share)->field_name;
+ const LEX_CSTRING &fend= period->end_field(share)->field_name;
+
+ conds->field_start= newx Item_field(thd, &select->context,
+ table->db, table->alias,
+ thd->strmake_lex_cstring(fstart));
+ conds->field_end= newx Item_field(thd, &select->context,
+ table->db, table->alias,
+ thd->strmake_lex_cstring(fend));
+
+ Item *cond1= NULL, *cond2= NULL, *cond3= NULL, *curr= NULL;
+ if (timestamp)
+ {
+ MYSQL_TIME max_time;
+ switch (conds->type)
+ {
+ case SYSTEM_TIME_UNSPECIFIED:
+ case SYSTEM_TIME_HISTORY:
+ {
+ thd->variables.time_zone->gmt_sec_to_TIME(&max_time, TIMESTAMP_MAX_VALUE);
+ max_time.second_part= TIME_MAX_SECOND_PART;
+ Datetime dt(&max_time);
+ curr= newx Item_datetime_literal(thd, &dt, TIME_SECOND_PART_DIGITS);
+ if (conds->type == SYSTEM_TIME_UNSPECIFIED)
+ cond1= newx Item_func_eq(thd, conds->field_end, curr);
+ else
+ cond1= newx Item_func_lt(thd, conds->field_end, curr);
+ break;
+ }
+ case SYSTEM_TIME_AS_OF:
+ cond1= newx Item_func_le(thd, conds->field_start, conds->start.item);
+ cond2= newx Item_func_gt(thd, conds->field_end, conds->start.item);
+ break;
+ case SYSTEM_TIME_FROM_TO:
+ cond1= newx Item_func_lt(thd, conds->field_start, conds->end.item);
+ cond2= newx Item_func_gt(thd, conds->field_end, conds->start.item);
+ cond3= newx Item_func_lt(thd, conds->start.item, conds->end.item);
+ break;
+ case SYSTEM_TIME_BETWEEN:
+ cond1= newx Item_func_le(thd, conds->field_start, conds->end.item);
+ cond2= newx Item_func_gt(thd, conds->field_end, conds->start.item);
+ cond3= newx Item_func_le(thd, conds->start.item, conds->end.item);
+ break;
+ case SYSTEM_TIME_BEFORE:
+ cond1= newx Item_func_history(thd, conds->field_end);
+ cond2= newx Item_func_lt(thd, conds->field_end, conds->start.item);
+ break;
+ default:
+ DBUG_ASSERT(0);
+ }
+ }
+ else
+ {
+ DBUG_ASSERT(table->table->s && table->table->s->db_plugin);
+
+ Item *trx_id0= conds->start.item;
+ Item *trx_id1= conds->end.item;
+ if (conds->start.item && conds->start.unit == VERS_TIMESTAMP)
+ {
+ bool backwards= conds->type != SYSTEM_TIME_AS_OF;
+ trx_id0= newx Item_func_trt_id(thd, conds->start.item,
+ TR_table::FLD_TRX_ID, backwards);
+ }
+ if (conds->end.item && conds->end.unit == VERS_TIMESTAMP)
+ {
+ trx_id1= newx Item_func_trt_id(thd, conds->end.item,
+ TR_table::FLD_TRX_ID, false);
+ }
+
+ switch (conds->type)
+ {
+ case SYSTEM_TIME_UNSPECIFIED:
+ case SYSTEM_TIME_HISTORY:
+ curr= newx Item_int(thd, ULONGLONG_MAX);
+ if (conds->type == SYSTEM_TIME_UNSPECIFIED)
+ cond1= newx Item_func_eq(thd, conds->field_end, curr);
+ else
+ cond1= newx Item_func_lt(thd, conds->field_end, curr);
+ break;
+ DBUG_ASSERT(!conds->start.item);
+ DBUG_ASSERT(!conds->end.item);
+ break;
+ case SYSTEM_TIME_AS_OF:
+ cond1= newx Item_func_trt_trx_sees_eq(thd, trx_id0, conds->field_start);
+ cond2= newx Item_func_trt_trx_sees(thd, conds->field_end, trx_id0);
+ DBUG_ASSERT(!conds->end.item);
+ break;
+ case SYSTEM_TIME_FROM_TO:
+ cond1= newx Item_func_trt_trx_sees(thd, trx_id1, conds->field_start);
+ cond2= newx Item_func_trt_trx_sees_eq(thd, conds->field_end, trx_id0);
+ cond3= newx Item_func_lt(thd, conds->start.item, conds->end.item);
+ break;
+ case SYSTEM_TIME_BETWEEN:
+ cond1= newx Item_func_trt_trx_sees_eq(thd, trx_id1, conds->field_start);
+ cond2= newx Item_func_trt_trx_sees_eq(thd, conds->field_end, trx_id0);
+ cond3= newx Item_func_le(thd, conds->start.item, conds->end.item);
+ break;
+ case SYSTEM_TIME_BEFORE:
+ cond1= newx Item_func_history(thd, conds->field_end);
+ cond2= newx Item_func_trt_trx_sees(thd, trx_id0, conds->field_end);
+ break;
+ default:
+ DBUG_ASSERT(0);
+ }
+ }
+
+ if (cond1)
+ {
+ cond1= and_items(thd, cond2, cond1);
+ cond1= and_items(thd, cond3, cond1);
+ }
+ return cond1;
+}
+
+static
+bool skip_setup_conds(THD *thd)
+{
+ return (!thd->stmt_arena->is_conventional()
+ && !thd->stmt_arena->is_stmt_prepare_or_first_sp_execute())
+ || thd->lex->is_view_context_analysis();
+}
+
+int SELECT_LEX::period_setup_conds(THD *thd, TABLE_LIST *tables)
+{
+ DBUG_ENTER("SELECT_LEX::period_setup_conds");
+ const bool update_conds= !skip_setup_conds(thd);
+
+ Query_arena backup;
+ Query_arena *arena= thd->activate_stmt_arena_if_needed(&backup);
+
+ DBUG_ASSERT(!tables->next_local && tables->table);
+
+ Item *result= NULL;
+ for (TABLE_LIST *table= tables; table; table= table->next_local)
+ {
+ if (!table->table)
+ continue;
+ vers_select_conds_t &conds= table->period_conditions;
+ if (!table->table->s->period.name.streq(conds.name))
+ {
+ my_error(ER_PERIOD_NOT_FOUND, MYF(0), conds.name.str);
+ if (arena)
+ thd->restore_active_arena(arena, &backup);
+ DBUG_RETURN(-1);
+ }
+
+ if (update_conds)
+ {
+ conds.period= &table->table->s->period;
+ result= and_items(thd, result,
+ period_get_condition(thd, table, this, &conds, true));
+ }
+ }
+ if (update_conds)
+ where= and_items(thd, where, result);
+
+ if (arena)
+ thd->restore_active_arena(arena, &backup);
+
+ DBUG_RETURN(0);
+}
+
+int SELECT_LEX::vers_setup_conds(THD *thd, TABLE_LIST *tables)
+{
+ DBUG_ENTER("SELECT_LEX::vers_setup_conds");
+ const bool update_conds= !skip_setup_conds(thd);
+
+ if (!versioned_tables)
+ {
+ for (TABLE_LIST *table= tables; table; table= table->next_local)
+ {
+ if (table->table && table->table->versioned())
+ versioned_tables++;
+ else if (table->vers_conditions.is_set() &&
+ (table->is_non_derived() || !table->vers_conditions.used))
+ {
+ my_error(ER_VERS_NOT_VERSIONED, MYF(0), table->alias.str);
+ DBUG_RETURN(-1);
+ }
+ }
+ }
+
+ if (versioned_tables == 0)
+ DBUG_RETURN(0);
+
+ /* For prepared statements we create items on statement arena,
+ because they must outlive execution phase for multiple executions. */
+ Query_arena_stmt on_stmt_arena(thd);
+
+ // find outer system_time
+ SELECT_LEX *outer_slex= outer_select();
+ TABLE_LIST* outer_table= NULL;
+
+ if (outer_slex)
+ {
+ TABLE_LIST* derived= master_unit()->derived;
+ // inner SELECT may not be a derived table (derived == NULL)
+ while (derived && outer_slex && !derived->vers_conditions.is_set())
+ {
+ derived= outer_slex->master_unit()->derived;
+ outer_slex= outer_slex->outer_select();
+ }
+ if (derived && outer_slex)
+ {
+ DBUG_ASSERT(derived->vers_conditions.is_set());
+ outer_table= derived;
+ }
+ }
+
+ bool is_select= false;
+ bool use_sysvar= false;
+ switch (thd->lex->sql_command)
+ {
+ case SQLCOM_SELECT:
+ use_sysvar= true;
+ /* fall through */
+ case SQLCOM_CREATE_TABLE:
+ case SQLCOM_INSERT_SELECT:
+ case SQLCOM_REPLACE_SELECT:
+ case SQLCOM_DELETE_MULTI:
+ case SQLCOM_UPDATE_MULTI:
+ is_select= true;
+ default:
+ break;
+ }
+
+ for (TABLE_LIST *table= tables; table; table= table->next_local)
+ {
+ if (!table->table || table->is_view() || !table->table->versioned())
+ continue;
+
+ vers_select_conds_t &vers_conditions= table->vers_conditions;
+
+#ifdef WITH_PARTITION_STORAGE_ENGINE
+ /*
+ if the history is stored in partitions, then partitions
+ themselves are not versioned
+ */
+ if (table->partition_names && table->table->part_info->vers_info)
+ {
+ /* If the history is stored in partitions, then partitions
+ themselves are not versioned. */
+ if (vers_conditions.was_set())
+ {
+ my_error(ER_VERS_QUERY_IN_PARTITION, MYF(0), table->alias.str);
+ DBUG_RETURN(-1);
+ }
+ else if (!vers_conditions.is_set())
+ vers_conditions.set_all();
+ }
+#endif
+
+ if (outer_table && !vers_conditions.is_set())
+ {
+ // propagate system_time from nearest outer SELECT_LEX
+ vers_conditions= outer_table->vers_conditions;
+ outer_table->vers_conditions.used= true;
+ }
+
+ // propagate system_time from sysvar
+ if (!vers_conditions.is_set() && use_sysvar)
+ {
+ if (vers_conditions.init_from_sysvar(thd))
+ DBUG_RETURN(-1);
+ }
+
+ if (vers_conditions.is_set())
+ {
+ if (vers_conditions.was_set() &&
+ table->lock_type >= TL_FIRST_WRITE &&
+ !vers_conditions.delete_history)
+ {
+ my_error(ER_TABLE_NOT_LOCKED_FOR_WRITE, MYF(0), table->alias.str);
+ DBUG_RETURN(-1);
+ }
+
+ if (vers_conditions.type == SYSTEM_TIME_ALL)
+ continue;
+ }
+
+ bool timestamps_only= table->table->versioned(VERS_TIMESTAMP);
+
+ if (vers_conditions.is_set() && vers_conditions.type != SYSTEM_TIME_HISTORY)
+ {
+ thd->where= "FOR SYSTEM_TIME";
+ /* TODO: do resolve fix_length_and_dec(), fix_fields(). This requires
+ storing vers_conditions as Item and make some magic related to
+ vers_system_time_t/VERS_TRX_ID at stage of fix_fields()
+ (this is large refactoring). */
+ if (vers_conditions.check_units(thd))
+ DBUG_RETURN(-1);
+ if (timestamps_only && (vers_conditions.start.unit == VERS_TRX_ID ||
+ vers_conditions.end.unit == VERS_TRX_ID))
+ {
+ my_error(ER_VERS_ENGINE_UNSUPPORTED, MYF(0), table->table_name.str);
+ DBUG_RETURN(-1);
+ }
+ }
+
+ if (update_conds)
+ {
+ vers_conditions.period = &table->table->s->vers;
+ Item *cond= period_get_condition(thd, table, this, &vers_conditions,
+ timestamps_only);
+ if (is_select)
+ table->on_expr= and_items(thd, table->on_expr, cond);
+ else
+ {
+ if (join)
+ {
+ where= and_items(thd, join->conds, cond);
+ join->conds= where;
+ }
+ else
+ where= and_items(thd, where, cond);
+ table->where= and_items(thd, table->where, cond);
+ }
+
+ table->vers_conditions.set_all();
+ }
+ } // for (table= tables; ...)
+
+ DBUG_RETURN(0);
+}
+
+
+/*****************************************************************************
+ Check fields, find best join, do the select and output fields.
+ mysql_select assumes that all tables are already opened
+*****************************************************************************/
+
+/*
+ Check if we have a field reference. If yes, we have to use
+ mixed_implicit_grouping.
+*/
+
+static bool check_list_for_field(List<Item> *items)
+{
+ List_iterator_fast <Item> select_it(*items);
+ Item *select_el;
+
+ while ((select_el= select_it++))
+ {
+ if (select_el->with_field())
+ return true;
+ }
+ return false;
+}
+
+static bool check_list_for_field(ORDER *order)
+{
+ for (; order; order= order->next)
+ {
+ if (order->item[0]->with_field())
+ return true;
+ }
+ return false;
+}
+
+
+/**
+ Prepare of whole select (including sub queries in future).
+
+ @todo
+ Add check of calculation of GROUP functions and fields:
+ SELECT COUNT(*)+table.col1 from table1;
+
+ @retval
+ -1 on error
+ @retval
+ 0 on success
+*/
+int
+JOIN::prepare(TABLE_LIST *tables_init, COND *conds_init, uint og_num,
+ ORDER *order_init, bool skip_order_by,
+ ORDER *group_init, Item *having_init,
+ ORDER *proc_param_init, SELECT_LEX *select_lex_arg,
+ SELECT_LEX_UNIT *unit_arg)
+{
+ DBUG_ENTER("JOIN::prepare");
+
+ // to prevent double initialization on EXPLAIN
+ if (optimization_state != JOIN::NOT_OPTIMIZED)
+ DBUG_RETURN(0);
+
+ conds= conds_init;
+ order= order_init;
+ group_list= group_init;
+ having= having_init;
+ proc_param= proc_param_init;
+ tables_list= tables_init;
+ select_lex= select_lex_arg;
+ DBUG_PRINT("info", ("select %p (%u) = JOIN %p",
+ select_lex, select_lex->select_number, this));
+ select_lex->join= this;
+ join_list= &select_lex->top_join_list;
+ union_part= unit_arg->is_unit_op();
+
+ Json_writer_object trace_wrapper(thd);
+ Json_writer_object trace_prepare(thd, "join_preparation");
+ trace_prepare.add_select_number(select_lex->select_number);
+ Json_writer_array trace_steps(thd, "steps");
+
+ // simple check that we got usable conds
+ dbug_print_item(conds);
+
+ /* Fix items that requires the join structure to exist */
+ fix_items_after_optimize(thd, select_lex);
+
+ /*
+ It is hack which force creating EXPLAIN object always on runt-time arena
+ (because very top JOIN::prepare executes always with runtime arena, but
+ constant subquery like (SELECT 'x') can be called with statement arena
+ during prepare phase of top SELECT).
+ */
+ if (!(thd->lex->context_analysis_only & CONTEXT_ANALYSIS_ONLY_PREPARE))
+ create_explain_query_if_not_exists(thd->lex, thd->mem_root);
+
+ if (select_lex->handle_derived(thd->lex, DT_PREPARE))
+ DBUG_RETURN(-1);
+
+ thd->lex->current_select->context_analysis_place= NO_MATTER;
+ thd->lex->current_select->is_item_list_lookup= 1;
+ /*
+ If we have already executed SELECT, then it have not sense to prevent
+ its table from update (see unique_table())
+ Affects only materialized derived tables.
+ */
+ /* Check that all tables, fields, conds and order are ok */
+ if (!(select_options & OPTION_SETUP_TABLES_DONE) &&
+ setup_tables_and_check_access(thd, &select_lex->context, join_list,
+ tables_list, select_lex->leaf_tables,
+ FALSE, SELECT_ACL, SELECT_ACL, FALSE))
+ DBUG_RETURN(-1);
+
+ /* System Versioning: handle FOR SYSTEM_TIME clause. */
+ if (select_lex->vers_setup_conds(thd, tables_list) < 0)
+ DBUG_RETURN(-1);
+
+ /*
+ mixed_implicit_grouping will be set to TRUE if the SELECT list
+ mixes elements with and without grouping, and there is no GROUP BY
+ clause.
+ Mixing non-aggregated fields with aggregate functions in the
+ SELECT list or HAVING is a MySQL extension that is allowed only if
+ the ONLY_FULL_GROUP_BY sql mode is not set.
+ */
+ mixed_implicit_grouping= false;
+ if ((~thd->variables.sql_mode & MODE_ONLY_FULL_GROUP_BY) &&
+ select_lex->with_sum_func && !group_list)
+ {
+ if (check_list_for_field(&fields_list) ||
+ check_list_for_field(order))
+ {
+ List_iterator_fast<TABLE_LIST> li(select_lex->leaf_tables);
+
+ mixed_implicit_grouping= true; // mark for future
+
+ while (TABLE_LIST *tbl= li++)
+ {
+ /*
+ If the query uses implicit grouping where the select list
+ contains both aggregate functions and non-aggregate fields,
+ any non-aggregated field may produce a NULL value. Set all
+ fields of each table as nullable before semantic analysis to
+ take into account this change of nullability.
+
+ Note: this loop doesn't touch tables inside merged
+ semi-joins, because subquery-to-semijoin conversion has not
+ been done yet. This is intended.
+ */
+ if (tbl->table)
+ tbl->table->maybe_null= 1;
+ }
+ }
+ }
+ table_count= select_lex->leaf_tables.elements;
+
+ uint real_og_num= og_num;
+ if (skip_order_by &&
+ select_lex != select_lex->master_unit()->global_parameters())
+ real_og_num+= select_lex->order_list.elements;
+
+ DBUG_ASSERT(select_lex->hidden_bit_fields == 0);
+ if (setup_wild(thd, tables_list, fields_list, &all_fields, select_lex, false))
+ DBUG_RETURN(-1);
+
+ if (thd->lex->current_select->first_cond_optimization)
+ {
+ if ( conds && ! thd->lex->current_select->merged_into)
+ select_lex->select_n_reserved= conds->exists2in_reserved_items();
+ else
+ select_lex->select_n_reserved= 0;
+ }
+
+ if (select_lex->setup_ref_array(thd, real_og_num))
+ DBUG_RETURN(-1);
+
+ ref_ptrs= ref_ptr_array_slice(0);
+
+ enum_parsing_place save_place=
+ thd->lex->current_select->context_analysis_place;
+ thd->lex->current_select->context_analysis_place= SELECT_LIST;
+
+ {
+ List_iterator_fast<TABLE_LIST> it(select_lex->leaf_tables);
+ while (TABLE_LIST *tbl= it++)
+ {
+ if (tbl->table_function &&
+ tbl->table_function->setup(thd, tbl, select_lex_arg))
+ DBUG_RETURN(-1);
+ }
+ }
+
+ if (setup_fields(thd, ref_ptrs, fields_list, MARK_COLUMNS_READ,
+ &all_fields, &select_lex->pre_fix, 1))
+ DBUG_RETURN(-1);
+ thd->lex->current_select->context_analysis_place= save_place;
+
+ if (setup_without_group(thd, ref_ptrs, tables_list,
+ select_lex->leaf_tables, fields_list,
+ all_fields, &conds, order, group_list,
+ select_lex->window_specs,
+ select_lex->window_funcs,
+ &hidden_group_fields))
+ DBUG_RETURN(-1);
+
+ /*
+ Permanently remove redundant parts from the query if
+ 1) This is a subquery
+ 2) This is the first time this query is optimized (since the
+ transformation is permanent
+ 3) Not normalizing a view. Removal should take place when a
+ query involving a view is optimized, not when the view
+ is created
+ */
+ if (select_lex->master_unit()->item && // 1)
+ select_lex->first_cond_optimization && // 2)
+ !thd->lex->is_view_context_analysis()) // 3)
+ {
+ remove_redundant_subquery_clauses(select_lex);
+ }
+
+ /* Resolve the ORDER BY that was skipped, then remove it. */
+ if (skip_order_by && select_lex !=
+ select_lex->master_unit()->global_parameters())
+ {
+ nesting_map save_allow_sum_func= thd->lex->allow_sum_func;
+ thd->lex->allow_sum_func.set_bit(select_lex->nest_level);
+ thd->where= "order clause";
+ for (ORDER *order= select_lex->order_list.first; order; order= order->next)
+ {
+ /* Don't add the order items to all fields. Just resolve them to ensure
+ the query is valid, we'll drop them immediately after. */
+ if (find_order_in_list(thd, ref_ptrs, tables_list, order,
+ fields_list, all_fields, false, false, false))
+ DBUG_RETURN(-1);
+ }
+ thd->lex->allow_sum_func= save_allow_sum_func;
+ select_lex->order_list.empty();
+ }
+
+ if (having)
+ {
+ nesting_map save_allow_sum_func= thd->lex->allow_sum_func;
+ thd->where="having clause";
+ thd->lex->allow_sum_func.set_bit(select_lex_arg->nest_level);
+ select_lex->having_fix_field= 1;
+ /*
+ Wrap alone field in HAVING clause in case it will be outer field
+ of subquery which need persistent pointer on it, but having
+ could be changed by optimizer
+ */
+ if (having->type() == Item::REF_ITEM &&
+ ((Item_ref *)having)->ref_type() == Item_ref::REF)
+ wrap_ident(thd, &having);
+ bool having_fix_rc= having->fix_fields_if_needed_for_bool(thd, &having);
+ select_lex->having_fix_field= 0;
+
+ if (unlikely(having_fix_rc || thd->is_error()))
+ DBUG_RETURN(-1); /* purecov: inspected */
+ thd->lex->allow_sum_func= save_allow_sum_func;
+
+ if (having->with_window_func())
+ {
+ my_error(ER_WRONG_PLACEMENT_OF_WINDOW_FUNCTION, MYF(0));
+ DBUG_RETURN(-1);
+ }
+ }
+
+ /*
+ After setting up window functions, we may have discovered additional
+ used tables from the PARTITION BY and ORDER BY list. Update all items
+ that contain window functions.
+ */
+ if (select_lex->have_window_funcs())
+ {
+ List_iterator_fast<Item> it(select_lex->item_list);
+ Item *item;
+ while ((item= it++))
+ {
+ if (item->with_window_func())
+ item->update_used_tables();
+ }
+ }
+
+ With_clause *with_clause=select_lex->get_with_clause();
+ if (with_clause && with_clause->prepare_unreferenced_elements(thd))
+ DBUG_RETURN(1);
+
+ With_element *with_elem= select_lex->get_with_element();
+ if (with_elem &&
+ select_lex->check_unrestricted_recursive(
+ thd->variables.only_standard_compliant_cte))
+ DBUG_RETURN(-1);
+ if (!(select_lex->changed_elements & TOUCHED_SEL_COND))
+ select_lex->check_subqueries_with_recursive_references();
+
+ int res= check_and_do_in_subquery_rewrites(this);
+
+ select_lex->fix_prepare_information(thd, &conds, &having);
+
+ if (res)
+ DBUG_RETURN(res);
+
+ if (order)
+ {
+ bool requires_sorting= FALSE;
+ /*
+ WITH TIES forces the results to be sorted, even if it's not sanely
+ sortable.
+ */
+ if (select_lex->limit_params.with_ties)
+ requires_sorting= true;
+
+ /*
+ Go through each ORDER BY item and perform the following:
+ 1. Detect if none of the items contain meaningful data, which means we
+ can drop the sorting altogether.
+ 2. Split any columns with aggregation functions or window functions into
+ their base components and store them as separate fields.
+ (see split_sum_func) for more details.
+ */
+ for (ORDER *ord= order; ord; ord= ord->next)
+ {
+ Item *item= *ord->item;
+ /*
+ Disregard sort order if there's only
+ zero length NOT NULL fields (e.g. {VAR}CHAR(0) NOT NULL") or
+ zero length NOT NULL string functions there.
+ Such tuples don't contain any data to sort.
+ */
+ if (!requires_sorting &&
+ /* Not a zero length NOT NULL field */
+ ((item->type() != Item::FIELD_ITEM ||
+ ((Item_field *) item)->field->maybe_null() ||
+ ((Item_field *) item)->field->sort_length()) &&
+ /* AND not a zero length NOT NULL string function. */
+ (item->type() != Item::FUNC_ITEM ||
+ item->maybe_null() ||
+ item->result_type() != STRING_RESULT ||
+ item->max_length)))
+ requires_sorting= TRUE;
+
+ if ((item->with_sum_func() && item->type() != Item::SUM_FUNC_ITEM) ||
+ item->with_window_func())
+ item->split_sum_func(thd, ref_ptrs, all_fields, SPLIT_SUM_SELECT);
+ }
+ /* Drop the ORDER BY clause if none of the columns contain any data that
+ can produce a meaningful sorted set. */
+ if (!requires_sorting)
+ order= NULL;
+ }
+ else
+ {
+ /* The current select does not have an ORDER BY */
+ if (select_lex->limit_params.with_ties)
+ {
+ my_error(ER_WITH_TIES_NEEDS_ORDER, MYF(0));
+ DBUG_RETURN(-1);
+ }
+ }
+
+ if (having && (having->with_sum_func() || having->with_rownum_func()))
+ having->split_sum_func2(thd, ref_ptrs, all_fields,
+ &having, SPLIT_SUM_SKIP_REGISTERED);
+ if (select_lex->inner_sum_func_list)
+ {
+ Item_sum *end=select_lex->inner_sum_func_list;
+ Item_sum *item_sum= end;
+ do
+ {
+ item_sum= item_sum->next;
+ item_sum->split_sum_func2(thd, ref_ptrs,
+ all_fields, item_sum->ref_by, 0);
+ } while (item_sum != end);
+ }
+
+ if (select_lex->inner_refs_list.elements &&
+ fix_inner_refs(thd, all_fields, select_lex, ref_ptrs))
+ DBUG_RETURN(-1);
+
+ if (group_list)
+ {
+ /*
+ Because HEAP tables can't index BIT fields we need to use an
+ additional hidden field for grouping because later it will be
+ converted to a LONG field. Original field will remain of the
+ BIT type and will be returned to a client.
+ */
+ for (ORDER *ord= group_list; ord; ord= ord->next)
+ {
+ if ((*ord->item)->type() == Item::FIELD_ITEM &&
+ (*ord->item)->field_type() == MYSQL_TYPE_BIT)
+ {
+ Item_field *field= new (thd->mem_root) Item_field(thd, *(Item_field**)ord->item);
+ if (!field)
+ DBUG_RETURN(-1);
+ int el= all_fields.elements;
+ ref_ptrs[el]= field;
+ all_fields.push_front(field, thd->mem_root);
+ ord->item= &ref_ptrs[el];
+ }
+ }
+ }
+
+ /*
+ Check if there are references to un-aggregated columns when computing
+ aggregate functions with implicit grouping (there is no GROUP BY).
+ */
+ if (thd->variables.sql_mode & MODE_ONLY_FULL_GROUP_BY && !group_list &&
+ !(select_lex->master_unit()->item &&
+ select_lex->master_unit()->item->is_in_predicate() &&
+ select_lex->master_unit()->item->get_IN_subquery()->
+ test_set_strategy(SUBS_MAXMIN_INJECTED)) &&
+ select_lex->non_agg_field_used() &&
+ select_lex->agg_func_used())
+ {
+ my_message(ER_MIX_OF_GROUP_FUNC_AND_FIELDS,
+ ER_THD(thd, ER_MIX_OF_GROUP_FUNC_AND_FIELDS), MYF(0));
+ DBUG_RETURN(-1);
+ }
+ {
+ /* Caclulate the number of groups */
+ send_group_parts= 0;
+ for (ORDER *group_tmp= group_list ; group_tmp ; group_tmp= group_tmp->next)
+ send_group_parts++;
+ }
+
+ procedure= setup_procedure(thd, proc_param, result, fields_list, &error);
+ if (unlikely(error))
+ goto err; /* purecov: inspected */
+ if (procedure)
+ {
+ if (setup_new_fields(thd, fields_list, all_fields,
+ procedure->param_fields))
+ goto err; /* purecov: inspected */
+ if (procedure->group)
+ {
+ if (!test_if_subpart(procedure->group,group_list))
+ { /* purecov: inspected */
+ my_message(ER_DIFF_GROUPS_PROC, ER_THD(thd, ER_DIFF_GROUPS_PROC),
+ MYF(0)); /* purecov: inspected */
+ goto err; /* purecov: inspected */
+ }
+ }
+ if (order && (procedure->flags & PROC_NO_SORT))
+ { /* purecov: inspected */
+ my_message(ER_ORDER_WITH_PROC, ER_THD(thd, ER_ORDER_WITH_PROC),
+ MYF(0)); /* purecov: inspected */
+ goto err; /* purecov: inspected */
+ }
+ if (thd->lex->derived_tables)
+ {
+ /*
+ Queries with derived tables and PROCEDURE are not allowed.
+ Many of such queries are disallowed grammatically, but there
+ are still some complex cases:
+ SELECT 1 FROM (SELECT 1) a PROCEDURE ANALYSE()
+ */
+ my_error(ER_WRONG_USAGE, MYF(0), "PROCEDURE",
+ thd->lex->derived_tables & DERIVED_VIEW ?
+ "view" : "subquery");
+ goto err;
+ }
+ if (thd->lex->sql_command != SQLCOM_SELECT)
+ {
+ // EXPLAIN SELECT * FROM t1 PROCEDURE ANALYSE()
+ my_error(ER_WRONG_USAGE, MYF(0), "PROCEDURE", "non-SELECT");
+ goto err;
+ }
+ }
+
+ if (thd->trace_started())
+ {
+ Json_writer_object trace_wrapper(thd);
+ opt_trace_print_expanded_query(thd, select_lex, &trace_wrapper);
+ }
+
+ if (!procedure && result && result->prepare(fields_list, unit_arg))
+ goto err; /* purecov: inspected */
+
+ unit= unit_arg;
+ if (prepare_stage2())
+ goto err;
+
+ DBUG_RETURN(0); // All OK
+
+err:
+ delete procedure; /* purecov: inspected */
+ procedure= 0;
+ DBUG_RETURN(-1); /* purecov: inspected */
+}
+
+
+/**
+ Second phase of prepare where we collect some statistic.
+
+ @details
+ We made this part separate to be able recalculate some statistic after
+ transforming subquery on optimization phase.
+*/
+
+bool JOIN::prepare_stage2()
+{
+ bool res= TRUE;
+ DBUG_ENTER("JOIN::prepare_stage2");
+
+ /* Init join struct */
+ count_field_types(select_lex, &tmp_table_param, all_fields, 0);
+ this->group= group_list != 0;
+
+ if (tmp_table_param.sum_func_count && !group_list)
+ {
+ implicit_grouping= TRUE;
+ // Result will contain zero or one row - ordering is meaningless
+ order= NULL;
+ }
+
+#ifdef RESTRICTED_GROUP
+ if (implicit_grouping)
+ {
+ my_message(ER_WRONG_SUM_SELECT,ER_THD(thd, ER_WRONG_SUM_SELECT),MYF(0));
+ goto err;
+ }
+#endif
+ if (select_lex->olap == ROLLUP_TYPE && rollup_init())
+ goto err;
+ if (alloc_func_list() ||
+ make_sum_func_list(all_fields, fields_list, false))
+ goto err;
+
+ res= FALSE;
+err:
+ DBUG_RETURN(res); /* purecov: inspected */
+}
+
+
+bool JOIN::build_explain()
+{
+ DBUG_ENTER("JOIN::build_explain");
+ have_query_plan= QEP_AVAILABLE;
+
+ /*
+ explain data must be created on the Explain_query::mem_root. Because it's
+ just a memroot, not an arena, explain data must not contain any Items
+ */
+ MEM_ROOT *old_mem_root= thd->mem_root;
+ Item *old_free_list __attribute__((unused))= thd->free_list;
+ thd->mem_root= thd->lex->explain->mem_root;
+ bool res= save_explain_data(thd->lex->explain, false /* can overwrite */,
+ need_tmp,
+ !skip_sort_order && !no_order && (order || group_list),
+ select_distinct);
+ thd->mem_root= old_mem_root;
+ DBUG_ASSERT(thd->free_list == old_free_list); // no Items were created
+ if (res)
+ DBUG_RETURN(1);
+ uint select_nr= select_lex->select_number;
+ JOIN_TAB *curr_tab= join_tab + exec_join_tab_cnt();
+ for (uint i= 0; i < aggr_tables; i++, curr_tab++)
+ {
+ if (select_nr == FAKE_SELECT_LEX_ID)
+ {
+ /* this is a fake_select_lex of a union */
+ select_nr= select_lex->master_unit()->first_select()->select_number;
+ curr_tab->tracker= thd->lex->explain->get_union(select_nr)->
+ get_tmptable_read_tracker();
+ }
+ else if (select_nr < INT_MAX)
+ {
+ Explain_select *tmp= thd->lex->explain->get_select(select_nr);
+ if (tmp)
+ curr_tab->tracker= tmp->get_using_temporary_read_tracker();
+ }
+ }
+ DBUG_RETURN(0);
+}
+
+
+int JOIN::optimize()
+{
+ int res= 0;
+ join_optimization_state init_state= optimization_state;
+ if (select_lex->pushdown_select)
+ {
+ // Do same as JOIN::optimize_inner does:
+ fields= &select_lex->item_list;
+
+ if (!(select_options & SELECT_DESCRIBE))
+ {
+ /* Prepare to execute the query pushed into a foreign engine */
+ res= select_lex->pushdown_select->prepare();
+ }
+ with_two_phase_optimization= false;
+ }
+ else if (optimization_state == JOIN::OPTIMIZATION_PHASE_1_DONE)
+ res= optimize_stage2();
+ else
+ {
+ // to prevent double initialization on EXPLAIN
+ if (optimization_state != JOIN::NOT_OPTIMIZED)
+ return FALSE;
+ optimization_state= JOIN::OPTIMIZATION_IN_PROGRESS;
+ res= optimize_inner();
+ }
+ if (!with_two_phase_optimization ||
+ init_state == JOIN::OPTIMIZATION_PHASE_1_DONE)
+ {
+ if (!res && have_query_plan != QEP_DELETED)
+ res= build_explain();
+ optimization_state= JOIN::OPTIMIZATION_DONE;
+ }
+ return res;
+}
+
+
+/**
+ @brief
+ Create range filters objects needed in execution for all join tables
+
+ @details
+ For each join table from the chosen execution plan such that a range filter
+ is used when joining this table the function creates a Rowid_filter object
+ for this range filter. In order to do this the function first constructs
+ a quick select to scan the range for this range filter. Then it creates
+ a container for the range filter and finally constructs a Range_rowid_filter
+ object a pointer to which is set in the field JOIN_TAB::rowid_filter of
+ the joined table.
+
+ @retval false Ok
+ @retval true Error
+*/
+
+bool JOIN::make_range_rowid_filters()
+{
+ DBUG_ENTER("make_range_rowid_filters");
+
+ /*
+ Do not build range filters with detected impossible WHERE.
+ Anyway conditions cannot be used anymore to extract ranges for filters.
+ */
+ if (const_table_map != found_const_table_map)
+ DBUG_RETURN(0);
+
+ JOIN_TAB *tab;
+
+ for (tab= first_linear_tab(this, WITH_BUSH_ROOTS, WITHOUT_CONST_TABLES);
+ tab;
+ tab= next_linear_tab(this, tab, WITH_BUSH_ROOTS))
+ {
+ if (!tab->range_rowid_filter_info)
+ continue;
+
+ DBUG_ASSERT(!(tab->ref.key >= 0 &&
+ tab->ref.key == (int) tab->range_rowid_filter_info->key_no));
+ DBUG_ASSERT(!(tab->ref.key == -1 && tab->quick &&
+ tab->quick->index == tab->range_rowid_filter_info->key_no));
+
+ int err;
+ SQL_SELECT *sel= NULL;
+ Rowid_filter_container *filter_container= NULL;
+ Item **sargable_cond= get_sargable_cond(this, tab->table);
+ sel= make_select(tab->table, const_table_map, const_table_map,
+ *sargable_cond, (SORT_INFO*) 0, 1, &err);
+ if (!sel)
+ continue;
+
+ key_map filter_map;
+ filter_map.clear_all();
+ filter_map.set_bit(tab->range_rowid_filter_info->key_no);
+ filter_map.merge(tab->table->with_impossible_ranges);
+ bool force_index_save= tab->table->force_index;
+ tab->table->force_index= true;
+ quick_select_return rc;
+ rc= sel->test_quick_select(thd, filter_map, (table_map) 0,
+ (ha_rows) HA_POS_ERROR, true, false, true,
+ true);
+ tab->table->force_index= force_index_save;
+ if (rc == SQL_SELECT::ERROR || thd->is_error())
+ {
+ DBUG_RETURN(true); /* Fatal error */
+ }
+ /*
+ If SUBS_IN_TO_EXISTS strtrategy is chosen for the subquery then
+ additional conditions are injected into WHERE/ON/HAVING and it may
+ happen that the call of test_quick_select() discovers impossible range.
+ */
+ if (rc == SQL_SELECT::IMPOSSIBLE_RANGE)
+ {
+ const_table_map|= tab->table->map;
+ goto no_filter;
+ }
+ DBUG_ASSERT(sel->quick);
+ filter_container=
+ tab->range_rowid_filter_info->create_container();
+ if (filter_container)
+ {
+ tab->rowid_filter=
+ new (thd->mem_root) Range_rowid_filter(tab->table,
+ tab->range_rowid_filter_info,
+ filter_container, sel);
+ if (tab->rowid_filter)
+ continue;
+ }
+ no_filter:
+ if (sel->quick)
+ delete sel->quick;
+ delete sel;
+ }
+
+ DBUG_RETURN(0);
+}
+
+
+/**
+ @brief
+ Allocate memory the rowid containers of the used the range filters
+
+ @details
+ For each join table from the chosen execution plan such that a range filter
+ is used when joining this table the function allocate memory for the
+ rowid container employed by the filter. On success it lets the table engine
+ know that what rowid filter will be used when accessing the table rows.
+
+ @retval false always
+*/
+
+bool
+JOIN::init_range_rowid_filters()
+{
+ DBUG_ENTER("init_range_rowid_filters");
+
+ JOIN_TAB *tab;
+
+ for (tab= first_linear_tab(this, WITH_BUSH_ROOTS, WITHOUT_CONST_TABLES);
+ tab;
+ tab= next_linear_tab(this, tab, WITH_BUSH_ROOTS))
+ {
+ if (!tab->rowid_filter)
+ continue;
+ if (tab->rowid_filter->get_container()->alloc())
+ {
+ delete tab->rowid_filter;
+ tab->rowid_filter= 0;
+ continue;
+ }
+ tab->table->file->rowid_filter_push(tab->rowid_filter);
+ tab->is_rowid_filter_built= false;
+ }
+ DBUG_RETURN(0);
+}
+
+/**
+ global select optimisation.
+
+ @note
+ error code saved in field 'error'
+
+ @retval
+ 0 success
+ @retval
+ 1 error
+*/
+
+int
+JOIN::optimize_inner()
+{
+ DBUG_ENTER("JOIN::optimize_inner");
+ subq_exit_fl= false;
+
+ DEBUG_SYNC(thd, "before_join_optimize");
+ THD_STAGE_INFO(thd, stage_optimizing);
+#ifndef DBUG_OFF
+ dbug_join_tab_array_size= 0;
+#endif
+
+ // rownum used somewhere in query, no limits and it is derived
+ if (unlikely(thd->lex->with_rownum &&
+ select_lex->first_cond_optimization &&
+ select_lex->master_unit()->derived))
+ optimize_upper_rownum_func();
+
+ do_send_rows = (unit->lim.get_select_limit()) ? 1 : 0;
+
+ set_allowed_join_cache_types();
+ need_distinct= TRUE;
+
+ Json_writer_object trace_wrapper(thd);
+ Json_writer_object trace_prepare(thd, "join_optimization");
+ trace_prepare.add_select_number(select_lex->select_number);
+ Json_writer_array trace_steps(thd, "steps");
+
+ /*
+ Needed in case optimizer short-cuts,
+ set properly in make_aggr_tables_info()
+ */
+ fields= &select_lex->item_list;
+
+ if (select_lex->first_cond_optimization)
+ {
+ //Do it only for the first execution
+ /* Merge all mergeable derived tables/views in this SELECT. */
+ if (select_lex->handle_derived(thd->lex, DT_MERGE))
+ DBUG_RETURN(TRUE);
+ }
+
+ if (select_lex->first_cond_optimization &&
+ transform_in_predicates_into_in_subq(thd))
+ DBUG_RETURN(1);
+
+ /*
+ Update used tables after all handling derived table procedures
+ After this call, select_lex->select_list_tables contains the table
+ bits of all items in the select list (but not bits from WHERE clause or
+ other items).
+ */
+ select_lex->update_used_tables();
+
+ /*
+ In fact we transform underlying subqueries after their 'prepare' phase and
+ before 'optimize' from upper query 'optimize' to allow semijoin
+ conversion happened (which done in the same way.
+ */
+ if (select_lex->first_cond_optimization &&
+ conds && conds->walk(&Item::exists2in_processor, 0, thd))
+ DBUG_RETURN(1);
+ /*
+ TODO
+ make view to decide if it is possible to write to WHERE directly or make Semi-Joins able to process ON condition if it is possible
+ for (TABLE_LIST *tbl= tables_list; tbl; tbl= tbl->next_local)
+ {
+ if (tbl->on_expr &&
+ tbl->on_expr->walk(&Item::exists2in_processor, 0, thd))
+ DBUG_RETURN(1);
+ }
+ */
+
+ if (transform_max_min_subquery())
+ DBUG_RETURN(1); /* purecov: inspected */
+
+ if (select_lex->first_cond_optimization)
+ {
+ /* dump_TABLE_LIST_graph(select_lex, select_lex->leaf_tables); */
+ if (convert_join_subqueries_to_semijoins(this))
+ DBUG_RETURN(1); /* purecov: inspected */
+ /* dump_TABLE_LIST_graph(select_lex, select_lex->leaf_tables); */
+ select_lex->update_used_tables();
+ }
+
+ eval_select_list_used_tables();
+
+ if (select_lex->options & OPTION_SCHEMA_TABLE &&
+ optimize_schema_tables_memory_usage(select_lex->leaf_tables))
+ DBUG_RETURN(1);
+
+ if (setup_ftfuncs(select_lex)) /* should be after having->fix_fields */
+ DBUG_RETURN(-1);
+
+ row_limit= ((select_distinct || order || group_list) ? HA_POS_ERROR :
+ unit->lim.get_select_limit());
+ /* select_limit is used to decide if we are likely to scan the whole table */
+ select_limit= unit->lim.get_select_limit();
+ if (having || (select_options & OPTION_FOUND_ROWS))
+ select_limit= HA_POS_ERROR;
+#ifdef HAVE_REF_TO_FIELDS // Not done yet
+ /* Add HAVING to WHERE if possible */
+ if (having && !group_list && !sum_func_count)
+ {
+ if (!conds)
+ {
+ conds= having;
+ having= 0;
+ }
+ else if ((conds=new (thd->mem_root) Item_cond_and(conds,having)))
+ {
+ /*
+ Item_cond_and can't be fixed after creation, so we do not check
+ conds->fixed()
+ */
+ conds->fix_fields(thd, &conds);
+ conds->change_ref_to_fields(thd, tables_list);
+ conds->top_level_item();
+ having= 0;
+ }
+ }
+#endif
+
+ SELECT_LEX *sel= select_lex;
+ if (sel->first_cond_optimization)
+ {
+ /*
+ The following code will allocate the new items in a permanent
+ MEMROOT for prepared statements and stored procedures.
+
+ But first we need to ensure that thd->lex->explain is allocated
+ in the execution arena
+ */
+ create_explain_query_if_not_exists(thd->lex, thd->mem_root);
+
+ Query_arena *arena, backup;
+ arena= thd->activate_stmt_arena_if_needed(&backup);
+
+ sel->first_cond_optimization= 0;
+
+ /* Convert all outer joins to inner joins if possible */
+ conds= simplify_joins(this, join_list, conds, TRUE, FALSE);
+
+ add_table_function_dependencies(join_list, table_map(-1));
+
+ if (thd->is_error() || select_lex->save_leaf_tables(thd))
+ {
+ if (arena)
+ thd->restore_active_arena(arena, &backup);
+ DBUG_RETURN(1);
+ }
+ build_bitmap_for_nested_joins(join_list, 0);
+
+ sel->prep_where= conds ? conds->copy_andor_structure(thd) : 0;
+
+ sel->where= conds;
+
+ select_lex->update_used_tables();
+
+ if (arena)
+ thd->restore_active_arena(arena, &backup);
+ }
+
+ if (!allowed_top_level_tables)
+ calc_allowed_top_level_tables(select_lex);
+
+ if (optimize_constant_subqueries())
+ DBUG_RETURN(1);
+
+ if (conds && conds->with_subquery())
+ (void) conds->walk(&Item::cleanup_is_expensive_cache_processor,
+ 0, (void *) 0);
+ if (having && having->with_subquery())
+ (void) having->walk(&Item::cleanup_is_expensive_cache_processor,
+ 0, (void *) 0);
+
+ List<Item> eq_list;
+
+ if (setup_degenerate_jtbm_semi_joins(this, join_list, eq_list))
+ DBUG_RETURN(1);
+
+ if (eq_list.elements != 0)
+ {
+ Item *new_cond;
+
+ if (eq_list.elements == 1)
+ new_cond= eq_list.pop();
+ else
+ new_cond= new (thd->mem_root) Item_cond_and(thd, eq_list);
+
+ if (new_cond &&
+ ((new_cond->fix_fields(thd, &new_cond) ||
+ !(conds= and_items(thd, conds, new_cond)) ||
+ conds->fix_fields(thd, &conds))))
+ DBUG_RETURN(TRUE);
+ }
+ eq_list.empty();
+
+ if (select_lex->cond_pushed_into_where)
+ {
+ conds= and_conds(thd, conds, select_lex->cond_pushed_into_where);
+ if (conds && conds->fix_fields(thd, &conds))
+ DBUG_RETURN(1);
+ }
+ if (select_lex->cond_pushed_into_having)
+ {
+ having= and_conds(thd, having, select_lex->cond_pushed_into_having);
+ if (having)
+ {
+ select_lex->having_fix_field= 1;
+ select_lex->having_fix_field_for_pushed_cond= 1;
+ if (having->fix_fields(thd, &having))
+ DBUG_RETURN(1);
+ select_lex->having_fix_field= 0;
+ select_lex->having_fix_field_for_pushed_cond= 0;
+ }
+ }
+
+ bool ignore_on_expr= false;
+ /*
+ PS/SP note: on_expr of versioned table can not be reallocated
+ (see build_equal_items() below) because it can be not rebuilt
+ at second invocation.
+ */
+ if (!thd->stmt_arena->is_conventional() && thd->mem_root != thd->stmt_arena->mem_root)
+ for (TABLE_LIST *tbl= tables_list; tbl; tbl= tbl->next_local)
+ if (tbl->table && tbl->on_expr && tbl->table->versioned())
+ {
+ ignore_on_expr= true;
+ break;
+ }
+
+ transform_in_predicates_into_equalities(thd);
+
+ conds= optimize_cond(this, conds, join_list, ignore_on_expr,
+ &cond_value, &cond_equal, OPT_LINK_EQUAL_FIELDS);
+
+ if (thd->is_error())
+ {
+ error= 1;
+ DBUG_PRINT("error",("Error from optimize_cond"));
+ DBUG_RETURN(1);
+ }
+ if (select_lex->with_rownum && ! order && ! group_list &&
+ !select_distinct && conds && select_lex == unit->global_parameters())
+ optimize_rownum(thd, unit, conds);
+
+ having= optimize_cond(this, having, join_list, TRUE,
+ &having_value, &having_equal);
+
+ if (thd->is_error())
+ {
+ error= 1;
+ DBUG_PRINT("error",("Error from optimize_cond"));
+ DBUG_RETURN(1);
+ }
+
+ /* Do not push into WHERE from HAVING if cond_value == Item::COND_FALSE */
+
+ if (thd->lex->sql_command == SQLCOM_SELECT &&
+ optimizer_flag(thd, OPTIMIZER_SWITCH_COND_PUSHDOWN_FROM_HAVING) &&
+ cond_value != Item::COND_FALSE)
+ {
+ having=
+ select_lex->pushdown_from_having_into_where(thd, having);
+ if (select_lex->attach_to_conds.elements != 0)
+ {
+ conds= and_new_conditions_to_optimized_cond(thd, conds, &cond_equal,
+ select_lex->attach_to_conds,
+ &cond_value);
+ sel->attach_to_conds.empty();
+ }
+ }
+
+ if (optimizer_flag(thd, OPTIMIZER_SWITCH_COND_PUSHDOWN_FOR_SUBQUERY))
+ {
+ TABLE_LIST *tbl;
+ List_iterator_fast<TABLE_LIST> li(select_lex->leaf_tables);
+ while ((tbl= li++))
+ if (tbl->jtbm_subselect)
+ {
+ if (tbl->jtbm_subselect->pushdown_cond_for_in_subquery(thd, conds))
+ DBUG_RETURN(1);
+ }
+ }
+
+ if (setup_jtbm_semi_joins(this, join_list, eq_list))
+ DBUG_RETURN(1);
+
+ if (eq_list.elements != 0)
+ {
+ conds= and_new_conditions_to_optimized_cond(thd, conds, &cond_equal,
+ eq_list, &cond_value);
+
+ if (!conds &&
+ cond_value != Item::COND_FALSE && cond_value != Item::COND_TRUE)
+ DBUG_RETURN(TRUE);
+ }
+
+ if (optimizer_flag(thd, OPTIMIZER_SWITCH_COND_PUSHDOWN_FOR_DERIVED))
+ {
+ TABLE_LIST *tbl;
+ List_iterator_fast<TABLE_LIST> li(select_lex->leaf_tables);
+ while ((tbl= li++))
+ {
+ /*
+ Do not push conditions from where into materialized inner tables
+ of outer joins: this is not valid.
+ */
+ if (tbl->is_materialized_derived())
+ {
+ JOIN *join= tbl->get_unit()->first_select()->join;
+ if (join &&
+ join->optimization_state == JOIN::OPTIMIZATION_PHASE_1_DONE &&
+ join->with_two_phase_optimization)
+ continue;
+ /*
+ Do not push conditions from where into materialized inner tables
+ of outer joins: this is not valid.
+ */
+ if (!tbl->is_inner_table_of_outer_join())
+ {
+ if (pushdown_cond_for_derived(thd, conds, tbl))
+ DBUG_RETURN(1);
+ }
+ if (mysql_handle_single_derived(thd->lex, tbl, DT_OPTIMIZE))
+ DBUG_RETURN(1);
+ }
+ }
+ }
+ else
+ {
+ /* Run optimize phase for all derived tables/views used in this SELECT. */
+ if (select_lex->handle_derived(thd->lex, DT_OPTIMIZE))
+ DBUG_RETURN(1);
+ }
+ {
+ if (select_lex->where)
+ {
+ select_lex->cond_value= cond_value;
+ if (sel->where != conds && cond_value == Item::COND_OK)
+ thd->change_item_tree(&sel->where, conds);
+ }
+ if (select_lex->having)
+ {
+ select_lex->having_value= having_value;
+ if (sel->having != having && having_value == Item::COND_OK)
+ thd->change_item_tree(&sel->having, having);
+ }
+ if (cond_value == Item::COND_FALSE || having_value == Item::COND_FALSE ||
+ (!unit->lim.get_select_limit() &&
+ !(select_options & OPTION_FOUND_ROWS)))
+ { /* Impossible cond */
+ if (unit->lim.get_select_limit())
+ {
+ DBUG_PRINT("info", (having_value == Item::COND_FALSE ?
+ "Impossible HAVING" : "Impossible WHERE"));
+ zero_result_cause= having_value == Item::COND_FALSE ?
+ "Impossible HAVING" : "Impossible WHERE";
+ }
+ else
+ {
+ DBUG_PRINT("info", ("Zero limit"));
+ zero_result_cause= "Zero limit";
+ }
+ table_count= top_join_tab_count= 0;
+ handle_implicit_grouping_with_window_funcs();
+ error= 0;
+ subq_exit_fl= true;
+ goto setup_subq_exit;
+ }
+ }
+
+#ifdef WITH_PARTITION_STORAGE_ENGINE
+ {
+ TABLE_LIST *tbl;
+ List_iterator_fast<TABLE_LIST> li(select_lex->leaf_tables);
+ while ((tbl= li++))
+ {
+ Item **prune_cond= get_sargable_cond(this, tbl->table);
+ tbl->table->all_partitions_pruned_away=
+ prune_partitions(thd, tbl->table, *prune_cond);
+ }
+ }
+#endif
+
+ /*
+ Try to optimize count(*), MY_MIN() and MY_MAX() to const fields if
+ there is implicit grouping (aggregate functions but no
+ group_list). In this case, the result set shall only contain one
+ row.
+ */
+ if (tables_list && implicit_grouping)
+ {
+ int res;
+ /*
+ opt_sum_query() returns HA_ERR_KEY_NOT_FOUND if no rows match
+ to the WHERE conditions,
+ or 1 if all items were resolved (optimized away),
+ or 0, or an error number HA_ERR_...
+
+ If all items were resolved by opt_sum_query, there is no need to
+ open any tables.
+ */
+
+ /*
+ The following resetting and restoring of sum_funcs is needed to
+ go around a bug in spider where it assumes that
+ make_sum_func_list() has not been called yet and do logical
+ choices based on this if special handling of min/max functions should
+ be done. We disable this special handling while we are trying to find
+ out if we can replace MIN/MAX values with constants.
+ */
+ Item_sum **save_func_sums= sum_funcs, *tmp_sum_funcs= 0;
+ sum_funcs= &tmp_sum_funcs;
+ res= opt_sum_query(thd, select_lex->leaf_tables, all_fields, conds);
+ sum_funcs= save_func_sums;
+
+ if (res)
+ {
+ DBUG_ASSERT(res >= 0);
+ if (res == HA_ERR_KEY_NOT_FOUND)
+ {
+ DBUG_PRINT("info",("No matching min/max row"));
+ zero_result_cause= "No matching min/max row";
+ table_count= top_join_tab_count= 0;
+ error=0;
+ subq_exit_fl= true;
+ handle_implicit_grouping_with_window_funcs();
+ goto setup_subq_exit;
+ }
+ if (res > 1)
+ {
+ error= res;
+ DBUG_PRINT("error",("Error from opt_sum_query"));
+ DBUG_RETURN(1);
+ }
+
+ DBUG_PRINT("info",("Select tables optimized away"));
+ if (!select_lex->have_window_funcs())
+ zero_result_cause= "Select tables optimized away";
+ tables_list= 0; // All tables resolved
+ select_lex->min_max_opt_list.empty();
+ const_tables= top_join_tab_count= table_count;
+ handle_implicit_grouping_with_window_funcs();
+ /*
+ Extract all table-independent conditions and replace the WHERE
+ clause with them. All other conditions were computed by opt_sum_query
+ and the MIN/MAX/COUNT function(s) have been replaced by constants,
+ so there is no need to compute the whole WHERE clause again.
+ Notice that make_cond_for_table() will always succeed to remove all
+ computed conditions, because opt_sum_query() is applicable only to
+ conjunctions.
+ Preserve conditions for EXPLAIN.
+ */
+ if (conds && !(thd->lex->describe & DESCRIBE_EXTENDED))
+ {
+ COND *table_independent_conds=
+ make_cond_for_table(thd, conds, PSEUDO_TABLE_BITS, 0, -1,
+ FALSE, FALSE);
+ if (!table_independent_conds && thd->is_error())
+ DBUG_RETURN(1);
+ DBUG_EXECUTE("where",
+ print_where(table_independent_conds,
+ "where after opt_sum_query()",
+ QT_ORDINARY););
+ conds= table_independent_conds;
+ }
+ }
+ }
+ if (!tables_list)
+ {
+ DBUG_PRINT("info",("No tables"));
+ error= 0;
+ subq_exit_fl= true;
+ goto setup_subq_exit;
+ }
+ error= -1; // Error is sent to client
+ /* get_sort_by_table() call used to be here: */
+ MEM_UNDEFINED(&sort_by_table, sizeof(sort_by_table));
+
+ /*
+ We have to remove constants and duplicates from group_list before
+ calling make_join_statistics() as this may call get_best_group_min_max()
+ which needs a simplified group_list.
+ */
+ if (group_list && table_count == 1)
+ {
+ group_list= remove_const(this, group_list, conds,
+ rollup.state == ROLLUP::STATE_NONE,
+ &simple_group);
+ if (unlikely(thd->is_error()))
+ {
+ error= 1;
+ DBUG_RETURN(1);
+ }
+ if (!group_list)
+ {
+ /* The output has only one row */
+ order=0;
+ simple_order=1;
+ group_optimized_away= 1;
+ select_distinct=0;
+ }
+ }
+
+ /* Calculate how to do the join */
+ THD_STAGE_INFO(thd, stage_statistics);
+ result->prepare_to_read_rows();
+ if (unlikely(make_join_statistics(this, select_lex->leaf_tables,
+ &keyuse)) ||
+ unlikely(thd->is_error()))
+ {
+ DBUG_PRINT("error",("Error: make_join_statistics() failed"));
+ DBUG_RETURN(1);
+ }
+
+ /*
+ If a splittable materialized derived/view dt_i is embedded into
+ into another splittable materialized derived/view dt_o then
+ splitting plans for dt_i and dt_o are evaluated independently.
+ First the optimizer looks for the best splitting plan sp_i for dt_i.
+ It happens when non-splitting plans for dt_o are evaluated.
+ The cost of sp_i is considered as the cost of materialization of dt_i
+ when evaluating any splitting plan for dt_o.
+ */
+ if (fix_all_splittings_in_plan())
+ DBUG_RETURN(1);
+
+setup_subq_exit:
+ with_two_phase_optimization= check_two_phase_optimization(thd);
+ if (with_two_phase_optimization)
+ optimization_state= JOIN::OPTIMIZATION_PHASE_1_DONE;
+ else
+ {
+ if (optimize_stage2())
+ DBUG_RETURN(1);
+ }
+ DBUG_RETURN(0);
+}
+
+
+int JOIN::optimize_stage2()
+{
+ ulonglong select_opts_for_readinfo;
+ uint no_jbuf_after;
+ JOIN_TAB *tab;
+ DBUG_ENTER("JOIN::optimize_stage2");
+
+ if (subq_exit_fl)
+ goto setup_subq_exit;
+
+ if (unlikely(thd->check_killed()))
+ DBUG_RETURN(1);
+
+ /* Generate an execution plan from the found optimal join order. */
+ if (get_best_combination())
+ DBUG_RETURN(1);
+
+ if (make_range_rowid_filters())
+ DBUG_RETURN(1);
+
+ if (select_lex->handle_derived(thd->lex, DT_OPTIMIZE))
+ DBUG_RETURN(1);
+
+ if (optimizer_flag(thd, OPTIMIZER_SWITCH_DERIVED_WITH_KEYS))
+ drop_unused_derived_keys();
+
+ if (rollup.state != ROLLUP::STATE_NONE)
+ {
+ if (rollup_process_const_fields())
+ {
+ DBUG_PRINT("error", ("Error: rollup_process_fields() failed"));
+ DBUG_RETURN(1);
+ }
+ }
+ else
+ {
+ /* Remove distinct if only const tables */
+ select_distinct= select_distinct && (const_tables != table_count);
+ }
+
+ THD_STAGE_INFO(thd, stage_preparing);
+ if (result->initialize_tables(this))
+ {
+ DBUG_PRINT("error",("Error: initialize_tables() failed"));
+ DBUG_RETURN(1); // error == -1
+ }
+ if (const_table_map != found_const_table_map &&
+ !(select_options & SELECT_DESCRIBE))
+ {
+ // There is at least one empty const table
+ zero_result_cause= "no matching row in const table";
+ DBUG_PRINT("error",("Error: %s", zero_result_cause));
+ error= 0;
+ handle_implicit_grouping_with_window_funcs();
+ goto setup_subq_exit;
+ }
+ if (!(thd->variables.option_bits & OPTION_BIG_SELECTS) &&
+ best_read > (double) thd->variables.max_join_size &&
+ !(select_options & SELECT_DESCRIBE))
+ { /* purecov: inspected */
+ my_message(ER_TOO_BIG_SELECT, ER_THD(thd, ER_TOO_BIG_SELECT), MYF(0));
+ error= -1;
+ DBUG_RETURN(1);
+ }
+ if (const_tables && !thd->locked_tables_mode &&
+ !(select_options & SELECT_NO_UNLOCK))
+ {
+ /*
+ Unlock all tables, except sequences, as accessing these may still
+ require table updates. It's safe to ignore result code as all
+ tables where opened for read only.
+ */
+ (void) mysql_unlock_some_tables(thd, table, const_tables,
+ GET_LOCK_SKIP_SEQUENCES);
+ }
+ if (!conds && outer_join)
+ {
+ /* Handle the case where we have an OUTER JOIN without a WHERE */
+ conds= (Item*) Item_true;
+ }
+
+ if (impossible_where)
+ {
+ zero_result_cause=
+ "Impossible WHERE noticed after reading const tables";
+ select_lex->mark_const_derived(zero_result_cause);
+ handle_implicit_grouping_with_window_funcs();
+ goto setup_subq_exit;
+ }
+
+ select= make_select(*table, const_table_map,
+ const_table_map, conds, (SORT_INFO*) 0, 1, &error);
+ if (unlikely(error))
+ { /* purecov: inspected */
+ error= -1; /* purecov: inspected */
+ DBUG_PRINT("error",("Error: make_select() failed"));
+ DBUG_RETURN(1);
+ }
+
+ reset_nj_counters(this, join_list);
+ if (make_outerjoin_info(this))
+ {
+ DBUG_RETURN(1);
+ }
+
+ /*
+ Among the equal fields belonging to the same multiple equality
+ choose the one that is to be retrieved first and substitute
+ all references to these in where condition for a reference for
+ the selected field.
+ */
+ if (conds)
+ {
+ conds= substitute_for_best_equal_field(thd, NO_PARTICULAR_TAB, conds,
+ cond_equal, map2table, true);
+ if (unlikely(thd->is_error()))
+ {
+ error= 1;
+ DBUG_PRINT("error",("Error from substitute_for_best_equal"));
+ DBUG_RETURN(1);
+ }
+ conds->update_used_tables();
+
+ if (unlikely(thd->trace_started()))
+ trace_condition(thd, "WHERE", "substitute_best_equal", conds);
+
+ DBUG_EXECUTE("where",
+ print_where(conds,
+ "after substitute_best_equal",
+ QT_ORDINARY););
+ }
+ if (having)
+ {
+ having= substitute_for_best_equal_field(thd, NO_PARTICULAR_TAB, having,
+ having_equal, map2table, false);
+ if (thd->is_error())
+ {
+ error= 1;
+ DBUG_PRINT("error",("Error from substitute_for_best_equal"));
+ DBUG_RETURN(1);
+ }
+ if (having)
+ {
+ having->update_used_tables();
+ if (unlikely(thd->trace_started()))
+ trace_condition(thd, "HAVING", "substitute_best_equal", having);
+ }
+
+ DBUG_EXECUTE("having",
+ print_where(having,
+ "after substitute_best_equal",
+ QT_ORDINARY););
+ }
+
+ /*
+ Perform the optimization on fields evaluation mentioned above
+ for all on expressions.
+ */
+ for (tab= first_linear_tab(this, WITH_BUSH_ROOTS, WITHOUT_CONST_TABLES); tab;
+ tab= next_linear_tab(this, tab, WITH_BUSH_ROOTS))
+ {
+ if (*tab->on_expr_ref)
+ {
+ *tab->on_expr_ref= substitute_for_best_equal_field(thd, NO_PARTICULAR_TAB,
+ *tab->on_expr_ref,
+ tab->cond_equal,
+ map2table, true);
+ if (unlikely(thd->is_error()))
+ {
+ error= 1;
+ DBUG_PRINT("error",("Error from substitute_for_best_equal"));
+ DBUG_RETURN(1);
+ }
+ (*tab->on_expr_ref)->update_used_tables();
+ if (unlikely(thd->trace_started()))
+ {
+ trace_condition(thd, "ON expr", "substitute_best_equal",
+ (*tab->on_expr_ref), tab->table->alias.c_ptr());
+ }
+ }
+ }
+
+ /*
+ Perform the optimization on fields evaliation mentioned above
+ for all used ref items.
+ */
+ for (tab= first_linear_tab(this, WITH_BUSH_ROOTS, WITHOUT_CONST_TABLES); tab;
+ tab= next_linear_tab(this, tab, WITH_BUSH_ROOTS))
+ {
+ uint key_copy_index=0;
+ for (uint i=0; i < tab->ref.key_parts; i++)
+ {
+ Item **ref_item_ptr= tab->ref.items+i;
+ Item *ref_item= *ref_item_ptr;
+ if (!ref_item->used_tables() && !(select_options & SELECT_DESCRIBE))
+ continue;
+ COND_EQUAL *equals= cond_equal;
+ JOIN_TAB *first_inner= tab->first_inner;
+ while (equals)
+ {
+ ref_item= substitute_for_best_equal_field(thd, tab, ref_item,
+ equals, map2table, true);
+ if (unlikely(thd->is_error()))
+ DBUG_RETURN(1);
+
+ if (first_inner)
+ {
+ equals= first_inner->cond_equal;
+ first_inner= first_inner->first_upper;
+ }
+ else
+ equals= 0;
+ }
+ ref_item->update_used_tables();
+ if (*ref_item_ptr != ref_item)
+ {
+ *ref_item_ptr= ref_item;
+ Item *item= ref_item->real_item();
+ store_key *key_copy= tab->ref.key_copy[key_copy_index];
+ if (key_copy->type() == store_key::FIELD_STORE_KEY)
+ {
+ if (item->basic_const_item())
+ {
+ /* It is constant propagated here */
+ tab->ref.key_copy[key_copy_index]=
+ new store_key_const_item(*tab->ref.key_copy[key_copy_index],
+ item);
+ }
+ else if (item->const_item())
+ {
+ tab->ref.key_copy[key_copy_index]=
+ new store_key_item(*tab->ref.key_copy[key_copy_index],
+ item, TRUE);
+ }
+ else
+ {
+ store_key_field *field_copy= ((store_key_field *)key_copy);
+ DBUG_ASSERT(item->type() == Item::FIELD_ITEM);
+ field_copy->change_source_field((Item_field *) item);
+ }
+ }
+ }
+ key_copy_index++;
+ }
+ }
+
+ if (conds && const_table_map != found_const_table_map &&
+ (select_options & SELECT_DESCRIBE))
+ conds= (Item*) Item_false;
+
+ /* Cache constant expressions in WHERE, HAVING, ON clauses. */
+ cache_const_exprs();
+
+ if (setup_semijoin_loosescan(this))
+ DBUG_RETURN(1);
+
+ if (make_join_select(this, select, conds))
+ {
+ if (thd->is_error())
+ DBUG_RETURN(1);
+ zero_result_cause=
+ "Impossible WHERE noticed after reading const tables";
+ select_lex->mark_const_derived(zero_result_cause);
+ handle_implicit_grouping_with_window_funcs();
+ goto setup_subq_exit;
+ }
+
+ error= -1; /* if goto err */
+
+ /* Optimize distinct away if possible */
+ {
+ ORDER *org_order= order;
+ order=remove_const(this, order,conds,1, &simple_order);
+ if (unlikely(thd->is_error()))
+ {
+ error= 1;
+ DBUG_RETURN(1);
+ }
+
+ /*
+ If we are using ORDER BY NULL or ORDER BY const_expression,
+ return result in any order (even if we are using a GROUP BY)
+ */
+ if (!order && org_order)
+ skip_sort_order= 1;
+ }
+
+ /*
+ For FETCH ... WITH TIES save how many items order by had, after we've
+ removed constant items that have no relevance on the final sorting.
+ */
+ if (unit->lim.is_with_ties())
+ {
+ DBUG_ASSERT(with_ties_order_count == 0);
+ for (ORDER *it= order; it; it= it->next)
+ with_ties_order_count+= 1;
+ }
+
+
+ /*
+ Check if we can optimize away GROUP BY/DISTINCT.
+ We can do that if there are no aggregate functions, the
+ fields in DISTINCT clause (if present) and/or columns in GROUP BY
+ (if present) contain direct references to all key parts of
+ an unique index (in whatever order) and if the key parts of the
+ unique index cannot contain NULLs.
+ Note that the unique keys for DISTINCT and GROUP BY should not
+ be the same (as long as they are unique).
+
+ The FROM clause must contain a single non-constant table.
+ */
+ if (table_count - const_tables == 1 && (group || select_distinct) &&
+ !tmp_table_param.sum_func_count &&
+ (!join_tab[const_tables].select ||
+ !join_tab[const_tables].select->quick ||
+ join_tab[const_tables].select->quick->get_type() !=
+ QUICK_SELECT_I::QS_TYPE_GROUP_MIN_MAX) &&
+ !select_lex->have_window_funcs())
+ {
+ if (group && rollup.state == ROLLUP::STATE_NONE &&
+ list_contains_unique_index(join_tab[const_tables].table,
+ find_field_in_order_list,
+ (void *) group_list))
+ {
+ /*
+ We have found that grouping can be removed since groups correspond to
+ only one row anyway, but we still have to guarantee correct result
+ order. The line below effectively rewrites the query from GROUP BY
+ <fields> to ORDER BY <fields>. There are three exceptions:
+ - if skip_sort_order is set (see above), then we can simply skip
+ GROUP BY;
+ - if we are in a subquery, we don't have to maintain order unless there
+ is a limit clause in the subquery.
+ - we can only rewrite ORDER BY if the ORDER BY fields are 'compatible'
+ with the GROUP BY ones, i.e. either one is a prefix of another.
+ We only check if the ORDER BY is a prefix of GROUP BY. In this case
+ test_if_subpart() copies the ASC/DESC attributes from the original
+ ORDER BY fields.
+ If GROUP BY is a prefix of ORDER BY, then it is safe to leave
+ 'order' as is.
+ */
+ if (!order || test_if_subpart(group_list, order))
+ {
+ if (skip_sort_order ||
+ (select_lex->master_unit()->item && select_limit == HA_POS_ERROR)) // This is a subquery
+ order= NULL;
+ else
+ order= group_list;
+ }
+ /*
+ If we have an IGNORE INDEX FOR GROUP BY(fields) clause, this must be
+ rewritten to IGNORE INDEX FOR ORDER BY(fields).
+ */
+ join_tab->table->keys_in_use_for_order_by=
+ join_tab->table->keys_in_use_for_group_by;
+ group_list= 0;
+ group= 0;
+ }
+ if (select_distinct &&
+ list_contains_unique_index(join_tab[const_tables].table,
+ find_field_in_item_list,
+ (void *) &fields_list))
+ {
+ select_distinct= 0;
+ }
+ }
+ if (group || tmp_table_param.sum_func_count)
+ {
+ if (! hidden_group_fields && rollup.state == ROLLUP::STATE_NONE
+ && !select_lex->have_window_funcs())
+ select_distinct=0;
+ }
+ else if (select_distinct && table_count - const_tables == 1 &&
+ rollup.state == ROLLUP::STATE_NONE &&
+ !select_lex->have_window_funcs())
+ {
+ /*
+ We are only using one table. In this case we change DISTINCT to a
+ GROUP BY query if:
+ - The GROUP BY can be done through indexes (no sort) and the ORDER
+ BY only uses selected fields.
+ (In this case we can later optimize away GROUP BY and ORDER BY)
+ - We are scanning the whole table without LIMIT
+ This can happen if:
+ - We are using CALC_FOUND_ROWS
+ - We are using an ORDER BY that can't be optimized away.
+
+ We don't want to use this optimization when we are using LIMIT
+ because in this case we can just create a temporary table that
+ holds LIMIT rows and stop when this table is full.
+ */
+ bool all_order_fields_used;
+
+ tab= &join_tab[const_tables];
+ if (order)
+ {
+ bool fatal_err;
+ skip_sort_order=
+ test_if_skip_sort_order(tab, order, select_limit,
+ true, // no_changes
+ &tab->table->keys_in_use_for_order_by,
+ &fatal_err);
+ if (fatal_err)
+ DBUG_RETURN(1);
+ }
+ if ((group_list=create_distinct_group(thd, select_lex->ref_pointer_array,
+ order, fields_list, all_fields,
+ &all_order_fields_used)))
+ {
+ bool fatal_err= 0;
+ const bool skip_group=
+ skip_sort_order &&
+ test_if_skip_sort_order(tab, group_list, select_limit,
+ true, // no_changes
+ &tab->table->keys_in_use_for_group_by,
+ &fatal_err);
+ if (fatal_err)
+ DBUG_RETURN(1);
+
+ count_field_types(select_lex, &tmp_table_param, all_fields, 0);
+ if ((skip_group && all_order_fields_used) ||
+ select_limit == HA_POS_ERROR ||
+ (order && !skip_sort_order))
+ {
+ /* Change DISTINCT to GROUP BY */
+ select_distinct= 0;
+ no_order= !order;
+ if (all_order_fields_used)
+ {
+ if (order && skip_sort_order)
+ {
+ /*
+ Force MySQL to read the table in sorted order to get result in
+ ORDER BY order.
+ */
+ tmp_table_param.quick_group=0;
+ }
+ order=0;
+ }
+ group=1; // For end_write_group
+ }
+ else
+ group_list= 0;
+ }
+ else if (thd->is_error()) // End of memory
+ DBUG_RETURN(1);
+ }
+ simple_group= rollup.state == ROLLUP::STATE_NONE;
+ if (group)
+ {
+ /*
+ Update simple_group and group_list as we now have more information, like
+ which tables or columns are constant.
+ */
+ group_list= remove_const(this, group_list, conds,
+ rollup.state == ROLLUP::STATE_NONE,
+ &simple_group);
+ if (unlikely(thd->is_error()))
+ {
+ error= 1;
+ DBUG_RETURN(1);
+ }
+ if (!group_list)
+ {
+ /* The output has only one row */
+ order=0;
+ simple_order=1;
+ select_distinct= 0;
+ group_optimized_away= 1;
+ }
+ }
+
+ calc_group_buffer(this, group_list);
+ send_group_parts= tmp_table_param.group_parts; /* Save org parts */
+ if (procedure && procedure->group)
+ {
+ group_list= procedure->group= remove_const(this, procedure->group, conds,
+ 1, &simple_group);
+ if (unlikely(thd->is_error()))
+ {
+ error= 1;
+ DBUG_RETURN(1);
+ }
+ calc_group_buffer(this, group_list);
+ }
+
+ /*
+ We can ignore ORDER BY if it's a prefix of the GROUP BY list
+ (as MariaDB is by default sorting on GROUP BY) or
+ if there is no GROUP BY and aggregate functions are used
+ (as the result will only contain one row).
+ */
+ if (order && (test_if_subpart(group_list, order) ||
+ (!group_list && tmp_table_param.sum_func_count)))
+ order=0;
+
+ // Can't use sort on head table if using join buffering
+ if (full_join || hash_join)
+ {
+ TABLE *stable= (sort_by_table == (TABLE *) 1 ?
+ join_tab[const_tables].table : sort_by_table);
+ /*
+ FORCE INDEX FOR ORDER BY can be used to prevent join buffering when
+ sorting on the first table.
+ */
+ if (!stable || (!stable->force_index_order &&
+ !map2table[stable->tablenr]->keep_current_rowid))
+ {
+ if (group_list)
+ simple_group= 0;
+ if (order)
+ simple_order= 0;
+ }
+ }
+
+ need_tmp= test_if_need_tmp_table();
+
+ /*
+ If window functions are present then we can't have simple_order set to
+ TRUE as the window function needs a temp table for computation.
+ ORDER BY is computed after the window function computation is done, so
+ the sort will be done on the temp table.
+ */
+ if (select_lex->have_window_funcs())
+ simple_order= FALSE;
+
+ /*
+ If the hint FORCE INDEX FOR ORDER BY/GROUP BY is used for the table
+ whose columns are required to be returned in a sorted order, then
+ the proper value for no_jbuf_after should be yielded by a call to
+ the make_join_orderinfo function.
+ Yet the current implementation of FORCE INDEX hints does not
+ allow us to do it in a clean manner.
+ */
+ no_jbuf_after= 1 ? table_count : make_join_orderinfo(this);
+
+ // Don't use join buffering when we use MATCH
+ select_opts_for_readinfo=
+ (select_options & (SELECT_DESCRIBE | SELECT_NO_JOIN_CACHE)) |
+ (select_lex->ftfunc_list->elements ? SELECT_NO_JOIN_CACHE : 0);
+
+ if (select_lex->options & OPTION_SCHEMA_TABLE &&
+ optimize_schema_tables_reads(this))
+ DBUG_RETURN(1);
+
+ if (make_join_readinfo(this, select_opts_for_readinfo, no_jbuf_after))
+ DBUG_RETURN(1);
+
+ /* Perform FULLTEXT search before all regular searches */
+ if (!(select_options & SELECT_DESCRIBE))
+ if (init_ftfuncs(thd, select_lex, MY_TEST(order)))
+ DBUG_RETURN(1);
+
+ /*
+ It's necessary to check const part of HAVING cond as
+ there is a chance that some cond parts may become
+ const items after make_join_statistics(for example
+ when Item is a reference to cost table field from
+ outer join).
+ This check is performed only for those conditions
+ which do not use aggregate functions. In such case
+ temporary table may not be used and const condition
+ elements may be lost during further having
+ condition transformation in JOIN::exec.
+ */
+ if (having && const_table_map && !having->with_sum_func())
+ {
+ having->update_used_tables();
+ having= having->remove_eq_conds(thd, &select_lex->having_value, true);
+ if (select_lex->having_value == Item::COND_FALSE)
+ {
+ having= (Item*) Item_false;
+ zero_result_cause= "Impossible HAVING noticed after reading const tables";
+ error= 0;
+ select_lex->mark_const_derived(zero_result_cause);
+ goto setup_subq_exit;
+ }
+ }
+
+ if (optimize_unflattened_subqueries())
+ DBUG_RETURN(1);
+
+ int res;
+ if ((res= rewrite_to_index_subquery_engine(this)) != -1)
+ DBUG_RETURN(res);
+ if (setup_subquery_caches())
+ DBUG_RETURN(-1);
+
+ /*
+ Need to tell handlers that to play it safe, it should fetch all
+ columns of the primary key of the tables: this is because MySQL may
+ build row pointers for the rows, and for all columns of the primary key
+ the read set has not necessarily been set by the server code.
+ */
+ if (need_tmp || select_distinct || group_list || order)
+ {
+ for (uint i= 0; i < table_count; i++)
+ {
+ if (!(table[i]->map & const_table_map))
+ table[i]->prepare_for_position();
+ }
+ }
+
+ DBUG_EXECUTE("info",TEST_join(this););
+
+ if (!only_const_tables())
+ {
+ JOIN_TAB *tab= &join_tab[const_tables];
+
+ if (order && !need_tmp)
+ {
+ /*
+ Force using of tmp table if sorting by a SP or UDF function due to
+ their expensive and probably non-deterministic nature.
+ */
+ for (ORDER *tmp_order= order; tmp_order ; tmp_order=tmp_order->next)
+ {
+ Item *item= *tmp_order->item;
+ if (item->is_expensive())
+ {
+ /* Force tmp table without sort */
+ need_tmp=1; simple_order=simple_group=0;
+ break;
+ }
+ }
+ }
+
+ /*
+ Because filesort always does a full table scan or a quick range scan
+ we must add the removed reference to the select for the table.
+ We only need to do this when we have a simple_order or simple_group
+ as in other cases the join is done before the sort.
+ */
+ if ((order || group_list) &&
+ tab->type != JT_ALL &&
+ tab->type != JT_FT &&
+ tab->type != JT_REF_OR_NULL &&
+ ((order && simple_order) || (group_list && simple_group)))
+ {
+ if (add_ref_to_table_cond(thd,tab)) {
+ DBUG_RETURN(1);
+ }
+ }
+ /*
+ Investigate whether we may use an ordered index as part of either
+ DISTINCT, GROUP BY or ORDER BY execution. An ordered index may be
+ used for only the first of any of these terms to be executed. This
+ is reflected in the order which we check for test_if_skip_sort_order()
+ below. However we do not check for DISTINCT here, as it would have
+ been transformed to a GROUP BY at this stage if it is a candidate for
+ ordered index optimization.
+ If a decision was made to use an ordered index, the availability
+ of such an access path is stored in 'ordered_index_usage' for later
+ use by 'execute' or 'explain'
+ */
+ DBUG_ASSERT(ordered_index_usage == ordered_index_void);
+
+ if (group_list) // GROUP BY honoured first
+ // (DISTINCT was rewritten to GROUP BY if skippable)
+ {
+ /*
+ When there is SQL_BIG_RESULT do not sort using index for GROUP BY,
+ and thus force sorting on disk unless a group min-max optimization
+ is going to be used as it is applied now only for one table queries
+ with covering indexes.
+ */
+ if (!(select_options & SELECT_BIG_RESULT) ||
+ (tab->select &&
+ tab->select->quick &&
+ tab->select->quick->get_type() ==
+ QUICK_SELECT_I::QS_TYPE_GROUP_MIN_MAX))
+ {
+ if (simple_group && // GROUP BY is possibly skippable
+ !select_distinct) // .. if not preceded by a DISTINCT
+ {
+ /*
+ Calculate a possible 'limit' of table rows for 'GROUP BY':
+ A specified 'LIMIT' is relative to the final resultset.
+ 'need_tmp' implies that there will be more postprocessing
+ so the specified 'limit' should not be enforced yet.
+ */
+ bool fatal_err;
+ const ha_rows limit = need_tmp ? HA_POS_ERROR : select_limit;
+ if (test_if_skip_sort_order(tab, group_list, limit, false,
+ &tab->table->keys_in_use_for_group_by,
+ &fatal_err))
+ {
+ ordered_index_usage= ordered_index_group_by;
+ }
+ if (fatal_err)
+ DBUG_RETURN(1);
+ }
+
+ /*
+ If we are going to use semi-join LooseScan, it will depend
+ on the selected index scan to be used. If index is not used
+ for the GROUP BY, we risk that sorting is put on the LooseScan
+ table. In order to avoid this, force use of temporary table.
+ TODO: Explain the quick_group part of the test below.
+ */
+ if ((ordered_index_usage != ordered_index_group_by) &&
+ ((tmp_table_param.quick_group && !procedure) ||
+ (tab->emb_sj_nest &&
+ best_positions[const_tables].sj_strategy == SJ_OPT_LOOSE_SCAN)))
+ {
+ need_tmp=1;
+ simple_order= simple_group= false; // Force tmp table without sort
+ }
+ }
+ }
+ else if (order && // ORDER BY wo/ preceding GROUP BY
+ (simple_order || skip_sort_order)) // which is possibly skippable
+ {
+ bool fatal_err;
+ if (test_if_skip_sort_order(tab, order, select_limit, false,
+ &tab->table->keys_in_use_for_order_by,
+ &fatal_err))
+ {
+ ordered_index_usage= ordered_index_order_by;
+ }
+ if (fatal_err)
+ DBUG_RETURN(1);
+ }
+ }
+
+ if (having)
+ having_is_correlated= MY_TEST(having->used_tables() & OUTER_REF_TABLE_BIT);
+ tmp_having= having;
+
+ if (unlikely(thd->is_error()))
+ DBUG_RETURN(TRUE);
+
+ /*
+ The loose index scan access method guarantees that all grouping or
+ duplicate row elimination (for distinct) is already performed
+ during data retrieval, and that all MIN/MAX functions are already
+ computed for each group. Thus all MIN/MAX functions should be
+ treated as regular functions, and there is no need to perform
+ grouping in the main execution loop.
+ Notice that currently loose index scan is applicable only for
+ single table queries, thus it is sufficient to test only the first
+ join_tab element of the plan for its access method.
+ */
+ if (join_tab->is_using_loose_index_scan())
+ {
+ tmp_table_param.precomputed_group_by= TRUE;
+ if (join_tab->is_using_agg_loose_index_scan())
+ {
+ need_distinct= FALSE;
+ tmp_table_param.precomputed_group_by= FALSE;
+ }
+ }
+
+ if (make_aggr_tables_info())
+ DBUG_RETURN(1);
+
+ init_join_cache_and_keyread();
+
+ if (init_range_rowid_filters())
+ DBUG_RETURN(1);
+
+ error= 0;
+
+ if (select_options & SELECT_DESCRIBE)
+ goto derived_exit;
+
+ DBUG_RETURN(0);
+
+setup_subq_exit:
+ /* Choose an execution strategy for this JOIN. */
+ if (!tables_list || !table_count)
+ {
+ choose_tableless_subquery_plan();
+
+ /* The output has atmost one row */
+ if (group_list)
+ {
+ group_list= NULL;
+ group_optimized_away= 1;
+ rollup.state= ROLLUP::STATE_NONE;
+ }
+ order= NULL;
+ simple_order= TRUE;
+ select_distinct= FALSE;
+
+ if (select_lex->have_window_funcs())
+ {
+ if (!(join_tab= (JOIN_TAB*) thd->alloc(sizeof(JOIN_TAB))))
+ DBUG_RETURN(1);
+#ifndef DBUG_OFF
+ dbug_join_tab_array_size= 1;
+#endif
+ need_tmp= 1;
+ }
+ if (make_aggr_tables_info())
+ DBUG_RETURN(1);
+
+ /*
+ It could be that we've only done optimization stage 1 for
+ some of the derived tables, and never did stage 2.
+ Do it now, otherwise Explain data structure will not be complete.
+ */
+ if (select_lex->handle_derived(thd->lex, DT_OPTIMIZE))
+ DBUG_RETURN(1);
+ }
+ /*
+ Even with zero matching rows, subqueries in the HAVING clause may
+ need to be evaluated if there are aggregate functions in the query.
+ */
+ if (optimize_unflattened_subqueries())
+ DBUG_RETURN(1);
+ error= 0;
+
+derived_exit:
+
+ select_lex->mark_const_derived(zero_result_cause);
+ DBUG_RETURN(0);
+}
+
+/**
+ Add having condition as a where clause condition of the given temp table.
+
+ @param tab Table to which having condition is added.
+
+ @returns false if success, true if error.
+*/
+
+bool JOIN::add_having_as_table_cond(JOIN_TAB *tab)
+{
+ tmp_having->update_used_tables();
+ table_map used_tables= tab->table->map | OUTER_REF_TABLE_BIT;
+
+ /* If tmp table is not used then consider conditions of const table also */
+ if (!need_tmp)
+ used_tables|= const_table_map;
+
+ DBUG_ENTER("JOIN::add_having_as_table_cond");
+
+ Item* sort_table_cond= make_cond_for_table(thd, tmp_having, used_tables,
+ (table_map) 0, 0, false, false);
+ if (sort_table_cond)
+ {
+ if (!tab->select)
+ {
+ if (!(tab->select= new SQL_SELECT))
+ DBUG_RETURN(true);
+ tab->select->head= tab->table;
+ }
+ if (!tab->select->cond)
+ tab->select->cond= sort_table_cond;
+ else
+ {
+ if (!(tab->select->cond=
+ new (thd->mem_root) Item_cond_and(thd,
+ tab->select->cond,
+ sort_table_cond)))
+ DBUG_RETURN(true);
+ }
+ if (tab->pre_idx_push_select_cond)
+ {
+ if (sort_table_cond->type() == Item::COND_ITEM)
+ sort_table_cond= sort_table_cond->copy_andor_structure(thd);
+ if (!(tab->pre_idx_push_select_cond=
+ new (thd->mem_root) Item_cond_and(thd,
+ tab->pre_idx_push_select_cond,
+ sort_table_cond)))
+ DBUG_RETURN(true);
+ }
+ if (tab->select->cond)
+ tab->select->cond->fix_fields_if_needed(thd, 0);
+ if (tab->pre_idx_push_select_cond)
+ tab->pre_idx_push_select_cond->fix_fields_if_needed(thd, 0);
+ tab->select->pre_idx_push_select_cond= tab->pre_idx_push_select_cond;
+ tab->set_select_cond(tab->select->cond, __LINE__);
+ tab->select_cond->top_level_item();
+ DBUG_EXECUTE("where",print_where(tab->select->cond,
+ "select and having",
+ QT_ORDINARY););
+
+ having= make_cond_for_table(thd, tmp_having, ~ (table_map) 0,
+ ~used_tables, 0, false, false);
+ if (!having && thd->is_error())
+ DBUG_RETURN(true);
+ DBUG_EXECUTE("where",
+ print_where(having, "having after sort", QT_ORDINARY););
+ }
+ else if (thd->is_error())
+ DBUG_RETURN(true);
+
+ DBUG_RETURN(false);
+}
+
+
+bool JOIN::add_fields_for_current_rowid(JOIN_TAB *cur, List<Item> *table_fields)
+{
+ /*
+ this will not walk into semi-join materialization nests but this is ok
+ because we will never need to save current rowids for those.
+ */
+ for (JOIN_TAB *tab=join_tab; tab < cur; tab++)
+ {
+ if (!tab->keep_current_rowid)
+ continue;
+ Item *item= new (thd->mem_root) Item_temptable_rowid(tab->table);
+ item->fix_fields(thd, 0);
+ table_fields->push_back(item, thd->mem_root);
+ cur->tmp_table_param->func_count++;
+ }
+ return 0;
+}
+
+
+/**
+ Set info for aggregation tables
+
+ @details
+ This function finalizes execution plan by taking following actions:
+ .) aggregation temporary tables are created, but not instantiated
+ (this is done during execution).
+ JOIN_TABs for aggregation tables are set appropriately
+ (see JOIN::create_postjoin_aggr_table).
+ .) prepare fields lists (fields, all_fields, ref_pointer_array slices) for
+ each required stage of execution. These fields lists are set for
+ working tables' tabs and for the tab of last table in the join.
+ .) info for sorting/grouping/dups removal is prepared and saved in
+ appropriate tabs. Here is an example:
+
+ @returns
+ false - Ok
+ true - Error
+*/
+
+bool JOIN::make_aggr_tables_info()
+{
+ List<Item> *curr_all_fields= &all_fields;
+ List<Item> *curr_fields_list= &fields_list;
+ JOIN_TAB *curr_tab= join_tab + const_tables;
+ TABLE *exec_tmp_table= NULL;
+ bool distinct= false;
+ const bool has_group_by= this->group;
+ bool keep_row_order= thd->lex->with_rownum && (group_list || order);
+ bool is_having_added_as_table_cond= false;
+ DBUG_ENTER("JOIN::make_aggr_tables_info");
+
+
+ sort_and_group_aggr_tab= NULL;
+
+ if (group_optimized_away)
+ implicit_grouping= true;
+
+ bool implicit_grouping_with_window_funcs= implicit_grouping &&
+ select_lex->have_window_funcs();
+ bool implicit_grouping_without_tables= implicit_grouping &&
+ !tables_list;
+
+ /*
+ Setup last table to provide fields and all_fields lists to the next
+ node in the plan.
+ */
+ if (join_tab && top_join_tab_count && tables_list)
+ {
+ join_tab[top_join_tab_count - 1].fields= &fields_list;
+ join_tab[top_join_tab_count - 1].all_fields= &all_fields;
+ }
+
+ /*
+ All optimization is done. Check if we can use the storage engines
+ group by handler to evaluate the group by.
+ Some storage engines, like spider can also do joins, group by and
+ distinct in the engine, so we do this for all queries, not only
+ GROUP BY queries.
+ */
+ if (tables_list && top_join_tab_count && !procedure)
+ {
+ /*
+ At the moment we only support push down for queries where
+ all tables are in the same storage engine
+ */
+ TABLE_LIST *tbl= tables_list;
+ handlerton *ht= tbl && tbl->table ? tbl->table->file->partition_ht() : 0;
+ for (tbl= tbl->next_local; ht && tbl; tbl= tbl->next_local)
+ {
+ if (!tbl->table || tbl->table->file->partition_ht() != ht)
+ ht= 0;
+ }
+
+ if (ht && ht->create_group_by)
+ {
+ /*
+ Check if the storage engine can intercept the query
+
+ JOIN::optimize_stage2() might convert DISTINCT into GROUP BY and then
+ optimize away GROUP BY (group_list). In such a case, we need to notify
+ a storage engine supporting a group by handler of the existence of the
+ original DISTINCT. Thus, we set select_distinct || group_optimized_away
+ to Query::distinct.
+ */
+ Query query= {&all_fields, select_distinct || group_optimized_away,
+ tables_list, conds,
+ group_list, order ? order : group_list, having,
+ &select_lex->master_unit()->lim};
+ group_by_handler *gbh= ht->create_group_by(thd, &query);
+
+ if (gbh)
+ {
+ if (!(pushdown_query= new (thd->mem_root) Pushdown_query(select_lex,
+ gbh)))
+ DBUG_RETURN(1);
+ /*
+ We must store rows in the tmp table if we need to do an ORDER BY
+ or DISTINCT and the storage handler can't handle it.
+ */
+ need_tmp= query.order_by || query.group_by || query.distinct;
+ distinct= query.distinct;
+ keep_row_order= query.order_by || query.group_by;
+
+ order= query.order_by;
+
+ aggr_tables++;
+ curr_tab= join_tab + exec_join_tab_cnt();
+ bzero((void*)curr_tab, sizeof(JOIN_TAB));
+ curr_tab->ref.key= -1;
+ curr_tab->join= this;
+
+ if (!(curr_tab->tmp_table_param= new TMP_TABLE_PARAM(tmp_table_param)))
+ DBUG_RETURN(1);
+ curr_tab->tmp_table_param->func_count= all_fields.elements;
+ TABLE* table= create_tmp_table(thd, curr_tab->tmp_table_param,
+ all_fields,
+ NULL, distinct,
+ TRUE, select_options, HA_POS_ERROR,
+ &empty_clex_str, !need_tmp,
+ keep_row_order);
+ if (!table)
+ DBUG_RETURN(1);
+
+ if (!(curr_tab->aggr= new (thd->mem_root) AGGR_OP(curr_tab)))
+ DBUG_RETURN(1);
+ curr_tab->aggr->set_write_func(::end_send);
+ curr_tab->table= table;
+ /*
+ Setup reference fields, used by summary functions and group by fields,
+ to point to the temporary table.
+ The actual switching to the temporary tables fields for HAVING
+ and ORDER BY is done in do_select() by calling
+ set_items_ref_array(items1).
+ */
+ init_items_ref_array();
+ items1= ref_ptr_array_slice(2);
+ //items1= items0 + all_fields.elements;
+ if (change_to_use_tmp_fields(thd, items1,
+ tmp_fields_list1, tmp_all_fields1,
+ fields_list.elements, all_fields))
+ DBUG_RETURN(1);
+
+ /* Give storage engine access to temporary table */
+ gbh->table= table;
+ pushdown_query->store_data_in_temp_table= need_tmp;
+ pushdown_query->having= having;
+
+ /*
+ Group by and having is calculated by the group_by handler.
+ Reset the group by and having
+ */
+ DBUG_ASSERT(query.group_by == NULL);
+ group= 0; group_list= 0;
+ having= tmp_having= 0;
+ /*
+ Select distinct is handled by handler or by creating an unique index
+ over all fields in the temporary table
+ */
+ select_distinct= 0;
+ order= query.order_by;
+ tmp_table_param.field_count+= tmp_table_param.sum_func_count;
+ tmp_table_param.sum_func_count= 0;
+
+ fields= curr_fields_list;
+
+ //todo: new:
+ curr_tab->ref_array= &items1;
+ curr_tab->all_fields= &tmp_all_fields1;
+ curr_tab->fields= &tmp_fields_list1;
+
+ DBUG_RETURN(thd->is_error());
+ }
+ }
+ }
+
+
+ /*
+ The loose index scan access method guarantees that all grouping or
+ duplicate row elimination (for distinct) is already performed
+ during data retrieval, and that all MIN/MAX functions are already
+ computed for each group. Thus all MIN/MAX functions should be
+ treated as regular functions, and there is no need to perform
+ grouping in the main execution loop.
+ Notice that currently loose index scan is applicable only for
+ single table queries, thus it is sufficient to test only the first
+ join_tab element of the plan for its access method.
+ */
+ if (join_tab && top_join_tab_count && tables_list &&
+ join_tab->is_using_loose_index_scan())
+ tmp_table_param.precomputed_group_by=
+ !join_tab->is_using_agg_loose_index_scan();
+
+ group_list_for_estimates= group_list;
+ /* Create a tmp table if distinct or if the sort is too complicated */
+ if (need_tmp)
+ {
+ aggr_tables++;
+ curr_tab= join_tab + exec_join_tab_cnt();
+ DBUG_ASSERT(curr_tab - join_tab < dbug_join_tab_array_size);
+ bzero((void*)curr_tab, sizeof(JOIN_TAB));
+ curr_tab->ref.key= -1;
+ if (only_const_tables())
+ first_select= sub_select_postjoin_aggr;
+
+ /*
+ Create temporary table on first execution of this join.
+ (Will be reused if this is a subquery that is executed several times.)
+ */
+ init_items_ref_array();
+
+ ORDER *tmp_group= (ORDER *) 0;
+ if (!simple_group && !procedure && !(test_flags & TEST_NO_KEY_GROUP))
+ tmp_group= group_list;
+
+ tmp_table_param.hidden_field_count=
+ all_fields.elements - fields_list.elements;
+
+ distinct= select_distinct && !group_list &&
+ !select_lex->have_window_funcs();
+ keep_row_order= thd->lex->with_rownum && (group_list || order);
+ bool save_sum_fields= (group_list && simple_group) ||
+ implicit_grouping_with_window_funcs;
+ if (create_postjoin_aggr_table(curr_tab,
+ &all_fields, tmp_group,
+ save_sum_fields,
+ distinct, keep_row_order))
+ DBUG_RETURN(true);
+ exec_tmp_table= curr_tab->table;
+
+ if (exec_tmp_table->distinct)
+ optimize_distinct();
+
+ /* Change sum_fields reference to calculated fields in tmp_table */
+ items1= ref_ptr_array_slice(2);
+ if ((sort_and_group || curr_tab->table->group ||
+ tmp_table_param.precomputed_group_by) &&
+ !implicit_grouping_without_tables)
+ {
+ if (change_to_use_tmp_fields(thd, items1,
+ tmp_fields_list1, tmp_all_fields1,
+ fields_list.elements, all_fields))
+ DBUG_RETURN(true);
+ }
+ else
+ {
+ if (change_refs_to_tmp_fields(thd, items1,
+ tmp_fields_list1, tmp_all_fields1,
+ fields_list.elements, all_fields))
+ DBUG_RETURN(true);
+ }
+ curr_all_fields= &tmp_all_fields1;
+ curr_fields_list= &tmp_fields_list1;
+ // Need to set them now for correct group_fields setup, reset at the end.
+ set_items_ref_array(items1);
+ curr_tab->ref_array= &items1;
+ curr_tab->all_fields= &tmp_all_fields1;
+ curr_tab->fields= &tmp_fields_list1;
+ set_postjoin_aggr_write_func(curr_tab);
+
+ /*
+ If having is not handled here, it will be checked before the row is sent
+ to the client.
+ */
+ if (tmp_having &&
+ (sort_and_group || (exec_tmp_table->distinct && !group_list) ||
+ select_lex->have_window_funcs()))
+ {
+ /*
+ If there is no select distinct and there are no window functions
+ then move the having to table conds of tmp table.
+ NOTE : We cannot apply having after distinct or window functions
+ If columns of having are not part of select distinct,
+ then distinct may remove rows which can satisfy having.
+ In the case of window functions we *must* make sure to not
+ store any rows which don't match HAVING within the temp table,
+ as rows will end up being used during their computation.
+ */
+ if (!select_distinct && !select_lex->have_window_funcs() &&
+ add_having_as_table_cond(curr_tab))
+ DBUG_RETURN(true);
+ is_having_added_as_table_cond= tmp_having != having;
+
+ /*
+ Having condition which we are not able to add as tmp table conds are
+ kept as before. And, this will be applied before storing the rows in
+ tmp table.
+ */
+ curr_tab->having= having;
+ having= NULL; // Already done
+ }
+
+ tmp_table_param.func_count= 0;
+ tmp_table_param.field_count+= tmp_table_param.func_count;
+ if (sort_and_group || curr_tab->table->group)
+ {
+ tmp_table_param.field_count+= tmp_table_param.sum_func_count;
+ tmp_table_param.sum_func_count= 0;
+ }
+
+ if (exec_tmp_table->group)
+ { // Already grouped
+ if (!order && !no_order && !skip_sort_order)
+ order= group_list; /* order by group */
+ group_list= NULL;
+ }
+
+ /*
+ If we have different sort & group then we must sort the data by group
+ and copy it to another tmp table.
+
+ This code is also used if we are using distinct something
+ we haven't been able to store in the temporary table yet
+ like SEC_TO_TIME(SUM(...)).
+
+ 3. Also, this is used when
+ - the query has Window functions,
+ - the GROUP BY operation is done with OrderedGroupBy algorithm.
+ In this case, the first temptable will contain pre-GROUP-BY data. Force
+ the creation of the second temporary table. Post-GROUP-BY dataset will be
+ written there, and then Window Function processing code will be able to
+ process it.
+ */
+ if ((group_list &&
+ (!test_if_subpart(group_list, order) || select_distinct)) ||
+ (select_distinct && tmp_table_param.using_outer_summary_function) ||
+ (group_list && !tmp_table_param.quick_group && // (3)
+ select_lex->have_window_funcs())) // (3)
+ { /* Must copy to another table */
+ DBUG_PRINT("info",("Creating group table"));
+
+ calc_group_buffer(this, group_list);
+ count_field_types(select_lex, &tmp_table_param, tmp_all_fields1,
+ select_distinct && !group_list);
+ tmp_table_param.hidden_field_count=
+ tmp_all_fields1.elements - tmp_fields_list1.elements;
+
+ curr_tab++;
+ aggr_tables++;
+ DBUG_ASSERT(curr_tab - join_tab < dbug_join_tab_array_size);
+ bzero((void*)curr_tab, sizeof(JOIN_TAB));
+ curr_tab->ref.key= -1;
+
+ /* group data to new table */
+ /*
+ If the access method is loose index scan then all MIN/MAX
+ functions are precomputed, and should be treated as regular
+ functions. See extended comment above.
+ */
+ if (join_tab->is_using_loose_index_scan())
+ tmp_table_param.precomputed_group_by= TRUE;
+
+ tmp_table_param.hidden_field_count=
+ curr_all_fields->elements - curr_fields_list->elements;
+ ORDER *dummy= NULL; //TODO can use table->group here also
+
+ if (create_postjoin_aggr_table(curr_tab, curr_all_fields, dummy, true,
+ distinct, keep_row_order))
+ DBUG_RETURN(true);
+
+ if (group_list)
+ {
+ if (!only_const_tables()) // No need to sort a single row
+ {
+ if (add_sorting_to_table(curr_tab - 1, group_list))
+ DBUG_RETURN(true);
+ }
+
+ if (make_group_fields(this, this))
+ DBUG_RETURN(true);
+ }
+
+ // Setup sum funcs only when necessary, otherwise we might break info
+ // for the first table
+ if (group_list || tmp_table_param.sum_func_count)
+ {
+ if (make_sum_func_list(*curr_all_fields, *curr_fields_list, true))
+ DBUG_RETURN(true);
+ if (prepare_sum_aggregators(thd, sum_funcs,
+ !join_tab->is_using_agg_loose_index_scan()))
+ DBUG_RETURN(true);
+ group_list= NULL;
+ if (setup_sum_funcs(thd, sum_funcs))
+ DBUG_RETURN(true);
+ }
+ // No sum funcs anymore
+ DBUG_ASSERT(items2.is_null());
+
+ items2= ref_ptr_array_slice(3);
+ if (change_to_use_tmp_fields(thd, items2,
+ tmp_fields_list2, tmp_all_fields2,
+ fields_list.elements, tmp_all_fields1))
+ DBUG_RETURN(true);
+
+ curr_fields_list= &tmp_fields_list2;
+ curr_all_fields= &tmp_all_fields2;
+ set_items_ref_array(items2);
+ curr_tab->ref_array= &items2;
+ curr_tab->all_fields= &tmp_all_fields2;
+ curr_tab->fields= &tmp_fields_list2;
+ set_postjoin_aggr_write_func(curr_tab);
+
+ tmp_table_param.field_count+= tmp_table_param.sum_func_count;
+ tmp_table_param.sum_func_count= 0;
+ }
+ if (curr_tab->table->distinct)
+ select_distinct= false; /* Each row is unique */
+
+ if (select_distinct && !group_list)
+ {
+ if (having)
+ {
+ curr_tab->having= having;
+ having->update_used_tables();
+ }
+ /*
+ We only need DISTINCT operation if the join is not degenerate.
+ If it is, we must not request DISTINCT processing, because
+ remove_duplicates() assumes there is a preceding computation step (and
+ in the degenerate join, there's none)
+ */
+ if (top_join_tab_count && tables_list)
+ curr_tab->distinct= true;
+
+ having= NULL;
+ select_distinct= false;
+ }
+ /* Clean tmp_table_param for the next tmp table. */
+ tmp_table_param.field_count= tmp_table_param.sum_func_count=
+ tmp_table_param.func_count= 0;
+
+ tmp_table_param.copy_field= tmp_table_param.copy_field_end=0;
+ first_record= sort_and_group=0;
+
+ if (!group_optimized_away || implicit_grouping_with_window_funcs)
+ {
+ group= false;
+ }
+ else
+ {
+ /*
+ If grouping has been optimized away, a temporary table is
+ normally not needed unless we're explicitly requested to create
+ one (e.g. due to a SQL_BUFFER_RESULT hint or INSERT ... SELECT).
+
+ In this case (grouping was optimized away), temp_table was
+ created without a grouping expression and JOIN::exec() will not
+ perform the necessary grouping (by the use of end_send_group()
+ or end_write_group()) if JOIN::group is set to false.
+ */
+ // the temporary table was explicitly requested
+ DBUG_ASSERT(select_options & OPTION_BUFFER_RESULT);
+ // the temporary table does not have a grouping expression
+ DBUG_ASSERT(!curr_tab->table->group);
+ }
+ calc_group_buffer(this, group_list);
+ count_field_types(select_lex, &tmp_table_param, *curr_all_fields, false);
+ }
+
+ if (group ||
+ (implicit_grouping && !implicit_grouping_with_window_funcs) ||
+ tmp_table_param.sum_func_count)
+ {
+ if (make_group_fields(this, this))
+ DBUG_RETURN(true);
+
+ DBUG_ASSERT(items3.is_null());
+
+ if (items0.is_null())
+ init_items_ref_array();
+ items3= ref_ptr_array_slice(4);
+ setup_copy_fields(thd, &tmp_table_param,
+ items3, tmp_fields_list3, tmp_all_fields3,
+ curr_fields_list->elements, *curr_all_fields);
+
+ curr_fields_list= &tmp_fields_list3;
+ curr_all_fields= &tmp_all_fields3;
+ set_items_ref_array(items3);
+ if (join_tab)
+ {
+ JOIN_TAB *last_tab= join_tab + top_join_tab_count + aggr_tables - 1;
+ // Set grouped fields on the last table
+ last_tab->ref_array= &items3;
+ last_tab->all_fields= &tmp_all_fields3;
+ last_tab->fields= &tmp_fields_list3;
+ }
+ if (make_sum_func_list(*curr_all_fields, *curr_fields_list, true))
+ DBUG_RETURN(true);
+ if (prepare_sum_aggregators(thd, sum_funcs,
+ !join_tab ||
+ !join_tab-> is_using_agg_loose_index_scan()))
+ DBUG_RETURN(true);
+ if (unlikely(setup_sum_funcs(thd, sum_funcs) || thd->is_error()))
+ DBUG_RETURN(true);
+ }
+ if (group_list || order)
+ {
+ DBUG_PRINT("info",("Sorting for send_result_set_metadata"));
+ THD_STAGE_INFO(thd, stage_sorting_result);
+ /* If we have already done the group, add HAVING to sorted table */
+ if (tmp_having && !is_having_added_as_table_cond &&
+ !group_list && !sort_and_group)
+ {
+ if (add_having_as_table_cond(curr_tab))
+ DBUG_RETURN(true);
+ }
+
+ if (group)
+ select_limit= HA_POS_ERROR;
+ else if (!need_tmp)
+ {
+ /*
+ We can abort sorting after thd->select_limit rows if there are no
+ filter conditions for any tables after the sorted one.
+ Filter conditions come in several forms:
+ 1. as a condition item attached to the join_tab, or
+ 2. as a keyuse attached to the join_tab (ref access).
+ */
+ for (uint i= const_tables + 1; i < top_join_tab_count; i++)
+ {
+ JOIN_TAB *const tab= join_tab + i;
+ if (tab->select_cond || // 1
+ (tab->keyuse && !tab->first_inner)) // 2
+ {
+ /* We have to sort all rows */
+ select_limit= HA_POS_ERROR;
+ break;
+ }
+ }
+ }
+ /*
+ Here we add sorting stage for ORDER BY/GROUP BY clause, if the
+ optimiser chose FILESORT to be faster than INDEX SCAN or there is
+ no suitable index present.
+ OPTION_FOUND_ROWS supersedes LIMIT and is taken into account.
+ */
+ DBUG_PRINT("info",("Sorting for order by/group by"));
+ ORDER *order_arg= group_list ? group_list : order;
+ if (top_join_tab_count + aggr_tables > const_tables &&
+ ordered_index_usage !=
+ (group_list ? ordered_index_group_by : ordered_index_order_by) &&
+ curr_tab->type != JT_CONST &&
+ curr_tab->type != JT_EQ_REF) // Don't sort 1 row
+ {
+ // Sort either first non-const table or the last tmp table
+ JOIN_TAB *sort_tab= curr_tab;
+
+ if (add_sorting_to_table(sort_tab, order_arg))
+ DBUG_RETURN(true);
+ /*
+ filesort_limit: Return only this many rows from filesort().
+ We can use select_limit_cnt only if we have no group_by and 1 table.
+ This allows us to use Bounded_queue for queries like:
+ "select SQL_CALC_FOUND_ROWS * from t1 order by b desc limit 1;"
+ m_select_limit == HA_POS_ERROR (we need a full table scan)
+ unit->select_limit_cnt == 1 (we only need one row in the result set)
+ */
+ sort_tab->filesort->limit=
+ (has_group_by || (join_tab + top_join_tab_count > curr_tab + 1)) ?
+ select_limit : unit->lim.get_select_limit();
+
+ if (unit->lim.is_with_ties())
+ sort_tab->filesort->limit= HA_POS_ERROR;
+ }
+ if (!only_const_tables() &&
+ !join_tab[const_tables].filesort &&
+ !(select_options & SELECT_DESCRIBE))
+ {
+ /*
+ If no IO cache exists for the first table then we are using an
+ INDEX SCAN and no filesort. Thus we should not remove the sorted
+ attribute on the INDEX SCAN.
+ */
+ skip_sort_order= true;
+ }
+ }
+
+ /*
+ Window functions computation step should be attached to the last join_tab
+ that's doing aggregation.
+ The last join_tab reads the data from the temp. table. It also may do
+ - sorting
+ - duplicate value removal
+ Both of these operations are done after window function computation step.
+ */
+ curr_tab= join_tab + total_join_tab_cnt();
+ if (select_lex->window_funcs.elements)
+ {
+ if (!(curr_tab->window_funcs_step= new Window_funcs_computation))
+ DBUG_RETURN(true);
+ if (curr_tab->window_funcs_step->setup(thd, &select_lex->window_funcs,
+ curr_tab))
+ DBUG_RETURN(true);
+ /* Count that we're using window functions. */
+ status_var_increment(thd->status_var.feature_window_functions);
+ }
+ if (select_lex->custom_agg_func_used())
+ status_var_increment(thd->status_var.feature_custom_aggregate_functions);
+
+ /*
+ Allocate Cached_items of ORDER BY for FETCH FIRST .. WITH TIES.
+ The order list might have been modified prior to this, but we are
+ only interested in the initial order by columns, after all const
+ elements are removed.
+ */
+ if (unit->lim.is_with_ties())
+ {
+ if (alloc_order_fields(this, order, with_ties_order_count))
+ DBUG_RETURN(true);
+ }
+
+ fields= curr_fields_list;
+ // Reset before execution
+ set_items_ref_array(items0);
+ if (join_tab)
+ join_tab[exec_join_tab_cnt() + aggr_tables - 1].next_select=
+ setup_end_select_func(this);
+ group= has_group_by;
+
+ DBUG_RETURN(false);
+}
+
+
+
+bool
+JOIN::create_postjoin_aggr_table(JOIN_TAB *tab, List<Item> *table_fields,
+ ORDER *table_group,
+ bool save_sum_fields,
+ bool distinct,
+ bool keep_row_order)
+{
+ DBUG_ENTER("JOIN::create_postjoin_aggr_table");
+ THD_STAGE_INFO(thd, stage_creating_tmp_table);
+
+ /*
+ Pushing LIMIT to the post-join temporary table creation is not applicable
+ when there is ORDER BY or GROUP BY or there is no GROUP BY, but
+ there are aggregate functions, because in all these cases we need
+ all result rows.
+
+ We also can not push limit if the limit is WITH TIES, as we do not know
+ how many rows we will actually have. This can happen if ORDER BY was
+ a constant and removed (during remove_const), thus we have an "unlimited"
+ WITH TIES.
+ */
+ ha_rows table_rows_limit= ((order == NULL || skip_sort_order) &&
+ !table_group &&
+ !select_lex->with_sum_func &&
+ !unit->lim.is_with_ties()) ? select_limit
+ : HA_POS_ERROR;
+
+ if (!(tab->tmp_table_param= new TMP_TABLE_PARAM(tmp_table_param)))
+ DBUG_RETURN(true);
+ if (tmp_table_keep_current_rowid)
+ add_fields_for_current_rowid(tab, table_fields);
+ tab->tmp_table_param->skip_create_table= true;
+ TABLE* table= create_tmp_table(thd, tab->tmp_table_param, *table_fields,
+ table_group, distinct,
+ save_sum_fields, select_options,
+ table_rows_limit,
+ &empty_clex_str, true, keep_row_order);
+ if (!table)
+ DBUG_RETURN(true);
+ tmp_table_param.using_outer_summary_function=
+ tab->tmp_table_param->using_outer_summary_function;
+ tab->join= this;
+ DBUG_ASSERT(tab > tab->join->join_tab || !top_join_tab_count ||
+ !tables_list);
+ tab->table= table;
+ if (tab > join_tab)
+ (tab - 1)->next_select= sub_select_postjoin_aggr;
+
+ /* if group or order on first table, sort first */
+ if ((group_list && simple_group) ||
+ (implicit_grouping && select_lex->have_window_funcs()))
+ {
+ DBUG_PRINT("info",("Sorting for group"));
+ THD_STAGE_INFO(thd, stage_sorting_for_group);
+
+ if (ordered_index_usage != ordered_index_group_by &&
+ !only_const_tables() &&
+ (join_tab + const_tables)->type != JT_CONST && // Don't sort 1 row
+ !implicit_grouping &&
+ add_sorting_to_table(join_tab + const_tables, group_list))
+ goto err;
+
+ if (alloc_group_fields(this, group_list))
+ goto err;
+ if (make_sum_func_list(all_fields, fields_list, true))
+ goto err;
+ if (prepare_sum_aggregators(thd, sum_funcs,
+ !(tables_list &&
+ join_tab->is_using_agg_loose_index_scan())))
+ goto err;
+ if (setup_sum_funcs(thd, sum_funcs))
+ goto err;
+ group_list= NULL;
+ }
+ else
+ {
+ if (prepare_sum_aggregators(thd, sum_funcs,
+ !join_tab->is_using_agg_loose_index_scan()))
+ goto err;
+ if (setup_sum_funcs(thd, sum_funcs))
+ goto err;
+
+ if (!group_list && !table->distinct && order && simple_order &&
+ tab == join_tab + const_tables)
+ {
+ DBUG_PRINT("info",("Sorting for order"));
+ THD_STAGE_INFO(thd, stage_sorting_for_order);
+
+ if (ordered_index_usage != ordered_index_order_by &&
+ !only_const_tables() &&
+ add_sorting_to_table(join_tab + const_tables, order))
+ goto err;
+ order= NULL;
+ }
+ }
+ if (!(tab->aggr= new (thd->mem_root) AGGR_OP(tab)))
+ goto err;
+ table->reginfo.join_tab= tab;
+ DBUG_RETURN(false);
+
+err:
+ if (table != NULL)
+ free_tmp_table(thd, table);
+ tab->table= NULL;
+ DBUG_RETURN(true);
+}
+
+
+void
+JOIN::optimize_distinct()
+{
+ for (JOIN_TAB *last_join_tab= join_tab + top_join_tab_count - 1; ;)
+ {
+ if (select_lex->select_list_tables & last_join_tab->table->map ||
+ last_join_tab->use_join_cache)
+ break;
+ last_join_tab->shortcut_for_distinct= true;
+ if (last_join_tab == join_tab)
+ break;
+ --last_join_tab;
+ }
+
+ /* Optimize "select distinct b from t1 order by key_part_1 limit #" */
+ if (order && skip_sort_order && !unit->lim.is_with_ties())
+ {
+ /* Should already have been optimized away */
+ DBUG_ASSERT(ordered_index_usage == ordered_index_order_by);
+ if (ordered_index_usage == ordered_index_order_by)
+ {
+ order= NULL;
+ }
+ }
+}
+
+
+/**
+ @brief Add Filesort object to the given table to sort if with filesort
+
+ @param tab the JOIN_TAB object to attach created Filesort object to
+ @param order List of expressions to sort the table by
+
+ @note This function moves tab->select, if any, to filesort->select
+
+ @return false on success, true on OOM
+*/
+
+bool
+JOIN::add_sorting_to_table(JOIN_TAB *tab, ORDER *order)
+{
+ tab->filesort=
+ new (thd->mem_root) Filesort(order, HA_POS_ERROR, tab->keep_current_rowid,
+ tab->select);
+ if (!tab->filesort)
+ return true;
+
+ TABLE *table= tab->table;
+ if ((tab == join_tab + const_tables) &&
+ table->pos_in_table_list &&
+ table->pos_in_table_list->is_sjm_scan_table())
+ {
+ tab->filesort->set_all_read_bits= TRUE;
+ tab->filesort->unpack= unpack_to_base_table_fields;
+ }
+
+ /*
+ Select was moved to filesort->select to force join_init_read_record to use
+ sorted result instead of reading table through select.
+ */
+ if (tab->select)
+ {
+ tab->select= NULL;
+ tab->set_select_cond(NULL, __LINE__);
+ }
+ tab->read_first_record= join_init_read_record;
+ return false;
+}
+
+
+
+
+/**
+ Setup expression caches for subqueries that need them
+
+ @details
+ The function wraps correlated subquery expressions that return one value
+ into objects of the class Item_cache_wrapper setting up an expression
+ cache for each of them. The result values of the subqueries are to be
+ cached together with the corresponding sets of the parameters - outer
+ references of the subqueries.
+
+ @retval FALSE OK
+ @retval TRUE Error
+*/
+
+bool JOIN::setup_subquery_caches()
+{
+ DBUG_ENTER("JOIN::setup_subquery_caches");
+
+ /*
+ We have to check all this condition together because items created in
+ one of this clauses can be moved to another one by optimizer
+ */
+ if (select_lex->expr_cache_may_be_used[IN_WHERE] ||
+ select_lex->expr_cache_may_be_used[IN_HAVING] ||
+ select_lex->expr_cache_may_be_used[IN_ON] ||
+ select_lex->expr_cache_may_be_used[NO_MATTER])
+ {
+ JOIN_TAB *tab;
+ if (conds &&
+ !(conds= conds->transform(thd, &Item::expr_cache_insert_transformer,
+ NULL)))
+ DBUG_RETURN(TRUE);
+ for (tab= first_linear_tab(this, WITH_BUSH_ROOTS, WITHOUT_CONST_TABLES);
+ tab; tab= next_linear_tab(this, tab, WITH_BUSH_ROOTS))
+ {
+ if (tab->select_cond &&
+ !(tab->select_cond=
+ tab->select_cond->transform(thd,
+ &Item::expr_cache_insert_transformer,
+ NULL)))
+ DBUG_RETURN(TRUE);
+ if (tab->cache_select && tab->cache_select->cond)
+ if (!(tab->cache_select->cond=
+ tab->cache_select->
+ cond->transform(thd, &Item::expr_cache_insert_transformer,
+ NULL)))
+ DBUG_RETURN(TRUE);
+ }
+
+ if (having &&
+ !(having= having->transform(thd,
+ &Item::expr_cache_insert_transformer,
+ NULL)))
+ DBUG_RETURN(TRUE);
+
+ if (tmp_having)
+ {
+ DBUG_ASSERT(having == NULL);
+ if (!(tmp_having=
+ tmp_having->transform(thd,
+ &Item::expr_cache_insert_transformer,
+ NULL)))
+ DBUG_RETURN(TRUE);
+ }
+ }
+ if (select_lex->expr_cache_may_be_used[SELECT_LIST] ||
+ select_lex->expr_cache_may_be_used[IN_GROUP_BY] ||
+ select_lex->expr_cache_may_be_used[NO_MATTER])
+ {
+ List_iterator<Item> li(all_fields);
+ Item *item;
+ while ((item= li++))
+ {
+ Item *new_item;
+ if (!(new_item=
+ item->transform(thd, &Item::expr_cache_insert_transformer,
+ NULL)))
+ DBUG_RETURN(TRUE);
+ if (new_item != item)
+ {
+ thd->change_item_tree(li.ref(), new_item);
+ }
+ }
+ for (ORDER *tmp_group= group_list; tmp_group ; tmp_group= tmp_group->next)
+ {
+ if (!(*tmp_group->item=
+ (*tmp_group->item)->transform(thd,
+ &Item::expr_cache_insert_transformer,
+ NULL)))
+ DBUG_RETURN(TRUE);
+ }
+ }
+ if (select_lex->expr_cache_may_be_used[NO_MATTER])
+ {
+ for (ORDER *ord= order; ord; ord= ord->next)
+ {
+ if (!(*ord->item=
+ (*ord->item)->transform(thd,
+ &Item::expr_cache_insert_transformer,
+ NULL)))
+ DBUG_RETURN(TRUE);
+ }
+ }
+ DBUG_RETURN(FALSE);
+}
+
+
+/*
+ Shrink join buffers used for preceding tables to reduce the occupied space
+
+ SYNOPSIS
+ shrink_join_buffers()
+ jt table up to which the buffers are to be shrunk
+ curr_space the size of the space used by the buffers for tables 1..jt
+ needed_space the size of the space that has to be used by these buffers
+
+ DESCRIPTION
+ The function makes an attempt to shrink all join buffers used for the
+ tables starting from the first up to jt to reduce the total size of the
+ space occupied by the buffers used for tables 1,...,jt from curr_space
+ to needed_space.
+ The function assumes that the buffer for the table jt has not been
+ allocated yet.
+
+ RETURN
+ FALSE if all buffer have been successfully shrunk
+ TRUE otherwise
+*/
+
+bool JOIN::shrink_join_buffers(JOIN_TAB *jt,
+ ulonglong curr_space,
+ ulonglong needed_space)
+{
+ JOIN_TAB *tab;
+ JOIN_CACHE *cache;
+ for (tab= first_linear_tab(this, WITHOUT_BUSH_ROOTS, WITHOUT_CONST_TABLES);
+ tab != jt;
+ tab= next_linear_tab(this, tab, WITHOUT_BUSH_ROOTS))
+ {
+ cache= tab->cache;
+ if (cache)
+ {
+ size_t buff_size;
+ if (needed_space < cache->get_min_join_buffer_size())
+ return TRUE;
+ if (cache->shrink_join_buffer_in_ratio(curr_space, needed_space))
+ {
+ revise_cache_usage(tab);
+ return TRUE;
+ }
+ buff_size= cache->get_join_buffer_size();
+ curr_space-= buff_size;
+ needed_space-= buff_size;
+ }
+ }
+
+ cache= jt->cache;
+ DBUG_ASSERT(cache);
+ if (needed_space < cache->get_min_join_buffer_size())
+ return TRUE;
+ cache->set_join_buffer_size((size_t)needed_space);
+
+ return FALSE;
+}
+
+
+int
+JOIN::reinit()
+{
+ DBUG_ENTER("JOIN::reinit");
+
+ first_record= false;
+ group_sent= false;
+ cleaned= false;
+ accepted_rows= 0;
+
+ if (aggr_tables)
+ {
+ JOIN_TAB *curr_tab= join_tab + exec_join_tab_cnt();
+ JOIN_TAB *end_tab= curr_tab + aggr_tables;
+ for ( ; curr_tab < end_tab; curr_tab++)
+ {
+ TABLE *tmp_table= curr_tab->table;
+ if (!tmp_table->is_created())
+ continue;
+ tmp_table->file->extra(HA_EXTRA_RESET_STATE);
+ tmp_table->file->ha_delete_all_rows();
+ }
+ }
+ clear_sj_tmp_tables(this);
+ if (current_ref_ptrs != items0)
+ {
+ set_items_ref_array(items0);
+ set_group_rpa= false;
+ }
+
+ /* need to reset ref access state (see join_read_key) */
+ if (join_tab)
+ {
+ JOIN_TAB *tab;
+ for (tab= first_linear_tab(this, WITH_BUSH_ROOTS, WITH_CONST_TABLES); tab;
+ tab= next_linear_tab(this, tab, WITH_BUSH_ROOTS))
+ {
+ tab->ref.key_err= TRUE;
+ }
+ }
+
+ clear_sum_funcs();
+
+ if (no_rows_in_result_called)
+ {
+ /* Reset effect of possible no_rows_in_result() */
+ List_iterator_fast<Item> it(fields_list);
+ Item *item;
+ no_rows_in_result_called= 0;
+ while ((item= it++))
+ item->restore_to_before_no_rows_in_result();
+ }
+
+ if (!(select_options & SELECT_DESCRIBE))
+ if (init_ftfuncs(thd, select_lex, MY_TEST(order)))
+ DBUG_RETURN(1);
+
+ DBUG_RETURN(0);
+}
+
+
+/**
+ Prepare join result.
+
+ @details Prepare join result prior to join execution or describing.
+ Instantiate derived tables and get schema tables result if necessary.
+
+ @return
+ TRUE An error during derived or schema tables instantiation.
+ FALSE Ok
+*/
+
+bool JOIN::prepare_result(List<Item> **columns_list)
+{
+ DBUG_ENTER("JOIN::prepare_result");
+
+ error= 0;
+ /* Create result tables for materialized views. */
+ if (!zero_result_cause &&
+ select_lex->handle_derived(thd->lex, DT_CREATE))
+ goto err;
+
+ if (result->prepare2(this))
+ goto err;
+
+ if ((select_lex->options & OPTION_SCHEMA_TABLE) &&
+ get_schema_tables_result(this, PROCESSED_BY_JOIN_EXEC))
+ goto err;
+
+ DBUG_RETURN(FALSE);
+
+err:
+ error= 1;
+ DBUG_RETURN(TRUE);
+}
+
+
+/**
+ @retval
+ 0 ok
+ 1 error
+*/
+
+
+bool JOIN::save_explain_data(Explain_query *output, bool can_overwrite,
+ bool need_tmp_table, bool need_order,
+ bool distinct)
+{
+ DBUG_ENTER("JOIN::save_explain_data");
+ DBUG_PRINT("enter", ("Save explain Select_lex: %u (%p) parent lex: %p stmt_lex: %p present select: %u (%p)",
+ select_lex->select_number, select_lex,
+ select_lex->parent_lex, thd->lex->stmt_lex,
+ (output->get_select(select_lex->select_number) ?
+ select_lex->select_number : 0),
+ (output->get_select(select_lex->select_number) ?
+ output->get_select(select_lex->select_number)
+ ->select_lex : NULL)));
+ /*
+ If there is SELECT in this statement with the same number it must be the
+ same SELECT
+ */
+ DBUG_ASSERT(select_lex->select_number == FAKE_SELECT_LEX_ID || !output ||
+ !output->get_select(select_lex->select_number) ||
+ output->get_select(select_lex->select_number)->select_lex ==
+ select_lex);
+
+ if (select_lex->select_number != FAKE_SELECT_LEX_ID &&
+ have_query_plan != JOIN::QEP_NOT_PRESENT_YET &&
+ have_query_plan != JOIN::QEP_DELETED && // this happens when there was
+ // no QEP ever, but then
+ //cleanup() is called multiple times
+ output && // for "SET" command in SPs.
+ (can_overwrite? true: !output->get_select(select_lex->select_number)))
+ {
+ const char *message= NULL;
+ if (!table_count || !tables_list || zero_result_cause)
+ {
+ /* It's a degenerate join */
+ message= zero_result_cause ? zero_result_cause : "No tables used";
+ }
+ bool rc= save_explain_data_intern(thd->lex->explain, need_tmp_table,
+ need_order, distinct, message);
+ DBUG_RETURN(rc);
+ }
+
+ /*
+ Can have join_tab==NULL for degenerate cases (e.g. SELECT .. UNION ... SELECT LIMIT 0)
+ */
+ if (select_lex == select_lex->master_unit()->fake_select_lex && join_tab)
+ {
+ /*
+ This is fake_select_lex. It has no query plan, but we need to set up a
+ tracker for ANALYZE
+ */
+ uint nr= select_lex->master_unit()->first_select()->select_number;
+ Explain_union *eu= output->get_union(nr);
+ explain= &eu->fake_select_lex_explain;
+ join_tab[0].tracker= eu->get_fake_select_lex_tracker();
+ for (uint i=0 ; i < exec_join_tab_cnt() + aggr_tables; i++)
+ {
+ if (join_tab[i].filesort)
+ {
+ if (!(join_tab[i].filesort->tracker=
+ new Filesort_tracker(thd->lex->analyze_stmt)))
+ DBUG_RETURN(1);
+ }
+ }
+ }
+ DBUG_RETURN(0);
+}
+
+
+void JOIN::exec()
+{
+ DBUG_EXECUTE_IF("show_explain_probe_join_exec_start",
+ if (dbug_user_var_equals_int(thd,
+ "show_explain_probe_select_id",
+ select_lex->select_number))
+ dbug_serve_apcs(thd, 1);
+ );
+ ANALYZE_START_TRACKING(thd, &explain->time_tracker);
+ exec_inner();
+ ANALYZE_STOP_TRACKING(thd, &explain->time_tracker);
+
+ DBUG_EXECUTE_IF("show_explain_probe_join_exec_end",
+ if (dbug_user_var_equals_int(thd,
+ "show_explain_probe_select_id",
+ select_lex->select_number))
+ dbug_serve_apcs(thd, 1);
+ );
+}
+
+
+void JOIN::exec_inner()
+{
+ List<Item> *columns_list= &fields_list;
+ DBUG_ENTER("JOIN::exec_inner");
+ DBUG_ASSERT(optimization_state == JOIN::OPTIMIZATION_DONE);
+
+ THD_STAGE_INFO(thd, stage_executing);
+
+ /*
+ Enable LIMIT ROWS EXAMINED during query execution if:
+ (1) This JOIN is the outermost query (not a subquery or derived table)
+ This ensures that the limit is enabled when actual execution begins,
+ and not if a subquery is evaluated during optimization of the outer
+ query.
+ (2) This JOIN is not the result of a UNION. In this case do not apply the
+ limit in order to produce the partial query result stored in the
+ UNION temp table.
+ */
+
+ Json_writer_object trace_wrapper(thd);
+ Json_writer_object trace_exec(thd, "join_execution");
+ trace_exec.add_select_number(select_lex->select_number);
+ Json_writer_array trace_steps(thd, "steps");
+
+ if (!select_lex->outer_select() && // (1)
+ select_lex != select_lex->master_unit()->fake_select_lex) // (2)
+ thd->lex->set_limit_rows_examined();
+
+ if (procedure)
+ {
+ procedure_fields_list= fields_list;
+ if (procedure->change_columns(thd, procedure_fields_list) ||
+ result->prepare(procedure_fields_list, unit))
+ {
+ thd->set_examined_row_count(0);
+ thd->limit_found_rows= 0;
+ DBUG_VOID_RETURN;
+ }
+ columns_list= &procedure_fields_list;
+ }
+ if (result->prepare2(this))
+ DBUG_VOID_RETURN;
+
+ if (!tables_list && (table_count || !select_lex->with_sum_func) &&
+ !select_lex->have_window_funcs())
+ { // Only test of functions
+ if (select_options & SELECT_DESCRIBE)
+ select_describe(this, FALSE, FALSE, FALSE,
+ (zero_result_cause?zero_result_cause:"No tables used"));
+ else
+ {
+ if (result->send_result_set_metadata(*columns_list,
+ Protocol::SEND_NUM_ROWS |
+ Protocol::SEND_EOF))
+ {
+ DBUG_VOID_RETURN;
+ }
+
+ /*
+ We have to test for 'conds' here as the WHERE may not be constant
+ even if we don't have any tables for prepared statements or if
+ conds uses something like 'rand()'.
+ If the HAVING clause is either impossible or always true, then
+ JOIN::having is set to NULL by optimize_cond.
+ In this case JOIN::exec must check for JOIN::having_value, in the
+ same way it checks for JOIN::cond_value.
+ */
+ DBUG_ASSERT(error == 0);
+ if (cond_value != Item::COND_FALSE &&
+ having_value != Item::COND_FALSE &&
+ (!conds || conds->val_int()) &&
+ (!having || having->val_int()))
+ {
+ if (do_send_rows &&
+ (procedure ? (procedure->send_row(procedure_fields_list) ||
+ procedure->end_of_records()):
+ result->send_data_with_check(fields_list, unit, 0)> 0))
+ error= 1;
+ else
+ send_records= ((select_options & OPTION_FOUND_ROWS) ? 1 :
+ thd->get_sent_row_count());
+ }
+ else
+ send_records= 0;
+ if (likely(!error))
+ {
+ join_free(); // Unlock all cursors
+ error= (int) result->send_eof();
+ }
+ }
+ /* Single select (without union) always returns 0 or 1 row */
+ thd->limit_found_rows= send_records;
+ thd->set_examined_row_count(0);
+ DBUG_VOID_RETURN;
+ }
+
+ /*
+ Evaluate expensive constant conditions that were not evaluated during
+ optimization. Do not evaluate them for EXPLAIN statements as these
+ condtions may be arbitrarily costly, and because the optimize phase
+ might not have produced a complete executable plan for EXPLAINs.
+ */
+ if (!zero_result_cause &&
+ exec_const_cond && !(select_options & SELECT_DESCRIBE) &&
+ !exec_const_cond->val_int())
+ zero_result_cause= "Impossible WHERE noticed after reading const tables";
+
+ /*
+ We've called exec_const_cond->val_int(). This may have caused an error.
+ */
+ if (unlikely(thd->is_error()))
+ {
+ error= thd->is_error();
+ DBUG_VOID_RETURN;
+ }
+
+ if (zero_result_cause)
+ {
+ if (select_lex->have_window_funcs() && send_row_on_empty_set())
+ {
+ /*
+ The query produces just one row but it has window functions.
+
+ The only way to compute the value of window function(s) is to
+ run the entire window function computation step (there is no shortcut).
+ */
+ const_tables= table_count;
+ first_select= sub_select_postjoin_aggr;
+ }
+ else
+ {
+ (void) return_zero_rows(this, result, &select_lex->leaf_tables,
+ columns_list,
+ send_row_on_empty_set(),
+ select_options,
+ zero_result_cause,
+ having ? having : tmp_having, &all_fields);
+ DBUG_VOID_RETURN;
+ }
+ }
+
+ /*
+ Evaluate all constant expressions with subqueries in the
+ ORDER/GROUP clauses to make sure that all subqueries return a
+ single row. The evaluation itself will trigger an error if that is
+ not the case.
+ */
+ if (exec_const_order_group_cond.elements &&
+ !(select_options & SELECT_DESCRIBE) &&
+ !select_lex->pushdown_select)
+ {
+ List_iterator_fast<Item> const_item_it(exec_const_order_group_cond);
+ Item *cur_const_item;
+ StringBuffer<MAX_FIELD_WIDTH> tmp;
+ while ((cur_const_item= const_item_it++))
+ {
+ tmp.set_buffer_if_not_allocated(&my_charset_bin);
+ cur_const_item->val_str(&tmp);
+ if (unlikely(thd->is_error()))
+ {
+ error= thd->is_error();
+ DBUG_VOID_RETURN;
+ }
+ }
+ }
+
+ if ((this->select_lex->options & OPTION_SCHEMA_TABLE) &&
+ get_schema_tables_result(this, PROCESSED_BY_JOIN_EXEC))
+ DBUG_VOID_RETURN;
+
+ if (select_options & SELECT_DESCRIBE)
+ {
+ select_describe(this, need_tmp,
+ order != 0 && !skip_sort_order,
+ select_distinct,
+ !table_count ? "No tables used" : NullS);
+ DBUG_VOID_RETURN;
+ }
+ else if (select_lex->pushdown_select)
+ {
+ /* Execute the query pushed into a foreign engine */
+ error= select_lex->pushdown_select->execute();
+ DBUG_VOID_RETURN;
+ }
+ else
+ {
+ /* it's a const select, materialize it. */
+ select_lex->mark_const_derived(zero_result_cause);
+ }
+
+ /*
+ Initialize examined rows here because the values from all join parts
+ must be accumulated in examined_row_count. Hence every join
+ iteration must count from zero.
+ */
+ join_examined_rows= 0;
+
+ /* XXX: When can we have here thd->is_error() not zero? */
+ if (unlikely(thd->is_error()))
+ {
+ error= thd->is_error();
+ DBUG_VOID_RETURN;
+ }
+
+ THD_STAGE_INFO(thd, stage_sending_data);
+ DBUG_PRINT("info", ("%s", thd->proc_info));
+ result->send_result_set_metadata(
+ procedure ? procedure_fields_list : *fields,
+ Protocol::SEND_NUM_ROWS | Protocol::SEND_EOF);
+
+ error= result->view_structure_only() ? false : do_select(this, procedure);
+ /* Accumulate the counts from all join iterations of all join parts. */
+ thd->inc_examined_row_count(join_examined_rows);
+ DBUG_PRINT("counts", ("thd->examined_row_count: %lu",
+ (ulong) thd->get_examined_row_count()));
+
+ DBUG_VOID_RETURN;
+}
+
+
+/**
+ Clean up join.
+
+ @return
+ Return error that hold JOIN.
+*/
+
+int
+JOIN::destroy()
+{
+ DBUG_ENTER("JOIN::destroy");
+
+ DBUG_PRINT("info", ("select %p (%u) <> JOIN %p",
+ select_lex, select_lex->select_number, this));
+ select_lex->join= 0;
+
+ cond_equal= 0;
+ having_equal= 0;
+
+ cleanup(1);
+
+ if (join_tab)
+ {
+ for (JOIN_TAB *tab= first_linear_tab(this, WITH_BUSH_ROOTS,
+ WITH_CONST_TABLES);
+ tab; tab= next_linear_tab(this, tab, WITH_BUSH_ROOTS))
+ {
+ if (tab->aggr)
+ {
+ free_tmp_table(thd, tab->table);
+ delete tab->tmp_table_param;
+ tab->tmp_table_param= NULL;
+ tab->aggr= NULL;
+ }
+ tab->table= NULL;
+ }
+ }
+
+ /* Cleanup items referencing temporary table columns */
+ cleanup_item_list(tmp_all_fields1);
+ cleanup_item_list(tmp_all_fields3);
+ destroy_sj_tmp_tables(this);
+ delete_dynamic(&keyuse);
+ if (save_qep)
+ delete(save_qep);
+ if (ext_keyuses_for_splitting)
+ delete(ext_keyuses_for_splitting);
+ delete procedure;
+ DBUG_RETURN(error);
+}
+
+
+void JOIN::cleanup_item_list(List<Item> &items) const
+{
+ DBUG_ENTER("JOIN::cleanup_item_list");
+ if (!items.is_empty())
+ {
+ List_iterator_fast<Item> it(items);
+ Item *item;
+ while ((item= it++))
+ item->cleanup();
+ }
+ DBUG_VOID_RETURN;
+}
+
+
+/**
+ @brief
+ Look for provision of the select_handler interface by a foreign engine
+
+ @param thd The thread handler
+
+ @details
+ The function checks that this is an upper level select and if so looks
+ through its tables searching for one whose handlerton owns a
+ create_select call-back function. If the call of this function returns
+ a select_handler interface object then the server will push the select
+ query into this engine.
+ This is a responsibility of the create_select call-back function to
+ check whether the engine can execute the query.
+
+ @retval the found select_handler if the search is successful
+ 0 otherwise
+*/
+
+select_handler *find_select_handler(THD *thd,
+ SELECT_LEX* select_lex)
+{
+ if (select_lex->next_select())
+ return 0;
+ if (select_lex->master_unit()->outer_select())
+ return 0;
+
+ TABLE_LIST *tbl= nullptr;
+ // For SQLCOM_INSERT_SELECT the server takes TABLE_LIST
+ // from thd->lex->query_tables and skips its first table
+ // b/c it is the target table for the INSERT..SELECT.
+ if (thd->lex->sql_command != SQLCOM_INSERT_SELECT)
+ {
+ tbl= select_lex->join->tables_list;
+ }
+ else if (thd->lex->query_tables &&
+ thd->lex->query_tables->next_global)
+ {
+ tbl= thd->lex->query_tables->next_global;
+ }
+ else
+ return 0;
+
+ for (;tbl; tbl= tbl->next_global)
+ {
+ if (!tbl->table)
+ continue;
+ handlerton *ht= tbl->table->file->partition_ht();
+ if (!ht->create_select)
+ continue;
+ select_handler *sh= ht->create_select(thd, select_lex);
+ return sh;
+ }
+ return 0;
+}
+
+
+/**
+ An entry point to single-unit select (a select without UNION).
+
+ @param thd thread handler
+ @param rref_pointer_array a reference to ref_pointer_array of
+ the top-level select_lex for this query
+ @param tables list of all tables used in this query.
+ The tables have been pre-opened.
+ @param fields list of items in SELECT list of the top-level
+ select
+ e.g. SELECT a, b, c FROM t1 will have Item_field
+ for a, b and c in this list.
+ @param conds top level item of an expression representing
+ WHERE clause of the top level select
+ @param og_num total number of ORDER BY and GROUP BY clauses
+ arguments
+ @param order linked list of ORDER BY agruments
+ @param group linked list of GROUP BY arguments
+ @param having top level item of HAVING expression
+ @param proc_param list of PROCEDUREs
+ @param select_options select options (BIG_RESULT, etc)
+ @param result an instance of result set handling class.
+ This object is responsible for send result
+ set rows to the client or inserting them
+ into a table.
+ @param select_lex the only SELECT_LEX of this query
+ @param unit top-level UNIT of this query
+ UNIT is an artificial object created by the
+ parser for every SELECT clause.
+ e.g.
+ SELECT * FROM t1 WHERE a1 IN (SELECT * FROM t2)
+ has 2 unions.
+
+ @retval
+ FALSE success
+ @retval
+ TRUE an error
+*/
+
+bool
+mysql_select(THD *thd, TABLE_LIST *tables, List<Item> &fields, COND *conds,
+ uint og_num, ORDER *order, ORDER *group, Item *having,
+ ORDER *proc_param, ulonglong select_options, select_result *result,
+ SELECT_LEX_UNIT *unit, SELECT_LEX *select_lex)
+{
+ int err= 0;
+ bool free_join= 1;
+ DBUG_ENTER("mysql_select");
+
+ if (!fields.is_empty())
+ select_lex->context.resolve_in_select_list= true;
+ JOIN *join;
+ if (select_lex->join != 0)
+ {
+ join= select_lex->join;
+ /*
+ is it single SELECT in derived table, called in derived table
+ creation
+ */
+ if (select_lex->get_linkage() != DERIVED_TABLE_TYPE ||
+ (select_options & SELECT_DESCRIBE))
+ {
+ if (select_lex->get_linkage() != GLOBAL_OPTIONS_TYPE)
+ {
+ /*
+ Original join tabs might be overwritten at first
+ subselect execution. So we need to restore them.
+ */
+ Item_subselect *subselect= select_lex->master_unit()->item;
+ if (subselect && subselect->is_uncacheable() && join->reinit())
+ DBUG_RETURN(TRUE);
+ }
+ else
+ {
+ if ((err= join->prepare(tables, conds, og_num, order, false, group,
+ having, proc_param, select_lex, unit)))
+ {
+ goto err;
+ }
+ }
+ }
+ free_join= 0;
+ join->select_options= select_options;
+ }
+ else
+ {
+ if (thd->lex->describe)
+ select_options|= SELECT_DESCRIBE;
+
+ /*
+ When in EXPLAIN, delay deleting the joins so that they are still
+ available when we're producing EXPLAIN EXTENDED warning text.
+ */
+ if (select_options & SELECT_DESCRIBE)
+ free_join= 0;
+
+ if (!(join= new (thd->mem_root) JOIN(thd, fields, select_options, result)))
+ DBUG_RETURN(TRUE);
+ THD_STAGE_INFO(thd, stage_init);
+ thd->lex->used_tables=0;
+ if ((err= join->prepare(tables, conds, og_num, order, false, group, having,
+ proc_param, select_lex, unit)))
+ {
+ goto err;
+ }
+ }
+
+ thd->get_stmt_da()->reset_current_row_for_warning(1);
+ /* Look for a table owned by an engine with the select_handler interface */
+ select_lex->pushdown_select= find_select_handler(thd, select_lex);
+
+ if ((err= join->optimize()))
+ {
+ goto err; // 1
+ }
+
+ if (thd->lex->describe & DESCRIBE_EXTENDED)
+ {
+ join->conds_history= join->conds;
+ join->having_history= (join->having?join->having:join->tmp_having);
+ }
+
+ if (unlikely(thd->is_error()))
+ goto err;
+
+ join->exec();
+
+ if (thd->lex->describe & DESCRIBE_EXTENDED)
+ {
+ select_lex->where= join->conds_history;
+ select_lex->having= join->having_history;
+ }
+
+err:
+
+ if (select_lex->pushdown_select)
+ {
+ delete select_lex->pushdown_select;
+ select_lex->pushdown_select= NULL;
+ }
+
+ if (free_join)
+ {
+ THD_STAGE_INFO(thd, stage_end);
+ err|= (int)(select_lex->cleanup());
+ DBUG_RETURN(err || thd->is_error());
+ }
+ DBUG_RETURN(join->error ? join->error: err);
+}
+
+
+/**
+ Approximate how many records are going to be returned by this table in this
+ select with this key.
+
+ @param thd Thread handle
+ @param select Select to be examined
+ @param table The table of interest
+ @param keys The keys of interest
+ @param limit Maximum number of rows of interest
+ @param quick_count Pointer to where we want the estimate written
+
+ @return Status
+ @retval false Success
+ @retval true Error
+
+*/
+
+static bool get_quick_record_count(THD *thd, SQL_SELECT *select,
+ TABLE *table,
+ const key_map *keys,ha_rows limit,
+ ha_rows *quick_count)
+{
+ quick_select_return error;
+ DBUG_ENTER("get_quick_record_count");
+ uchar buff[STACK_BUFF_ALLOC];
+ if (unlikely(check_stack_overrun(thd, STACK_MIN_SIZE, buff)))
+ DBUG_RETURN(false); // Fatal error flag is set
+ if (select)
+ {
+ select->head=table;
+ table->reginfo.impossible_range=0;
+ error= select->test_quick_select(thd, *(key_map *)keys, (table_map) 0,
+ limit, 0, FALSE,
+ TRUE, /* remove_where_parts*/
+ FALSE, TRUE);
+
+ if (error == SQL_SELECT::OK && select->quick)
+ {
+ *quick_count= select->quick->records;
+ DBUG_RETURN(false);
+ }
+ if (error == SQL_SELECT::IMPOSSIBLE_RANGE)
+ {
+ table->reginfo.impossible_range=1;
+ *quick_count= 0;
+ DBUG_RETURN(false);
+ }
+ if (unlikely(error == SQL_SELECT::ERROR))
+ DBUG_RETURN(true);
+
+ DBUG_PRINT("warning",("Couldn't use record count on const keypart"));
+ }
+ *quick_count= HA_POS_ERROR;
+ DBUG_RETURN(false); /* This shouldn't happen */
+}
+
+/*
+ This structure is used to collect info on potentially sargable
+ predicates in order to check whether they become sargable after
+ reading const tables.
+ We form a bitmap of indexes that can be used for sargable predicates.
+ Only such indexes are involved in range analysis.
+*/
+struct SARGABLE_PARAM
+{
+ Field *field; /* field against which to check sargability */
+ Item **arg_value; /* values of potential keys for lookups */
+ uint num_values; /* number of values in the above array */
+};
+
+
+/*
+ Mark all tables inside a join nest as constant.
+
+ @detail This is called when there is a local "Impossible WHERE" inside
+ a multi-table LEFT JOIN.
+*/
+
+void mark_join_nest_as_const(JOIN *join,
+ TABLE_LIST *join_nest,
+ table_map *found_const_table_map,
+ uint *const_count)
+{
+ List_iterator<TABLE_LIST> it(join_nest->nested_join->join_list);
+ TABLE_LIST *tbl;
+ Json_writer_object emb_obj(join->thd);
+ Json_writer_object trace_obj(join->thd, "mark_join_nest_as_const");
+ Json_writer_array trace_array(join->thd, "members");
+
+ while ((tbl= it++))
+ {
+ if (tbl->nested_join)
+ {
+ mark_join_nest_as_const(join, tbl, found_const_table_map, const_count);
+ continue;
+ }
+ JOIN_TAB *tab= tbl->table->reginfo.join_tab;
+
+ if (!(join->const_table_map & tab->table->map))
+ {
+ tab->type= JT_CONST;
+ tab->info= ET_IMPOSSIBLE_ON_CONDITION;
+ tab->table->const_table= 1;
+
+ join->const_table_map|= tab->table->map;
+ *found_const_table_map|= tab->table->map;
+ set_position(join,(*const_count)++,tab,(KEYUSE*) 0);
+ mark_as_null_row(tab->table); // All fields are NULL
+
+ trace_array.add_table_name(tab->table);
+ }
+ }
+}
+
+
+/*
+ @brief Get the condition that can be used to do range analysis/partition
+ pruning/etc
+
+ @detail
+ Figure out which condition we can use:
+ - For INNER JOIN, we use the WHERE,
+ - "t1 LEFT JOIN t2 ON ..." uses t2's ON expression
+ - "t1 LEFT JOIN (...) ON ..." uses the join nest's ON expression.
+*/
+
+static Item **get_sargable_cond(JOIN *join, TABLE *table)
+{
+ Item **retval;
+ if (table->pos_in_table_list->on_expr)
+ {
+ /*
+ This is an inner table from a single-table LEFT JOIN, "t1 LEFT JOIN
+ t2 ON cond". Use the condition cond.
+ */
+ retval= &table->pos_in_table_list->on_expr;
+ }
+ else if (table->pos_in_table_list->embedding &&
+ !table->pos_in_table_list->embedding->sj_on_expr)
+ {
+ /*
+ This is the inner side of a multi-table outer join. Use the
+ appropriate ON expression.
+ */
+ retval= &(table->pos_in_table_list->embedding->on_expr);
+ }
+ else
+ {
+ /* The table is not inner wrt some LEFT JOIN. Use the WHERE clause */
+ retval= &join->conds;
+ }
+ return retval;
+}
+
+
+/**
+ Calculate the best possible join and initialize the join structure.
+
+ @retval
+ 0 ok
+ @retval
+ 1 Fatal error
+*/
+
+static bool
+make_join_statistics(JOIN *join, List<TABLE_LIST> &tables_list,
+ DYNAMIC_ARRAY *keyuse_array)
+{
+ int error= 0;
+ TABLE *UNINIT_VAR(table); /* inited in all loops */
+ uint i,table_count,const_count,key;
+ uint sort_space;
+ table_map found_const_table_map, all_table_map;
+ key_map const_ref, eq_part;
+ bool has_expensive_keyparts;
+ TABLE **table_vector;
+ JOIN_TAB *stat,*stat_end,*s,**stat_ref, **stat_vector;
+ KEYUSE *keyuse,*start_keyuse;
+ table_map outer_join=0;
+ table_map no_rows_const_tables= 0;
+ SARGABLE_PARAM *sargables= 0;
+ List_iterator<TABLE_LIST> ti(tables_list);
+ TABLE_LIST *tables;
+ THD *thd= join->thd;
+ DBUG_ENTER("make_join_statistics");
+
+ table_count=join->table_count;
+
+ /*
+ best_extension_by_limited_search need sort space for 2POSITIION
+ objects per remaining table, which gives us
+ 2*(T + T-1 + T-2 + T-3...1 POSITIONS) = 2*(T+1)/2*T = (T*T+T)
+ */
+ join->sort_space= sort_space= (table_count*table_count + table_count);
+
+ /*
+ best_positions is ok to allocate with alloc() as we copy things to it with
+ memcpy()
+ */
+
+ if (!multi_alloc_root(join->thd->mem_root,
+ &stat, sizeof(JOIN_TAB)*(table_count),
+ &stat_ref, sizeof(JOIN_TAB*)* MAX_TABLES,
+ &stat_vector, sizeof(JOIN_TAB*)* (table_count +1),
+ &table_vector, sizeof(TABLE*)*(table_count*2),
+ &join->positions, sizeof(POSITION)*(table_count + 1),
+ &join->sort_positions, sizeof(POSITION)*(sort_space),
+ &join->best_positions,
+ sizeof(POSITION)*(table_count + 1),
+ NullS))
+ DBUG_RETURN(1);
+
+ /* The following should be optimized to only clear critical things */
+ bzero((void*)stat, sizeof(JOIN_TAB)* table_count);
+ join->top_join_tab_count= table_count;
+
+ /* Initialize POSITION objects */
+ for (i=0 ; i <= table_count ; i++)
+ (void) new ((char*) (join->positions + i)) POSITION;
+ for (i=0 ; i < sort_space ; i++)
+ (void) new ((char*) (join->sort_positions + i)) POSITION;
+
+ join->best_ref= stat_vector;
+
+ stat_end=stat+table_count;
+ found_const_table_map= all_table_map=0;
+ const_count=0;
+
+ for (s= stat, i= 0; (tables= ti++); s++, i++)
+ {
+ TABLE_LIST *embedding= tables->embedding;
+ stat_vector[i]=s;
+ table_vector[i]=s->table=table=tables->table;
+ s->tab_list= tables;
+ table->pos_in_table_list= tables;
+ error= tables->fetch_number_of_rows();
+ set_statistics_for_table(join->thd, table);
+ bitmap_clear_all(&table->cond_set);
+
+#ifdef WITH_PARTITION_STORAGE_ENGINE
+ const bool all_partitions_pruned_away= table->all_partitions_pruned_away;
+#else
+ const bool all_partitions_pruned_away= FALSE;
+#endif
+
+ DBUG_EXECUTE_IF("bug11747970_raise_error",
+ { join->thd->set_killed(KILL_QUERY_HARD); });
+ if (unlikely(error))
+ {
+ table->file->print_error(error, MYF(0));
+ goto error;
+ }
+ table->opt_range_keys.clear_all();
+ table->intersect_keys.clear_all();
+ table->reginfo.join_tab=s;
+ table->reginfo.not_exists_optimize=0;
+ bzero((char*) table->const_key_parts, sizeof(key_part_map)*table->s->keys);
+ all_table_map|= table->map;
+ s->preread_init_done= FALSE;
+ s->join=join;
+
+ s->dependent= tables->dep_tables;
+ if (tables->schema_table)
+ table->file->stats.records= table->used_stat_records= 2;
+ table->opt_range_condition_rows= table->stat_records();
+
+ s->on_expr_ref= &tables->on_expr;
+ if (*s->on_expr_ref)
+ {
+ /* s is the only inner table of an outer join */
+ if (!table->is_filled_at_execution() &&
+ ((!table->file->stats.records &&
+ (table->file->ha_table_flags() & HA_STATS_RECORDS_IS_EXACT)) ||
+ all_partitions_pruned_away) && !embedding)
+ { // Empty table
+ s->dependent= 0; // Ignore LEFT JOIN depend.
+ no_rows_const_tables |= table->map;
+ set_position(join,const_count++,s,(KEYUSE*) 0);
+ continue;
+ }
+ outer_join|= table->map;
+ s->embedding_map= 0;
+ for (;embedding; embedding= embedding->embedding)
+ s->embedding_map|= embedding->nested_join->nj_map;
+ continue;
+ }
+ if (embedding)
+ {
+ /* s belongs to a nested join, maybe to several embedded joins */
+ s->embedding_map= 0;
+ bool inside_an_outer_join= FALSE;
+ do
+ {
+ /*
+ If this is a semi-join nest, skip it, and proceed upwards. Maybe
+ we're in some outer join nest
+ */
+ if (embedding->sj_on_expr)
+ {
+ embedding= embedding->embedding;
+ continue;
+ }
+ inside_an_outer_join= TRUE;
+ NESTED_JOIN *nested_join= embedding->nested_join;
+ s->embedding_map|=nested_join->nj_map;
+ s->dependent|= embedding->dep_tables;
+ embedding= embedding->embedding;
+ outer_join|= nested_join->used_tables;
+ }
+ while (embedding);
+ if (inside_an_outer_join)
+ continue;
+ }
+ if (!table->is_filled_at_execution() &&
+ (table->s->system ||
+ (table->file->stats.records <= 1 &&
+ (table->file->ha_table_flags() & HA_STATS_RECORDS_IS_EXACT)) ||
+ all_partitions_pruned_away) &&
+ !s->dependent &&
+ !table->fulltext_searched && !join->no_const_tables)
+ {
+ set_position(join,const_count++,s,(KEYUSE*) 0);
+ no_rows_const_tables |= table->map;
+ }
+
+ /* SJ-Materialization handling: */
+ if (table->pos_in_table_list->jtbm_subselect &&
+ table->pos_in_table_list->jtbm_subselect->is_jtbm_const_tab)
+ {
+ set_position(join,const_count++,s,(KEYUSE*) 0);
+ no_rows_const_tables |= table->map;
+ }
+ }
+
+ stat_vector[i]=0;
+ join->outer_join=outer_join;
+
+ if (join->outer_join)
+ {
+ /*
+ Build transitive closure for relation 'to be dependent on'.
+ This will speed up the plan search for many cases with outer joins,
+ as well as allow us to catch illegal cross references/
+ Warshall's algorithm is used to build the transitive closure.
+ As we use bitmaps to represent the relation the complexity
+ of the algorithm is O((number of tables)^2).
+
+ The classic form of the Warshall's algorithm would look like:
+ for (i= 0; i < table_count; i++)
+ {
+ for (j= 0; j < table_count; j++)
+ {
+ for (k= 0; k < table_count; k++)
+ {
+ if (bitmap_is_set(stat[j].dependent, i) &&
+ bitmap_is_set(stat[i].dependent, k))
+ bitmap_set_bit(stat[j].dependent, k);
+ }
+ }
+ }
+ */
+
+ for (s= stat ; s < stat_end ; s++)
+ {
+ table= s->table;
+ for (JOIN_TAB *t= stat ; t < stat_end ; t++)
+ {
+ if (t->dependent & table->map)
+ t->dependent |= table->reginfo.join_tab->dependent;
+ }
+ if (outer_join & s->table->map)
+ s->table->maybe_null= 1;
+ }
+ /* Catch illegal cross references for outer joins */
+ for (i= 0, s= stat ; i < table_count ; i++, s++)
+ {
+ if (s->dependent & s->table->map)
+ {
+ join->table_count=0; // Don't use join->table
+ my_message(ER_WRONG_OUTER_JOIN,
+ ER_THD(join->thd, ER_WRONG_OUTER_JOIN), MYF(0));
+ goto error;
+ }
+ s->key_dependent= s->dependent;
+ }
+ }
+
+ {
+ for (JOIN_TAB *s= stat ; s < stat_end ; s++)
+ {
+ TABLE_LIST *tl= s->table->pos_in_table_list;
+ if (tl->embedding && tl->embedding->sj_subq_pred)
+ {
+ s->embedded_dependent= tl->embedding->original_subq_pred_used_tables;
+ }
+ }
+ }
+
+ if (thd->trace_started())
+ trace_table_dependencies(thd, stat, join->table_count);
+
+ if (join->conds || outer_join)
+ {
+ if (update_ref_and_keys(thd, keyuse_array, stat, join->table_count,
+ join->conds, ~outer_join, join->select_lex, &sargables))
+ goto error;
+ /*
+ Keyparts without prefixes may be useful if this JOIN is a subquery, and
+ if the subquery may be executed via the IN-EXISTS strategy.
+ */
+ bool skip_unprefixed_keyparts=
+ !(join->is_in_subquery() &&
+ join->unit->item->get_IN_subquery()->test_strategy(SUBS_IN_TO_EXISTS));
+
+ if (keyuse_array->elements &&
+ sort_and_filter_keyuse(join, keyuse_array,
+ skip_unprefixed_keyparts))
+ goto error;
+ DBUG_EXECUTE("opt", print_keyuse_array(keyuse_array););
+ if (thd->trace_started())
+ print_keyuse_array_for_trace(thd, keyuse_array);
+ }
+
+ join->const_table_map= no_rows_const_tables;
+ join->const_tables= const_count;
+ eliminate_tables(join);
+ join->const_table_map &= ~no_rows_const_tables;
+ const_count= join->const_tables;
+ found_const_table_map= join->const_table_map;
+
+ /* Read tables with 0 or 1 rows (system tables) */
+ for (POSITION *p_pos=join->positions, *p_end=p_pos+const_count;
+ p_pos < p_end ;
+ p_pos++)
+ {
+ s= p_pos->table;
+ if (! (s->table->map & join->eliminated_tables))
+ {
+ int tmp;
+ s->type=JT_SYSTEM;
+ join->const_table_map|=s->table->map;
+ if ((tmp=join_read_const_table(join->thd, s, p_pos)))
+ {
+ if (tmp > 0)
+ goto error; // Fatal error
+ }
+ else
+ {
+ found_const_table_map|= s->table->map;
+ s->table->pos_in_table_list->optimized_away= TRUE;
+ }
+ }
+ }
+
+ /* loop until no more const tables are found */
+ int ref_changed;
+ do
+ {
+ ref_changed = 0;
+ more_const_tables_found:
+
+ /*
+ We only have to loop from stat_vector + const_count as
+ set_position() will move all const_tables first in stat_vector
+ */
+
+ for (JOIN_TAB **pos=stat_vector+const_count ; (s= *pos) ; pos++)
+ {
+ table=s->table;
+
+ if (table->is_filled_at_execution())
+ continue;
+
+ /*
+ If equi-join condition by a key is null rejecting and after a
+ substitution of a const table the key value happens to be null
+ then we can state that there are no matches for this equi-join.
+ */
+ if ((keyuse= s->keyuse) && *s->on_expr_ref && !s->embedding_map &&
+ !(table->map & join->eliminated_tables))
+ {
+ /*
+ When performing an outer join operation if there are no matching rows
+ for the single row of the outer table all the inner tables are to be
+ null complemented and thus considered as constant tables.
+ Here we apply this consideration to the case of outer join operations
+ with a single inner table only because the case with nested tables
+ would require a more thorough analysis.
+ TODO. Apply single row substitution to null complemented inner tables
+ for nested outer join operations.
+ */
+ while (keyuse->table == table)
+ {
+ if (!keyuse->is_for_hash_join() &&
+ !(keyuse->val->used_tables() & ~join->const_table_map) &&
+ keyuse->val->is_null() && keyuse->null_rejecting)
+ {
+ s->type= JT_CONST;
+ s->table->const_table= 1;
+ mark_as_null_row(table);
+ found_const_table_map|= table->map;
+ join->const_table_map|= table->map;
+ set_position(join,const_count++,s,(KEYUSE*) 0);
+ goto more_const_tables_found;
+ }
+ keyuse++;
+ }
+ }
+
+ if (s->dependent) // If dependent on some table
+ {
+ // All dep. must be constants
+ if (s->dependent & ~(found_const_table_map))
+ continue;
+ if (table->file->stats.records <= 1L &&
+ (table->file->ha_table_flags() & HA_STATS_RECORDS_IS_EXACT) &&
+ !table->pos_in_table_list->embedding &&
+ !((outer_join & table->map) &&
+ (*s->on_expr_ref)->is_expensive()))
+ { // system table
+ int tmp= 0;
+ s->type=JT_SYSTEM;
+ join->const_table_map|=table->map;
+ set_position(join,const_count++,s,(KEYUSE*) 0);
+ if ((tmp= join_read_const_table(join->thd, s, join->positions+const_count-1)))
+ {
+ if (tmp > 0)
+ goto error; // Fatal error
+ }
+ else
+ found_const_table_map|= table->map;
+ continue;
+ }
+ }
+ /* check if table can be read by key or table only uses const refs */
+ if ((keyuse=s->keyuse))
+ {
+ s->type= JT_REF;
+ while (keyuse->table == table)
+ {
+ if (keyuse->is_for_hash_join())
+ {
+ keyuse++;
+ continue;
+ }
+ start_keyuse=keyuse;
+ key=keyuse->key;
+ s->keys.set_bit(key); // TODO: remove this ?
+
+ const_ref.clear_all();
+ eq_part.clear_all();
+ has_expensive_keyparts= false;
+ do
+ {
+ if (keyuse->val->type() != Item::NULL_ITEM &&
+ !keyuse->optimize &&
+ keyuse->keypart != FT_KEYPART)
+ {
+ if (!((~found_const_table_map) & keyuse->used_tables))
+ {
+ const_ref.set_bit(keyuse->keypart);
+ if (keyuse->val->is_expensive())
+ has_expensive_keyparts= true;
+ }
+ eq_part.set_bit(keyuse->keypart);
+ }
+ keyuse++;
+ } while (keyuse->table == table && keyuse->key == key);
+
+ TABLE_LIST *embedding= table->pos_in_table_list->embedding;
+ /*
+ TODO (low priority): currently we ignore the const tables that
+ are within a semi-join nest which is within an outer join nest.
+ The effect of this is that we don't do const substitution for
+ such tables.
+ */
+ KEY *keyinfo= table->key_info + key;
+ uint key_parts= table->actual_n_key_parts(keyinfo);
+ if (eq_part.is_prefix(key_parts) &&
+ !table->fulltext_searched &&
+ (!embedding || (embedding->sj_on_expr && !embedding->embedding)))
+ {
+ key_map base_part, base_const_ref, base_eq_part;
+ base_part.set_prefix(keyinfo->user_defined_key_parts);
+ base_const_ref= const_ref;
+ base_const_ref.intersect(base_part);
+ base_eq_part= eq_part;
+ base_eq_part.intersect(base_part);
+ if (table->actual_key_flags(keyinfo) & HA_NOSAME)
+ {
+
+ if (base_const_ref == base_eq_part &&
+ !has_expensive_keyparts &&
+ !((outer_join & table->map) &&
+ (*s->on_expr_ref)->is_expensive()))
+ { // Found everything for ref.
+ int tmp;
+ ref_changed = 1;
+ s->type= JT_CONST;
+ join->const_table_map|=table->map;
+ set_position(join,const_count++,s,start_keyuse);
+ /* create_ref_for_key will set s->table->const_table */
+ if (create_ref_for_key(join, s, start_keyuse, FALSE,
+ found_const_table_map))
+ goto error;
+ if ((tmp=join_read_const_table(join->thd, s,
+ join->positions+const_count-1)))
+ {
+ if (tmp > 0)
+ goto error; // Fatal error
+ }
+ else
+ found_const_table_map|= table->map;
+ break;
+ }
+ }
+ else if (base_const_ref == base_eq_part)
+ s->const_keys.set_bit(key);
+ }
+ }
+ }
+ }
+ } while (ref_changed);
+
+ join->sort_by_table= get_sort_by_table(join->order, join->group_list,
+ join->select_lex->leaf_tables,
+ join->const_table_map);
+ /*
+ Update info on indexes that can be used for search lookups as
+ reading const tables may has added new sargable predicates.
+ */
+ if (const_count && sargables)
+ {
+ for( ; sargables->field ; sargables++)
+ {
+ Field *field= sargables->field;
+ JOIN_TAB *join_tab= field->table->reginfo.join_tab;
+ key_map possible_keys= field->key_start;
+ possible_keys.intersect(field->table->keys_in_use_for_query);
+ bool is_const= 1;
+ for (uint j=0; j < sargables->num_values; j++)
+ is_const&= sargables->arg_value[j]->const_item();
+ if (is_const)
+ join_tab[0].const_keys.merge(possible_keys);
+ }
+ }
+
+ join->impossible_where= false;
+ if (join->conds && const_count)
+ {
+ Item* &conds= join->conds;
+ COND_EQUAL *orig_cond_equal = join->cond_equal;
+
+ conds->update_used_tables();
+ conds= conds->remove_eq_conds(join->thd, &join->cond_value, true);
+ if (conds && conds->type() == Item::COND_ITEM &&
+ ((Item_cond*) conds)->functype() == Item_func::COND_AND_FUNC)
+ join->cond_equal= &((Item_cond_and*) conds)->m_cond_equal;
+ join->select_lex->where= conds;
+ if (join->cond_value == Item::COND_FALSE)
+ {
+ join->impossible_where= true;
+ conds= (Item*) Item_false;
+ }
+
+ join->cond_equal= NULL;
+ if (conds)
+ {
+ if (conds->type() == Item::COND_ITEM &&
+ ((Item_cond*) conds)->functype() == Item_func::COND_AND_FUNC)
+ join->cond_equal= (&((Item_cond_and *) conds)->m_cond_equal);
+ else if (conds->type() == Item::FUNC_ITEM &&
+ ((Item_func*) conds)->functype() == Item_func::MULT_EQUAL_FUNC)
+ {
+ if (!join->cond_equal)
+ join->cond_equal= new COND_EQUAL;
+ join->cond_equal->current_level.empty();
+ join->cond_equal->current_level.push_back((Item_equal*) conds,
+ join->thd->mem_root);
+ }
+ }
+
+ if (orig_cond_equal != join->cond_equal)
+ {
+ /*
+ If join->cond_equal has changed all references to it from COND_EQUAL
+ objects associated with ON expressions must be updated.
+ */
+ for (JOIN_TAB **pos=stat_vector+const_count ; (s= *pos) ; pos++)
+ {
+ if (*s->on_expr_ref && s->cond_equal &&
+ s->cond_equal->upper_levels == orig_cond_equal)
+ s->cond_equal->upper_levels= join->cond_equal;
+ }
+ }
+ }
+
+ join->join_tab= stat;
+ join->make_notnull_conds_for_range_scans();
+
+ /* Calc how many (possible) matched records in each table */
+
+ /*
+ Todo: add a function so that we can add these Json_writer_objects
+ easily.
+ Another way would be to enclose them in a scope {};
+ */
+ {
+ Json_writer_object rows_estimation_wrapper(thd);
+ Json_writer_array rows_estimation(thd, "rows_estimation");
+
+ for (s=stat ; s < stat_end ; s++)
+ {
+ s->startup_cost= 0;
+ if (s->type == JT_SYSTEM || s->type == JT_CONST)
+ {
+
+ Json_writer_object table_records(thd);
+ /* Only one matching row */
+ s->found_records= s->records= 1;
+ s->read_time=1.0;
+ s->worst_seeks=1.0;
+ table_records.add_table_name(s)
+ .add("rows", s->found_records)
+ .add("cost", s->read_time)
+ .add("table_type", s->type == JT_CONST ?
+ "const" :
+ "system");
+ continue;
+ }
+ /* Approximate found rows and time to read them */
+ if (s->table->is_filled_at_execution())
+ {
+ get_delayed_table_estimates(s->table, &s->records, &s->read_time,
+ &s->startup_cost);
+ s->found_records= s->records;
+ s->table->opt_range_condition_rows=s->records;
+ }
+ else
+ s->scan_time();
+
+ if (s->table->is_splittable())
+ s->add_keyuses_for_splitting();
+
+ /*
+ Set a max range of how many seeks we can expect when using keys
+ This is can't be to high as otherwise we are likely to use
+ table scan.
+ */
+ s->worst_seeks= MY_MIN((double) s->found_records / 10,
+ (double) s->read_time*3);
+ if (s->worst_seeks < 2.0) // Fix for small tables
+ s->worst_seeks=2.0;
+
+ /*
+ Add to stat->const_keys those indexes for which all group fields or
+ all select distinct fields participate in one index.
+ */
+ add_group_and_distinct_keys(join, s);
+
+ s->table->cond_selectivity= 1.0;
+
+ /*
+ Perform range analysis if there are keys it could use (1).
+ Don't do range analysis for materialized subqueries (2).
+ Don't do range analysis for materialized derived tables/views (3)
+ */
+ if ((!s->const_keys.is_clear_all() ||
+ !bitmap_is_clear_all(&s->table->cond_set)) && // (1)
+ !s->table->is_filled_at_execution() && // (2)
+ !(s->table->pos_in_table_list->derived && // (3)
+ s->table->pos_in_table_list->is_materialized_derived())) // (3)
+ {
+ bool impossible_range= FALSE;
+ ha_rows records= HA_POS_ERROR;
+ SQL_SELECT *select= 0;
+ Item **sargable_cond= NULL;
+ if (!s->const_keys.is_clear_all())
+ {
+ sargable_cond= get_sargable_cond(join, s->table);
+ bool is_sargable_cond_of_where= sargable_cond == &join->conds;
+
+ select= make_select(s->table, found_const_table_map,
+ found_const_table_map,
+ *sargable_cond,
+ (SORT_INFO*) 0, 1, &error);
+ if (!select)
+ goto error;
+ if (get_quick_record_count(join->thd, select, s->table,
+ &s->const_keys, join->row_limit, &records))
+ {
+ /* There was an error in test_quick_select */
+ delete select;
+ goto error;
+ }
+ /*
+ Range analyzer might have modified the condition. Put it the new
+ condition to where we got it from.
+ */
+ *sargable_cond= select->cond;
+
+ if (is_sargable_cond_of_where &&
+ join->conds && join->conds->type() == Item::COND_ITEM &&
+ ((Item_cond*) (join->conds))->functype() ==
+ Item_func::COND_AND_FUNC)
+ join->cond_equal= &((Item_cond_and*) (join->conds))->m_cond_equal;
+
+ s->quick=select->quick;
+ select->quick=0;
+ s->needed_reg=select->needed_reg;
+ impossible_range= records == 0 && s->table->reginfo.impossible_range;
+ if (join->thd->lex->sql_command == SQLCOM_SELECT &&
+ optimizer_flag(join->thd, OPTIMIZER_SWITCH_USE_ROWID_FILTER))
+ s->table->init_cost_info_for_usable_range_rowid_filters(join->thd);
+ }
+ if (!impossible_range)
+ {
+ if (!sargable_cond)
+ sargable_cond= get_sargable_cond(join, s->table);
+ if (join->thd->variables.optimizer_use_condition_selectivity > 1)
+ calculate_cond_selectivity_for_table(join->thd, s->table,
+ sargable_cond);
+ if (s->table->reginfo.impossible_range)
+ {
+ impossible_range= TRUE;
+ records= 0;
+ }
+ }
+ if (impossible_range)
+ {
+ /*
+ Impossible WHERE or ON expression
+ In case of ON, we mark that the we match one empty NULL row.
+ In case of WHERE, don't set found_const_table_map to get the
+ caller to abort with a zero row result.
+ */
+ TABLE_LIST *emb= s->table->pos_in_table_list->embedding;
+ if (emb && !emb->sj_on_expr && !*s->on_expr_ref)
+ {
+ /* Mark all tables in a multi-table join nest as const */
+ mark_join_nest_as_const(join, emb, &found_const_table_map,
+ &const_count);
+ }
+ else
+ {
+ join->const_table_map|= s->table->map;
+ set_position(join,const_count++,s,(KEYUSE*) 0);
+ s->type= JT_CONST;
+ s->table->const_table= 1;
+ if (*s->on_expr_ref)
+ {
+ /* Generate empty row */
+ s->info= ET_IMPOSSIBLE_ON_CONDITION;
+ found_const_table_map|= s->table->map;
+ mark_as_null_row(s->table); // All fields are NULL
+ }
+ }
+ }
+ if (records != HA_POS_ERROR)
+ {
+ s->found_records=records;
+ s->read_time= s->quick ? s->quick->read_time : 0.0;
+ }
+ if (select)
+ delete select;
+ else
+ {
+ if (thd->trace_started())
+ add_table_scan_values_to_trace(thd, s);
+ }
+ }
+ else
+ {
+ if (thd->trace_started())
+ add_table_scan_values_to_trace(thd, s);
+ }
+ }
+ }
+
+ if (pull_out_semijoin_tables(join))
+ DBUG_RETURN(TRUE);
+
+ join->join_tab=stat;
+ join->top_join_tab_count= table_count;
+ join->map2table=stat_ref;
+ join->table= table_vector;
+ join->const_tables=const_count;
+ join->found_const_table_map=found_const_table_map;
+
+ if (join->const_tables != join->table_count)
+ optimize_keyuse(join, keyuse_array);
+
+ DBUG_ASSERT(!join->conds || !join->cond_equal ||
+ !join->cond_equal->current_level.elements ||
+ (join->conds->type() == Item::COND_ITEM &&
+ ((Item_cond*) (join->conds))->functype() ==
+ Item_func::COND_AND_FUNC &&
+ join->cond_equal ==
+ &((Item_cond_and *) (join->conds))->m_cond_equal) ||
+ (join->conds->type() == Item::FUNC_ITEM &&
+ ((Item_func*) (join->conds))->functype() ==
+ Item_func::MULT_EQUAL_FUNC &&
+ join->cond_equal->current_level.elements == 1 &&
+ join->cond_equal->current_level.head() == join->conds));
+
+ if (optimize_semijoin_nests(join, all_table_map))
+ DBUG_RETURN(TRUE); /* purecov: inspected */
+
+ {
+ double records= 1;
+ SELECT_LEX_UNIT *unit= join->select_lex->master_unit();
+
+ /* Find an optimal join order of the non-constant tables. */
+ if (join->const_tables != join->table_count)
+ {
+ if (choose_plan(join, all_table_map & ~join->const_table_map))
+ goto error;
+
+#ifdef HAVE_valgrind
+ // JOIN::positions holds the current query plan. We've already
+ // made the plan choice, so we should only use JOIN::best_positions
+ for (uint k=join->const_tables; k < join->table_count; k++)
+ MEM_UNDEFINED(&join->positions[k], sizeof(join->positions[k]));
+#endif
+ }
+ else
+ {
+ memcpy((uchar*) join->best_positions,(uchar*) join->positions,
+ sizeof(POSITION)*join->const_tables);
+ join->join_record_count= 1.0;
+ join->best_read=1.0;
+ }
+
+ if (!(join->select_options & SELECT_DESCRIBE) &&
+ unit->derived && unit->derived->is_materialized_derived())
+ {
+ /*
+ Calculate estimated number of rows for materialized derived
+ table/view.
+ */
+ for (i= 0; i < join->table_count ; i++)
+ if (double rr= join->best_positions[i].records_read)
+ records= COST_MULT(records, rr);
+ ha_rows rows= records > (double) HA_ROWS_MAX ? HA_ROWS_MAX : (ha_rows) records;
+ set_if_smaller(rows, unit->lim.get_select_limit());
+ join->select_lex->increase_derived_records(rows);
+ }
+ }
+
+ if (join->choose_subquery_plan(all_table_map & ~join->const_table_map))
+ goto error;
+
+ DEBUG_SYNC(join->thd, "inside_make_join_statistics");
+
+ DBUG_RETURN(0);
+
+error:
+ /*
+ Need to clean up join_tab from TABLEs in case of error.
+ They won't get cleaned up by JOIN::cleanup() because JOIN::join_tab
+ may not be assigned yet by this function (which is building join_tab).
+ Dangling TABLE::reginfo.join_tab may cause part_of_refkey to choke.
+ */
+ {
+ TABLE_LIST *tmp_table;
+ List_iterator<TABLE_LIST> ti2(tables_list);
+ while ((tmp_table= ti2++))
+ tmp_table->table->reginfo.join_tab= NULL;
+ }
+ DBUG_RETURN (1);
+}
+
+
+/*****************************************************************************
+ Check with keys are used and with tables references with tables
+ Updates in stat:
+ keys Bitmap of all used keys
+ const_keys Bitmap of all keys with may be used with quick_select
+ keyuse Pointer to possible keys
+*****************************************************************************/
+
+
+/**
+ Merge new key definitions to old ones, remove those not used in both.
+
+ This is called for OR between different levels.
+
+ That is, the function operates on an array of KEY_FIELD elements which has
+ two parts:
+
+ $LEFT_PART $RIGHT_PART
+ +-----------------------+-----------------------+
+ start new_fields end
+
+ $LEFT_PART and $RIGHT_PART are arrays that have KEY_FIELD elements for two
+ parts of the OR condition. Our task is to produce an array of KEY_FIELD
+ elements that would correspond to "$LEFT_PART OR $RIGHT_PART".
+
+ The rules for combining elements are as follows:
+
+ (keyfieldA1 AND keyfieldA2 AND ...) OR (keyfieldB1 AND keyfieldB2 AND ...)=
+
+ = AND_ij (keyfieldA_i OR keyfieldB_j)
+
+ We discard all (keyfieldA_i OR keyfieldB_j) that refer to different
+ fields. For those referring to the same field, the logic is as follows:
+
+ t.keycol=expr1 OR t.keycol=expr2 -> (since expr1 and expr2 are different
+ we can't produce a single equality,
+ so produce nothing)
+
+ t.keycol=expr1 OR t.keycol=expr1 -> t.keycol=expr1
+
+ t.keycol=expr1 OR t.keycol IS NULL -> t.keycol=expr1, and also set
+ KEY_OPTIMIZE_REF_OR_NULL flag
+
+ The last one is for ref_or_null access. We have handling for this special
+ because it's needed for evaluating IN subqueries that are internally
+ transformed into
+
+ @code
+ EXISTS(SELECT * FROM t1 WHERE t1.key=outer_ref_field or t1.key IS NULL)
+ @endcode
+
+ See add_key_fields() for discussion of what is and_level.
+
+ KEY_FIELD::null_rejecting is processed as follows: @n
+ result has null_rejecting=true if it is set for both ORed references.
+ for example:
+ - (t2.key = t1.field OR t2.key = t1.field) -> null_rejecting=true
+ - (t2.key = t1.field OR t2.key <=> t1.field) -> null_rejecting=false
+
+ @todo
+ The result of this is that we're missing some 'ref' accesses.
+ OptimizerTeam: Fix this
+*/
+
+static KEY_FIELD *
+merge_key_fields(KEY_FIELD *start,KEY_FIELD *new_fields,KEY_FIELD *end,
+ uint and_level)
+{
+ if (start == new_fields)
+ return start; // Impossible or
+ if (new_fields == end)
+ return start; // No new fields, skip all
+
+ KEY_FIELD *first_free=new_fields;
+
+ /* Mark all found fields in old array */
+ for (; new_fields != end ; new_fields++)
+ {
+ for (KEY_FIELD *old=start ; old != first_free ; old++)
+ {
+ if (old->field == new_fields->field)
+ {
+ /*
+ NOTE: below const_item() call really works as "!used_tables()", i.e.
+ it can return FALSE where it is feasible to make it return TRUE.
+
+ The cause is as follows: Some of the tables are already known to be
+ const tables (the detection code is in make_join_statistics(),
+ above the update_ref_and_keys() call), but we didn't propagate
+ information about this: TABLE::const_table is not set to TRUE, and
+ Item::update_used_tables() hasn't been called for each item.
+ The result of this is that we're missing some 'ref' accesses.
+ TODO: OptimizerTeam: Fix this
+ */
+ if (!new_fields->val->const_item())
+ {
+ /*
+ If the value matches, we can use the key reference.
+ If not, we keep it until we have examined all new values
+ */
+ if (old->val->eq(new_fields->val, old->field->binary()))
+ {
+ old->level= and_level;
+ old->optimize= ((old->optimize & new_fields->optimize &
+ KEY_OPTIMIZE_EXISTS) |
+ ((old->optimize | new_fields->optimize) &
+ KEY_OPTIMIZE_REF_OR_NULL));
+ old->null_rejecting= (old->null_rejecting &&
+ new_fields->null_rejecting);
+ }
+ }
+ else if (old->eq_func && new_fields->eq_func &&
+ old->val->eq_by_collation(new_fields->val,
+ old->field->binary(),
+ old->field->charset()))
+
+ {
+ old->level= and_level;
+ old->optimize= ((old->optimize & new_fields->optimize &
+ KEY_OPTIMIZE_EXISTS) |
+ ((old->optimize | new_fields->optimize) &
+ KEY_OPTIMIZE_REF_OR_NULL));
+ old->null_rejecting= (old->null_rejecting &&
+ new_fields->null_rejecting);
+ }
+ else if (old->eq_func && new_fields->eq_func &&
+ ((old->val->can_eval_in_optimize() && old->val->is_null()) ||
+ (!new_fields->val->is_expensive() &&
+ new_fields->val->is_null())))
+ {
+ /* field = expression OR field IS NULL */
+ old->level= and_level;
+ if (old->field->maybe_null())
+ {
+ old->optimize= KEY_OPTIMIZE_REF_OR_NULL;
+ /* The referred expression can be NULL: */
+ old->null_rejecting= 0;
+ }
+ /*
+ Remember the NOT NULL value unless the value does not depend
+ on other tables.
+ */
+ if (!old->val->used_tables() && !old->val->is_expensive() &&
+ old->val->is_null())
+ old->val= new_fields->val;
+ }
+ else
+ {
+ /*
+ We are comparing two different const. In this case we can't
+ use a key-lookup on this so it's better to remove the value
+ and let the range optimzier handle it
+ */
+ if (old == --first_free) // If last item
+ break;
+ *old= *first_free; // Remove old value
+ old--; // Retry this value
+ }
+ }
+ }
+ }
+ /* Remove all not used items */
+ for (KEY_FIELD *old=start ; old != first_free ;)
+ {
+ if (old->level != and_level)
+ { // Not used in all levels
+ if (old == --first_free)
+ break;
+ *old= *first_free; // Remove old value
+ continue;
+ }
+ old++;
+ }
+ return first_free;
+}
+
+
+/*
+ Given a field, return its index in semi-join's select list, or UINT_MAX
+
+ DESCRIPTION
+ Given a field, we find its table; then see if the table is within a
+ semi-join nest and if the field was in select list of the subselect.
+ If it was, we return field's index in the select list. The value is used
+ by LooseScan strategy.
+*/
+
+static uint get_semi_join_select_list_index(Field *field)
+{
+ uint res= UINT_MAX;
+ TABLE_LIST *emb_sj_nest;
+ if ((emb_sj_nest= field->table->pos_in_table_list->embedding) &&
+ emb_sj_nest->sj_on_expr)
+ {
+ Item_in_subselect *subq_pred= emb_sj_nest->sj_subq_pred;
+ st_select_lex *subq_lex= subq_pred->unit->first_select();
+ uint ncols= subq_pred->left_exp()->cols();
+ if (ncols == 1)
+ {
+ Item *sel_item= subq_lex->ref_pointer_array[0];
+ if (sel_item->type() == Item::FIELD_ITEM &&
+ ((Item_field*)sel_item)->field->eq(field))
+ {
+ res= 0;
+ }
+ }
+ else
+ {
+ for (uint i= 0; i < ncols; i++)
+ {
+ Item *sel_item= subq_lex->ref_pointer_array[i];
+ if (sel_item->type() == Item::FIELD_ITEM &&
+ ((Item_field*)sel_item)->field->eq(field))
+ {
+ res= i;
+ break;
+ }
+ }
+ }
+ }
+ return res;
+}
+
+
+/**
+ Add a possible key to array of possible keys if it's usable as a key
+
+ @param key_fields Pointer to add key, if usable
+ @param and_level And level, to be stored in KEY_FIELD
+ @param cond Condition predicate
+ @param field Field used in comparision
+ @param eq_func True if we used =, <=> or IS NULL
+ @param value Value used for comparison with field
+ @param num_values Number of values[] that we are comparing against
+ @param usable_tables Tables which can be used for key optimization
+ @param sargables IN/OUT Array of found sargable candidates
+ @param row_col_no if = n that > 0 then field is compared only
+ against the n-th component of row values
+
+ @note
+ If we are doing a NOT NULL comparison on a NOT NULL field in a outer join
+ table, we store this to be able to do not exists optimization later.
+
+ @returns
+ *key_fields is incremented if we stored a key in the array
+*/
+
+static void
+add_key_field(JOIN *join,
+ KEY_FIELD **key_fields,uint and_level, Item_bool_func *cond,
+ Field *field, bool eq_func, Item **value, uint num_values,
+ table_map usable_tables, SARGABLE_PARAM **sargables,
+ uint row_col_no= 0)
+{
+ uint optimize= 0;
+ if (eq_func &&
+ ((join->is_allowed_hash_join_access() &&
+ field->hash_join_is_possible() &&
+ !(field->table->pos_in_table_list->is_materialized_derived() &&
+ field->table->is_created())) ||
+ (field->table->pos_in_table_list->is_materialized_derived() &&
+ !field->table->is_created() && !(field->flags & BLOB_FLAG))))
+ {
+ optimize= KEY_OPTIMIZE_EQ;
+ }
+ else if (!(field->flags & PART_KEY_FLAG))
+ {
+ // Don't remove column IS NULL on a LEFT JOIN table
+ if (eq_func && (*value)->type() == Item::NULL_ITEM &&
+ field->table->maybe_null && !field->null_ptr)
+ {
+ optimize= KEY_OPTIMIZE_EXISTS;
+ DBUG_ASSERT(num_values == 1);
+ }
+ }
+ if (optimize != KEY_OPTIMIZE_EXISTS)
+ {
+ table_map used_tables=0;
+ bool optimizable=0;
+ for (uint i=0; i<num_values; i++)
+ {
+ Item *curr_val;
+ if (row_col_no && value[i]->real_item()->type() == Item::ROW_ITEM)
+ {
+ Item_row *value_tuple= (Item_row *) (value[i]->real_item());
+ curr_val= value_tuple->element_index(row_col_no - 1);
+ }
+ else
+ curr_val= value[i];
+ table_map value_used_tables= curr_val->used_tables();
+ used_tables|= value_used_tables;
+ if (!(value_used_tables & (field->table->map | RAND_TABLE_BIT)))
+ optimizable=1;
+ }
+ if (!optimizable)
+ return;
+ if (!(usable_tables & field->table->map))
+ {
+ if (!eq_func || (*value)->type() != Item::NULL_ITEM ||
+ !field->table->maybe_null || field->null_ptr)
+ return; // Can't use left join optimize
+ optimize= KEY_OPTIMIZE_EXISTS;
+ }
+ else
+ {
+ JOIN_TAB *stat=field->table->reginfo.join_tab;
+ key_map possible_keys=field->get_possible_keys();
+ possible_keys.intersect(field->table->keys_in_use_for_query);
+ stat[0].keys.merge(possible_keys); // Add possible keys
+
+ /*
+ Save the following cases:
+ Field op constant
+ Field LIKE constant where constant doesn't start with a wildcard
+ Field = field2 where field2 is in a different table
+ Field op formula
+ Field IS NULL
+ Field IS NOT NULL
+ Field BETWEEN ...
+ Field IN ...
+ */
+ if (field->flags & PART_KEY_FLAG)
+ {
+ stat[0].key_dependent|= used_tables;
+ if (field->key_start.bits_set())
+ stat[0].key_start_dependent= 1;
+ }
+
+ bool is_const=1;
+ for (uint i=0; i<num_values; i++)
+ {
+ Item *curr_val;
+ if (row_col_no && value[i]->real_item()->type() == Item::ROW_ITEM)
+ {
+ Item_row *value_tuple= (Item_row *) (value[i]->real_item());
+ curr_val= value_tuple->element_index(row_col_no - 1);
+ }
+ else
+ curr_val= value[i];
+ if (!(is_const&= curr_val->const_item()))
+ break;
+ }
+ if (is_const)
+ {
+ stat[0].const_keys.merge(possible_keys);
+ bitmap_set_bit(&field->table->cond_set, field->field_index);
+ }
+ else if (!eq_func)
+ {
+ /*
+ Save info to be able check whether this predicate can be
+ considered as sargable for range analysis after reading const tables.
+ We do not save info about equalities as update_const_equal_items
+ will take care of updating info on keys from sargable equalities.
+ */
+ (*sargables)--;
+ (*sargables)->field= field;
+ (*sargables)->arg_value= value;
+ (*sargables)->num_values= num_values;
+ }
+ if (!eq_func) // eq_func is NEVER true when num_values > 1
+ return;
+ }
+ }
+ /*
+ For the moment eq_func is always true. This slot is reserved for future
+ extensions where we want to remembers other things than just eq comparisons
+ */
+ DBUG_ASSERT(eq_func);
+ /* Store possible eq field */
+ (*key_fields)->field= field;
+ (*key_fields)->eq_func= eq_func;
+ (*key_fields)->val= *value;
+ (*key_fields)->cond= cond;
+ (*key_fields)->level= and_level;
+ (*key_fields)->optimize= optimize;
+ /*
+ If the condition we are analyzing is NULL-rejecting and at least
+ one side of the equalities is NULLable, mark the KEY_FIELD object as
+ null-rejecting. This property is used by:
+ - add_not_null_conds() to add "column IS NOT NULL" conditions
+ - best_access_path() to produce better estimates for NULL-able unique keys.
+ */
+ {
+ if ((cond->functype() == Item_func::EQ_FUNC ||
+ cond->functype() == Item_func::MULT_EQUAL_FUNC) &&
+ ((*value)->maybe_null() || field->real_maybe_null()))
+ (*key_fields)->null_rejecting= true;
+ else
+ (*key_fields)->null_rejecting= false;
+ }
+ (*key_fields)->cond_guard= NULL;
+
+ (*key_fields)->sj_pred_no= get_semi_join_select_list_index(field);
+ (*key_fields)++;
+}
+
+/**
+ Add possible keys to array of possible keys originated from a simple
+ predicate.
+
+ @param key_fields Pointer to add key, if usable
+ @param and_level And level, to be stored in KEY_FIELD
+ @param cond Condition predicate
+ @param field_item Field item used for comparison
+ @param eq_func True if we used =, <=> or IS NULL
+ @param value Value used for comparison with field_item
+ @param num_values Number of values[] that we are comparing against
+ @param usable_tables Tables which can be used for key optimization
+ @param sargables IN/OUT Array of found sargable candidates
+ @param row_col_no if = n that > 0 then field is compared only
+ against the n-th component of row values
+
+ @note
+ If field items f1 and f2 belong to the same multiple equality and
+ a key is added for f1, the the same key is added for f2.
+
+ @returns
+ *key_fields is incremented if we stored a key in the array
+*/
+
+static void
+add_key_equal_fields(JOIN *join, KEY_FIELD **key_fields, uint and_level,
+ Item_bool_func *cond, Item *field_item,
+ bool eq_func, Item **val,
+ uint num_values, table_map usable_tables,
+ SARGABLE_PARAM **sargables, uint row_col_no= 0)
+{
+ Field *field= ((Item_field *) (field_item->real_item()))->field;
+ add_key_field(join, key_fields, and_level, cond, field,
+ eq_func, val, num_values, usable_tables, sargables,
+ row_col_no);
+ Item_equal *item_equal= field_item->get_item_equal();
+ if (item_equal)
+ {
+ /*
+ Add to the set of possible key values every substitution of
+ the field for an equal field included into item_equal
+ */
+ Item_equal_fields_iterator it(*item_equal);
+ while (it++)
+ {
+ Field *equal_field= it.get_curr_field();
+ if (!field->eq(equal_field))
+ {
+ add_key_field(join, key_fields, and_level, cond, equal_field,
+ eq_func, val, num_values, usable_tables,
+ sargables, row_col_no);
+ }
+ }
+ }
+}
+
+
+/**
+ Check if an expression is a non-outer field.
+
+ Checks if an expression is a field and belongs to the current select.
+
+ @param field Item expression to check
+
+ @return boolean
+ @retval TRUE the expression is a local field
+ @retval FALSE it's something else
+*/
+
+static bool
+is_local_field (Item *field)
+{
+ return field->real_item()->type() == Item::FIELD_ITEM
+ && !(field->used_tables() & OUTER_REF_TABLE_BIT)
+ && !((Item_field *)field->real_item())->get_depended_from();
+}
+
+
+/*
+ In this and other functions, and_level is a number that is ever-growing
+ and is different for the contents of every AND or OR clause. For example,
+ when processing clause
+
+ (a AND b AND c) OR (x AND y)
+
+ we'll have
+ * KEY_FIELD elements for (a AND b AND c) are assigned and_level=1
+ * KEY_FIELD elements for (x AND y) are assigned and_level=2
+ * OR operation is performed, and whatever elements are left after it are
+ assigned and_level=3.
+
+ The primary reason for having and_level attribute is the OR operation which
+ uses and_level to mark KEY_FIELDs that should get into the result of the OR
+ operation
+*/
+
+
+void
+Item_cond_and::add_key_fields(JOIN *join, KEY_FIELD **key_fields,
+ uint *and_level, table_map usable_tables,
+ SARGABLE_PARAM **sargables)
+{
+ List_iterator_fast<Item> li(*argument_list());
+ KEY_FIELD *org_key_fields= *key_fields;
+
+ Item *item;
+ while ((item=li++))
+ item->add_key_fields(join, key_fields, and_level, usable_tables,
+ sargables);
+ for (; org_key_fields != *key_fields ; org_key_fields++)
+ org_key_fields->level= *and_level;
+}
+
+
+void
+Item_cond::add_key_fields(JOIN *join, KEY_FIELD **key_fields,
+ uint *and_level, table_map usable_tables,
+ SARGABLE_PARAM **sargables)
+{
+ List_iterator_fast<Item> li(*argument_list());
+ KEY_FIELD *org_key_fields= *key_fields;
+
+ (*and_level)++;
+ (li++)->add_key_fields(join, key_fields, and_level, usable_tables,
+ sargables);
+ Item *item;
+ while ((item=li++))
+ {
+ KEY_FIELD *start_key_fields= *key_fields;
+ (*and_level)++;
+ item->add_key_fields(join, key_fields, and_level, usable_tables,
+ sargables);
+ *key_fields= merge_key_fields(org_key_fields,start_key_fields,
+ *key_fields, ++(*and_level));
+ }
+}
+
+
+void
+Item_func_trig_cond::add_key_fields(JOIN *join, KEY_FIELD **key_fields,
+ uint *and_level, table_map usable_tables,
+ SARGABLE_PARAM **sargables)
+{
+ /*
+ Subquery optimization: Conditions that are pushed down into subqueries
+ are wrapped into Item_func_trig_cond. We process the wrapped condition
+ but need to set cond_guard for KEYUSE elements generated from it.
+ */
+ if (!join->group_list && !join->order &&
+ join->unit->item &&
+ join->unit->item->substype() == Item_subselect::IN_SUBS &&
+ !join->unit->is_unit_op())
+ {
+ KEY_FIELD *save= *key_fields;
+ args[0]->add_key_fields(join, key_fields, and_level, usable_tables,
+ sargables);
+ // Indicate that this ref access candidate is for subquery lookup:
+ for (; save != *key_fields; save++)
+ save->cond_guard= get_trig_var();
+ }
+}
+
+
+void
+Item_func_between::add_key_fields(JOIN *join, KEY_FIELD **key_fields,
+ uint *and_level, table_map usable_tables,
+ SARGABLE_PARAM **sargables)
+{
+ /*
+ Build list of possible keys for 'a BETWEEN low AND high'.
+ It is handled similar to the equivalent condition
+ 'a >= low AND a <= high':
+ */
+ Item_field *field_item;
+ bool equal_func= false;
+ uint num_values= 2;
+
+ bool binary_cmp= (args[0]->real_item()->type() == Item::FIELD_ITEM)
+ ? ((Item_field*) args[0]->real_item())->field->binary()
+ : true;
+ /*
+ Additional optimization: If 'low = high':
+ Handle as if the condition was "t.key = low".
+ */
+ if (!negated && args[1]->eq(args[2], binary_cmp))
+ {
+ equal_func= true;
+ num_values= 1;
+ }
+
+ /*
+ Append keys for 'field <cmp> value[]' if the
+ condition is of the form::
+ '<field> BETWEEN value[1] AND value[2]'
+ */
+ if (is_local_field(args[0]))
+ {
+ field_item= (Item_field *) (args[0]->real_item());
+ add_key_equal_fields(join, key_fields, *and_level, this,
+ field_item, equal_func, &args[1],
+ num_values, usable_tables, sargables);
+ }
+ /*
+ Append keys for 'value[0] <cmp> field' if the
+ condition is of the form:
+ 'value[0] BETWEEN field1 AND field2'
+ */
+ for (uint i= 1; i <= num_values; i++)
+ {
+ if (is_local_field(args[i]))
+ {
+ field_item= (Item_field *) (args[i]->real_item());
+ add_key_equal_fields(join, key_fields, *and_level, this,
+ field_item, equal_func, args,
+ 1, usable_tables, sargables);
+ }
+ }
+}
+
+
+void
+Item_func_in::add_key_fields(JOIN *join, KEY_FIELD **key_fields,
+ uint *and_level, table_map usable_tables,
+ SARGABLE_PARAM **sargables)
+{
+ if (is_local_field(args[0]) && !(used_tables() & OUTER_REF_TABLE_BIT))
+ {
+ DBUG_ASSERT(arg_count != 2);
+ add_key_equal_fields(join, key_fields, *and_level, this,
+ (Item_field*) (args[0]->real_item()), false,
+ args + 1, arg_count - 1, usable_tables, sargables);
+ }
+ else if (key_item()->type() == Item::ROW_ITEM &&
+ !(used_tables() & OUTER_REF_TABLE_BIT))
+ {
+ Item_row *key_row= (Item_row *) key_item();
+ Item **key_col= key_row->addr(0);
+ uint row_cols= key_row->cols();
+ for (uint i= 0; i < row_cols; i++, key_col++)
+ {
+ if (is_local_field(*key_col))
+ {
+ Item_field *field_item= (Item_field *)((*key_col)->real_item());
+ add_key_equal_fields(join, key_fields, *and_level, this,
+ field_item, false, args + 1, arg_count - 1,
+ usable_tables, sargables, i + 1);
+ }
+ }
+ }
+
+}
+
+
+void
+Item_func_ne::add_key_fields(JOIN *join, KEY_FIELD **key_fields,
+ uint *and_level, table_map usable_tables,
+ SARGABLE_PARAM **sargables)
+{
+ if (!(used_tables() & OUTER_REF_TABLE_BIT))
+ {
+ /*
+ QQ: perhaps test for !is_local_field(args[1]) is not really needed here.
+ Other comparison functions, e.g. Item_func_le, Item_func_gt, etc,
+ do not have this test. See Item_bool_func2::add_key_fieldoptimize_op().
+ Check with the optimizer team.
+ */
+ if (is_local_field(args[0]) && !is_local_field(args[1]))
+ add_key_equal_fields(join, key_fields, *and_level, this,
+ (Item_field*) (args[0]->real_item()), false,
+ &args[1], 1, usable_tables, sargables);
+ /*
+ QQ: perhaps test for !is_local_field(args[0]) is not really needed here.
+ */
+ if (is_local_field(args[1]) && !is_local_field(args[0]))
+ add_key_equal_fields(join, key_fields, *and_level, this,
+ (Item_field*) (args[1]->real_item()), false,
+ &args[0], 1, usable_tables, sargables);
+ }
+}
+
+
+void
+Item_func_like::add_key_fields(JOIN *join, KEY_FIELD **key_fields,
+ uint *and_level, table_map usable_tables,
+ SARGABLE_PARAM **sargables)
+{
+ if (is_local_field(args[0]) && with_sargable_pattern())
+ {
+ /*
+ SELECT * FROM t1 WHERE field LIKE const_pattern
+ const_pattern starts with a non-wildcard character
+ */
+ add_key_equal_fields(join, key_fields, *and_level, this,
+ (Item_field*) args[0]->real_item(), false,
+ args + 1, 1, usable_tables, sargables);
+ }
+}
+
+
+void
+Item_bool_func2::add_key_fields_optimize_op(JOIN *join, KEY_FIELD **key_fields,
+ uint *and_level,
+ table_map usable_tables,
+ SARGABLE_PARAM **sargables,
+ bool equal_func)
+{
+ /* If item is of type 'field op field/constant' add it to key_fields */
+ if (is_local_field(args[0]))
+ {
+ add_key_equal_fields(join, key_fields, *and_level, this,
+ (Item_field*) args[0]->real_item(), equal_func,
+ args + 1, 1, usable_tables, sargables);
+ }
+ if (is_local_field(args[1]))
+ {
+ add_key_equal_fields(join, key_fields, *and_level, this,
+ (Item_field*) args[1]->real_item(), equal_func,
+ args, 1, usable_tables, sargables);
+ }
+}
+
+
+void
+Item_func_null_predicate::add_key_fields(JOIN *join, KEY_FIELD **key_fields,
+ uint *and_level,
+ table_map usable_tables,
+ SARGABLE_PARAM **sargables)
+{
+ /* column_name IS [NOT] NULL */
+ if (is_local_field(args[0]) && !(used_tables() & OUTER_REF_TABLE_BIT))
+ {
+ Item *tmp= new (join->thd->mem_root) Item_null(join->thd);
+ if (unlikely(!tmp)) // Should never be true
+ return;
+ add_key_equal_fields(join, key_fields, *and_level, this,
+ (Item_field*) args[0]->real_item(),
+ functype() == Item_func::ISNULL_FUNC,
+ &tmp, 1, usable_tables, sargables);
+ }
+}
+
+
+void
+Item_equal::add_key_fields(JOIN *join, KEY_FIELD **key_fields,
+ uint *and_level, table_map usable_tables,
+ SARGABLE_PARAM **sargables)
+{
+ Item *const_item2= get_const();
+ Item_equal_fields_iterator it(*this);
+ if (const_item2)
+ {
+
+ /*
+ For each field field1 from item_equal consider the equality
+ field1=const_item as a condition allowing an index access of the table
+ with field1 by the keys value of field1.
+ */
+ while (it++)
+ {
+ Field *equal_field= it.get_curr_field();
+ add_key_field(join, key_fields, *and_level, this, equal_field,
+ TRUE, &const_item2, 1, usable_tables, sargables);
+ }
+ }
+ else
+ {
+ /*
+ Consider all pairs of different fields included into item_equal.
+ For each of them (field1, field1) consider the equality
+ field1=field2 as a condition allowing an index access of the table
+ with field1 by the keys value of field2.
+ */
+ Item_equal_fields_iterator fi(*this);
+ while (fi++)
+ {
+ Field *field= fi.get_curr_field();
+ Item *item;
+ while ((item= it++))
+ {
+ Field *equal_field= it.get_curr_field();
+ if (!field->eq(equal_field))
+ {
+ add_key_field(join, key_fields, *and_level, this, field,
+ TRUE, &item, 1, usable_tables,
+ sargables);
+ }
+ }
+ it.rewind();
+ }
+ }
+}
+
+
+static uint
+max_part_bit(key_part_map bits)
+{
+ uint found;
+ for (found=0; bits & 1 ; found++,bits>>=1) ;
+ return found;
+}
+
+
+/**
+ Add a new keuse to the specified array of KEYUSE objects
+
+ @param[in,out] keyuse_array array of keyuses to be extended
+ @param[in] key_field info on the key use occurrence
+ @param[in] key key number for the keyse to be added
+ @param[in] part key part for the keyuse to be added
+
+ @note
+ The function builds a new KEYUSE object for a key use utilizing the info
+ on the left and right parts of the given key use extracted from the
+ structure key_field, the key number and key part for this key use.
+ The built object is added to the dynamic array keyuse_array.
+
+ @retval 0 the built object is successfully added
+ @retval 1 otherwise
+*/
+
+static bool
+add_keyuse(DYNAMIC_ARRAY *keyuse_array, KEY_FIELD *key_field,
+ uint key, uint part)
+{
+ KEYUSE keyuse;
+ Field *field= key_field->field;
+
+ keyuse.table= field->table;
+ keyuse.val= key_field->val;
+ keyuse.key= key;
+ if (!is_hash_join_key_no(key))
+ {
+ keyuse.keypart=part;
+ keyuse.keypart_map= (key_part_map) 1 << part;
+ }
+ else
+ {
+ keyuse.keypart= field->field_index;
+ keyuse.keypart_map= (key_part_map) 0;
+ }
+ keyuse.used_tables= key_field->val->used_tables();
+ keyuse.optimize= key_field->optimize & KEY_OPTIMIZE_REF_OR_NULL;
+ keyuse.ref_table_rows= 0;
+ keyuse.null_rejecting= key_field->null_rejecting;
+ keyuse.cond_guard= key_field->cond_guard;
+ keyuse.sj_pred_no= key_field->sj_pred_no;
+ keyuse.validity_ref= 0;
+ return (insert_dynamic(keyuse_array,(uchar*) &keyuse));
+}
+
+
+/*
+ Add all keys with uses 'field' for some keypart
+ If field->and_level != and_level then only mark key_part as const_part
+
+ RETURN
+ 0 - OK
+ 1 - Out of memory.
+*/
+
+static LEX_CSTRING equal_str= { STRING_WITH_LEN("=") };
+
+static bool
+add_key_part(DYNAMIC_ARRAY *keyuse_array, KEY_FIELD *key_field)
+{
+ Field *field=key_field->field;
+ TABLE *form= field->table;
+ THD *thd= form->in_use;
+
+ if (key_field->eq_func && !(key_field->optimize & KEY_OPTIMIZE_EXISTS))
+ {
+ for (uint key=0 ; key < form->s->keys ; key++)
+ {
+ if (!(form->keys_in_use_for_query.is_set(key)))
+ continue;
+ if (form->key_info[key].flags & (HA_FULLTEXT | HA_SPATIAL))
+ continue; // ToDo: ft-keys in non-ft queries. SerG
+
+ KEY *keyinfo= form->key_info+key;
+ uint key_parts= form->actual_n_key_parts(keyinfo);
+ for (uint part=0 ; part < key_parts ; part++)
+ {
+ if (field->eq(form->key_info[key].key_part[part].field))
+ {
+ Data_type_compatibility compat=
+ field->can_optimize_keypart_ref(key_field->cond, key_field->val);
+ if (compat == Data_type_compatibility::OK)
+ {
+ if (add_keyuse(keyuse_array, key_field, key, part))
+ return TRUE;
+ }
+ else if (thd->give_notes_for_unusable_keys())
+ {
+ field->raise_note_cannot_use_key_part(thd, key, part,
+ equal_str,
+ key_field->val,
+ compat);
+ }
+ }
+ }
+ }
+ if (field->hash_join_is_possible() &&
+ (key_field->optimize & KEY_OPTIMIZE_EQ) &&
+ key_field->val->used_tables())
+ {
+ if (field->can_optimize_hash_join(key_field->cond, key_field->val) !=
+ Data_type_compatibility::OK)
+ return false;
+ if (form->is_splittable())
+ form->add_splitting_info_for_key_field(key_field);
+ /*
+ If a key use is extracted from an equi-join predicate then it is
+ added not only as a key use for every index whose component can
+ be evalusted utilizing this key use, but also as a key use for
+ hash join. Such key uses are marked with a special key number.
+ */
+ if (add_keyuse(keyuse_array, key_field, get_hash_join_key_no(), 0))
+ return TRUE;
+ }
+ }
+ return FALSE;
+}
+
+static bool
+add_ft_keys(DYNAMIC_ARRAY *keyuse_array,
+ JOIN_TAB *stat,COND *cond,table_map usable_tables)
+{
+ Item_func_match *cond_func=NULL;
+
+ if (!cond)
+ return FALSE;
+
+ if (cond->type() == Item::FUNC_ITEM)
+ {
+ Item_func *func=(Item_func *)cond;
+ Item_func::Functype functype= func->functype();
+ if (functype == Item_func::FT_FUNC)
+ cond_func=(Item_func_match *)cond;
+ else if (func->argument_count() == 2)
+ {
+ Item *arg0=(Item *)(func->arguments()[0]),
+ *arg1=(Item *)(func->arguments()[1]);
+ if (arg1->const_item() && arg1->cols() == 1 &&
+ arg0->type() == Item::FUNC_ITEM &&
+ ((Item_func *) arg0)->functype() == Item_func::FT_FUNC &&
+ ((functype == Item_func::GE_FUNC && arg1->val_real() > 0) ||
+ (functype == Item_func::GT_FUNC && arg1->val_real() >=0)))
+ cond_func= (Item_func_match *) arg0;
+ else if (arg0->const_item() && arg0->cols() == 1 &&
+ arg1->type() == Item::FUNC_ITEM &&
+ ((Item_func *) arg1)->functype() == Item_func::FT_FUNC &&
+ ((functype == Item_func::LE_FUNC && arg0->val_real() > 0) ||
+ (functype == Item_func::LT_FUNC && arg0->val_real() >=0)))
+ cond_func= (Item_func_match *) arg1;
+ }
+ }
+ else if (cond->type() == Item::COND_ITEM)
+ {
+ List_iterator_fast<Item> li(*((Item_cond*) cond)->argument_list());
+
+ if (((Item_cond*) cond)->functype() == Item_func::COND_AND_FUNC)
+ {
+ Item *item;
+ while ((item=li++))
+ {
+ if (add_ft_keys(keyuse_array,stat,item,usable_tables))
+ return TRUE;
+ }
+ }
+ }
+
+ if (!cond_func || cond_func->key == NO_SUCH_KEY ||
+ !(usable_tables & cond_func->table->map))
+ return FALSE;
+
+ KEYUSE keyuse;
+ keyuse.table= cond_func->table;
+ keyuse.val = cond_func;
+ keyuse.key = cond_func->key;
+ keyuse.keypart= FT_KEYPART;
+ keyuse.used_tables=cond_func->key_item()->used_tables();
+ keyuse.optimize= 0;
+ keyuse.ref_table_rows= 0;
+ keyuse.keypart_map= 0;
+ keyuse.sj_pred_no= UINT_MAX;
+ keyuse.validity_ref= 0;
+ keyuse.null_rejecting= FALSE;
+ return insert_dynamic(keyuse_array,(uchar*) &keyuse);
+}
+
+
+static int
+sort_keyuse(KEYUSE *a,KEYUSE *b)
+{
+ int res;
+ if (a->table->tablenr != b->table->tablenr)
+ return (int) (a->table->tablenr - b->table->tablenr);
+ if (a->key != b->key)
+ return (int) (a->key - b->key);
+ if (a->key == MAX_KEY && b->key == MAX_KEY &&
+ a->used_tables != b->used_tables)
+ return (int) ((ulong) a->used_tables - (ulong) b->used_tables);
+ if (a->keypart != b->keypart)
+ return (int) (a->keypart - b->keypart);
+ // Place const values before other ones
+ if ((res= MY_TEST((a->used_tables & ~OUTER_REF_TABLE_BIT)) -
+ MY_TEST((b->used_tables & ~OUTER_REF_TABLE_BIT))))
+ return res;
+ /* Place rows that are not 'OPTIMIZE_REF_OR_NULL' first */
+ return (int) ((a->optimize & KEY_OPTIMIZE_REF_OR_NULL) -
+ (b->optimize & KEY_OPTIMIZE_REF_OR_NULL));
+}
+
+
+/*
+ Add to KEY_FIELD array all 'ref' access candidates within nested join.
+
+ This function populates KEY_FIELD array with entries generated from the
+ ON condition of the given nested join, and does the same for nested joins
+ contained within this nested join.
+
+ @param[in] nested_join_table Nested join pseudo-table to process
+ @param[in,out] end End of the key field array
+ @param[in,out] and_level And-level
+ @param[in,out] sargables Array of found sargable candidates
+
+
+ @note
+ We can add accesses to the tables that are direct children of this nested
+ join (1), and are not inner tables w.r.t their neighbours (2).
+
+ Example for #1 (outer brackets pair denotes nested join this function is
+ invoked for):
+ @code
+ ... LEFT JOIN (t1 LEFT JOIN (t2 ... ) ) ON cond
+ @endcode
+ Example for #2:
+ @code
+ ... LEFT JOIN (t1 LEFT JOIN t2 ) ON cond
+ @endcode
+ In examples 1-2 for condition cond, we can add 'ref' access candidates to
+ t1 only.
+ Example #3:
+ @code
+ ... LEFT JOIN (t1, t2 LEFT JOIN t3 ON inner_cond) ON cond
+ @endcode
+ Here we can add 'ref' access candidates for t1 and t2, but not for t3.
+*/
+
+static void add_key_fields_for_nj(JOIN *join, TABLE_LIST *nested_join_table,
+ KEY_FIELD **end, uint *and_level,
+ SARGABLE_PARAM **sargables)
+{
+ List_iterator<TABLE_LIST> li(nested_join_table->nested_join->join_list);
+ List_iterator<TABLE_LIST> li2(nested_join_table->nested_join->join_list);
+ bool have_another = FALSE;
+ table_map tables= 0;
+ TABLE_LIST *table;
+ DBUG_ASSERT(nested_join_table->nested_join);
+
+ while ((table= li++) || (have_another && (li=li2, have_another=FALSE,
+ (table= li++))))
+ {
+ if (table->nested_join)
+ {
+ if (!table->on_expr)
+ {
+ /* It's a semi-join nest. Walk into it as if it wasn't a nest */
+ have_another= TRUE;
+ li2= li;
+ li= List_iterator<TABLE_LIST>(table->nested_join->join_list);
+ }
+ else
+ add_key_fields_for_nj(join, table, end, and_level, sargables);
+ }
+ else
+ if (!table->on_expr)
+ tables |= table->table->map;
+ }
+ if (nested_join_table->on_expr)
+ nested_join_table->on_expr->add_key_fields(join, end, and_level, tables,
+ sargables);
+}
+
+
+void count_cond_for_nj(SELECT_LEX *sel, TABLE_LIST *nested_join_table)
+{
+ List_iterator<TABLE_LIST> li(nested_join_table->nested_join->join_list);
+ List_iterator<TABLE_LIST> li2(nested_join_table->nested_join->join_list);
+ bool have_another = FALSE;
+ TABLE_LIST *table;
+
+ while ((table= li++) || (have_another && (li=li2, have_another=FALSE,
+ (table= li++))))
+ if (table->nested_join)
+ {
+ if (!table->on_expr)
+ {
+ /* It's a semi-join nest. Walk into it as if it wasn't a nest */
+ have_another= TRUE;
+ li2= li;
+ li= List_iterator<TABLE_LIST>(table->nested_join->join_list);
+ }
+ else
+ count_cond_for_nj(sel, table);
+ }
+ if (nested_join_table->on_expr)
+ nested_join_table->on_expr->walk(&Item::count_sargable_conds, 0, sel);
+
+}
+
+/**
+ Update keyuse array with all possible keys we can use to fetch rows.
+
+ @param thd
+ @param[out] keyuse Put here ordered array of KEYUSE structures
+ @param join_tab Array in tablenr_order
+ @param tables Number of tables in join
+ @param cond WHERE condition (note that the function analyzes
+ join_tab[i]->on_expr too)
+ @param normal_tables Tables not inner w.r.t some outer join (ones
+ for which we can make ref access based the WHERE
+ clause)
+ @param select_lex current SELECT
+ @param[out] sargables Array of found sargable candidates
+
+ @retval
+ 0 OK
+ @retval
+ 1 Out of memory.
+*/
+
+static bool
+update_ref_and_keys(THD *thd, DYNAMIC_ARRAY *keyuse,JOIN_TAB *join_tab,
+ uint tables, COND *cond, table_map normal_tables,
+ SELECT_LEX *select_lex, SARGABLE_PARAM **sargables)
+{
+ uint and_level,i;
+ KEY_FIELD *key_fields, *end, *field;
+ uint sz;
+ uint m= MY_MAX(select_lex->max_equal_elems,1);
+ DBUG_ENTER("update_ref_and_keys");
+ DBUG_PRINT("enter", ("normal_tables: %llx", normal_tables));
+
+ SELECT_LEX *sel=thd->lex->current_select;
+ sel->cond_count= 0;
+ sel->between_count= 0;
+ if (cond)
+ cond->walk(&Item::count_sargable_conds, 0, sel);
+ for (i=0 ; i < tables ; i++)
+ {
+ if (*join_tab[i].on_expr_ref)
+ (*join_tab[i].on_expr_ref)->walk(&Item::count_sargable_conds, 0, sel);
+ }
+ {
+ List_iterator<TABLE_LIST> li(*join_tab->join->join_list);
+ TABLE_LIST *table;
+ while ((table= li++))
+ {
+ if (table->nested_join)
+ count_cond_for_nj(sel, table);
+ }
+ }
+
+ /*
+ We use the same piece of memory to store both KEY_FIELD
+ and SARGABLE_PARAM structure.
+ KEY_FIELD values are placed at the beginning this memory
+ while SARGABLE_PARAM values are put at the end.
+ All predicates that are used to fill arrays of KEY_FIELD
+ and SARGABLE_PARAM structures have at most 2 arguments
+ except BETWEEN predicates that have 3 arguments and
+ IN predicates.
+ This any predicate if it's not BETWEEN/IN can be used
+ directly to fill at most 2 array elements, either of KEY_FIELD
+ or SARGABLE_PARAM type. For a BETWEEN predicate 3 elements
+ can be filled as this predicate is considered as
+ saragable with respect to each of its argument.
+ An IN predicate can require at most 1 element as currently
+ it is considered as sargable only for its first argument.
+ Multiple equality can add elements that are filled after
+ substitution of field arguments by equal fields. There
+ can be not more than select_lex->max_equal_elems such
+ substitutions.
+ */
+ sz= MY_MAX(sizeof(KEY_FIELD),sizeof(SARGABLE_PARAM))*
+ ((sel->cond_count*2 + sel->between_count)*m+1);
+ if (!(key_fields=(KEY_FIELD*) thd->alloc(sz)))
+ DBUG_RETURN(TRUE); /* purecov: inspected */
+ and_level= 0;
+ field= end= key_fields;
+ *sargables= (SARGABLE_PARAM *) key_fields +
+ (sz - sizeof((*sargables)[0].field))/sizeof(SARGABLE_PARAM);
+ /* set a barrier for the array of SARGABLE_PARAM */
+ (*sargables)[0].field= 0;
+
+ if (my_init_dynamic_array2(thd->mem_root->psi_key, keyuse, sizeof(KEYUSE),
+ thd->alloc(sizeof(KEYUSE) * 20), 20, 64,
+ MYF(MY_THREAD_SPECIFIC)))
+ DBUG_RETURN(TRUE);
+
+ if (cond)
+ {
+ KEY_FIELD *saved_field= field;
+ cond->add_key_fields(join_tab->join, &end, &and_level, normal_tables,
+ sargables);
+ for (; field != end ; field++)
+ {
+
+ /* Mark that we can optimize LEFT JOIN */
+ if (field->val->type() == Item::NULL_ITEM &&
+ !field->field->real_maybe_null())
+ field->field->table->reginfo.not_exists_optimize=1;
+ }
+ field= saved_field;
+ }
+ for (i=0 ; i < tables ; i++)
+ {
+ /*
+ Block the creation of keys for inner tables of outer joins.
+ Here only the outer joins that can not be converted to
+ inner joins are left and all nests that can be eliminated
+ are flattened.
+ In the future when we introduce conditional accesses
+ for inner tables in outer joins these keys will be taken
+ into account as well.
+ */
+ if (*join_tab[i].on_expr_ref)
+ (*join_tab[i].on_expr_ref)->add_key_fields(join_tab->join, &end,
+ &and_level,
+ join_tab[i].table->map,
+ sargables);
+ }
+
+ /* Process ON conditions for the nested joins */
+ {
+ List_iterator<TABLE_LIST> li(*join_tab->join->join_list);
+ TABLE_LIST *table;
+ while ((table= li++))
+ {
+ if (table->nested_join)
+ add_key_fields_for_nj(join_tab->join, table, &end, &and_level,
+ sargables);
+ }
+ }
+
+ /* fill keyuse with found key parts */
+ for ( ; field != end ; field++)
+ {
+ if (add_key_part(keyuse,field))
+ DBUG_RETURN(TRUE);
+ }
+
+ if (select_lex->ftfunc_list->elements)
+ {
+ if (add_ft_keys(keyuse,join_tab,cond,normal_tables))
+ DBUG_RETURN(TRUE);
+ }
+
+ DBUG_RETURN(FALSE);
+}
+
+/*
+ check if key could be used with eq_ref
+
+ The assumption is that all previous key parts where used
+*/
+
+static void remember_if_eq_ref_key(JOIN *join, KEYUSE *use)
+{
+ DBUG_ASSERT(use->keypart != FT_KEYPART && use->key != MAX_KEY);
+ TABLE *table= use->table;
+ KEY *key= table->key_info+use->key;
+ ulong key_flags= table->actual_key_flags(key);
+
+ /*
+ Check if possible eq_ref key
+ This may include keys that does not have HA_NULL_PART_KEY
+ set, but this is ok as best_access_path will resolve this.
+ */
+ if ((key_flags & (HA_NOSAME | HA_EXT_NOSAME)))
+ {
+ uint key_parts= table->actual_n_key_parts(key);
+ if (use->keypart+1 == key_parts)
+ join->eq_ref_tables|= table->map;
+ }
+}
+
+
+/**
+ Sort the array of possible keys and remove the following key parts:
+ - ref if there is a keypart which is a ref and a const.
+ (e.g. if there is a key(a,b) and the clause is a=3 and b=7 and b=t2.d,
+ then we skip the key part corresponding to b=t2.d)
+ - keyparts without previous keyparts
+ (e.g. if there is a key(a,b,c) but only b < 5 (or a=2 and c < 3) is
+ used in the query, we drop the partial key parts from consideration).
+ Special treatment for ft-keys.
+ Update join->eq_ref_tables with a bitmap of all tables that can possible
+ have a EQ_REF key.
+*/
+
+bool sort_and_filter_keyuse(JOIN *join, DYNAMIC_ARRAY *keyuse,
+ bool skip_unprefixed_keyparts)
+{
+ THD *thd= join->thd;
+ KEYUSE key_end, *prev, *save_pos, *use;
+ uint found_eq_constant, i;
+ bool found_unprefixed_key_part= 0;
+
+ join->eq_ref_tables= 0;
+ DBUG_ASSERT(keyuse->elements);
+
+ my_qsort(keyuse->buffer, keyuse->elements, sizeof(KEYUSE),
+ (qsort_cmp) sort_keyuse);
+
+ bzero((char*) &key_end, sizeof(key_end)); /* Add for easy testing */
+ if (insert_dynamic(keyuse, (uchar*) &key_end))
+ return TRUE;
+
+ if (optimizer_flag(thd, OPTIMIZER_SWITCH_DERIVED_WITH_KEYS))
+ generate_derived_keys(keyuse);
+
+ use= save_pos= dynamic_element(keyuse,0,KEYUSE*);
+ prev= &key_end;
+ found_eq_constant= 0;
+ /* Loop over all elements except the last 'key_end' */
+ for (i=0 ; i < keyuse->elements-1 ; i++,use++)
+ {
+ if (!use->is_for_hash_join())
+ {
+ if (!(use->used_tables & ~OUTER_REF_TABLE_BIT) &&
+ use->optimize != KEY_OPTIMIZE_REF_OR_NULL)
+ use->table->const_key_parts[use->key]|= use->keypart_map;
+ if (use->keypart != FT_KEYPART)
+ {
+ if (use->key == prev->key && use->table == prev->table)
+ {
+ if (prev->keypart == use->keypart && found_eq_constant)
+ continue;
+ if (prev->keypart+1 < use->keypart)
+ {
+ found_unprefixed_key_part= 1;
+ if (skip_unprefixed_keyparts)
+ continue; /* remove */
+ }
+ }
+ else
+ {
+ /* Key changed, check if previous key was a primary/unique key lookup */
+ if (prev != &key_end && !found_unprefixed_key_part)
+ remember_if_eq_ref_key(join, prev);
+ found_unprefixed_key_part= 0;
+ if (use->keypart != 0)
+ {
+ found_unprefixed_key_part= 1;
+ if (skip_unprefixed_keyparts)
+ continue; /* remove - first found key part must be 0 */
+ }
+ }
+ }
+ else /* FT_KEY_PART */
+ {
+ if (prev != &key_end && !found_unprefixed_key_part)
+ remember_if_eq_ref_key(join, prev);
+ found_unprefixed_key_part= 1; // This key cannot be EQ_REF
+ }
+ prev= use;
+ found_eq_constant= !use->used_tables;
+ use->table->reginfo.join_tab->checked_keys.set_bit(use->key);
+ }
+ else
+ {
+ if (prev != &key_end && !found_unprefixed_key_part)
+ remember_if_eq_ref_key(join, prev);
+ prev= &key_end;
+ }
+ /*
+ Old gcc used a memcpy(), which is undefined if save_pos==use:
+ http://gcc.gnu.org/bugzilla/show_bug.cgi?id=19410
+ http://gcc.gnu.org/bugzilla/show_bug.cgi?id=39480
+ This also disables a valgrind warning, so better to have the test.
+ */
+ if (save_pos != use)
+ *save_pos= *use;
+ /* Save ptr to first use */
+ if (!use->table->reginfo.join_tab->keyuse)
+ use->table->reginfo.join_tab->keyuse= save_pos;
+ save_pos++;
+ }
+ if (prev != &key_end && !found_unprefixed_key_part)
+ remember_if_eq_ref_key(join, prev);
+ i= (uint) (save_pos-(KEYUSE*) keyuse->buffer);
+ (void) set_dynamic(keyuse,(uchar*) &key_end,i);
+ keyuse->elements= i;
+
+ return FALSE;
+}
+
+
+/**
+ Update some values in keyuse for faster choose_plan() loop.
+*/
+
+void optimize_keyuse(JOIN *join, DYNAMIC_ARRAY *keyuse_array)
+{
+ KEYUSE *end,*keyuse= dynamic_element(keyuse_array, 0, KEYUSE*);
+
+ for (end= keyuse+ keyuse_array->elements ; keyuse < end ; keyuse++)
+ {
+ table_map map;
+ /*
+ If we find a ref, assume this table matches a proportional
+ part of this table.
+ For example 100 records matching a table with 5000 records
+ gives 5000/100 = 50 records per key
+ Constant tables are ignored.
+ To avoid bad matches, we don't make ref_table_rows less than 100.
+ */
+ keyuse->ref_table_rows= ~(ha_rows) 0; // If no ref
+ if (keyuse->used_tables &
+ (map= (keyuse->used_tables & ~join->const_table_map &
+ ~OUTER_REF_TABLE_BIT)))
+ {
+ uint n_tables= my_count_bits(map);
+ if (n_tables == 1) // Only one table
+ {
+ DBUG_ASSERT(!(map & PSEUDO_TABLE_BITS)); // Must be a real table
+ Table_map_iterator it(map);
+ int tablenr= it.next_bit();
+ DBUG_ASSERT(tablenr != Table_map_iterator::BITMAP_END);
+ TABLE *tmp_table=join->table[tablenr];
+ if (tmp_table) // already created
+ keyuse->ref_table_rows= MY_MAX(tmp_table->file->stats.records, 100);
+ }
+ }
+ /*
+ Outer reference (external field) is constant for single executing
+ of subquery
+ */
+ if (keyuse->used_tables == OUTER_REF_TABLE_BIT)
+ keyuse->ref_table_rows= 1;
+ }
+}
+
+/**
+ Check for the presence of AGGFN(DISTINCT a) queries that may be subject
+ to loose index scan.
+
+ Check if the query is a subject to AGGFN(DISTINCT) using loose index scan
+ (QUICK_GROUP_MIN_MAX_SELECT).
+ Optionally (if out_args is supplied) will push the arguments of
+ AGGFN(DISTINCT) to the list
+
+ Check for every COUNT(DISTINCT), AVG(DISTINCT) or
+ SUM(DISTINCT). These can be resolved by Loose Index Scan as long
+ as all the aggregate distinct functions refer to the same
+ fields. Thus:
+
+ SELECT AGGFN(DISTINCT a, b), AGGFN(DISTINCT b, a)... => can use LIS
+ SELECT AGGFN(DISTINCT a), AGGFN(DISTINCT a) ... => can use LIS
+ SELECT AGGFN(DISTINCT a, b), AGGFN(DISTINCT a) ... => cannot use LIS
+ SELECT AGGFN(DISTINCT a), AGGFN(DISTINCT b) ... => cannot use LIS
+ etc.
+
+ @param join the join to check
+ @param[out] out_args Collect the arguments of the aggregate functions
+ to a list. We don't worry about duplicates as
+ these will be sorted out later in
+ get_best_group_min_max.
+
+ @return does the query qualify for indexed AGGFN(DISTINCT)
+ @retval true it does
+ @retval false AGGFN(DISTINCT) must apply distinct in it.
+*/
+
+bool
+is_indexed_agg_distinct(JOIN *join, List<Item_field> *out_args)
+{
+ Item_sum **sum_item_ptr;
+ bool result= false;
+
+ if (join->table_count != 1 || /* reference more than 1 table */
+ join->select_distinct || /* or a DISTINCT */
+ join->select_lex->olap == ROLLUP_TYPE) /* Check (B3) for ROLLUP */
+ return false;
+
+ Bitmap<MAX_FIELDS> first_aggdistinct_fields;
+ bool first_aggdistinct_fields_initialized= false;
+ for (sum_item_ptr= join->sum_funcs; *sum_item_ptr; sum_item_ptr++)
+ {
+ Item_sum *sum_item= *sum_item_ptr;
+ Item *expr;
+ /* aggregate is not AGGFN(DISTINCT) or more than 1 argument to it */
+ switch (sum_item->sum_func())
+ {
+ case Item_sum::MIN_FUNC:
+ case Item_sum::MAX_FUNC:
+ continue;
+ case Item_sum::COUNT_DISTINCT_FUNC:
+ break;
+ case Item_sum::AVG_DISTINCT_FUNC:
+ case Item_sum::SUM_DISTINCT_FUNC:
+ if (sum_item->get_arg_count() == 1)
+ break;
+ /* fall through */
+ default: return false;
+ }
+ /*
+ We arrive here for every COUNT(DISTINCT),AVG(DISTINCT) or SUM(DISTINCT).
+ Collect the arguments of the aggregate functions to a list.
+ We don't worry about duplicates as these will be sorted out later in
+ get_best_group_min_max
+ */
+ Bitmap<MAX_FIELDS> cur_aggdistinct_fields;
+ cur_aggdistinct_fields.clear_all();
+ for (uint i= 0; i < sum_item->get_arg_count(); i++)
+ {
+ expr= sum_item->get_arg(i);
+ /* The AGGFN(DISTINCT) arg is not an attribute? */
+ if (expr->real_item()->type() != Item::FIELD_ITEM)
+ return false;
+
+ Item_field* item= static_cast<Item_field*>(expr->real_item());
+ if (out_args)
+ out_args->push_back(item, join->thd->mem_root);
+
+ cur_aggdistinct_fields.set_bit(item->field->field_index);
+ result= true;
+ }
+ /*
+ If there are multiple aggregate functions, make sure that they all
+ refer to exactly the same set of columns.
+ */
+ if (!first_aggdistinct_fields_initialized)
+ {
+ first_aggdistinct_fields= cur_aggdistinct_fields;
+ first_aggdistinct_fields_initialized=true;
+ }
+ else if (first_aggdistinct_fields != cur_aggdistinct_fields)
+ return false;
+ }
+
+ return result;
+}
+
+
+/**
+ Discover the indexes that can be used for GROUP BY or DISTINCT queries.
+
+ If the query has a GROUP BY clause, find all indexes that contain all
+ GROUP BY fields, and add those indexes to join->const_keys.
+
+ If the query has a DISTINCT clause, find all indexes that contain all
+ SELECT fields, and add those indexes to join->const_keys.
+ This allows later on such queries to be processed by a
+ QUICK_GROUP_MIN_MAX_SELECT.
+
+ @param join
+ @param join_tab
+
+ @return
+ None
+*/
+
+static void
+add_group_and_distinct_keys(JOIN *join, JOIN_TAB *join_tab)
+{
+ List<Item_field> indexed_fields;
+ List_iterator<Item_field> indexed_fields_it(indexed_fields);
+ ORDER *cur_group;
+ Item_field *cur_item;
+ key_map possible_keys(0);
+
+ if (join->group_list)
+ { /* Collect all query fields referenced in the GROUP clause. */
+ for (cur_group= join->group_list; cur_group; cur_group= cur_group->next)
+ (*cur_group->item)->walk(&Item::collect_item_field_processor, 0,
+ &indexed_fields);
+ }
+ else if (join->select_distinct)
+ { /* Collect all query fields referenced in the SELECT clause. */
+ List<Item> &select_items= join->fields_list;
+ List_iterator<Item> select_items_it(select_items);
+ Item *item;
+ while ((item= select_items_it++))
+ item->walk(&Item::collect_item_field_processor, 0, &indexed_fields);
+ }
+ else if (!join->tmp_table_param.sum_func_count ||
+ !is_indexed_agg_distinct(join, &indexed_fields))
+ {
+ /*
+ There where no GROUP BY fields and also either no aggregate
+ functions or not all aggregate functions where used with the
+ same DISTINCT (or MIN() / MAX() that works similarly).
+ Nothing to do there.
+ */
+ return;
+ }
+
+ if (indexed_fields.elements == 0)
+ {
+ /* There where no index we could use to satisfy the GROUP BY */
+ return;
+ }
+
+ /* Intersect the keys of all group fields. */
+ cur_item= indexed_fields_it++;
+ possible_keys.merge(cur_item->field->part_of_key);
+ while ((cur_item= indexed_fields_it++))
+ {
+ possible_keys.intersect(cur_item->field->part_of_key);
+ }
+
+ if (!possible_keys.is_clear_all())
+ join_tab->const_keys.merge(possible_keys);
+}
+
+
+/*****************************************************************************
+ Go through all combinations of not marked tables and find the one
+ which uses least records
+*****************************************************************************/
+
+/** Save const tables first as used tables. */
+
+void set_position(JOIN *join,uint idx,JOIN_TAB *table,KEYUSE *key)
+{
+ join->positions[idx].table= table;
+ join->positions[idx].key=key;
+ join->positions[idx].records_read=1.0; /* This is a const table */
+ join->positions[idx].cond_selectivity= 1.0;
+ join->positions[idx].ref_depend_map= 0;
+ join->positions[idx].partial_join_cardinality= 1;
+
+// join->positions[idx].loosescan_key= MAX_KEY; /* Not a LooseScan */
+ join->positions[idx].sj_strategy= SJ_OPT_NONE;
+ join->positions[idx].use_join_buffer= FALSE;
+ join->positions[idx].range_rowid_filter_info= 0;
+
+ /* Move the const table as down as possible in best_ref */
+ JOIN_TAB **pos=join->best_ref+idx+1;
+ JOIN_TAB *next=join->best_ref[idx];
+ for (;next != table ; pos++)
+ {
+ JOIN_TAB *tmp=pos[0];
+ pos[0]=next;
+ next=tmp;
+ }
+ join->best_ref[idx]=table;
+ join->positions[idx].spl_plan= 0;
+ join->positions[idx].spl_pd_boundary= 0;
+}
+
+
+/*
+ Estimate how many records we will get if we read just this table and apply
+ a part of WHERE that can be checked for it.
+
+ @param s Current JOIN_TAB
+ @param use_cond_selectivity Value of optimizer_use_condition_selectivity.
+ If > 1 then use table->cond_selecitivity.
+ @param force_estiamte Set to 1 if we should not call
+ use_found_constraint. To be deleted in 11.0
+ @return 0.0 No matching rows
+ @return >= 1.0 Number of expected matching rows
+
+ @detail
+ Estimate how many records we will get if we
+ - read the given table with its "independent" access method (either quick
+ select or full table/index scan),
+ - apply the part of WHERE that refers only to this table.
+
+ @see also
+ table_cond_selectivity() produces selectivity of condition that is checked
+ after joining rows from this table to rows from preceding tables.
+*/
+
+static double apply_selectivity_for_table(JOIN_TAB *s,
+ uint use_cond_selectivity,
+ bool *force_estimate)
+{
+ ha_rows records;
+ double dbl_records;
+
+ if (use_cond_selectivity > 1)
+ {
+ TABLE *table= s->table;
+ double sel= table->cond_selectivity;
+ double table_records= rows2double(s->records);
+ dbl_records= table_records * sel;
+ *force_estimate= 1; // Don't call use_found_constraint()
+ return dbl_records;
+ }
+
+ records = s->found_records;
+
+ /*
+ If applicable, get a more accurate estimate.
+ */
+ DBUG_ASSERT(s->table->opt_range_condition_rows <= s->found_records);
+ if (s->table->opt_range_condition_rows != s->found_records)
+ {
+ *force_estimate= 1; // Don't call use_found_constraint()
+ records= s->table->opt_range_condition_rows;
+ }
+
+ dbl_records= (double)records;
+ return dbl_records;
+}
+
+/*
+ Take into account that the table's WHERE clause has conditions on earlier
+ tables that can reduce the number of accepted rows.
+
+ @param records Number of original rows (after selectivity)
+
+ If there is a filtering condition on the table (i.e. ref analyzer found
+ at least one "table.keyXpartY= exprZ", where exprZ refers only to tables
+ preceding this table in the join order we're now considering), then
+ assume that 25% of the rows will be filtered out by this condition.
+
+ This heuristic is supposed to force tables used in exprZ to be before
+ this table in join order.
+*/
+
+inline double use_found_constraint(double records)
+{
+ records-= records/4;
+ return records;
+}
+
+
+/*
+ Calculate the cost of reading a set of rows trough an index
+
+ Logically this is identical to the code in multi_range_read_info_const()
+ excepts the function also takes into account io_blocks and multiple
+ ranges.
+
+ One main difference between the functions is that
+ multi_range_read_info_const() adds a very small cost per range
+ (IDX_LOOKUP_COST) and also MULTI_RANGE_READ_SETUP_COST, to ensure that
+ 'ref' is preferred slightly over ranges.
+*/
+
+double cost_for_index_read(const THD *thd, const TABLE *table, uint key,
+ ha_rows records, ha_rows worst_seeks)
+{
+ DBUG_ENTER("cost_for_index_read");
+ double cost;
+ handler *file= table->file;
+
+ set_if_smaller(records, (ha_rows) thd->variables.max_seeks_for_key);
+ if (file->is_clustering_key(key))
+ cost= file->read_time(key, 1, records);
+ else
+ if (table->covering_keys.is_set(key))
+ cost= file->keyread_time(key, 1, records);
+ else
+ cost= ((file->keyread_time(key, 0, records) +
+ file->read_time(key, 1, MY_MIN(records, worst_seeks))));
+
+ DBUG_PRINT("statistics", ("cost: %.3f", cost));
+ DBUG_RETURN(cost);
+}
+
+
+/*
+ Adjust cost from table->quick_costs calculated by
+ multi_range_read_info_const() to be comparable with cost_for_index_read()
+
+ This functions is needed because best_access_path() doesn't add
+ TIME_FOR_COMPARE to it's costs until very late.
+ Preferably we should fix so that all costs are comparably.
+ (All compared costs should include TIME_FOR_COMPARE for all found
+ rows).
+*/
+
+double adjust_quick_cost(double quick_cost, ha_rows records)
+{
+ double cost= (quick_cost - MULTI_RANGE_READ_SETUP_COST -
+ rows2double(records)/TIME_FOR_COMPARE);
+ DBUG_ASSERT(cost > 0.0);
+ return cost;
+}
+
+
+/*
+ @brief
+ Compute the fanout of hash join operation using EITS data
+*/
+
+double hash_join_fanout(JOIN *join, JOIN_TAB *s, table_map remaining_tables,
+ double rnd_records, KEYUSE *hj_start_key,
+ bool *stats_found)
+{
+ THD *thd= join->thd;
+ /*
+ Before doing the hash join, we will scan the table and apply the local part
+ of the WHERE condition. This will produce rnd_records.
+
+ The EITS statistics describes the entire table. Calling
+
+ table->field[N]->get_avg_frequency()
+
+ produces average #rows in the table with some value.
+
+ What happens if we filter out rows so that rnd_records rows are left?
+ Something between the two outcomes:
+ A. filtering removes a fraction of rows for each value:
+ avg_frequency=avg_frequency * condition_selectivity
+
+ B. filtering removes entire groups of rows with the same value, but
+ the remaining groups remain of the same size.
+
+ We make pessimistic assumption and assume B.
+ We also handle an edge case: if rnd_records is less than avg_frequency,
+ assume we'll get rnd_records rows with the same value, and return
+ rnd_records as the fanout estimate.
+ */
+ double min_freq= rnd_records;
+
+ Json_writer_object trace_obj(thd, "hash_join_cardinality");
+ /*
+ There can be multiple KEYUSE referring to same or different columns
+
+ KEYUSE(tbl.col1 = ...)
+ KEYUSE(tbl.col1 = ...)
+ KEYUSE(tbl.col2 = ...)
+
+ Hash join code can use multiple columns: (col1, col2) for joining.
+ We need n_distinct({col1, col2}).
+
+ EITS only has statistics on individual columns: n_distinct(col1),
+ n_distinct(col2).
+
+ Our current solution is to be very conservative and use selectivity
+ of one column with the lowest avg_frequency.
+
+ In the future, we should an approach that cautiosly takes into account
+ multiple KEYUSEs either multiply by number of equalities or by sqrt
+ of the second most selective equality.
+ */
+ Json_writer_array trace_arr(thd, "hash_join_columns");
+ for (KEYUSE *keyuse= hj_start_key;
+ keyuse->table == s->table && is_hash_join_key_no(keyuse->key);
+ keyuse++)
+ {
+ if (!(remaining_tables & keyuse->used_tables) &&
+ (!keyuse->validity_ref || *keyuse->validity_ref) &&
+ s->access_from_tables_is_allowed(keyuse->used_tables,
+ join->sjm_lookup_tables))
+ {
+ Field *field= s->table->field[keyuse->keypart];
+ if (is_eits_usable(field))
+ {
+ double freq= field->read_stats->get_avg_frequency();
+
+ Json_writer_object trace_field(thd);
+ trace_field.add("field",field->field_name.str).
+ add("avg_frequency", freq);
+ if (freq < min_freq)
+ min_freq= freq;
+ *stats_found= 1;
+ }
+ }
+ }
+ trace_arr.end();
+ trace_obj.add("rows", min_freq);
+ return min_freq;
+}
+
+
+/**
+ Find the best access path for an extension of a partial execution
+ plan and add this path to the plan.
+
+ The function finds the best access path to table 's' from the passed
+ partial plan where an access path is the general term for any means to
+ access the data in 's'. An access path may use either an index or a scan,
+ whichever is cheaper. The input partial plan is passed via the array
+ 'join->positions' of length 'idx'. The chosen access method for 's' and its
+ cost are stored in 'join->positions[idx]'.
+
+ @param join pointer to the structure providing all context info
+ for the query
+ @param s the table to be joined by the function
+ @param thd thread for the connection that submitted the query
+ @param remaining_tables set of tables not included into the partial plan yet
+ @param idx the length of the partial plan
+ @param disable_jbuf TRUE<=> Don't use join buffering
+ @param record_count estimate for the number of records returned by the
+ partial plan
+ @param pos OUT Table access plan
+ @param loose_scan_pos OUT Table plan that uses loosescan, or set cost to
+ DBL_MAX if not possible.
+
+ @return
+ None
+*/
+
+void
+best_access_path(JOIN *join,
+ JOIN_TAB *s,
+ table_map remaining_tables,
+ const POSITION *join_positions,
+ uint idx,
+ bool disable_jbuf,
+ double record_count,
+ POSITION *pos,
+ POSITION *loose_scan_pos)
+{
+ THD *thd= join->thd;
+ uint use_cond_selectivity= thd->variables.optimizer_use_condition_selectivity;
+ KEYUSE *best_key= 0;
+ uint best_max_key_part= 0;
+ my_bool found_constraint= 0;
+ double best= DBL_MAX;
+ double best_time= DBL_MAX;
+ double records= DBL_MAX;
+ ha_rows records_for_key= 0;
+ table_map best_ref_depends_map= 0;
+ /*
+ key_dependent is 0 if all key parts could be used or if there was an
+ EQ_REF table found (which uses all key parts). In other words, we cannot
+ find a better key for the table even if remaining_tables is reduced.
+ Otherwise it's a bitmap of tables that could improve key usage.
+ */
+ table_map key_dependent= 0;
+ Range_rowid_filter_cost_info *best_filter= 0;
+ double tmp;
+ double keyread_tmp= 0;
+ ha_rows rec;
+ bool best_uses_jbuf= FALSE;
+ MY_BITMAP *eq_join_set= &s->table->eq_join_set;
+ KEYUSE *hj_start_key= 0;
+ SplM_plan_info *spl_plan= 0;
+ table_map spl_pd_boundary= 0;
+ Range_rowid_filter_cost_info *filter= 0;
+ const char* cause= NULL;
+ enum join_type best_type= JT_UNKNOWN, type= JT_UNKNOWN;
+
+ disable_jbuf= disable_jbuf || idx == join->const_tables;
+
+ Loose_scan_opt loose_scan_opt;
+ DBUG_ENTER("best_access_path");
+
+ Json_writer_object trace_wrapper(thd, "best_access_path");
+
+ trace_wrapper.add_table_name(s);
+
+ bitmap_clear_all(eq_join_set);
+
+ loose_scan_opt.init(join, s, remaining_tables);
+
+ if (s->table->is_splittable())
+ spl_plan= s->choose_best_splitting(idx,
+ remaining_tables,
+ join_positions,
+ &spl_pd_boundary);
+
+ Json_writer_array trace_paths(thd, "considered_access_paths");
+ if (s->keyuse)
+ { /* Use key if possible */
+ KEYUSE *keyuse;
+ KEYUSE *start_key=0;
+ TABLE *table= s->table;
+ double best_records= DBL_MAX;
+ uint max_key_part=0;
+
+ /* Test how we can use keys */
+ rec= s->records/MATCHING_ROWS_IN_OTHER_TABLE; // Assumed records/key
+ for (keyuse=s->keyuse ; keyuse->table == table ;)
+ {
+ KEY *keyinfo;
+ ulong key_flags;
+ uint key_parts;
+ key_part_map found_part= 0;
+ key_part_map notnull_part=0; // key parts which won't have NULL in lookup tuple.
+ table_map found_ref= 0;
+ uint key= keyuse->key;
+ filter= 0;
+ bool ft_key= (keyuse->keypart == FT_KEYPART);
+ /* Bitmap of keyparts where the ref access is over 'keypart=const': */
+ key_part_map const_part= 0;
+ /* The or-null keypart in ref-or-null access: */
+ key_part_map ref_or_null_part= 0;
+ key_part_map all_parts= 0;
+
+ if (is_hash_join_key_no(key))
+ {
+ /*
+ Hash join as any join employing join buffer can be used to join
+ only those tables that are joined after the first non const table
+ */
+ if (!(remaining_tables & keyuse->used_tables) &&
+ idx > join->const_tables)
+ {
+ if (!hj_start_key)
+ hj_start_key= keyuse;
+ bitmap_set_bit(eq_join_set, keyuse->keypart);
+ }
+ keyuse++;
+ continue;
+ }
+
+ keyinfo= table->key_info+key;
+ key_parts= table->actual_n_key_parts(keyinfo);
+ key_flags= table->actual_key_flags(keyinfo);
+
+ /* Calculate how many key segments of the current key we can use */
+ start_key= keyuse;
+
+ loose_scan_opt.next_ref_key();
+ DBUG_PRINT("info", ("Considering ref access on key %s",
+ keyuse->table->key_info[keyuse->key].name.str));
+
+ do /* For each keypart */
+ {
+ uint keypart= keyuse->keypart;
+ table_map best_part_found_ref= 0, key_parts_dependent= 0;
+ double best_prev_record_reads= DBL_MAX;
+
+ do /* For each way to access the keypart */
+ {
+ /*
+ if 1. expression doesn't refer to forward tables
+ 2. we won't get two ref-or-null's
+ */
+ all_parts|= keyuse->keypart_map;
+ if (!(remaining_tables & keyuse->used_tables) &&
+ (!keyuse->validity_ref || *keyuse->validity_ref) &&
+ s->access_from_tables_is_allowed(keyuse->used_tables,
+ join->sjm_lookup_tables) &&
+ !(ref_or_null_part && (keyuse->optimize &
+ KEY_OPTIMIZE_REF_OR_NULL)))
+ {
+ found_part|= keyuse->keypart_map;
+ key_parts_dependent= 0;
+ if (!(keyuse->used_tables & ~join->const_table_map))
+ const_part|= keyuse->keypart_map;
+
+ if (!keyuse->val->maybe_null() || keyuse->null_rejecting)
+ notnull_part|=keyuse->keypart_map;
+
+ double tmp2= prev_record_reads(join_positions, idx,
+ (found_ref | keyuse->used_tables));
+ if (tmp2 < best_prev_record_reads)
+ {
+ best_part_found_ref= keyuse->used_tables & ~join->const_table_map;
+ best_prev_record_reads= tmp2;
+ }
+ if (rec > keyuse->ref_table_rows)
+ rec= keyuse->ref_table_rows;
+ /*
+ If there is one 'key_column IS NULL' expression, we can
+ use this ref_or_null optimisation of this field
+ */
+ if (keyuse->optimize & KEY_OPTIMIZE_REF_OR_NULL)
+ ref_or_null_part |= keyuse->keypart_map;
+ }
+ else if (!(found_part & keyuse->keypart_map))
+ key_parts_dependent|= keyuse->used_tables;
+
+ loose_scan_opt.add_keyuse(remaining_tables, keyuse);
+ keyuse++;
+ } while (keyuse->table == table && keyuse->key == key &&
+ keyuse->keypart == keypart);
+ /* If we found a usable key, remember the dependent tables */
+ if (all_parts & 1)
+ key_dependent|= key_parts_dependent;
+ found_ref|= best_part_found_ref;
+ } while (keyuse->table == table && keyuse->key == key);
+
+ /*
+ Assume that that each key matches a proportional part of table.
+ */
+ if (!found_part && !ft_key && !loose_scan_opt.have_a_case())
+ continue; // Nothing usable found
+
+ if (rec < MATCHING_ROWS_IN_OTHER_TABLE)
+ rec= MATCHING_ROWS_IN_OTHER_TABLE; // Fix for small tables
+
+ Json_writer_object trace_access_idx(thd);
+ /*
+ full text keys require special treatment
+ */
+ if (ft_key)
+ {
+ /*
+ Really, there should be records=0.0 (yes!)
+ but 1.0 would be probably safer
+ */
+ tmp= prev_record_reads(join_positions, idx, found_ref);
+ records= 1.0;
+ type= JT_FT;
+ trace_access_idx.add("access_type", join_type_str[type])
+ .add("full-text index", keyinfo->name);
+ }
+ else
+ {
+ found_constraint= MY_TEST(found_part);
+ loose_scan_opt.check_ref_access_part1(s, key, start_key, found_part);
+
+ /* Check if we found full key */
+ const key_part_map all_key_parts= PREV_BITS(uint, key_parts);
+ if (found_part == all_key_parts && !ref_or_null_part)
+ { /* use eq key */
+ max_key_part= (uint) ~0;
+ /*
+ If the index is a unique index (1), and
+ - all its columns are not null (2), or
+ - equalities we are using reject NULLs (3)
+ then the estimate is rows=1.
+ */
+ if ((key_flags & (HA_NOSAME | HA_EXT_NOSAME)) && // (1)
+ (!(key_flags & HA_NULL_PART_KEY) || // (2)
+ all_key_parts == notnull_part)) // (3)
+ {
+ /* Check that eq_ref_tables are correctly updated */
+ DBUG_ASSERT(join->eq_ref_tables & table->map);
+ /* TODO: Adjust cost for covering and clustering key */
+ type= JT_EQ_REF;
+ trace_access_idx.add("access_type", join_type_str[type])
+ .add("index", keyinfo->name);
+
+ if (!found_ref && table->opt_range_keys.is_set(key))
+ tmp= adjust_quick_cost(table->opt_range[key].cost, 1);
+ else
+ tmp= table->file->avg_io_cost();
+ tmp*= prev_record_reads(join_positions, idx,
+ found_ref);
+ records=1.0;
+ }
+ else
+ {
+ type= JT_REF;
+ trace_access_idx.add("access_type", join_type_str[type])
+ .add("index", keyinfo->name);
+ if (!found_ref)
+ { /* We found a const key */
+ /*
+ ReuseRangeEstimateForRef-1:
+ We get here if we've found a ref(const) (c_i are constants):
+ "(keypart1=c1) AND ... AND (keypartN=cN)" [ref_const_cond]
+
+ If range optimizer was able to construct a "range"
+ access on this index, then its condition "quick_cond" was
+ eqivalent to ref_const_cond (*), and we can re-use E(#rows)
+ from the range optimizer.
+
+ Proof of (*): By properties of range and ref optimizers
+ quick_cond will be equal or tighther than ref_const_cond.
+ ref_const_cond already covers "smallest" possible interval -
+ a singlepoint interval over all keyparts. Therefore,
+ quick_cond is equivalent to ref_const_cond (if it was an
+ empty interval we wouldn't have got here).
+ */
+ if (table->opt_range_keys.is_set(key))
+ {
+ records= (double) table->opt_range[key].rows;
+ trace_access_idx.add("used_range_estimates", true);
+ tmp= adjust_quick_cost(table->opt_range[key].cost,
+ table->opt_range[key].rows);
+ goto got_cost;
+ }
+ else
+ {
+ /* quick_range couldn't use key! */
+ records= (double) s->records/rec;
+ trace_access_idx.add("used_range_estimates", false)
+ .add("reason", "not available");
+ }
+ }
+ else
+ {
+ if (!(records= keyinfo->actual_rec_per_key(key_parts-1)))
+ { /* Prefer longer keys */
+ trace_access_idx.add("rec_per_key_stats_missing", true);
+ records=
+ ((double) s->records / (double) rec *
+ (1.0 +
+ ((double) (table->s->max_key_length-keyinfo->key_length) /
+ (double) table->s->max_key_length)));
+ if (records < 2.0)
+ records=2.0; /* Can't be as good as a unique */
+ }
+ /*
+ ReuseRangeEstimateForRef-2: We get here if we could not reuse
+ E(#rows) from range optimizer. Make another try:
+
+ If range optimizer produced E(#rows) for a prefix of the ref
+ access we're considering, and that E(#rows) is lower then our
+ current estimate, make an adjustment. The criteria of when we
+ can make an adjustment is a special case of the criteria used
+ in ReuseRangeEstimateForRef-3.
+ */
+ if (table->opt_range_keys.is_set(key) &&
+ (const_part &
+ (((key_part_map)1 << table->opt_range[key].key_parts)-1)) ==
+ (((key_part_map)1 << table->opt_range[key].key_parts)-1) &&
+ table->opt_range[key].ranges == 1 &&
+ records > (double) table->opt_range[key].rows)
+ {
+ records= (double) table->opt_range[key].rows;
+ trace_access_idx.add("used_range_estimates", "clipped down");
+ }
+ else
+ {
+ trace_access_idx.add("used_range_estimates", false);
+ if (table->opt_range_keys.is_set(key))
+ {
+ trace_access_idx.add("reason", "not better than ref estimates");
+ }
+ else
+ {
+ trace_access_idx.add("reason", "not available");
+ }
+ }
+ }
+ /* Limit the number of matched rows */
+ tmp= cost_for_index_read(thd, table, key, (ha_rows) records,
+ (ha_rows) s->worst_seeks);
+ records_for_key= (ha_rows) records;
+ set_if_smaller(records_for_key, thd->variables.max_seeks_for_key);
+ keyread_tmp= table->file->keyread_time(key, 1, records_for_key);
+ got_cost:
+ tmp= COST_MULT(tmp, record_count);
+ keyread_tmp= COST_MULT(keyread_tmp, record_count);
+ }
+ }
+ else
+ {
+ type = ref_or_null_part ? JT_REF_OR_NULL : JT_REF;
+ trace_access_idx.add("access_type", join_type_str[type])
+ .add("index", keyinfo->name);
+ /*
+ Use as much key-parts as possible and a uniq key is better
+ than a not unique key
+ Set tmp to (previous record count) * (records / combination)
+ */
+ if ((found_part & 1) &&
+ (!(table->file->index_flags(key, 0, 0) & HA_ONLY_WHOLE_INDEX) ||
+ found_part == PREV_BITS(uint,keyinfo->user_defined_key_parts)))
+ {
+ max_key_part= max_part_bit(found_part);
+ /*
+ ReuseRangeEstimateForRef-3:
+ We're now considering a ref[or_null] access via
+ (t.keypart1=e1 AND ... AND t.keypartK=eK) [ OR
+ (same-as-above but with one cond replaced
+ with "t.keypart_i IS NULL")] (**)
+
+ Try re-using E(#rows) from "range" optimizer:
+ We can do so if "range" optimizer used the same intervals as
+ in (**). The intervals used by range optimizer may be not
+ available at this point (as "range" access might have chosen to
+ create quick select over another index), so we can't compare
+ them to (**). We'll make indirect judgements instead.
+ The sufficient conditions for re-use are:
+ (C1) All e_i in (**) are constants, i.e. found_ref==FALSE. (if
+ this is not satisfied we have no way to know which ranges
+ will be actually scanned by 'ref' until we execute the
+ join)
+ (C2) max #key parts in 'range' access == K == max_key_part (this
+ is apparently a necessary requirement)
+
+ We also have a property that "range optimizer produces equal or
+ tighter set of scan intervals than ref(const) optimizer". Each
+ of the intervals in (**) are "tightest possible" intervals when
+ one limits itself to using keyparts 1..K (which we do in #2).
+ From here it follows that range access used either one, or
+ both of the (I1) and (I2) intervals:
+
+ (t.keypart1=c1 AND ... AND t.keypartK=eK) (I1)
+ (same-as-above but with one cond replaced
+ with "t.keypart_i IS NULL") (I2)
+
+ The remaining part is to exclude the situation where range
+ optimizer used one interval while we're considering
+ ref-or-null and looking for estimate for two intervals. This
+ is done by last limitation:
+
+ (C3) "range optimizer used (have ref_or_null?2:1) intervals"
+ */
+ if (table->opt_range_keys.is_set(key) && !found_ref && //(C1)
+ table->opt_range[key].key_parts == max_key_part && //(C2)
+ table->opt_range[key].ranges == 1 + MY_TEST(ref_or_null_part)) //(C3)
+ {
+ records= (double) table->opt_range[key].rows;
+ tmp= adjust_quick_cost(table->opt_range[key].cost,
+ table->opt_range[key].rows);
+ trace_access_idx.add("used_range_estimates", true);
+ goto got_cost2;
+ }
+ else
+ {
+ /* Check if we have statistic about the distribution */
+ if ((records= keyinfo->actual_rec_per_key(max_key_part-1)))
+ {
+ /*
+ Fix for the case where the index statistics is too
+ optimistic: If
+ (1) We're considering ref(const) and there is quick select
+ on the same index,
+ (2) and that quick select uses more keyparts (i.e. it will
+ scan equal/smaller interval then this ref(const))
+ (3) and E(#rows) for quick select is higher then our
+ estimate,
+ Then
+ We'll use E(#rows) from quick select.
+
+ Q: Why do we choose to use 'ref'? Won't quick select be
+ cheaper in some cases ?
+ TODO: figure this out and adjust the plan choice if needed.
+ */
+ if (table->opt_range_keys.is_set(key))
+ {
+ if (table->opt_range[key].key_parts >= max_key_part) // (2)
+ {
+ double rows= (double) table->opt_range[key].rows;
+ if (!found_ref && // (1)
+ records < rows) // (3)
+ {
+ trace_access_idx.add("used_range_estimates", "clipped up");
+ records= rows;
+ }
+ }
+ }
+ }
+ else
+ {
+ trace_access_idx.add("rec_per_key_stats_missing", true);
+ /*
+ Assume that the first key part matches 1% of the file
+ and that the whole key matches 10 (duplicates) or 1
+ (unique) records.
+ Assume also that more key matches proportionally more
+ records
+ This gives the formula:
+ records = (x * (b-a) + a*c-b)/(c-1)
+
+ b = records matched by whole key
+ a = records matched by first key part (1% of all records?)
+ c = number of key parts in key
+ x = used key parts (1 <= x <= c)
+ */
+ double rec_per_key;
+ if (!(rec_per_key=(double)
+ keyinfo->rec_per_key[keyinfo->user_defined_key_parts-1]))
+ rec_per_key=(double) s->records/rec+1;
+
+ if (!s->records)
+ records= 0;
+ else if (rec_per_key/(double) s->records >= 0.01)
+ records= rec_per_key;
+ else
+ {
+ double a=s->records*0.01;
+ if (keyinfo->user_defined_key_parts > 1)
+ records= (max_key_part * (rec_per_key - a) +
+ a*keyinfo->user_defined_key_parts - rec_per_key)/
+ (keyinfo->user_defined_key_parts-1);
+ else
+ records= a;
+ set_if_bigger(records, 1.0);
+ }
+ }
+
+ if (ref_or_null_part)
+ {
+ /* We need to do two key searches to find row */
+ records *= 2.0;
+ }
+
+ /*
+ ReuseRangeEstimateForRef-4: We get here if we could not reuse
+ E(#rows) from range optimizer. Make another try:
+
+ If range optimizer produced E(#rows) for a prefix of the ref
+ access we're considering, and that E(#rows) is lower then our
+ current estimate, make the adjustment.
+
+ The decision whether we can re-use the estimate from the range
+ optimizer is the same as in ReuseRangeEstimateForRef-3,
+ applied to first table->quick_key_parts[key] key parts.
+ */
+ if (table->opt_range_keys.is_set(key) &&
+ table->opt_range[key].key_parts <= max_key_part &&
+ const_part &
+ ((key_part_map)1 << table->opt_range[key].key_parts) &&
+ table->opt_range[key].ranges == (1 +
+ MY_TEST(ref_or_null_part &
+ const_part)) &&
+ records > (double) table->opt_range[key].rows)
+ {
+ trace_access_idx.add("used_range_estimates", true);
+ records= (double) table->opt_range[key].rows;
+ }
+ }
+
+ /* Limit the number of matched rows */
+ tmp= cost_for_index_read(thd, table, key, (ha_rows) records,
+ (ha_rows) s->worst_seeks);
+ records_for_key= (ha_rows) records;
+ set_if_smaller(records_for_key, thd->variables.max_seeks_for_key);
+ keyread_tmp= table->file->keyread_time(key, 1, records_for_key);
+ got_cost2:
+ tmp= COST_MULT(tmp, record_count);
+ keyread_tmp= COST_MULT(keyread_tmp, record_count);
+ }
+ else
+ {
+ if (!(found_part & 1))
+ cause= "no predicate for first keypart";
+ tmp= best_time; // Do nothing
+ }
+ }
+
+ tmp= COST_ADD(tmp, s->startup_cost);
+ loose_scan_opt.check_ref_access_part2(key, start_key, records, tmp,
+ found_ref);
+ } /* not ft_key */
+
+ if (records < DBL_MAX &&
+ (found_part & 1) && // start_key->key can be used for index access
+ (table->file->index_flags(start_key->key,0,1) &
+ HA_DO_RANGE_FILTER_PUSHDOWN))
+ {
+ double rows= record_count * records;
+ /*
+ If we use filter F with selectivity s the the cost of fetching data
+ by key using this filter will be
+ cost_of_fetching_1_row * rows * s +
+ cost_of_fetching_1_key_tuple * rows * (1 - s) +
+ cost_of_1_lookup_into_filter * rows
+ Without using any filter the cost would be just
+ cost_of_fetching_1_row * rows
+
+ So the gain in access cost per row will be
+ cost_of_fetching_1_row * (1 - s) -
+ cost_of_fetching_1_key_tuple * (1 - s) -
+ cost_of_1_lookup_into_filter
+ =
+ (cost_of_fetching_1_row - cost_of_fetching_1_key_tuple) * (1 - s)
+ - cost_of_1_lookup_into_filter
+
+ Here we have:
+ cost_of_fetching_1_row = tmp/rows
+ cost_of_fetching_1_key_tuple = keyread_tmp/rows
+
+ Here's a more detailed explanation that uses the formulas behind
+ the function the call filter->get_adjusted_gain(). The function
+ takes as a parameter the number of probes/look-ups into the filter
+ that is equal to the number of fetched key entries that is equal to
+ the number of row fetches when no filter is used (assuming no
+ index condition pushdown is employed for the used key access).
+ Let this number be N. Then the total gain from using the filter is
+ N*a_adj - b where b is the cost of building the filter and
+ a_adj is calcilated as follows:
+ a - (1-access_cost_factor)*(1-s) =
+ (1+1_cond_eval_cost)*(1-s)-1_probe_cost - (1-access_cost_factor)*(1-s)
+ = (1-s)*(1_cond_eval_cost+access_cost_factor) - 1_probe_cost.
+ Here ((1-s)*(1_cond_eval_cost) * N is the gain from checking less
+ conditions pushed into the table, 1_probe_cost*N is the cost of the
+ probes and (1*s) * access_cost_factor * N must be the gain from
+ accessing less rows.
+ It does not matter how we calculate the cost of N full row fetches
+ cost_of_fetching_N_rows or
+ how we calculate the cost of fetching N key entries
+ cost_of_fetching_N_key_entries
+ the gain from less row fetches will be
+ (cost_of_fetching_N_rows - cost_of_fetching_N_key_entries) * (1-s)
+ and this should be equal to (1*s) * access_cost_factor * N.
+ Thus access_cost_factor must be calculated as
+ (cost_of_fetching_N_rows - cost_of_fetching_N_key_entries) / N.
+
+ For safety we clip cost_of_fetching_N_key_entries by the value
+ of cost_of_fetching_N_row though formally it's not necessary.
+ */
+ /*
+ For eq_ref access we assume that the cost of fetching N key entries
+ is equal to the half of fetching N rows
+ */
+ double key_access_cost=
+ type == JT_EQ_REF ? 0.5 * tmp : MY_MIN(tmp, keyread_tmp);
+ double access_cost_factor= MY_MIN((tmp - key_access_cost) / rows, 1.0);
+
+ if (!(records < s->worst_seeks &&
+ records <= thd->variables.max_seeks_for_key))
+ {
+ // Don't use rowid filter
+ trace_access_idx.add("rowid_filter_skipped", "worst/max seeks clipping");
+ filter= NULL;
+ }
+ else
+ {
+ filter=
+ table->best_range_rowid_filter_for_partial_join(start_key->key,
+ rows,
+ access_cost_factor);
+ }
+ if (filter)
+ {
+ tmp-= filter->get_adjusted_gain(rows) - filter->get_cmp_gain(rows);
+ DBUG_ASSERT(tmp >= 0);
+ trace_access_idx.add("rowid_filter_key",
+ table->key_info[filter->key_no].name);
+ }
+ }
+ trace_access_idx.add("rows", records).add("cost", tmp);
+
+ if (tmp + 0.0001 < best_time - records/TIME_FOR_COMPARE)
+ {
+ trace_access_idx.add("chosen", true);
+ best_time= COST_ADD(tmp, records/TIME_FOR_COMPARE);
+ best= tmp;
+ best_records= records;
+ best_key= start_key;
+ best_max_key_part= max_key_part;
+ best_ref_depends_map= found_ref;
+ best_filter= filter;
+ best_type= type;
+ }
+ else
+ {
+ trace_access_idx.add("chosen", false)
+ .add("cause", cause ? cause : "cost");
+ }
+ cause= nullptr;
+ } /* for each key */
+ records= best_records;
+ }
+ else
+ {
+ /*
+ No usable keys found. However, there may still be an option to use
+ "Range checked for each record" when all depending tables has
+ been read. s->key_dependent tells us which tables these could be and
+ s->key_start_dependent tells us if a first key part was used.
+ s->key_dependent may include more tables than could be used,
+ but this is ok as not having any usable keys is a rare thing and
+ the performance penalty for extra table bits is that
+ best_extension_by_limited_search() would not be able to prune tables
+ earlier.
+ Example query:
+ SELECT * FROM t1,t2 where t1.key1=t2.key1 OR t2.key2<1
+ */
+ if (s->key_start_dependent)
+ key_dependent= s->key_dependent;
+ /* Add dependencey for sub queries */
+ key_dependent|= s->embedded_dependent;
+ }
+ /* Check that s->key_dependent contains all used_tables found in s->keyuse */
+ key_dependent&= ~PSEUDO_TABLE_BITS;
+ DBUG_ASSERT((key_dependent & (s->key_dependent | s->embedded_dependent)) ==
+ key_dependent);
+
+ /*
+ If there is no key to access the table, but there is an equi-join
+ predicate connecting the table with the privious tables then we
+ consider the possibility of using hash join.
+ We need also to check that:
+ (1) s is inner table of semi-join -> join cache is allowed for semijoins
+ (2) s is inner table of outer join -> join cache is allowed for outer joins
+ */
+ if (idx > join->const_tables && best_key == 0 &&
+ (join->allowed_join_cache_types & JOIN_CACHE_HASHED_BIT) &&
+ join->max_allowed_join_cache_level > 2 &&
+ !bitmap_is_clear_all(eq_join_set) && !disable_jbuf &&
+ (!s->emb_sj_nest ||
+ join->allowed_semijoin_with_cache) && // (1)
+ (!(s->table->map & join->outer_join) ||
+ join->allowed_outer_join_with_cache)) // (2)
+ {
+ double fanout;
+ double join_sel;
+ bool stats_found= 0, force_estimate= 0;
+ Json_writer_object trace_access_hash(thd);
+ trace_access_hash.add("type", "hash");
+ trace_access_hash.add("index", "hj-key");
+ /* Estimate the cost of the hash join access to the table */
+ double rnd_records= apply_selectivity_for_table(s, use_cond_selectivity,
+ &force_estimate);
+
+ DBUG_ASSERT(hj_start_key);
+ if (optimizer_flag(thd, OPTIMIZER_SWITCH_HASH_JOIN_CARDINALITY))
+ {
+ /*
+ Starting from this point, rnd_records should not be used anymore.
+ Use "fanout" for an estimate of # matching records.
+ */
+ fanout= hash_join_fanout(join, s, remaining_tables, rnd_records,
+ hj_start_key, &stats_found);
+ join_sel= 1.0; // Don't do the "10% heuristic"
+ if (stats_found)
+ goto fanout_computed;
+ }
+
+ /*
+ No OPTIMIZER_SWITCH_HASH_JOIN_CARDINALITY or no field statistics
+ found.
+
+ Take into account if there is non constant constraints used with
+ earlier tables in the where expression.
+ If yes, this will set fanout to rnd_records/4.
+ We estimate that there will be HASH_FANOUT (10%)
+ hash matches / row.
+ */
+ if (found_constraint && !force_estimate)
+ rnd_records= use_found_constraint(rnd_records);
+ fanout= rnd_records;
+ join_sel= 0.1;
+
+ fanout_computed:
+ tmp= s->quick ? s->quick->read_time : s->scan_time();
+ double cmp_time= (s->records - rnd_records)/TIME_FOR_COMPARE;
+ tmp= COST_ADD(tmp, cmp_time);
+
+ /* We read the table as many times as join buffer becomes full. */
+
+ double refills= (1.0 + floor((double) cache_record_length(join,idx) *
+ record_count /
+ (double) thd->variables.join_buff_size));
+ tmp= COST_MULT(tmp, refills);
+
+ // Add cost of reading/writing the join buffer
+ if (optimizer_flag(thd, OPTIMIZER_SWITCH_HASH_JOIN_CARDINALITY))
+ {
+ /* Set it to be 1/10th of TIME_FOR_COMPARE */
+ double row_copy_cost= 1.0 / (10*TIME_FOR_COMPARE);
+ double join_buffer_operations=
+ COST_ADD(
+ COST_MULT(record_count, row_copy_cost),
+ COST_MULT(record_count, fanout * (idx - join->const_tables))
+ );
+ double jbuf_use_cost= row_copy_cost * join_buffer_operations;
+ trace_access_hash.add("jbuf_use_cost", jbuf_use_cost);
+ tmp= COST_ADD(tmp, jbuf_use_cost);
+ }
+
+ double where_cost= COST_MULT((fanout*join_sel) / TIME_FOR_COMPARE,
+ record_count);
+ trace_access_hash.add("extra_cond_check_cost", where_cost);
+
+ best_time= COST_ADD(tmp, where_cost);
+
+ best= tmp;
+ records= fanout;
+ best_key= hj_start_key;
+ best_ref_depends_map= 0;
+ best_uses_jbuf= TRUE;
+ best_filter= 0;
+ best_type= JT_HASH;
+ trace_access_hash.add("rnd_records", rnd_records);
+ trace_access_hash.add("records", records);
+ trace_access_hash.add("cost", best);
+ trace_access_hash.add("chosen", true);
+ }
+
+ /*
+ Don't test table scan if it can't be better.
+ Prefer key lookup if we would use the same key for scanning.
+
+ Don't do a table scan on InnoDB tables, if we can read the used
+ parts of the row from any of the used index.
+ This is because table scans uses index and we would not win
+ anything by using a table scan.
+
+ A word for word translation of the below if-statement in sergefp's
+ understanding: we check if we should use table scan if:
+ (1) The found 'ref' access produces more records than a table scan
+ (or index scan, or quick select), or 'ref' is more expensive than
+ any of them.
+ (2) This doesn't hold: the best way to perform table scan is to to perform
+ 'range' access using index IDX, and the best way to perform 'ref'
+ access is to use the same index IDX, with the same or more key parts.
+ (note: it is not clear how this rule is/should be extended to
+ index_merge quick selects). Also if we have a hash join we prefer that
+ over a table scan. This heuristic doesn't apply if the quick select
+ uses the group-by min-max optimization.
+ (3) See above note about InnoDB.
+ (4) NOT ("FORCE INDEX(...)" is used for table and there is 'ref' access
+ path, but there is no quick select)
+ If the condition in the above brackets holds, then the only possible
+ "table scan" access method is ALL/index (there is no quick select).
+ Since we have a 'ref' access path, and FORCE INDEX instructs us to
+ choose it over ALL/index, there is no need to consider a full table
+ scan.
+ (5) Non-flattenable semi-joins: don't consider doing a scan of temporary
+ table if we had an option to make lookups into it. In real-world cases,
+ lookups are cheaper than full scans, but when the table is small, they
+ can be [considered to be] more expensive, which causes lookups not to
+ be used for cases with small datasets, which is annoying.
+ */
+ Json_writer_object trace_access_scan(thd);
+ if ((records >= s->found_records || best > s->read_time) && // (1)
+ !(best_key && best_key->key == MAX_KEY) && // (2)
+ !(s->quick &&
+ s->quick->get_type() != QUICK_SELECT_I::QS_TYPE_GROUP_MIN_MAX && // (2)
+ best_key && s->quick->index == best_key->key && // (2)
+ s->table->opt_range_keys.is_set(best_key->key) && // (2)
+ best_max_key_part >= s->table->opt_range[best_key->key].key_parts) &&// (2)
+ !((s->table->file->ha_table_flags() & HA_TABLE_SCAN_ON_INDEX) && // (3)
+ ! s->table->covering_keys.is_clear_all() && best_key && !s->quick) &&// (3)
+ !(s->table->force_index && best_key && !s->quick) && // (4)
+ !(best_key && s->table->pos_in_table_list->jtbm_subselect)) // (5)
+ { // Check full join
+ bool force_estimate= 0;
+ double rnd_records= apply_selectivity_for_table(s,
+ use_cond_selectivity,
+ &force_estimate);
+ rnd_records= ((found_constraint && !force_estimate) ?
+ use_found_constraint(rnd_records) :
+ rnd_records);
+ /*
+ Range optimizer never proposes a RANGE if it isn't better
+ than FULL: so if RANGE is present, it's always preferred to FULL.
+ Here we estimate its cost.
+ */
+
+ filter= 0;
+ if (s->quick)
+ {
+ /*
+ For each record we:
+ - read record range through 'quick'
+ - skip rows which does not satisfy WHERE constraints
+ TODO:
+ We take into account possible use of join cache for ALL/index
+ access (see first else-branch below), but we don't take it into
+ account here for range/index_merge access. Find out why this is so.
+ */
+ double cmp_time= (s->found_records - rnd_records) / TIME_FOR_COMPARE;
+ tmp= COST_MULT(record_count,
+ COST_ADD(s->quick->read_time, cmp_time));
+
+ if ( s->quick->get_type() == QUICK_SELECT_I::QS_TYPE_RANGE)
+ {
+ double rows= record_count * s->found_records;
+ uint key_no= s->quick->index;
+
+ /* See the comment concerning using rowid filter for with ref access */
+ double row_access_cost= s->quick->read_time * record_count;
+ double key_access_cost=
+ MY_MIN(row_access_cost,
+ s->table->opt_range[key_no].index_only_cost * record_count);
+ double access_cost_factor= MY_MIN((row_access_cost - key_access_cost) /
+ rows, 1.0);
+ filter=
+ s->table->best_range_rowid_filter_for_partial_join(key_no, rows,
+ access_cost_factor);
+ if (filter)
+ {
+ tmp-= filter->get_adjusted_gain(rows);
+ DBUG_ASSERT(tmp >= 0);
+ }
+
+ type= JT_RANGE;
+ }
+ else
+ {
+ type= JT_INDEX_MERGE;
+ best_filter= 0;
+ }
+ loose_scan_opt.check_range_access(join, idx, s->quick);
+ }
+ else
+ {
+ /* Estimate cost of reading table. */
+ if (s->table->force_index && !best_key) // index scan
+ {
+ type= JT_NEXT;
+ tmp= s->table->file->read_time(s->ref.key, 1, s->records);
+ }
+ else // table scan
+ {
+ tmp= s->scan_time();
+ type= JT_ALL;
+ }
+
+ if ((s->table->map & join->outer_join) || disable_jbuf) // Can't use join cache
+ {
+ /*
+ For each record we have to:
+ - read the whole table record
+ - skip rows which does not satisfy join condition
+ */
+ double cmp_time= (s->records - rnd_records)/TIME_FOR_COMPARE;
+ tmp= COST_MULT(record_count, COST_ADD(tmp,cmp_time));
+ }
+ else
+ {
+ double refills= (1.0 + floor((double) cache_record_length(join,idx) *
+ (record_count /
+ (double) thd->variables.join_buff_size)));
+ tmp= COST_MULT(tmp, refills);
+ /*
+ We don't make full cartesian product between rows in the scanned
+ table and existing records because we skip all rows from the
+ scanned table, which does not satisfy join condition when
+ we read the table (see flush_cached_records for details). Here we
+ take into account cost to read and skip these records.
+ */
+ double cmp_time= (s->records - rnd_records)/TIME_FOR_COMPARE;
+ tmp= COST_ADD(tmp, cmp_time);
+ }
+ }
+
+ trace_access_scan.add("access_type", type == JT_ALL ?
+ "scan" :
+ join_type_str[type]);
+ /* Splitting technique cannot be used with join cache */
+ if (s->table->is_splittable())
+ tmp+= s->table->get_materialization_cost();
+ else
+ tmp+= s->startup_cost;
+
+ /*
+ We estimate the cost of evaluating WHERE clause for found records
+ as record_count * rnd_records / TIME_FOR_COMPARE. This cost plus
+ tmp give us total cost of using TABLE SCAN
+ */
+
+ const double best_filter_cmp_gain= best_filter
+ ? best_filter->get_cmp_gain(record_count * records)
+ : 0;
+ trace_access_scan.add("resulting_rows", rnd_records);
+ trace_access_scan.add("cost", tmp);
+
+ if (best == DBL_MAX ||
+ COST_ADD(tmp, record_count/TIME_FOR_COMPARE*rnd_records) <
+ (best_key->is_for_hash_join() ? best_time :
+ COST_ADD(best - best_filter_cmp_gain,
+ record_count/TIME_FOR_COMPARE*records)))
+ {
+ /*
+ If the table has a range (s->quick is set) make_join_select()
+ will ensure that this will be used
+ */
+ best= tmp;
+ records= rnd_records;
+ best_key= 0;
+ best_filter= 0;
+ if (s->quick && s->quick->get_type() == QUICK_SELECT_I::QS_TYPE_RANGE)
+ best_filter= filter;
+ /* range/index_merge/ALL/index access method are "independent", so: */
+ best_ref_depends_map= 0;
+ best_uses_jbuf= MY_TEST(!disable_jbuf &&
+ (join->allowed_outer_join_with_cache ||
+ !(s->table->map & join->outer_join)));
+ spl_plan= 0;
+ best_type= type;
+ }
+ trace_access_scan.add("chosen", best_key == NULL);
+ }
+ else
+ {
+ trace_access_scan.add("type", "scan");
+ trace_access_scan.add("chosen", false);
+ trace_access_scan.add("cause", "cost");
+ }
+
+ /* Update the cost information for the current partial plan */
+ pos->records_read= records;
+ pos->read_time= best;
+ pos->key= best_key;
+ pos->type= best_type;
+ pos->table= s;
+ pos->ref_depend_map= best_ref_depends_map;
+ pos->loosescan_picker.loosescan_key= MAX_KEY;
+ pos->use_join_buffer= best_uses_jbuf;
+ pos->spl_plan= spl_plan;
+ pos->spl_pd_boundary= !spl_plan ? 0 : spl_pd_boundary;
+ pos->range_rowid_filter_info= best_filter;
+ pos->key_dependent= (best_type == JT_EQ_REF ? (table_map) 0 :
+ key_dependent & remaining_tables);
+
+ loose_scan_opt.save_to_position(s, loose_scan_pos);
+
+ if (!best_key &&
+ idx == join->const_tables &&
+ s->table == join->sort_by_table &&
+ join->unit->lim.get_select_limit() >= records)
+ {
+ trace_access_scan.add("use_tmp_table", true);
+ join->sort_by_table= (TABLE*) 1; // Must use temporary table
+ }
+ trace_access_scan.end();
+ trace_paths.end();
+
+ if (unlikely(thd->trace_started()))
+ print_best_access_for_table(thd, pos, best_type);
+
+ DBUG_VOID_RETURN;
+}
+
+
+/*
+ Find JOIN_TAB's embedding (i.e, parent) subquery.
+ - For merged semi-joins, tables inside the semi-join nest have their
+ semi-join nest as parent. We intentionally ignore results of table
+ pullout action here.
+ - For non-merged semi-joins (JTBM tabs), the embedding subquery is the
+ JTBM join tab itself.
+*/
+
+static TABLE_LIST* get_emb_subq(JOIN_TAB *tab)
+{
+ TABLE_LIST *tlist= tab->table->pos_in_table_list;
+ if (tlist->jtbm_subselect)
+ return tlist;
+ TABLE_LIST *embedding= tlist->embedding;
+ if (!embedding || !embedding->sj_subq_pred)
+ return NULL;
+ return embedding;
+}
+
+
+/*
+ Choose initial table order that "helps" semi-join optimizations.
+
+ The idea is that we should start with the order that is the same as the one
+ we would have had if we had semijoin=off:
+ - Top-level tables go first
+ - subquery tables are grouped together by the subquery they are in,
+ - subquery tables are attached where the subquery predicate would have been
+ attached if we had semi-join off.
+
+ This function relies on join_tab_cmp()/join_tab_cmp_straight() to produce
+ certain pre-liminary ordering, see compare_embedding_subqueries() for its
+ description.
+*/
+
+static void choose_initial_table_order(JOIN *join)
+{
+ TABLE_LIST *emb_subq;
+ JOIN_TAB **tab= join->best_ref + join->const_tables;
+ JOIN_TAB **tabs_end= tab + join->table_count - join->const_tables;
+ DBUG_ENTER("choose_initial_table_order");
+ /* Find where the top-level JOIN_TABs end and subquery JOIN_TABs start */
+ for (; tab != tabs_end; tab++)
+ {
+ if ((emb_subq= get_emb_subq(*tab)))
+ break;
+ }
+ uint n_subquery_tabs= (uint)(tabs_end - tab);
+
+ if (!n_subquery_tabs)
+ DBUG_VOID_RETURN;
+
+ /* Copy the subquery JOIN_TABs to a separate array */
+ JOIN_TAB *subquery_tabs[MAX_TABLES];
+ memcpy(subquery_tabs, tab, sizeof(JOIN_TAB*) * n_subquery_tabs);
+
+ JOIN_TAB **last_top_level_tab= tab;
+ JOIN_TAB **subq_tab= subquery_tabs;
+ JOIN_TAB **subq_tabs_end= subquery_tabs + n_subquery_tabs;
+ TABLE_LIST *cur_subq_nest= NULL;
+ for (; subq_tab < subq_tabs_end; subq_tab++)
+ {
+ if (get_emb_subq(*subq_tab)!= cur_subq_nest)
+ {
+ /*
+ Reached the part of subquery_tabs that covers tables in some subquery.
+ */
+ cur_subq_nest= get_emb_subq(*subq_tab);
+
+ /* Determine how many tables the subquery has */
+ JOIN_TAB **last_tab_for_subq;
+ for (last_tab_for_subq= subq_tab;
+ last_tab_for_subq < subq_tabs_end &&
+ get_emb_subq(*last_tab_for_subq) == cur_subq_nest;
+ last_tab_for_subq++) {}
+ uint n_subquery_tables= (uint)(last_tab_for_subq - subq_tab);
+
+ /*
+ Walk the original array and find where this subquery would have been
+ attached to
+ */
+ table_map need_tables= cur_subq_nest->original_subq_pred_used_tables;
+ need_tables &= ~(join->const_table_map | PSEUDO_TABLE_BITS);
+ for (JOIN_TAB **top_level_tab= join->best_ref + join->const_tables;
+ top_level_tab < last_top_level_tab;
+ //top_level_tab < join->best_ref + join->table_count;
+ top_level_tab++)
+ {
+ need_tables &= ~(*top_level_tab)->table->map;
+ /* Check if this is the place where subquery should be attached */
+ if (!need_tables)
+ {
+ /* Move away the top-level tables that are after top_level_tab */
+ size_t top_tail_len= last_top_level_tab - top_level_tab - 1;
+ memmove(top_level_tab + 1 + n_subquery_tables, top_level_tab + 1,
+ sizeof(JOIN_TAB*)*top_tail_len);
+ last_top_level_tab += n_subquery_tables;
+ memcpy(top_level_tab + 1, subq_tab, sizeof(JOIN_TAB*)*n_subquery_tables);
+ break;
+ }
+ }
+ DBUG_ASSERT(!need_tables);
+ subq_tab += n_subquery_tables - 1;
+ }
+ }
+ DBUG_VOID_RETURN;
+}
+
+
+/**
+ Selects and invokes a search strategy for an optimal query plan.
+
+ The function checks user-configurable parameters that control the search
+ strategy for an optimal plan, selects the search method and then invokes
+ it. Each specific optimization procedure stores the final optimal plan in
+ the array 'join->best_positions', and the cost of the plan in
+ 'join->best_read'.
+
+ @param join pointer to the structure providing all context info for
+ the query
+ @param join_tables set of the tables in the query
+
+ @retval
+ FALSE ok
+ @retval
+ TRUE Fatal error
+*/
+
+bool
+choose_plan(JOIN *join, table_map join_tables)
+{
+ uint search_depth= join->thd->variables.optimizer_search_depth;
+ uint use_cond_selectivity=
+ join->thd->variables.optimizer_use_condition_selectivity;
+ bool straight_join= MY_TEST(join->select_options & SELECT_STRAIGHT_JOIN);
+ THD *thd= join->thd;
+ DBUG_ENTER("choose_plan");
+
+ join->cur_embedding_map= 0;
+ join->extra_heuristic_pruning= false;
+ join->prune_level= join->thd->variables.optimizer_prune_level;
+
+ reset_nj_counters(join, join->join_list);
+ qsort2_cmp jtab_sort_func;
+
+ if (join->emb_sjm_nest)
+ {
+ /* We're optimizing semi-join materialization nest, so put the
+ tables from this semi-join as first
+ */
+ jtab_sort_func= join_tab_cmp_embedded_first;
+ }
+ else
+ {
+ /*
+ if (SELECT_STRAIGHT_JOIN option is set)
+ reorder tables so dependent tables come after tables they depend
+ on, otherwise keep tables in the order they were specified in the query
+ else
+ Apply heuristic: pre-sort all access plans with respect to the number of
+ records accessed.
+ */
+ jtab_sort_func= straight_join ? join_tab_cmp_straight : join_tab_cmp;
+ }
+
+ /*
+ psergey-todo: if we're not optimizing an SJM nest,
+ - sort that outer tables are first, and each sjm nest follows
+ - then, put each [sjm_table1, ... sjm_tableN] sub-array right where
+ WHERE clause pushdown would have put it.
+ */
+ my_qsort2(join->best_ref + join->const_tables,
+ join->table_count - join->const_tables, sizeof(JOIN_TAB*),
+ jtab_sort_func, (void*)join->emb_sjm_nest);
+
+ Json_writer_object wrapper(thd);
+ Json_writer_array trace_plan(thd,"considered_execution_plans");
+
+ if (!join->emb_sjm_nest)
+ {
+ choose_initial_table_order(join);
+ }
+ /*
+ Note: constant tables are already in the join prefix. We don't
+ put them into the cur_sj_inner_tables, though.
+ */
+ join->cur_sj_inner_tables= 0;
+
+ if (straight_join)
+ {
+ optimize_straight_join(join, join_tables);
+ }
+ else
+ {
+ DBUG_ASSERT(search_depth <= MAX_TABLES + 1);
+ if (search_depth == 0)
+ /* Automatically determine a reasonable value for 'search_depth' */
+ search_depth= determine_search_depth(join);
+
+ if (join->prune_level >= 1 &&
+ search_depth >= thd->variables.optimizer_extra_pruning_depth)
+ {
+ join->extra_heuristic_pruning= true;
+ }
+
+ if (greedy_search(join, join_tables, search_depth, use_cond_selectivity))
+ DBUG_RETURN(TRUE);
+ }
+
+ /*
+ Store the cost of this query into a user variable
+ Don't update last_query_cost for statements that are not "flat joins" :
+ i.e. they have subqueries, unions or call stored procedures.
+ TODO: calculate a correct cost for a query with subqueries and UNIONs.
+ */
+ if (join->thd->lex->is_single_level_stmt())
+ join->thd->status_var.last_query_cost= join->best_read;
+ DBUG_RETURN(FALSE);
+}
+
+
+/*
+ Compare two join tabs based on the subqueries they are from.
+ - top-level join tabs go first
+ - then subqueries are ordered by their select_id (we're using this
+ criteria because we need a cross-platform, deterministic ordering)
+
+ @return
+ 0 - equal
+ -1 - jt1 < jt2
+ 1 - jt1 > jt2
+*/
+
+static int compare_embedding_subqueries(JOIN_TAB *jt1, JOIN_TAB *jt2)
+{
+ /* Determine if the first table is originally from a subquery */
+ TABLE_LIST *tbl1= jt1->table->pos_in_table_list;
+ uint tbl1_select_no;
+ if (tbl1->jtbm_subselect)
+ {
+ tbl1_select_no=
+ tbl1->jtbm_subselect->unit->first_select()->select_number;
+ }
+ else if (tbl1->embedding && tbl1->embedding->sj_subq_pred)
+ {
+ tbl1_select_no=
+ tbl1->embedding->sj_subq_pred->unit->first_select()->select_number;
+ }
+ else
+ tbl1_select_no= 1; /* Top-level */
+
+ /* Same for the second table */
+ TABLE_LIST *tbl2= jt2->table->pos_in_table_list;
+ uint tbl2_select_no;
+ if (tbl2->jtbm_subselect)
+ {
+ tbl2_select_no=
+ tbl2->jtbm_subselect->unit->first_select()->select_number;
+ }
+ else if (tbl2->embedding && tbl2->embedding->sj_subq_pred)
+ {
+ tbl2_select_no=
+ tbl2->embedding->sj_subq_pred->unit->first_select()->select_number;
+ }
+ else
+ tbl2_select_no= 1; /* Top-level */
+
+ /*
+ Put top-level tables in front. Tables from within subqueries must follow,
+ grouped by their owner subquery. We don't care about the order that
+ subquery groups are in, because choose_initial_table_order() will re-order
+ the groups.
+ */
+ if (tbl1_select_no != tbl2_select_no)
+ return tbl1_select_no > tbl2_select_no ? 1 : -1;
+ return 0;
+}
+
+
+/**
+ Compare two JOIN_TAB objects based on the number of accessed records.
+
+ @param ptr1 pointer to first JOIN_TAB object
+ @param ptr2 pointer to second JOIN_TAB object
+
+ NOTES
+ The order relation implemented by join_tab_cmp() is not transitive,
+ i.e. it is possible to choose such a, b and c that (a < b) && (b < c)
+ but (c < a). This implies that result of a sort using the relation
+ implemented by join_tab_cmp() depends on the order in which
+ elements are compared, i.e. the result is implementation-specific.
+ Example:
+ a: dependent = 0x0 table->map = 0x1 found_records = 3 ptr = 0x907e6b0
+ b: dependent = 0x0 table->map = 0x2 found_records = 3 ptr = 0x907e838
+ c: dependent = 0x6 table->map = 0x10 found_records = 2 ptr = 0x907ecd0
+
+ As for subqueries, this function must produce order that can be fed to
+ choose_initial_table_order().
+
+ @retval
+ 1 if first is bigger
+ @retval
+ -1 if second is bigger
+ @retval
+ 0 if equal
+*/
+
+static int
+join_tab_cmp(const void *dummy, const void* ptr1, const void* ptr2)
+{
+ JOIN_TAB *jt1= *(JOIN_TAB**) ptr1;
+ JOIN_TAB *jt2= *(JOIN_TAB**) ptr2;
+ int cmp;
+
+ if ((cmp= compare_embedding_subqueries(jt1, jt2)) != 0)
+ return cmp;
+ /*
+ After that do ordering according to numbers of
+ records in the table.
+ */
+ if (jt1->found_records > jt2->found_records)
+ return 1;
+ if (jt1->found_records < jt2->found_records)
+ return -1;
+ return jt1 > jt2 ? 1 : (jt1 < jt2 ? -1 : 0);
+}
+
+
+/**
+ Same as join_tab_cmp, but for use with SELECT_STRAIGHT_JOIN.
+*/
+
+static int
+join_tab_cmp_straight(const void *dummy, const void* ptr1, const void* ptr2)
+{
+ JOIN_TAB *jt1= *(JOIN_TAB**) ptr1;
+ JOIN_TAB *jt2= *(JOIN_TAB**) ptr2;
+
+ /*
+ We don't do subquery flattening if the parent or child select has
+ STRAIGHT_JOIN modifier. It is complicated to implement and the semantics
+ is hardly useful.
+ */
+ DBUG_ASSERT(!jt1->emb_sj_nest);
+ DBUG_ASSERT(!jt2->emb_sj_nest);
+
+ int cmp;
+ if ((cmp= compare_embedding_subqueries(jt1, jt2)) != 0)
+ return cmp;
+
+ /*
+ We have to check dependency with straight_join as we don't reorder
+ later as we do for other plans in best_extension_by_limited_search().
+ */
+ if (jt1->dependent & jt2->table->map)
+ return 1;
+ if (jt2->dependent & jt1->table->map)
+ return -1;
+
+ return jt1 > jt2 ? 1 : (jt1 < jt2 ? -1 : 0);
+}
+
+
+/*
+ Same as join_tab_cmp but tables from within the given semi-join nest go
+ first. Used when the optimizing semi-join materialization nests.
+*/
+
+static int
+join_tab_cmp_embedded_first(const void *emb, const void* ptr1, const void* ptr2)
+{
+ const TABLE_LIST *emb_nest= (TABLE_LIST*) emb;
+ JOIN_TAB *jt1= *(JOIN_TAB**) ptr1;
+ JOIN_TAB *jt2= *(JOIN_TAB**) ptr2;
+
+ if (jt1->emb_sj_nest == emb_nest && jt2->emb_sj_nest != emb_nest)
+ return -1;
+ if (jt1->emb_sj_nest != emb_nest && jt2->emb_sj_nest == emb_nest)
+ return 1;
+
+ if (jt1->found_records > jt2->found_records)
+ return 1;
+ if (jt1->found_records < jt2->found_records)
+ return -1;
+
+ return jt1 > jt2 ? 1 : (jt1 < jt2 ? -1 : 0);
+}
+
+
+/**
+ Heuristic procedure to automatically guess a reasonable degree of
+ exhaustiveness for the greedy search procedure.
+
+ The procedure estimates the optimization time and selects a search depth
+ big enough to result in a near-optimal QEP, that doesn't take too long to
+ find. If the number of tables in the query exceeds some constant, then
+ search_depth is set to this constant.
+
+ @param join pointer to the structure providing all context info for
+ the query
+
+ @note
+ This is an extremely simplistic implementation that serves as a stub for a
+ more advanced analysis of the join. Ideally the search depth should be
+ determined by learning from previous query optimizations, because it will
+ depend on the CPU power (and other factors).
+
+ @todo
+ this value should be determined dynamically, based on statistics:
+ uint max_tables_for_exhaustive_opt= 7;
+
+ @todo
+ this value could be determined by some mapping of the form:
+ depth : table_count -> [max_tables_for_exhaustive_opt..MAX_EXHAUSTIVE]
+
+ @return
+ A positive integer that specifies the search depth (and thus the
+ exhaustiveness) of the depth-first search algorithm used by
+ 'greedy_search'.
+*/
+
+static uint
+determine_search_depth(JOIN *join)
+{
+ uint table_count= join->table_count - join->const_tables;
+ uint search_depth;
+ /* TODO: this value should be determined dynamically, based on statistics: */
+ uint max_tables_for_exhaustive_opt= 7;
+
+ if (table_count <= max_tables_for_exhaustive_opt)
+ search_depth= table_count+1; // use exhaustive for small number of tables
+ else
+ /*
+ TODO: this value could be determined by some mapping of the form:
+ depth : table_count -> [max_tables_for_exhaustive_opt..MAX_EXHAUSTIVE]
+ */
+ search_depth= max_tables_for_exhaustive_opt; // use greedy search
+
+ return search_depth;
+}
+
+
+/**
+ Select the best ways to access the tables in a query without reordering them.
+
+ Find the best access paths for each query table and compute their costs
+ according to their order in the array 'join->best_ref' (thus without
+ reordering the join tables). The function calls sequentially
+ 'best_access_path' for each table in the query to select the best table
+ access method. The final optimal plan is stored in the array
+ 'join->best_positions', and the corresponding cost in 'join->best_read'.
+
+ @param join pointer to the structure providing all context info
+ for the query
+ @param remaining_tables set of the tables in the query
+
+ @note
+ This function can be applied to:
+ - queries with STRAIGHT_JOIN
+ - internally to compute the cost of an arbitrary QEP
+ @par
+ Thus 'optimize_straight_join' can be used at any stage of the query
+ optimization process to finalize a QEP as it is.
+*/
+
+static void
+optimize_straight_join(JOIN *join, table_map remaining_tables)
+{
+ JOIN_TAB *s;
+ uint idx= join->const_tables;
+ bool disable_jbuf= join->thd->variables.join_cache_level == 0;
+ double record_count= 1.0;
+ double read_time= 0.0;
+ uint use_cond_selectivity=
+ join->thd->variables.optimizer_use_condition_selectivity;
+ POSITION loose_scan_pos;
+ THD *thd= join->thd;
+
+ for (JOIN_TAB **pos= join->best_ref + idx ; (s= *pos) ; pos++)
+ {
+ POSITION *position= join->positions + idx;
+ Json_writer_object trace_one_table(thd);
+ if (unlikely(thd->trace_started()))
+ trace_plan_prefix(join, idx, remaining_tables);
+ /* Find the best access method from 's' to the current partial plan */
+ best_access_path(join, s, remaining_tables, join->positions, idx,
+ disable_jbuf, record_count,
+ position, &loose_scan_pos);
+
+ /* Compute the cost of the new plan extended with 's' */
+ record_count= COST_MULT(record_count, position->records_read);
+ const double filter_cmp_gain= position->range_rowid_filter_info
+ ? position->range_rowid_filter_info->get_cmp_gain(record_count)
+ : 0;
+ read_time= COST_ADD(read_time,
+ COST_ADD(position->read_time -
+ filter_cmp_gain,
+ record_count /
+ TIME_FOR_COMPARE));
+ optimize_semi_joins(join, remaining_tables, idx, &record_count, &read_time,
+ &loose_scan_pos);
+
+ remaining_tables&= ~(s->table->map);
+ double pushdown_cond_selectivity= 1.0;
+ if (use_cond_selectivity > 1)
+ pushdown_cond_selectivity= table_cond_selectivity(join, idx, s,
+ remaining_tables);
+ position->cond_selectivity= pushdown_cond_selectivity;
+ double partial_join_cardinality= record_count *
+ pushdown_cond_selectivity;
+ join->positions[idx].partial_join_cardinality= partial_join_cardinality;
+ ++idx;
+ }
+
+ if (join->sort_by_table &&
+ join->sort_by_table != join->positions[join->const_tables].table->table)
+ read_time+= record_count; // We have to make a temp table
+ memcpy((uchar*) join->best_positions, (uchar*) join->positions,
+ sizeof(POSITION)*idx);
+ join->join_record_count= record_count;
+ join->best_read= read_time - COST_EPS;
+}
+
+
+/**
+ Find a good, possibly optimal, query execution plan (QEP) by a greedy search.
+
+ The search procedure uses a hybrid greedy/exhaustive search with controlled
+ exhaustiveness. The search is performed in N = card(remaining_tables)
+ steps. Each step evaluates how promising is each of the unoptimized tables,
+ selects the most promising table, and extends the current partial QEP with
+ that table. Currenly the most 'promising' table is the one with least
+ expensive extension.\
+
+ There are two extreme cases:
+ -# When (card(remaining_tables) < search_depth), the estimate finds the
+ best complete continuation of the partial QEP. This continuation can be
+ used directly as a result of the search.
+ -# When (search_depth == 1) the 'best_extension_by_limited_search'
+ consideres the extension of the current QEP with each of the remaining
+ unoptimized tables.
+
+ All other cases are in-between these two extremes. Thus the parameter
+ 'search_depth' controlls the exhaustiveness of the search. The higher the
+ value, the longer the optimization time and possibly the better the
+ resulting plan. The lower the value, the fewer alternative plans are
+ estimated, but the more likely to get a bad QEP.
+
+ All intermediate and final results of the procedure are stored in 'join':
+ - join->positions : modified for every partial QEP that is explored
+ - join->best_positions: modified for the current best complete QEP
+ - join->best_read : modified for the current best complete QEP
+ - join->best_ref : might be partially reordered
+
+ The final optimal plan is stored in 'join->best_positions', and its
+ corresponding cost in 'join->best_read'.
+
+ @note
+ The following pseudocode describes the algorithm of 'greedy_search':
+
+ @code
+ procedure greedy_search
+ input: remaining_tables
+ output: pplan;
+ {
+ pplan = <>;
+ do {
+ (t, a) = best_extension(pplan, remaining_tables);
+ pplan = concat(pplan, (t, a));
+ remaining_tables = remaining_tables - t;
+ } while (remaining_tables != {})
+ return pplan;
+ }
+
+ @endcode
+ where 'best_extension' is a placeholder for a procedure that selects the
+ most "promising" of all tables in 'remaining_tables'.
+ Currently this estimate is performed by calling
+ 'best_extension_by_limited_search' to evaluate all extensions of the
+ current QEP of size 'search_depth', thus the complexity of 'greedy_search'
+ mainly depends on that of 'best_extension_by_limited_search'.
+
+ @par
+ If 'best_extension()' == 'best_extension_by_limited_search()', then the
+ worst-case complexity of this algorithm is <=
+ O(N*N^search_depth/search_depth). When serch_depth >= N, then the
+ complexity of greedy_search is O(N!).
+
+ @par
+ In the future, 'greedy_search' might be extended to support other
+ implementations of 'best_extension', e.g. some simpler quadratic procedure.
+
+ @param join pointer to the structure providing all context info
+ for the query
+ @param remaining_tables set of tables not included into the partial plan yet
+ @param search_depth controlls the exhaustiveness of the search
+ @param use_cond_selectivity specifies how the selectivity of the conditions
+ pushed to a table should be taken into account
+
+ @retval
+ FALSE ok
+ @retval
+ TRUE Fatal error
+*/
+
+static bool
+greedy_search(JOIN *join,
+ table_map remaining_tables,
+ uint search_depth,
+ uint use_cond_selectivity)
+{
+ double record_count= 1.0;
+ double read_time= 0.0;
+ uint idx= join->const_tables; // index into 'join->best_ref'
+ uint best_idx;
+ uint size_remain; // cardinality of remaining_tables
+ table_map usable_tables, eq_ref_tables;
+ POSITION best_pos;
+ JOIN_TAB *best_table; // the next plan node to be added to the curr QEP
+ // ==join->tables or # tables in the sj-mat nest we're optimizing
+ uint n_tables __attribute__((unused));
+ DBUG_ENTER("greedy_search");
+
+ /* number of tables that remain to be optimized */
+ usable_tables= (join->emb_sjm_nest ?
+ (join->emb_sjm_nest->sj_inner_tables &
+ ~join->const_table_map & remaining_tables):
+ remaining_tables);
+ n_tables= size_remain= my_count_bits(usable_tables);
+
+ join->next_sort_position= join->sort_positions;
+ do {
+ /*
+ Find the extension of the current QEP with the lowest cost
+ We are using remaining_table instead of usable tables here as
+ in case of an emb_sjm_nest, we want to be able to check if
+ an embedded table is depending on an outer table.
+ */
+ join->best_read= DBL_MAX;
+ if ((int) best_extension_by_limited_search(join, remaining_tables, idx,
+ record_count,
+ read_time, search_depth,
+ use_cond_selectivity,
+ &eq_ref_tables) <
+ (int) SEARCH_OK)
+ DBUG_RETURN(TRUE);
+ /*
+ 'best_read < DBL_MAX' means that optimizer managed to find
+ some plan and updated 'best_positions' array accordingly.
+ */
+ DBUG_ASSERT(join->best_read < DBL_MAX);
+
+ if (size_remain <= search_depth)
+ {
+ /*
+ 'join->best_positions' contains a complete optimal extension of the
+ current partial QEP.
+ */
+ DBUG_EXECUTE("opt", print_plan(join, n_tables,
+ record_count, read_time, read_time,
+ "optimal"););
+ DBUG_RETURN(FALSE);
+ }
+
+ /* select the first table in the optimal extension as most promising */
+ best_pos= join->best_positions[idx];
+ best_table= best_pos.table;
+ /*
+ Each subsequent loop of 'best_extension_by_limited_search' uses
+ 'join->positions' for cost estimates, therefore we have to update its
+ value.
+ */
+ join->positions[idx]= best_pos;
+
+ /*
+ Update the interleaving state after extending the current partial plan
+ with a new table.
+ We are doing this here because best_extension_by_limited_search reverts
+ the interleaving state to the one of the non-extended partial plan
+ on exit.
+ */
+ bool is_interleave_error __attribute__((unused))=
+ check_interleaving_with_nj (best_table);
+ /* This has been already checked by best_extension_by_limited_search */
+ DBUG_ASSERT(!is_interleave_error);
+
+ /*
+ Also, update the semi-join optimization state. Information about the
+ picked semi-join operation is in best_pos->...picker, but we need to
+ update the global state in the JOIN object, too.
+ */
+ if (!join->emb_sjm_nest)
+ update_sj_state(join, best_table, idx, remaining_tables);
+
+ /* find the position of 'best_table' in 'join->best_ref' */
+ best_idx= idx;
+ JOIN_TAB *pos= join->best_ref[best_idx];
+ while (pos && best_table != pos)
+ pos= join->best_ref[++best_idx];
+ DBUG_ASSERT((pos != NULL)); // should always find 'best_table'
+
+ /*
+ Move 'best_table' at the first free position in the array of joins
+ We don't need to keep the array sorted as
+ best_extension_by_limited_search() will sort them.
+ */
+ swap_variables(JOIN_TAB*, join->best_ref[idx], join->best_ref[best_idx]);
+
+ /* compute the cost of the new plan extended with 'best_table' */
+ record_count= COST_MULT(record_count, join->positions[idx].records_read);
+ read_time= COST_ADD(read_time,
+ COST_ADD(join->positions[idx].read_time,
+ record_count / TIME_FOR_COMPARE));
+
+ remaining_tables&= ~(best_table->table->map);
+ --size_remain;
+ ++idx;
+
+ DBUG_EXECUTE("opt", print_plan(join, idx,
+ record_count, read_time, read_time,
+ "extended"););
+ } while (TRUE);
+}
+
+
+/**
+ Get cost of execution and fanout produced by selected tables in the join
+ prefix (where prefix is defined as prefix in depth-first traversal)
+
+ @param end_tab_idx The number of last tab to be taken into
+ account (in depth-first traversal prefix)
+ @param filter_map Bitmap of tables whose cost/fanout are to
+ be taken into account.
+ @param read_time_arg [out] store read time here
+ @param record_count_arg [out] store record count here
+
+ @note
+
+ @returns
+ read_time_arg and record_count_arg contain the computed cost and fanout
+*/
+
+void JOIN::get_partial_cost_and_fanout(int end_tab_idx,
+ table_map filter_map,
+ double *read_time_arg,
+ double *record_count_arg)
+{
+ double record_count= 1;
+ double read_time= 0.0;
+ double sj_inner_fanout= 1.0;
+ JOIN_TAB *end_tab= NULL;
+ JOIN_TAB *tab;
+ int i;
+ int last_sj_table= MAX_TABLES;
+
+ /*
+ Handle a special case where the join is degenerate, and produces no
+ records
+ */
+ if (table_count == const_tables)
+ {
+ *read_time_arg= 0.0;
+ /*
+ We return 1, because
+ - it is the pessimistic estimate (there might be grouping)
+ - it's safer, as we're less likely to hit the edge cases in
+ calculations.
+ */
+ *record_count_arg=1.0;
+ return;
+ }
+
+ for (tab= first_depth_first_tab(this), i= const_tables;
+ tab;
+ tab= next_depth_first_tab(this, tab), i++)
+ {
+ end_tab= tab;
+ if (i == end_tab_idx)
+ break;
+ }
+
+ for (tab= first_depth_first_tab(this), i= const_tables;
+ ;
+ tab= next_depth_first_tab(this, tab), i++)
+ {
+ if (end_tab->bush_root_tab && end_tab->bush_root_tab == tab)
+ {
+ /*
+ We've entered the SJM nest that contains the end_tab. The caller is
+ - interested in fanout inside the nest (because that's how many times
+ we'll invoke the attached WHERE conditions)
+ - not interested in cost
+ */
+ record_count= 1.0;
+ read_time= 0.0;
+ }
+
+ /*
+ Ignore fanout (but not cost) from sj-inner tables, as long as
+ the range that processes them finishes before the end_tab
+ */
+ if (tab->sj_strategy != SJ_OPT_NONE)
+ {
+ sj_inner_fanout= 1.0;
+ last_sj_table= i + tab->n_sj_tables;
+ }
+
+ table_map cur_table_map;
+ if (tab->table)
+ cur_table_map= tab->table->map;
+ else
+ {
+ /* This is a SJ-Materialization nest. Check all of its tables */
+ TABLE *first_child= tab->bush_children->start->table;
+ TABLE_LIST *sjm_nest= first_child->pos_in_table_list->embedding;
+ cur_table_map= sjm_nest->nested_join->used_tables;
+ }
+ if (tab->records_read && (cur_table_map & filter_map))
+ {
+ record_count= COST_MULT(record_count, tab->records_read);
+ read_time= COST_ADD(read_time,
+ COST_ADD(tab->read_time,
+ record_count / TIME_FOR_COMPARE));
+ if (tab->emb_sj_nest)
+ sj_inner_fanout= COST_MULT(sj_inner_fanout, tab->records_read);
+ }
+
+ if (i == last_sj_table)
+ {
+ record_count /= sj_inner_fanout;
+ sj_inner_fanout= 1.0;
+ last_sj_table= MAX_TABLES;
+ }
+
+ if (tab == end_tab)
+ break;
+ }
+ *read_time_arg= read_time;// + record_count / TIME_FOR_COMPARE;
+ *record_count_arg= record_count;
+}
+
+
+/*
+ Get prefix cost and fanout. This function is different from
+ get_partial_cost_and_fanout:
+ - it operates on a JOIN that haven't yet finished its optimization phase (in
+ particular, fix_semijoin_strategies_for_picked_join_order() and
+ get_best_combination() haven't been called)
+ - it assumes the the join prefix doesn't have any semi-join plans
+
+ These assumptions are met by the caller of the function.
+*/
+
+void JOIN::get_prefix_cost_and_fanout(uint n_tables,
+ double *read_time_arg,
+ double *record_count_arg)
+{
+ double record_count= 1;
+ double read_time= 0.0;
+ for (uint i= const_tables; i < n_tables + const_tables ; i++)
+ {
+ if (best_positions[i].records_read)
+ {
+ record_count= COST_MULT(record_count, best_positions[i].records_read);
+ read_time= COST_ADD(read_time, best_positions[i].read_time);
+ }
+ /* TODO: Take into account condition selectivities here */
+ }
+ *read_time_arg= read_time;// + record_count / TIME_FOR_COMPARE;
+ *record_count_arg= record_count;
+}
+
+
+/**
+ Estimate the number of rows that query execution will read.
+
+ @todo This is a very pessimistic upper bound. Use join selectivity
+ when available to produce a more realistic number.
+*/
+
+double JOIN::get_examined_rows()
+{
+ double examined_rows;
+ double prev_fanout= 1;
+ double records;
+ JOIN_TAB *tab= first_breadth_first_tab();
+ JOIN_TAB *prev_tab= tab;
+
+ records= (double)tab->get_examined_rows();
+
+ while ((tab= next_breadth_first_tab(first_breadth_first_tab(),
+ top_join_tab_count, tab)))
+ {
+ prev_fanout= COST_MULT(prev_fanout, prev_tab->records_read);
+ records=
+ COST_ADD(records,
+ COST_MULT((double) (tab->get_examined_rows()), prev_fanout));
+ prev_tab= tab;
+ }
+ examined_rows= (double)
+ (records > (double) HA_ROWS_MAX ? HA_ROWS_MAX : (ha_rows) records);
+ return examined_rows;
+}
+
+
+/**
+ @brief
+ Get the selectivity of equalities between columns when joining a table
+
+ @param join The optimized join
+ @param idx The number of tables in the evaluated partual join
+ @param s The table to be joined for evaluation
+ @param rem_tables The bitmap of tables to be joined later
+ @param keyparts The number of key parts to used when joining s
+ @param ref_keyuse_steps Array of references to keyuses employed to join s
+*/
+
+static
+double table_multi_eq_cond_selectivity(JOIN *join, uint idx, JOIN_TAB *s,
+ table_map rem_tables, uint keyparts,
+ uint16 *ref_keyuse_steps)
+{
+ double sel= 1.0;
+ COND_EQUAL *cond_equal= join->cond_equal;
+
+ if (!cond_equal || !cond_equal->current_level.elements || !s->keyuse)
+ return sel;
+
+ Item_equal *item_equal;
+ List_iterator_fast<Item_equal> it(cond_equal->current_level);
+ TABLE *table= s->table;
+ table_map table_bit= table->map;
+ POSITION *pos= &join->positions[idx];
+
+ while ((item_equal= it++))
+ {
+ /*
+ Check whether we need to take into account the selectivity of
+ multiple equality item_equal. If this is the case multiply
+ the current value of sel by this selectivity
+ */
+ table_map used_tables= item_equal->used_tables();
+ if (!(used_tables & table_bit))
+ continue;
+ if (item_equal->get_const())
+ continue;
+
+ bool adjust_sel= FALSE;
+ Item_equal_fields_iterator fi(*item_equal);
+ while((fi++) && !adjust_sel)
+ {
+ Field *fld= fi.get_curr_field();
+ if (fld->table->map != table_bit)
+ continue;
+ if (pos->key == 0)
+ adjust_sel= TRUE;
+ else
+ {
+ uint i;
+ KEYUSE *keyuse= pos->key;
+ uint key= keyuse->key;
+ for (i= 0; i < keyparts; i++)
+ {
+ if (i > 0)
+ keyuse+= ref_keyuse_steps[i-1];
+ uint fldno;
+ if (is_hash_join_key_no(key))
+ fldno= keyuse->keypart;
+ else
+ fldno= table->key_info[key].key_part[i].fieldnr - 1;
+ if (fld->field_index == fldno)
+ break;
+ }
+ keyuse= pos->key;
+
+ if (i == keyparts)
+ {
+ /*
+ Field fld is included in multiple equality item_equal
+ and is not a part of the ref key.
+ The selectivity of the multiple equality must be taken
+ into account unless one of the ref arguments is
+ equal to fld.
+ */
+ adjust_sel= TRUE;
+ for (uint j= 0; j < keyparts && adjust_sel; j++)
+ {
+ if (j > 0)
+ keyuse+= ref_keyuse_steps[j-1];
+ Item *ref_item= keyuse->val;
+ if (ref_item->real_item()->type() == Item::FIELD_ITEM)
+ {
+ Item_field *field_item= (Item_field *) (ref_item->real_item());
+ if (item_equal->contains(field_item->field))
+ adjust_sel= FALSE;
+ }
+ }
+ }
+ }
+ }
+ if (adjust_sel)
+ {
+ /*
+ If ref == 0 and there are no fields in the multiple equality
+ item_equal that belong to the tables joined prior to s
+ then the selectivity of multiple equality will be set to 1.0.
+ */
+ double eq_fld_sel= 1.0;
+ fi.rewind();
+ while ((fi++))
+ {
+ double curr_eq_fld_sel;
+ Field *fld= fi.get_curr_field();
+ if (!(fld->table->map & ~(table_bit | rem_tables)))
+ continue;
+ curr_eq_fld_sel= get_column_avg_frequency(fld) /
+ fld->table->stat_records();
+ if (curr_eq_fld_sel < 1.0)
+ set_if_bigger(eq_fld_sel, curr_eq_fld_sel);
+ }
+ sel*= eq_fld_sel;
+ }
+ }
+ return sel;
+}
+
+
+/**
+ @brief
+ Get the selectivity of conditions when joining a table
+
+ @param join The optimized join
+ @param s The table to be joined for evaluation
+ @param rem_tables The bitmap of tables to be joined later
+
+ @detail
+ Get selectivity of conditions that can be applied when joining this table
+ with previous tables.
+
+ For quick selects and full table scans, selectivity of COND(this_table)
+ is accounted for in apply_selectivity_for_table(). Here, we only count
+ selectivity of COND(this_table, previous_tables).
+
+ For other access methods, we need to calculate selectivity of the whole
+ condition, "COND(this_table) AND COND(this_table, previous_tables)".
+
+ @retval
+ selectivity of the conditions imposed on the rows of s
+*/
+
+static
+double table_cond_selectivity(JOIN *join, uint idx, JOIN_TAB *s,
+ table_map rem_tables)
+{
+ uint16 ref_keyuse_steps_buf[MAX_REF_PARTS];
+ uint ref_keyuse_size= MAX_REF_PARTS;
+ uint16 *ref_keyuse_steps= ref_keyuse_steps_buf;
+ Field *field;
+ TABLE *table= s->table;
+ MY_BITMAP *read_set= table->read_set;
+ double sel= s->table->cond_selectivity;
+ POSITION *pos= &join->positions[idx];
+ uint keyparts= 0;
+ uint found_part_ref_or_null= 0;
+
+ if (pos->key != 0)
+ {
+ /*
+ A ref access or hash join is used for this table. ref access is created
+ from
+
+ tbl.keypart1=expr1 AND tbl.keypart2=expr2 AND ...
+
+ and it will only return rows for which this condition is satisified.
+ Suppose, certain expr{i} is a constant. Since ref access only returns
+ rows that satisfy
+
+ tbl.keypart{i}=const (*)
+
+ then selectivity of this equality should not be counted in return value
+ of this function. This function uses the value of
+
+ table->cond_selectivity=selectivity(COND(tbl)) (**)
+
+ as a starting point. This value includes selectivity of equality (*). We
+ should somehow discount it.
+
+ Looking at calculate_cond_selectivity_for_table(), one can see that that
+ the value is not necessarily a direct multiplicand in
+ table->cond_selectivity
+
+ There are three possible ways to discount
+ 1. There is a potential range access on t.keypart{i}=const.
+ (an important special case: the used ref access has a const prefix for
+ which a range estimate is available)
+
+ 2. The field has a histogram. field[x]->cond_selectivity has the data.
+
+ 3. Use index stats on this index:
+ rec_per_key[key_part+1]/rec_per_key[key_part]
+
+ (TODO: more details about the "t.key=othertable.col" case)
+ */
+ KEYUSE *keyuse= pos->key;
+ KEYUSE *prev_ref_keyuse= keyuse;
+ uint key= keyuse->key;
+ bool used_range_selectivity= false;
+
+ /*
+ Check if we have a prefix of key=const that matches a quick select.
+ */
+ if (!is_hash_join_key_no(key) && table->opt_range_keys.is_set(key))
+ {
+ key_part_map quick_key_map= (key_part_map(1) <<
+ table->opt_range[key].key_parts) - 1;
+ if (table->opt_range[key].rows &&
+ !(quick_key_map & ~table->const_key_parts[key]))
+ {
+ /*
+ Ok, there is an equality for each of the key parts used by the
+ quick select. This means, quick select's estimate can be reused to
+ discount the selectivity of a prefix of a ref access.
+ */
+ for (; quick_key_map & 1 ; quick_key_map>>= 1)
+ {
+ while (keyuse->table == table && keyuse->key == key &&
+ keyuse->keypart == keyparts)
+ {
+ keyuse++;
+ }
+ keyparts++;
+ }
+ /*
+ Here we discount selectivity of the constant range CR. To calculate
+ this selectivity we use elements from the quick_rows[] array.
+ If we have indexes i1,...,ik with the same prefix compatible
+ with CR any of the estimate quick_rows[i1], ... quick_rows[ik] could
+ be used for this calculation but here we don't know which one was
+ actually used. So sel could be greater than 1 and we have to cap it.
+ However if sel becomes greater than 2 then with high probability
+ something went wrong.
+ */
+ sel /= (double)table->opt_range[key].rows / (double) table->stat_records();
+ set_if_smaller(sel, 1.0);
+ used_range_selectivity= true;
+ }
+ }
+
+ /*
+ Go through the "keypart{N}=..." equalities and find those that were
+ already taken into account in table->cond_selectivity.
+ */
+ keyuse= pos->key;
+ keyparts=0;
+ while (keyuse->table == table && keyuse->key == key)
+ {
+ if (!(keyuse->used_tables & (rem_tables | table->map)))
+ {
+ if (are_tables_local(s, keyuse->val->used_tables()))
+ {
+ if (is_hash_join_key_no(key))
+ {
+ if (keyparts == keyuse->keypart)
+ keyparts++;
+ }
+ else
+ {
+ if (keyparts == keyuse->keypart &&
+ !((keyuse->val->used_tables()) & ~pos->ref_depend_map) &&
+ !(found_part_ref_or_null & keyuse->optimize))
+ {
+ /* Found a KEYUSE object that will be used by ref access */
+ keyparts++;
+ found_part_ref_or_null|= keyuse->optimize & ~KEY_OPTIMIZE_EQ;
+ }
+ }
+
+ if (keyparts > keyuse->keypart)
+ {
+ /* Ok this is the keyuse that will be used for ref access */
+ if (!used_range_selectivity && keyuse->val->const_item())
+ {
+ uint fldno;
+ if (is_hash_join_key_no(key))
+ fldno= keyuse->keypart;
+ else
+ fldno= table->key_info[key].key_part[keyparts-1].fieldnr - 1;
+
+ if (table->field[fldno]->cond_selectivity > 0)
+ {
+ sel /= table->field[fldno]->cond_selectivity;
+ set_if_smaller(sel, 1.0);
+ }
+ /*
+ TODO: we could do better here:
+ 1. cond_selectivity might be =1 (the default) because quick
+ select on some index prevented us from analyzing
+ histogram for this column.
+ 2. we could get an estimate through this?
+ rec_per_key[key_part-1] / rec_per_key[key_part]
+ */
+ }
+ if (keyparts > 1)
+ {
+ /*
+ Prepare to set ref_keyuse_steps[keyparts-2]: resize the array
+ if it is not large enough
+ */
+ if (keyparts - 2 >= ref_keyuse_size)
+ {
+ uint new_size= MY_MAX(ref_keyuse_size*2, keyparts);
+ void *new_buf;
+ if (!(new_buf= my_malloc(PSI_INSTRUMENT_ME,
+ sizeof(*ref_keyuse_steps)*new_size,
+ MYF(0))))
+ {
+ sel= 1.0; // As if no selectivity was computed
+ goto exit;
+ }
+ memcpy(new_buf, ref_keyuse_steps,
+ sizeof(*ref_keyuse_steps)*ref_keyuse_size);
+ if (ref_keyuse_steps != ref_keyuse_steps_buf)
+ my_free(ref_keyuse_steps);
+
+ ref_keyuse_steps= (uint16*)new_buf;
+ ref_keyuse_size= new_size;
+ }
+
+ ref_keyuse_steps[keyparts-2]= (uint16)(keyuse - prev_ref_keyuse);
+ prev_ref_keyuse= keyuse;
+ }
+ }
+ }
+ }
+ keyuse++;
+ }
+ }
+ else
+ {
+ /*
+ The table is accessed with full table scan, or quick select.
+ Selectivity of COND(table) is already accounted for in
+ apply_selectivity_for_table().
+ */
+ sel= 1;
+ }
+
+ /*
+ If the field f from the table is equal to a field from one the
+ earlier joined tables then the selectivity of the range conditions
+ over the field f must be discounted.
+
+ We need to discount selectivity only if we're using ref-based
+ access method (and have sel!=1).
+ If we use ALL/range/index_merge, then sel==1, and no need to discount.
+ */
+ if (pos->key != NULL)
+ {
+ for (Field **f_ptr=table->field ; (field= *f_ptr) ; f_ptr++)
+ {
+ if (!bitmap_is_set(read_set, field->field_index) ||
+ !field->next_equal_field)
+ continue;
+ for (Field *next_field= field->next_equal_field;
+ next_field != field;
+ next_field= next_field->next_equal_field)
+ {
+ if (!(next_field->table->map & rem_tables) && next_field->table != table)
+ {
+ if (field->cond_selectivity > 0)
+ {
+ sel/= field->cond_selectivity;
+ set_if_smaller(sel, 1.0);
+ }
+ break;
+ }
+ }
+ }
+ }
+
+ sel*= table_multi_eq_cond_selectivity(join, idx, s, rem_tables,
+ keyparts, ref_keyuse_steps);
+exit:
+ if (ref_keyuse_steps != ref_keyuse_steps_buf)
+ my_free(ref_keyuse_steps);
+ return sel;
+}
+
+
+/*
+ Check if the table is an EQ_REF or similar table and there is no cost
+ to gain by moveing it to a later stage.
+ We call such a table a edge table (or hanging leaf) as it will read at
+ most one row and will not add to the number of row combinations in the join.
+*/
+
+static inline enum_best_search
+check_if_edge_table(POSITION *pos,
+ double pushdown_cond_selectivity)
+{
+
+ if ((pos->type == JT_EQ_REF ||
+ (pos->type == JT_REF &&
+ pos->records_read == 1 &&
+ !pos->range_rowid_filter_info)) &&
+ pushdown_cond_selectivity >= 0.999)
+ return SEARCH_FOUND_EDGE;
+ return SEARCH_OK;
+}
+
+
+struct SORT_POSITION
+{
+ JOIN_TAB **join_tab;
+ POSITION *position;
+};
+
+
+/*
+ Sort SORT_POSITIONS according to expected number of rows found
+ If number of combinations are the same sort according to join_tab order
+ (same table order as used in the original SQL query)
+*/
+
+static int
+sort_positions(SORT_POSITION *a, SORT_POSITION *b)
+{
+ int cmp;
+ if ((cmp= compare_embedding_subqueries(*a->join_tab, *b->join_tab)) != 0)
+ return cmp;
+
+ if (a->position->records_read > b->position->records_read)
+ return 1;
+ if (a->position->records_read < b->position->records_read)
+ return -1;
+ return CMP_NUM(*a->join_tab, *b->join_tab);
+}
+
+
+/*
+ Call best_access_path() for a set of tables and collect results
+
+ @param join JOIN object
+ @param trace_one_table Current optimizer_trace
+ @param pos Pointer to remanining tables
+ @param allowed_tables bitmap of allowed tables. On return set to
+ the collected tables.
+ @param store_poisition Points to where to store next found SORT_POSITION.
+ Will be updated to next free position.
+ @param stop_on_eq_ref Stop searching for more tables if we found an EQ_REF
+ table.
+
+ @return
+ 0 Normal
+ 1 Eq_ref table found (only if stop_on_eq_ref is used)
+
+ join->next_sort_position will be update to next free position.
+*/
+
+static bool
+get_costs_for_tables(JOIN *join, table_map remaining_tables, uint idx,
+ double record_count,
+ Json_writer_object *trace_one_table,
+ JOIN_TAB **pos, SORT_POSITION **store_position,
+ table_map *allowed_tables,
+ bool stop_on_eq_ref)
+{
+ THD *thd= join->thd;
+ POSITION *sort_position= join->next_sort_position;
+ SORT_POSITION *sort_end= *store_position;
+ JOIN_TAB *s;
+ table_map found_tables= 0;
+ bool found_eq_ref= 0;
+ bool disable_jbuf= join->thd->variables.join_cache_level == 0;
+ DBUG_ENTER("get_plans_for_tables");
+
+ s= *pos;
+ do
+ {
+ table_map real_table_bit= s->table->map;
+ if ((*allowed_tables & real_table_bit) &&
+ !(remaining_tables & s->dependent))
+ {
+#ifdef DBUG_ASSERT_EXISTS
+ DBUG_ASSERT(!check_interleaving_with_nj(s));
+ restore_prev_nj_state(s); // Revert effect of check_... call
+#endif
+ sort_end->join_tab= pos;
+ sort_end->position= sort_position;
+
+
+ Json_writer_object wrapper(thd);
+ /* Find the best access method from 's' to the current partial plan */
+ best_access_path(join, s, remaining_tables, join->positions, idx,
+ disable_jbuf, record_count,
+ sort_position, sort_position + 1);
+ found_tables|= s->table->map;
+ sort_end++;
+ sort_position+= 2;
+ if (unlikely(stop_on_eq_ref) && sort_position[-2].type == JT_EQ_REF)
+ {
+ /* Found an eq_ref tables. Use this, ignoring the other tables */
+ found_eq_ref= 1;
+ if (found_tables == s->table->map)
+ break; // First table
+
+ /* Store the found eq_ref table first in store_position */
+ sort_position-= 2;
+ *allowed_tables= s->table->map;
+ (*store_position)->join_tab= pos;
+ (*store_position)->position= sort_position;
+ (*store_position)++;
+ join->next_sort_position[0]= sort_position[0];
+ join->next_sort_position[1]= sort_position[1];
+ join->next_sort_position+= 2;
+ DBUG_RETURN(1);
+ }
+ }
+ else
+ {
+ /* Verify that 'allowed_current_tables' was calculated correctly */
+ DBUG_ASSERT((remaining_tables & s->dependent) ||
+ !(remaining_tables & real_table_bit) ||
+ !(*allowed_tables & real_table_bit) ||
+ check_interleaving_with_nj(s));
+ }
+ } while ((s= *++pos));
+
+ *allowed_tables= found_tables;
+ *store_position= sort_end;
+ join->next_sort_position= sort_position;
+ DBUG_RETURN(found_eq_ref);
+}
+
+/**
+ Find a good, possibly optimal, query execution plan (QEP) by a possibly
+ exhaustive search.
+
+ The procedure searches for the optimal ordering of the query tables in set
+ 'remaining_tables' of size N, and the corresponding optimal access paths to
+ each table. The choice of a table order and an access path for each table
+ constitutes a query execution plan (QEP) that fully specifies how to
+ execute the query.
+
+ The maximal size of the found plan is controlled by the parameter
+ 'search_depth'. When search_depth == N, the resulting plan is complete and
+ can be used directly as a QEP. If search_depth < N, the found plan consists
+ of only some of the query tables. Such "partial" optimal plans are useful
+ only as input to query optimization procedures, and cannot be used directly
+ to execute a query.
+
+ The algorithm begins with an empty partial plan stored in 'join->positions'
+ and a set of N tables - 'remaining_tables'. Each step of the algorithm
+ evaluates the cost of the partial plan extended by all access plans for
+ each of the relations in 'remaining_tables', expands the current partial
+ plan with the access plan that results in lowest cost of the expanded
+ partial plan, and removes the corresponding relation from
+ 'remaining_tables'. The algorithm continues until it either constructs a
+ complete optimal plan, or constructs an optimal plartial plan with size =
+ search_depth.
+
+ The final optimal plan is stored in 'join->best_positions'. The
+ corresponding cost of the optimal plan is in 'join->best_read'.
+
+ @note
+ The procedure uses a recursive depth-first search where the depth of the
+ recursion (and thus the exhaustiveness of the search) is controlled by the
+ parameter 'search_depth'.
+
+ @note
+ The pseudocode below describes the algorithm of
+ 'best_extension_by_limited_search'. The worst-case complexity of this
+ algorithm is O(N*N^search_depth/search_depth). When serch_depth >= N, then
+ the complexity of greedy_search is O(N!).
+
+ @code
+ procedure best_extension_by_limited_search(
+ pplan in, // in, partial plan of tables-joined-so-far
+ pplan_cost, // in, cost of pplan
+ remaining_tables, // in, set of tables not referenced in pplan
+ best_plan_so_far, // in/out, best plan found so far
+ best_plan_so_far_cost,// in/out, cost of best_plan_so_far
+ search_depth) // in, maximum size of the plans being considered
+ {
+ for each table T from remaining_tables
+ {
+ // Calculate the cost of using table T as above
+ cost = complex-series-of-calculations;
+
+ // Add the cost to the cost so far.
+ pplan_cost+= cost;
+
+ if (pplan_cost >= best_plan_so_far_cost)
+ // pplan_cost already too great, stop search
+ continue;
+
+ pplan= expand pplan by best_access_method;
+ remaining_tables= remaining_tables - table T;
+ if (remaining_tables is not an empty set
+ and
+ search_depth > 1)
+ {
+ best_extension_by_limited_search(pplan, pplan_cost,
+ remaining_tables,
+ best_plan_so_far,
+ best_plan_so_far_cost,
+ search_depth - 1);
+ }
+ else
+ {
+ best_plan_so_far_cost= pplan_cost;
+ best_plan_so_far= pplan;
+ }
+ }
+ }
+ @endcode
+
+ @note
+ When 'best_extension_by_limited_search' is called for the first time,
+ 'join->best_read' must be set to the largest possible value (e.g. DBL_MAX).
+ The actual implementation provides a way to optionally use pruning
+ heuristic to reduce the search space by skipping some partial plans.
+
+ @note
+ The parameter 'search_depth' provides control over the recursion
+ depth, and thus the size of the resulting optimal plan.
+
+ @param join pointer to the structure providing all context info
+ for the query
+ @param remaining_tables set of tables not included into the partial plan yet
+ @param idx length of the partial QEP in 'join->positions';
+ since a depth-first search is used, also corresponds
+ to the current depth of the search tree;
+ also an index in the array 'join->best_ref';
+ @param record_count estimate for the number of records returned by the
+ best partial plan
+ @param read_time the cost of the best partial plan
+ @param search_depth maximum depth of the recursion and thus size of the
+ found optimal plan
+ (0 < search_depth <= join->tables+1).
+ (values: 0 = EXHAUSTIVE, 1 = PRUNE_BY_TIME_OR_ROWS)
+ @param use_cond_selectivity specifies how the selectivity of the conditions
+ pushed to a table should be taken into account
+
+ @retval
+ enum_best_search::SEARCH_OK All fine
+ @retval
+ enum_best_search::SEARCH_FOUND_EDGE All remaning tables are edge tables
+ @retval
+ enum_best_search::SEARCH_ABORT Killed by user
+ @retval
+ enum_best_search::SEARCH_ERROR Fatal error
+*/
+
+
+static enum_best_search
+best_extension_by_limited_search(JOIN *join,
+ table_map remaining_tables,
+ uint idx,
+ double record_count,
+ double read_time,
+ uint search_depth,
+ uint use_cond_selectivity,
+ table_map *processed_eq_ref_tables)
+{
+ THD *thd= join->thd;
+ /*
+ 'join' is a partial plan with lower cost than the best plan so far,
+ so continue expanding it further with the tables in 'remaining_tables'.
+ */
+ JOIN_TAB *s;
+ double best_record_count= DBL_MAX;
+ double best_read_time= DBL_MAX;
+ enum_best_search best_res;
+ uint tables_left= join->table_count - idx, found_tables;
+ uint accepted_tables __attribute__((unused));
+ table_map found_eq_ref_tables= 0, used_eq_ref_table= 0;
+ table_map allowed_tables, allowed_current_tables;
+ SORT_POSITION *sort= (SORT_POSITION*) alloca(sizeof(SORT_POSITION)*tables_left);
+ SORT_POSITION *sort_end;
+ DBUG_ENTER("best_extension_by_limited_search");
+
+ DBUG_EXECUTE_IF("show_explain_probe_best_ext_lim_search",
+ if (dbug_user_var_equals_int(thd,
+ "show_explain_probe_select_id",
+ join->select_lex->select_number))
+ dbug_serve_apcs(thd, 1);
+ );
+
+ if (unlikely(thd->check_killed())) // Abort
+ DBUG_RETURN(SEARCH_ABORT);
+
+ DBUG_EXECUTE("opt", print_plan(join, idx, record_count, read_time, read_time,
+ "part_plan"););
+ status_var_increment(thd->status_var.optimizer_join_prefixes_check_calls);
+
+ if (join->emb_sjm_nest)
+ {
+ /*
+ If we are searching for the execution plan of a materialized semi-join nest
+ then allowed_tables contains bits only for the tables from this nest.
+ */
+ allowed_tables= (join->emb_sjm_nest->sj_inner_tables & remaining_tables);
+ allowed_current_tables= join->get_allowed_nj_tables(idx) & remaining_tables;
+ }
+ else
+ {
+ /*
+ allowed_tables is used to check if there are tables left that can improve
+ a key search and to see if there are more tables to add in next iteration.
+
+ allowed_current_tables tells us which tables we can add to the current
+ plan at this stage.
+ */
+ allowed_tables= remaining_tables;
+ allowed_current_tables= join->get_allowed_nj_tables(idx) & remaining_tables;
+ }
+ DBUG_ASSERT(allowed_tables & remaining_tables);
+
+ sort_end= sort;
+ {
+ Json_writer_object trace_one_table(thd);
+ JOIN_TAB **best_ref= join->best_ref + idx;
+ if (unlikely(thd->trace_started()))
+ trace_plan_prefix(join, idx, remaining_tables);
+
+ Json_writer_array arr(thd, "get_costs_for_tables");
+
+ if (idx > join->const_tables && join->prune_level >= 2 &&
+ join->positions[idx-1].type == JT_EQ_REF &&
+ (join->eq_ref_tables & allowed_current_tables))
+ {
+ /* Previous table was an EQ REF table, only add other possible EQ_REF
+ tables to the chain, stop after first one is found.
+ */
+ table_map table_map= join->eq_ref_tables & allowed_current_tables;
+ if (get_costs_for_tables(join, remaining_tables, idx, record_count,
+ &trace_one_table, best_ref, &sort_end,
+ &table_map, 1))
+ used_eq_ref_table= (*sort->join_tab)->table->map;
+ else
+ {
+ /* We didn't find another EQ_REF table, add remaining tables */
+ if ((table_map= allowed_current_tables & ~table_map))
+ get_costs_for_tables(join, remaining_tables, idx, record_count,
+ &trace_one_table, best_ref, &sort_end, &table_map,
+ 0);
+ }
+ }
+ else
+ {
+ table_map table_map= allowed_current_tables;
+ get_costs_for_tables(join, remaining_tables, idx, record_count,
+ &trace_one_table, best_ref, &sort_end, &table_map,
+ 0);
+ }
+ found_tables= (uint) (sort_end - sort);
+ DBUG_ASSERT(found_tables > 0);
+
+ /*
+ Sort tables in ascending order of generated row combinations
+ */
+ if (found_tables > 1)
+ my_qsort(sort, found_tables, sizeof(SORT_POSITION),
+ (qsort_cmp) sort_positions);
+ }
+ DBUG_ASSERT(join->next_sort_position <=
+ join->sort_positions + join->sort_space);
+
+ accepted_tables= 0;
+ double min_rec_count= DBL_MAX;
+ double min_rec_count_read_time= DBL_MAX;
+
+ double min_cost= DBL_MAX;
+ double min_cost_record_count= DBL_MAX;
+
+ for (SORT_POSITION *pos= sort ; pos < sort_end ; pos++)
+ {
+ s= *pos->join_tab;
+ if (!(found_eq_ref_tables & s->table->map) &&
+ !check_interleaving_with_nj(s))
+ {
+ table_map real_table_bit= s->table->map;
+ double current_record_count, current_read_time;
+ double partial_join_cardinality;
+ POSITION *position= join->positions + idx, *loose_scan_pos;
+ Json_writer_object trace_one_table(thd);
+
+ if (unlikely(thd->trace_started()))
+ {
+ trace_plan_prefix(join, idx, remaining_tables);
+ trace_one_table.add_table_name(s);
+ }
+
+ accepted_tables++;
+ *position= *pos->position; // Get stored result
+ loose_scan_pos= pos->position+1;
+
+ /* Compute the cost of the new plan extended with 's' */
+ current_record_count= COST_MULT(record_count, position->records_read);
+ const double filter_cmp_gain= position->range_rowid_filter_info
+ ? position->range_rowid_filter_info->get_cmp_gain(current_record_count)
+ : 0;
+ current_read_time= COST_ADD(read_time,
+ COST_ADD(position->read_time -
+ filter_cmp_gain,
+ current_record_count /
+ TIME_FOR_COMPARE));
+
+ if (unlikely(thd->trace_started()))
+ {
+ trace_one_table.add("rows_for_plan", current_record_count);
+ trace_one_table.add("cost_for_plan", current_read_time);
+ }
+ optimize_semi_joins(join, remaining_tables, idx, &current_record_count,
+ &current_read_time, loose_scan_pos);
+
+ /* Expand only partial plans with lower cost than the best QEP so far */
+ if (current_read_time >= join->best_read)
+ {
+ DBUG_EXECUTE("opt", print_plan(join, idx+1,
+ current_record_count,
+ read_time,
+ current_read_time,
+ "prune_by_cost"););
+ trace_one_table
+ .add("pruned_by_cost", true)
+ .add("current_cost", current_read_time)
+ .add("best_cost", join->best_read + COST_EPS);
+
+ restore_prev_nj_state(s);
+ restore_prev_sj_state(remaining_tables, s, idx);
+ continue;
+ }
+
+ /*
+ Prune some less promising partial plans. This heuristic may miss
+ the optimal QEPs, thus it results in a non-exhaustive search.
+ */
+ if (join->prune_level >= 1)
+ {
+ // Collect the members with min_cost and min_read_time.
+ bool min_rec_hit= false;
+ bool min_cost_hit= false;
+
+ if (join->extra_heuristic_pruning &&
+ (!(position->key_dependent & allowed_tables) ||
+ position->records_read < 2.0))
+ {
+ if (current_record_count < min_rec_count)
+ {
+ min_rec_count= current_record_count;
+ min_rec_count_read_time= current_read_time;
+ min_rec_hit= true;
+ }
+
+ if (current_read_time < min_cost)
+ {
+ min_cost_record_count= current_record_count;
+ min_cost= current_read_time;
+ min_cost_hit= true;
+ }
+ }
+
+ if (best_record_count > current_record_count ||
+ best_read_time > current_read_time ||
+ (idx == join->const_tables && // 's' is the first table in the QEP
+ s->table == join->sort_by_table))
+ {
+ /*
+ Store the current record count and cost as the best
+ possible cost at this level if the following holds:
+ - It's the lowest record number and cost so far
+ - There is no remaing table that could improve index usage
+ or we found an EQ_REF or REF key with less than 2
+ matching records (good enough).
+ */
+ if (best_record_count >= current_record_count &&
+ best_read_time >= current_read_time &&
+ (!(position->key_dependent & allowed_tables) ||
+ position->records_read < 2.0))
+ {
+ best_record_count= current_record_count;
+ best_read_time= current_read_time;
+ }
+ }
+ else
+ {
+ /*
+ Typically, we get here if:
+ best_record_count < current_record_count &&
+ best_read_time < current_read_time
+ That is, both record_count and read_time are worse than the best_
+ ones. This plan doesn't look promising, prune it away.
+ */
+ DBUG_EXECUTE("opt", print_plan(join, idx+1,
+ current_record_count,
+ read_time,
+ current_read_time,
+ "pruned_by_heuristic"););
+ trace_one_table.add("pruned_by_heuristic", true);
+ restore_prev_nj_state(s);
+ restore_prev_sj_state(remaining_tables, s, idx);
+ continue;
+ }
+
+ const char* prune_reason= NULL;
+ if (!min_rec_hit &&
+ current_record_count >= min_rec_count &&
+ current_read_time >= min_rec_count_read_time)
+ prune_reason= "min_record_count";
+
+ if (!min_cost_hit &&
+ current_record_count >= min_cost_record_count &&
+ current_read_time >= min_cost)
+ prune_reason= "min_read_time";
+
+ if (prune_reason)
+ {
+ trace_one_table.add("pruned_by_heuristic", prune_reason);
+ restore_prev_nj_state(s);
+ restore_prev_sj_state(remaining_tables, s, idx);
+ continue;
+ }
+ }
+
+ double pushdown_cond_selectivity= 1.0;
+ if (use_cond_selectivity > 1)
+ pushdown_cond_selectivity= table_cond_selectivity(join, idx, s,
+ remaining_tables &
+ ~real_table_bit);
+ join->positions[idx].cond_selectivity= pushdown_cond_selectivity;
+
+ partial_join_cardinality= (current_record_count *
+ pushdown_cond_selectivity);
+
+ if (unlikely(thd->trace_started()))
+ {
+ if (pushdown_cond_selectivity < 1.0)
+ {
+ trace_one_table.add("selectivity", pushdown_cond_selectivity);
+ trace_one_table.add("estimated_join_cardinality",
+ partial_join_cardinality);
+ }
+ }
+
+ join->positions[idx].partial_join_cardinality= partial_join_cardinality;
+
+ if ((search_depth > 1) && (remaining_tables & ~real_table_bit) &
+ allowed_tables)
+ {
+ /* Recursively expand the current partial plan */
+ Json_writer_array trace_rest(thd, "rest_of_plan");
+
+ swap_variables(JOIN_TAB*, join->best_ref[idx], *pos->join_tab);
+ best_res=
+ best_extension_by_limited_search(join,
+ remaining_tables &
+ ~real_table_bit,
+ idx + 1,
+ partial_join_cardinality,
+ current_read_time,
+ search_depth - 1,
+ use_cond_selectivity,
+ &found_eq_ref_tables);
+ swap_variables(JOIN_TAB*, join->best_ref[idx], *pos->join_tab);
+
+ if ((int) best_res < (int) SEARCH_OK)
+ goto end; // Return best_res
+ if (best_res == SEARCH_FOUND_EDGE &&
+ check_if_edge_table(join->positions+ idx,
+ pushdown_cond_selectivity) !=
+ SEARCH_FOUND_EDGE)
+ best_res= SEARCH_OK;
+ }
+ else
+ {
+ /*
+ 'join' is either the best partial QEP with 'search_depth' relations,
+ or the best complete QEP so far, whichever is smaller.
+ */
+ if (join->sort_by_table &&
+ join->sort_by_table !=
+ join->positions[join->const_tables].table->table)
+ {
+ /*
+ We may have to make a temp table, note that this is only a
+ heuristic since we cannot know for sure at this point.
+ Hence it may be wrong.
+ */
+ trace_one_table.add("cost_for_sorting", current_record_count);
+ current_read_time= COST_ADD(current_read_time, current_record_count);
+ }
+ if (current_read_time < join->best_read)
+ {
+ memcpy((uchar*) join->best_positions, (uchar*) join->positions,
+ sizeof(POSITION) * (idx + 1));
+ join->join_record_count= partial_join_cardinality;
+ join->best_read= current_read_time - COST_EPS;
+ }
+ DBUG_EXECUTE("opt", print_plan(join, idx+1,
+ current_record_count,
+ read_time,
+ current_read_time,
+ "full_plan"););
+ best_res= check_if_edge_table(join->positions + idx,
+ pushdown_cond_selectivity);
+ }
+ restore_prev_nj_state(s);
+ restore_prev_sj_state(remaining_tables, s, idx);
+ if (best_res == SEARCH_FOUND_EDGE)
+ {
+ if (pos+1 < sort_end) // If not last table
+ trace_one_table.add("pruned_by_hanging_leaf", true);
+ goto end;
+ }
+ }
+ }
+ DBUG_ASSERT(accepted_tables > 0);
+ best_res= SEARCH_OK;
+
+end:
+ join->next_sort_position-= found_tables*2;
+ if (used_eq_ref_table)
+ *processed_eq_ref_tables|= used_eq_ref_table | found_eq_ref_tables;
+ else
+ *processed_eq_ref_tables= 0;
+ DBUG_RETURN(best_res);
+}
+
+
+/**
+ Find how much space the prevous read not const tables takes in cache.
+*/
+
+void JOIN_TAB::calc_used_field_length(bool max_fl)
+{
+ uint null_fields,blobs,fields;
+ ulong rec_length;
+ Field **f_ptr,*field;
+ uint uneven_bit_fields;
+ MY_BITMAP *read_set= table->read_set;
+
+ uneven_bit_fields= null_fields= blobs= fields= rec_length=0;
+ for (f_ptr=table->field ; (field= *f_ptr) ; f_ptr++)
+ {
+ if (bitmap_is_set(read_set, field->field_index))
+ {
+ uint flags=field->flags;
+ fields++;
+ rec_length+=field->pack_length();
+ if (flags & BLOB_FLAG)
+ blobs++;
+ if (!(flags & NOT_NULL_FLAG))
+ null_fields++;
+ if (field->type() == MYSQL_TYPE_BIT &&
+ ((Field_bit*)field)->bit_len)
+ uneven_bit_fields++;
+ }
+ }
+ if (null_fields || uneven_bit_fields)
+ rec_length+=(table->s->null_fields+7)/8;
+ if (table->maybe_null)
+ rec_length+=sizeof(my_bool);
+
+ /* Take into account that DuplicateElimination may need to store rowid */
+ uint rowid_add_size= 0;
+ if (keep_current_rowid)
+ {
+ rowid_add_size= table->file->ref_length;
+ rec_length += rowid_add_size;
+ fields++;
+ }
+
+ if (max_fl)
+ {
+ // TODO: to improve this estimate for max expected length
+ if (blobs)
+ {
+ ulong blob_length= table->file->stats.mean_rec_length;
+ if (ULONG_MAX - rec_length > blob_length)
+ rec_length+= blob_length;
+ else
+ rec_length= ULONG_MAX;
+ }
+ max_used_fieldlength= rec_length;
+ }
+ else if (table->file->stats.mean_rec_length)
+ set_if_smaller(rec_length, table->file->stats.mean_rec_length + rowid_add_size);
+
+ used_fields=fields;
+ used_fieldlength=rec_length;
+ used_blobs=blobs;
+ used_null_fields= null_fields;
+ used_uneven_bit_fields= uneven_bit_fields;
+}
+
+
+/*
+ @brief
+ Extract pushdown conditions for a table scan
+
+ @details
+ This functions extracts pushdown conditions usable when this table is scanned.
+ The conditions are extracted either from WHERE or from ON expressions.
+ The conditions are attached to the field cache_select of this table.
+
+ @note
+ Currently the extracted conditions are used only by BNL and BNLH join.
+ algorithms.
+
+ @retval 0 on success
+ 1 otherwise
+*/
+
+int JOIN_TAB::make_scan_filter()
+{
+ COND *tmp;
+ DBUG_ENTER("make_scan_filter");
+
+ Item *cond= is_inner_table_of_outer_join() ?
+ *get_first_inner_table()->on_expr_ref : join->conds;
+
+ if (cond)
+ {
+ if ((tmp= make_cond_for_table(join->thd, cond,
+ join->const_table_map | table->map,
+ table->map, -1, FALSE, TRUE)))
+ {
+ DBUG_EXECUTE("where",print_where(tmp,"cache", QT_ORDINARY););
+ if (!(cache_select=
+ (SQL_SELECT*) join->thd->memdup((uchar*) select,
+ sizeof(SQL_SELECT))))
+ DBUG_RETURN(1);
+ cache_select->cond= tmp;
+ cache_select->read_tables=join->const_table_map;
+ }
+ else if (join->thd->is_error())
+ DBUG_RETURN(1);
+ }
+ DBUG_RETURN(0);
+}
+
+
+/**
+ @brief
+ Check whether hash join algorithm can be used to join this table
+
+ @details
+ This function finds out whether the ref items that have been chosen
+ by the planner to access this table can be used for hash join algorithms.
+ The answer depends on a certain property of the the fields of the
+ joined tables on which the hash join key is built.
+
+ @note
+ At present the function is supposed to be called only after the function
+ get_best_combination has been called.
+
+ @retval TRUE it's possible to use hash join to join this table
+ @retval FALSE otherwise
+*/
+
+bool JOIN_TAB::hash_join_is_possible()
+{
+ if (type != JT_REF && type != JT_EQ_REF)
+ return FALSE;
+ if (!is_ref_for_hash_join())
+ {
+ KEY *keyinfo= table->key_info + ref.key;
+ return keyinfo->key_part[0].field->hash_join_is_possible();
+ }
+ return TRUE;
+}
+
+
+/**
+ @brief
+ Check whether a KEYUSE can be really used for access this join table
+
+ @param join Join structure with the best join order
+ for which the check is performed
+ @param keyuse Evaluated KEYUSE structure
+
+ @details
+ This function is supposed to be used after the best execution plan have been
+ already chosen and the JOIN_TAB array for the best join order been already set.
+ For a given KEYUSE to access this JOIN_TAB in the best execution plan the
+ function checks whether it really can be used. The function first performs
+ the check with access_from_tables_is_allowed(). If it succeeds it checks
+ whether the keyuse->val does not use some fields of a materialized semijoin
+ nest that cannot be used to build keys to access outer tables.
+ Such KEYUSEs exists for the query like this:
+ select * from ot
+ where ot.c in (select it1.c from it1, it2 where it1.c=f(it2.c))
+ Here we have two KEYUSEs to access table ot: with val=it1.c and val=f(it2.c).
+ However if the subquery was materialized the second KEYUSE cannot be employed
+ to access ot.
+
+ @retval true the given keyuse can be used for ref access of this JOIN_TAB
+ @retval false otherwise
+*/
+
+bool JOIN_TAB::keyuse_is_valid_for_access_in_chosen_plan(JOIN *join,
+ KEYUSE *keyuse)
+{
+ if (!access_from_tables_is_allowed(keyuse->used_tables,
+ join->sjm_lookup_tables))
+ return false;
+ if (join->sjm_scan_tables & table->map)
+ return true;
+ table_map keyuse_sjm_scan_tables= keyuse->used_tables &
+ join->sjm_scan_tables;
+ if (!keyuse_sjm_scan_tables)
+ return true;
+ uint sjm_tab_nr= 0;
+ while (!(keyuse_sjm_scan_tables & table_map(1) << sjm_tab_nr))
+ sjm_tab_nr++;
+ JOIN_TAB *sjm_tab= join->map2table[sjm_tab_nr];
+ TABLE_LIST *emb_sj_nest= sjm_tab->emb_sj_nest;
+ if (!(emb_sj_nest->sj_mat_info && emb_sj_nest->sj_mat_info->is_used &&
+ emb_sj_nest->sj_mat_info->is_sj_scan))
+ return true;
+ st_select_lex *sjm_sel= emb_sj_nest->sj_subq_pred->unit->first_select();
+ for (uint i= 0; i < sjm_sel->item_list.elements; i++)
+ {
+ DBUG_ASSERT(sjm_sel->ref_pointer_array[i]->real_item()->type() == Item::FIELD_ITEM);
+ if (keyuse->val->real_item()->type() == Item::FIELD_ITEM)
+ {
+ Field *field = ((Item_field*)sjm_sel->ref_pointer_array[i]->real_item())->field;
+ if (field->eq(((Item_field*)keyuse->val->real_item())->field))
+ return true;
+ }
+ }
+ return false;
+}
+
+
+static uint
+cache_record_length(JOIN *join,uint idx)
+{
+ uint length=0;
+ JOIN_TAB **pos,**end;
+
+ for (pos=join->best_ref+join->const_tables,end=join->best_ref+idx ;
+ pos != end ;
+ pos++)
+ {
+ JOIN_TAB *join_tab= *pos;
+ length+= join_tab->get_used_fieldlength();
+ }
+ return length;
+}
+
+
+/*
+ Get the number of different row combinations for subset of partial join
+
+ SYNOPSIS
+ prev_record_reads()
+ join The join structure
+ idx Number of tables in the partial join order (i.e. the
+ partial join order is in join->positions[0..idx-1])
+ found_ref Bitmap of tables for which we need to find # of distinct
+ row combinations.
+
+ DESCRIPTION
+ Given a partial join order (in join->positions[0..idx-1]) and a subset of
+ tables within that join order (specified in found_ref), find out how many
+ distinct row combinations of subset tables will be in the result of the
+ partial join order.
+
+ This is used as follows: Suppose we have a table accessed with a ref-based
+ method. The ref access depends on current rows of tables in found_ref.
+ We want to count # of different ref accesses. We assume two ref accesses
+ will be different if at least one of access parameters is different.
+ Example: consider a query
+
+ SELECT * FROM t1, t2, t3 WHERE t1.key=c1 AND t2.key=c2 AND t3.key=t1.field
+
+ and a join order:
+ t1, ref access on t1.key=c1
+ t2, ref access on t2.key=c2
+ t3, ref access on t3.key=t1.field
+
+ For t1: n_ref_scans = 1, n_distinct_ref_scans = 1
+ For t2: n_ref_scans = records_read(t1), n_distinct_ref_scans=1
+ For t3: n_ref_scans = records_read(t1)*records_read(t2)
+ n_distinct_ref_scans = #records_read(t1)
+
+ The reason for having this function (at least the latest version of it)
+ is that we need to account for buffering in join execution.
+
+ An edge-case example: if we have a non-first table in join accessed via
+ ref(const) or ref(param) where there is a small number of different
+ values of param, then the access will likely hit the disk cache and will
+ not require any disk seeks.
+
+ The proper solution would be to assume an LRU disk cache of some size,
+ calculate probability of cache hits, etc. For now we just count
+ identical ref accesses as one.
+
+ RETURN
+ Expected number of row combinations
+*/
+
+double
+prev_record_reads(const POSITION *positions, uint idx, table_map found_ref)
+{
+ double found=1.0;
+ const POSITION *pos_end= positions - 1;
+ for (const POSITION *pos= positions + idx - 1; pos != pos_end; pos--)
+ {
+ if (pos->table->table->map & found_ref)
+ {
+ found_ref|= pos->ref_depend_map;
+ /*
+ For the case of "t1 LEFT JOIN t2 ON ..." where t2 is a const table
+ with no matching row we will get position[t2].records_read==0.
+ Actually the size of output is one null-complemented row, therefore
+ we will use value of 1 whenever we get records_read==0.
+
+ Note
+ - the above case can't occur if inner part of outer join has more
+ than one table: table with no matches will not be marked as const.
+
+ - Ideally we should add 1 to records_read for every possible null-
+ complemented row. We're not doing it because: 1. it will require
+ non-trivial code and add overhead. 2. The value of records_read
+ is an inprecise estimate and adding 1 (or, in the worst case,
+ #max_nested_outer_joins=64-1) will not make it any more precise.
+ */
+ if (pos->records_read)
+ {
+ found= COST_MULT(found, pos->records_read);
+ found*= pos->cond_selectivity;
+ }
+ }
+ }
+ return found;
+}
+
+
+/*
+ Enumerate join tabs in breadth-first fashion, including const tables.
+*/
+
+static JOIN_TAB *next_breadth_first_tab(JOIN_TAB *first_top_tab,
+ uint n_top_tabs_count, JOIN_TAB *tab)
+{
+ n_top_tabs_count += tab->join->aggr_tables;
+ if (!tab->bush_root_tab)
+ {
+ /* We're at top level. Get the next top-level tab */
+ tab++;
+ if (tab < first_top_tab + n_top_tabs_count)
+ return tab;
+
+ /* No more top-level tabs. Switch to enumerating SJM nest children */
+ tab= first_top_tab;
+ }
+ else
+ {
+ /* We're inside of an SJM nest */
+ if (!tab->last_leaf_in_bush)
+ {
+ /* There's one more table in the nest, return it. */
+ return ++tab;
+ }
+ else
+ {
+ /*
+ There are no more tables in this nest. Get out of it and then we'll
+ proceed to the next nest.
+ */
+ tab= tab->bush_root_tab + 1;
+ }
+ }
+
+ /*
+ Ok, "tab" points to a top-level table, and we need to find the next SJM
+ nest and enter it.
+ */
+ for (; tab < first_top_tab + n_top_tabs_count; tab++)
+ {
+ if (tab->bush_children)
+ return tab->bush_children->start;
+ }
+ return NULL;
+}
+
+
+/*
+ Enumerate JOIN_TABs in "EXPLAIN order". This order
+ - const tabs are included
+ - we enumerate "optimization tabs".
+ -
+*/
+
+JOIN_TAB *first_explain_order_tab(JOIN* join)
+{
+ JOIN_TAB* tab;
+ tab= join->join_tab;
+ if (!tab)
+ return NULL; /* Can happen when when the tables were optimized away */
+ return (tab->bush_children) ? tab->bush_children->start : tab;
+}
+
+
+JOIN_TAB *next_explain_order_tab(JOIN* join, JOIN_TAB* tab)
+{
+ /* If we're inside SJM nest and have reached its end, get out */
+ if (tab->last_leaf_in_bush)
+ return tab->bush_root_tab;
+
+ /* Move to next tab in the array we're traversing */
+ tab++;
+
+ if (tab == join->join_tab + join->top_join_tab_count)
+ return NULL; /* Outside SJM nest and reached EOF */
+
+ if (tab->bush_children)
+ return tab->bush_children->start;
+
+ return tab;
+}
+
+
+
+JOIN_TAB *first_top_level_tab(JOIN *join, enum enum_with_const_tables const_tbls)
+{
+ JOIN_TAB *tab= join->join_tab;
+ if (const_tbls == WITHOUT_CONST_TABLES)
+ {
+ if (join->const_tables == join->table_count || !tab)
+ return NULL;
+ tab += join->const_tables;
+ }
+ return tab;
+}
+
+
+JOIN_TAB *next_top_level_tab(JOIN *join, JOIN_TAB *tab)
+{
+ tab= next_breadth_first_tab(join->first_breadth_first_tab(),
+ join->top_join_tab_count, tab);
+ if (tab && tab->bush_root_tab)
+ tab= NULL;
+ return tab;
+}
+
+
+JOIN_TAB *first_linear_tab(JOIN *join,
+ enum enum_with_bush_roots include_bush_roots,
+ enum enum_with_const_tables const_tbls)
+{
+ JOIN_TAB *first= join->join_tab;
+
+ if (!first)
+ return NULL;
+
+ if (const_tbls == WITHOUT_CONST_TABLES)
+ first+= join->const_tables;
+
+ if (first >= join->join_tab + join->top_join_tab_count)
+ return NULL; /* All are const tables */
+
+ if (first->bush_children && include_bush_roots == WITHOUT_BUSH_ROOTS)
+ {
+ /* This JOIN_TAB is a SJM nest; Start from first table in nest */
+ return first->bush_children->start;
+ }
+
+ return first;
+}
+
+
+/*
+ A helper function to loop over all join's join_tab in sequential fashion
+
+ DESCRIPTION
+ Depending on include_bush_roots parameter, JOIN_TABs that represent
+ SJM-scan/lookups are either returned or omitted.
+
+ SJM-Bush children are returned right after (or in place of) their container
+ join tab (TODO: does anybody depend on this? A: make_join_readinfo() seems
+ to)
+
+ For example, if we have this structure:
+
+ ot1--ot2--sjm1----------------ot3-...
+ |
+ +--it1--it2--it3
+
+ calls to next_linear_tab( include_bush_roots=TRUE) will return:
+
+ ot1 ot2 sjm1 it1 it2 it3 ot3 ...
+
+ while calls to next_linear_tab( include_bush_roots=FALSE) will return:
+
+ ot1 ot2 it1 it2 it3 ot3 ...
+
+ (note that sjm1 won't be returned).
+*/
+
+JOIN_TAB *next_linear_tab(JOIN* join, JOIN_TAB* tab,
+ enum enum_with_bush_roots include_bush_roots)
+{
+ if (include_bush_roots == WITH_BUSH_ROOTS && tab->bush_children)
+ {
+ /* This JOIN_TAB is a SJM nest; Start from first table in nest */
+ return tab->bush_children->start;
+ }
+
+ DBUG_ASSERT(!tab->last_leaf_in_bush || tab->bush_root_tab);
+
+ if (tab->bush_root_tab) /* Are we inside an SJM nest */
+ {
+ /* Inside SJM nest */
+ if (!tab->last_leaf_in_bush)
+ return tab+1; /* Return next in nest */
+ /* Continue from the sjm on the top level */
+ tab= tab->bush_root_tab;
+ }
+
+ /* If no more JOIN_TAB's on the top level */
+ if (++tab >= join->join_tab + join->exec_join_tab_cnt() + join->aggr_tables)
+ return NULL;
+
+ if (include_bush_roots == WITHOUT_BUSH_ROOTS && tab->bush_children)
+ {
+ /* This JOIN_TAB is a SJM nest; Start from first table in nest */
+ tab= tab->bush_children->start;
+ }
+ return tab;
+}
+
+
+/*
+ Start to iterate over all join tables in bush-children-first order, excluding
+ the const tables (see next_depth_first_tab() comment for details)
+*/
+
+JOIN_TAB *first_depth_first_tab(JOIN* join)
+{
+ JOIN_TAB* tab;
+ /* This means we're starting the enumeration */
+ if (join->const_tables == join->top_join_tab_count || !join->join_tab)
+ return NULL;
+
+ tab= join->join_tab + join->const_tables;
+
+ return (tab->bush_children) ? tab->bush_children->start : tab;
+}
+
+
+/*
+ A helper function to iterate over all join tables in bush-children-first order
+
+ DESCRIPTION
+
+ For example, for this join plan
+
+ ot1--ot2--sjm1------------ot3-...
+ |
+ |
+ it1--it2--it3
+
+ call to first_depth_first_tab() will return ot1, and subsequent calls to
+ next_depth_first_tab() will return:
+
+ ot2 it1 it2 it3 sjm ot3 ...
+*/
+
+JOIN_TAB *next_depth_first_tab(JOIN* join, JOIN_TAB* tab)
+{
+ /* If we're inside SJM nest and have reached its end, get out */
+ if (tab->last_leaf_in_bush)
+ return tab->bush_root_tab;
+
+ /* Move to next tab in the array we're traversing */
+ tab++;
+
+ if (tab == join->join_tab +join->top_join_tab_count)
+ return NULL; /* Outside SJM nest and reached EOF */
+
+ if (tab->bush_children)
+ return tab->bush_children->start;
+
+ return tab;
+}
+
+
+bool JOIN::check_two_phase_optimization(THD *thd)
+{
+ if (check_for_splittable_materialized())
+ return true;
+ return false;
+}
+
+
+bool JOIN::inject_cond_into_where(Item *injected_cond)
+{
+ Item *where_item= injected_cond;
+ List<Item> *and_args= NULL;
+ if (conds && conds->type() == Item::COND_ITEM &&
+ ((Item_cond*) conds)->functype() == Item_func::COND_AND_FUNC)
+ {
+ and_args= ((Item_cond*) conds)->argument_list();
+ if (cond_equal)
+ and_args->disjoin((List<Item> *) &cond_equal->current_level);
+ }
+
+ where_item= and_items(thd, conds, where_item);
+ if (where_item->fix_fields_if_needed(thd, 0))
+ return true;
+ thd->change_item_tree(&select_lex->where, where_item);
+ select_lex->where->top_level_item();
+ conds= select_lex->where;
+
+ if (and_args && cond_equal)
+ {
+ and_args= ((Item_cond*) conds)->argument_list();
+ List_iterator<Item_equal> li(cond_equal->current_level);
+ Item_equal *elem;
+ while ((elem= li++))
+ {
+ and_args->push_back(elem, thd->mem_root);
+ }
+ }
+
+ return false;
+
+}
+
+
+static Item * const null_ptr= NULL;
+
+
+/*
+ Set up join struct according to the picked join order in
+
+ SYNOPSIS
+ get_best_combination()
+ join The join to process (the picked join order is mainly in
+ join->best_positions)
+
+ DESCRIPTION
+ Setup join structures according the picked join order
+ - finalize semi-join strategy choices (see
+ fix_semijoin_strategies_for_picked_join_order)
+ - create join->join_tab array and put there the JOIN_TABs in the join order
+ - create data structures describing ref access methods.
+
+ NOTE
+ In this function we switch from pre-join-optimization JOIN_TABs to
+ post-join-optimization JOIN_TABs. This is achieved by copying the entire
+ JOIN_TAB objects.
+
+ RETURN
+ FALSE OK
+ TRUE Out of memory
+*/
+
+bool JOIN::get_best_combination()
+{
+ uint tablenr;
+ table_map used_tables;
+ JOIN_TAB *j;
+ KEYUSE *keyuse;
+ JOIN_TAB *sjm_nest_end= NULL;
+ JOIN_TAB *sjm_nest_root= NULL;
+ DBUG_ENTER("get_best_combination");
+
+ /*
+ Additional plan nodes for postjoin tmp tables:
+ 1? + // For GROUP BY
+ 1? + // For DISTINCT
+ 1? + // For aggregation functions aggregated in outer query
+ // when used with distinct
+ 1? + // For ORDER BY
+ 1? // buffer result
+ Up to 2 tmp tables are actually used, but it's hard to tell exact number
+ at this stage.
+ */
+ uint aggr_tables= (group_list ? 1 : 0) +
+ (select_distinct ?
+ (tmp_table_param.using_outer_summary_function ? 2 : 1) : 0) +
+ (order ? 1 : 0) +
+ (select_options & (SELECT_BIG_RESULT | OPTION_BUFFER_RESULT) ? 1 : 0) ;
+
+ if (aggr_tables == 0)
+ aggr_tables= 1; /* For group by pushdown */
+
+ if (select_lex->window_specs.elements)
+ aggr_tables++;
+
+ if (aggr_tables > 2)
+ aggr_tables= 2;
+
+ full_join=0;
+ hash_join= FALSE;
+
+ fix_semijoin_strategies_for_picked_join_order(this);
+ top_join_tab_count= get_number_of_tables_at_top_level(this);
+
+#ifndef DBUG_OFF
+ dbug_join_tab_array_size= top_join_tab_count + aggr_tables;
+#endif
+ /*
+ NOTE: The above computation of aggr_tables can produce wrong result because some
+ of the variables it uses may change their values after we leave this function.
+ Known examples:
+ - Dangerous: using_outer_summary_function=false at this point. Added
+ DBUG_ASSERT below to demonstrate. Can this cause us to allocate less
+ space than we would need?
+ - Not dangerous: select_distinct can be true here but be assigned false
+ afterwards.
+ */
+ aggr_tables= 2;
+ DBUG_ASSERT(!tmp_table_param.using_outer_summary_function);
+ if (!(join_tab= (JOIN_TAB*) thd->alloc(sizeof(JOIN_TAB)*
+ (top_join_tab_count + aggr_tables))))
+ DBUG_RETURN(TRUE);
+
+ if (inject_splitting_cond_for_all_tables_with_split_opt())
+ goto error;
+
+ JOIN_TAB_RANGE *root_range;
+ if (!(root_range= new (thd->mem_root) JOIN_TAB_RANGE))
+ goto error;
+ root_range->start= join_tab;
+ /* root_range->end will be set later */
+ join_tab_ranges.empty();
+
+ if (join_tab_ranges.push_back(root_range, thd->mem_root))
+ goto error;
+
+ for (j=join_tab, tablenr=0 ; tablenr < table_count ; tablenr++,j++)
+ {
+ TABLE *form;
+ POSITION *cur_pos= &best_positions[tablenr];
+ if (cur_pos->sj_strategy == SJ_OPT_MATERIALIZE ||
+ cur_pos->sj_strategy == SJ_OPT_MATERIALIZE_SCAN)
+ {
+ /*
+ Ok, we've entered an SJ-Materialization semi-join (note that this can't
+ be done recursively, semi-joins are not allowed to be nested).
+ 1. Put into main join order a JOIN_TAB that represents a lookup or scan
+ in the temptable.
+ */
+ bzero((void*)j, sizeof(JOIN_TAB));
+ j->join= this;
+ j->table= NULL; //temporary way to tell SJM tables from others.
+ j->ref.key = -1;
+ j->on_expr_ref= (Item**) &null_ptr;
+ j->keys= key_map(1); /* The unique index is always in 'possible keys' in EXPLAIN */
+
+ /*
+ 2. Proceed with processing SJM nest's join tabs, putting them into the
+ sub-order
+ */
+ SJ_MATERIALIZATION_INFO *sjm= cur_pos->table->emb_sj_nest->sj_mat_info;
+ j->records_read= (sjm->is_sj_scan? sjm->rows : 1);
+ j->records= (ha_rows) j->records_read;
+ j->cond_selectivity= 1.0;
+ JOIN_TAB *jt;
+ JOIN_TAB_RANGE *jt_range;
+ if (!(jt= (JOIN_TAB*) thd->alloc(sizeof(JOIN_TAB)*sjm->tables)) ||
+ !(jt_range= new JOIN_TAB_RANGE))
+ goto error;
+ jt_range->start= jt;
+ jt_range->end= jt + sjm->tables;
+ join_tab_ranges.push_back(jt_range, thd->mem_root);
+ j->bush_children= jt_range;
+ sjm_nest_end= jt + sjm->tables;
+ sjm_nest_root= j;
+
+ j= jt;
+ }
+
+ *j= *best_positions[tablenr].table;
+
+ j->bush_root_tab= sjm_nest_root;
+
+ form= table[tablenr]= j->table;
+ form->reginfo.join_tab=j;
+ DBUG_PRINT("info",("type: %d", j->type));
+ if (j->type == JT_CONST)
+ goto loop_end; // Handled in make_join_stat..
+
+ j->loosescan_match_tab= NULL; //non-nulls will be set later
+ j->inside_loosescan_range= FALSE;
+ j->ref.key = -1;
+ j->ref.key_parts=0;
+
+ if (j->type == JT_SYSTEM)
+ goto loop_end;
+ if ( !(keyuse= best_positions[tablenr].key))
+ {
+ j->type=JT_ALL;
+ if (best_positions[tablenr].use_join_buffer &&
+ tablenr != const_tables)
+ full_join= 1;
+ }
+
+ /*if (best_positions[tablenr].sj_strategy == SJ_OPT_LOOSE_SCAN)
+ {
+ DBUG_ASSERT(!keyuse || keyuse->key ==
+ best_positions[tablenr].loosescan_picker.loosescan_key);
+ j->index= best_positions[tablenr].loosescan_picker.loosescan_key;
+ }*/
+
+ if ((j->type == JT_REF || j->type == JT_EQ_REF) &&
+ is_hash_join_key_no(j->ref.key))
+ hash_join= TRUE;
+
+ j->range_rowid_filter_info= best_positions[tablenr].range_rowid_filter_info;
+
+ loop_end:
+ /*
+ Save records_read in JOIN_TAB so that select_describe()/etc don't have
+ to access join->best_positions[].
+ */
+ j->records_read= best_positions[tablenr].records_read;
+ j->cond_selectivity= best_positions[tablenr].cond_selectivity;
+ map2table[j->table->tablenr]= j;
+
+ /* If we've reached the end of sjm nest, switch back to main sequence */
+ if (j + 1 == sjm_nest_end)
+ {
+ j->last_leaf_in_bush= TRUE;
+ j= sjm_nest_root;
+ sjm_nest_root= NULL;
+ sjm_nest_end= NULL;
+ }
+ }
+ root_range->end= j;
+
+ used_tables= OUTER_REF_TABLE_BIT; // Outer row is already read
+ for (j=join_tab, tablenr=0 ; tablenr < table_count ; tablenr++,j++)
+ {
+ if (j->bush_children)
+ j= j->bush_children->start;
+
+ used_tables|= j->table->map;
+ if (j->type != JT_CONST && j->type != JT_SYSTEM)
+ {
+ if ((keyuse= best_positions[tablenr].key) &&
+ create_ref_for_key(this, j, keyuse, TRUE, used_tables))
+ goto error; // Something went wrong
+ }
+ if (j->last_leaf_in_bush)
+ j= j->bush_root_tab;
+ }
+
+ top_join_tab_count= (uint)(join_tab_ranges.head()->end -
+ join_tab_ranges.head()->start);
+
+ if (unlikely(thd->trace_started()))
+ print_final_join_order(this);
+
+ update_depend_map(this);
+ DBUG_RETURN(0);
+
+error:
+ /* join_tab was not correctly setup. Don't use it */
+ join_tab= 0;
+ DBUG_RETURN(1);
+}
+
+/**
+ Create a descriptor of hash join key to access a given join table
+
+ @param join join which the join table belongs to
+ @param join_tab the join table to access
+ @param org_keyuse beginning of the key uses to join this table
+ @param used_tables bitmap of the previous tables
+
+ @details
+ This function first finds key uses that can be utilized by the hash join
+ algorithm to join join_tab to the previous tables marked in the bitmap
+ used_tables. The tested key uses are taken from the array of all key uses
+ for 'join' starting from the position org_keyuse. After all interesting key
+ uses have been found the function builds a descriptor of the corresponding
+ key that is used by the hash join algorithm would it be chosen to join
+ the table join_tab.
+
+ @retval FALSE the descriptor for a hash join key is successfully created
+ @retval TRUE otherwise
+*/
+
+static bool create_hj_key_for_table(JOIN *join, JOIN_TAB *join_tab,
+ KEYUSE *org_keyuse, table_map used_tables)
+{
+ KEY *keyinfo;
+ KEY_PART_INFO *key_part_info;
+ KEYUSE *keyuse= org_keyuse;
+ uint key_parts= 0;
+ THD *thd= join->thd;
+ TABLE *table= join_tab->table;
+ bool first_keyuse= TRUE;
+ DBUG_ENTER("create_hj_key_for_table");
+
+ do
+ {
+ if (!(~used_tables & keyuse->used_tables) &&
+ join_tab->keyuse_is_valid_for_access_in_chosen_plan(join, keyuse) &&
+ are_tables_local(join_tab, keyuse->used_tables))
+ {
+ if (first_keyuse)
+ {
+ key_parts++;
+ }
+ else
+ {
+ KEYUSE *curr= org_keyuse;
+ for( ; curr < keyuse; curr++)
+ {
+ if (curr->keypart == keyuse->keypart &&
+ !(~used_tables & curr->used_tables) &&
+ join_tab->keyuse_is_valid_for_access_in_chosen_plan(join,
+ curr) &&
+ are_tables_local(join_tab, curr->used_tables))
+ break;
+ }
+ if (curr == keyuse)
+ key_parts++;
+ }
+ }
+ first_keyuse= FALSE;
+ keyuse++;
+ } while (keyuse->table == table && keyuse->is_for_hash_join());
+ if (!key_parts)
+ DBUG_RETURN(TRUE);
+ /* This memory is allocated only once for the joined table join_tab */
+ if (!(keyinfo= (KEY *) thd->alloc(sizeof(KEY))) ||
+ !(key_part_info = (KEY_PART_INFO *) thd->alloc(sizeof(KEY_PART_INFO)*
+ key_parts)))
+ DBUG_RETURN(TRUE);
+ keyinfo->usable_key_parts= keyinfo->user_defined_key_parts = key_parts;
+ keyinfo->ext_key_parts= keyinfo->user_defined_key_parts;
+ keyinfo->key_part= key_part_info;
+ keyinfo->key_length=0;
+ keyinfo->algorithm= HA_KEY_ALG_UNDEF;
+ keyinfo->flags= HA_GENERATED_KEY;
+ keyinfo->is_statistics_from_stat_tables= FALSE;
+ keyinfo->name.str= "$hj";
+ keyinfo->name.length= 3;
+ keyinfo->rec_per_key= (ulong*) thd->calloc(sizeof(ulong)*key_parts);
+ if (!keyinfo->rec_per_key)
+ DBUG_RETURN(TRUE);
+ keyinfo->key_part= key_part_info;
+
+ first_keyuse= TRUE;
+ keyuse= org_keyuse;
+ do
+ {
+ if (!(~used_tables & keyuse->used_tables) &&
+ join_tab->keyuse_is_valid_for_access_in_chosen_plan(join, keyuse) &&
+ are_tables_local(join_tab, keyuse->used_tables))
+ {
+ bool add_key_part= TRUE;
+ if (!first_keyuse)
+ {
+ for(KEYUSE *curr= org_keyuse; curr < keyuse; curr++)
+ {
+ if (curr->keypart == keyuse->keypart &&
+ !(~used_tables & curr->used_tables) &&
+ join_tab->keyuse_is_valid_for_access_in_chosen_plan(join,
+ curr) &&
+ are_tables_local(join_tab, curr->used_tables))
+ {
+ keyuse->keypart= NO_KEYPART;
+ add_key_part= FALSE;
+ break;
+ }
+ }
+ }
+ if (add_key_part)
+ {
+ Field *field= table->field[keyuse->keypart];
+ uint fieldnr= keyuse->keypart+1;
+ table->create_key_part_by_field(key_part_info, field, fieldnr);
+ keyinfo->key_length += key_part_info->store_length;
+ key_part_info++;
+ }
+ }
+ first_keyuse= FALSE;
+ keyuse++;
+ } while (keyuse->table == table && keyuse->is_for_hash_join());
+
+ keyinfo->ext_key_parts= keyinfo->user_defined_key_parts;
+ keyinfo->ext_key_flags= keyinfo->flags;
+ keyinfo->ext_key_part_map= 0;
+
+ join_tab->hj_key= keyinfo;
+
+ DBUG_RETURN(FALSE);
+}
+
+/*
+ Check if a set of tables specified by used_tables can be accessed when
+ we're doing scan on join_tab jtab.
+*/
+static bool are_tables_local(JOIN_TAB *jtab, table_map used_tables)
+{
+ if (jtab->bush_root_tab)
+ {
+ /*
+ jtab is inside execution join nest. We may not refer to outside tables,
+ except the const tables.
+ */
+ table_map local_tables= jtab->emb_sj_nest->nested_join->used_tables |
+ jtab->join->const_table_map |
+ OUTER_REF_TABLE_BIT;
+ return !MY_TEST(used_tables & ~local_tables);
+ }
+
+ /*
+ If we got here then jtab is at top level.
+ - all other tables at top level are accessible,
+ - tables in join nests are accessible too, because all their columns that
+ are needed at top level will be unpacked when scanning the
+ materialization table.
+ */
+ return TRUE;
+}
+
+static bool create_ref_for_key(JOIN *join, JOIN_TAB *j,
+ KEYUSE *org_keyuse, bool allow_full_scan,
+ table_map used_tables)
+{
+ uint keyparts, length, key;
+ TABLE *table;
+ KEY *keyinfo;
+ KEYUSE *keyuse= org_keyuse;
+ bool ftkey= (keyuse->keypart == FT_KEYPART);
+ THD *thd= join->thd;
+ DBUG_ENTER("create_ref_for_key");
+
+ /* Use best key from find_best */
+ table= j->table;
+ key= keyuse->key;
+ if (!is_hash_join_key_no(key))
+ keyinfo= table->key_info+key;
+ else
+ {
+ if (create_hj_key_for_table(join, j, org_keyuse, used_tables))
+ DBUG_RETURN(TRUE);
+ keyinfo= j->hj_key;
+ }
+
+ if (ftkey)
+ {
+ Item_func_match *ifm=(Item_func_match *)keyuse->val;
+
+ length=0;
+ keyparts=1;
+ ifm->join_key=1;
+ }
+ else
+ {
+ keyparts=length=0;
+ uint found_part_ref_or_null= 0;
+ /*
+ Calculate length for the used key
+ Stop if there is a missing key part or when we find second key_part
+ with KEY_OPTIMIZE_REF_OR_NULL
+ */
+ do
+ {
+ if (!(~used_tables & keyuse->used_tables) &&
+ (!keyuse->validity_ref || *keyuse->validity_ref) &&
+ j->keyuse_is_valid_for_access_in_chosen_plan(join, keyuse))
+ {
+ if (are_tables_local(j, keyuse->val->used_tables()))
+ {
+ if ((is_hash_join_key_no(key) && keyuse->keypart != NO_KEYPART) ||
+ (!is_hash_join_key_no(key) && keyparts == keyuse->keypart &&
+ !(found_part_ref_or_null & keyuse->optimize)))
+ {
+ length+= keyinfo->key_part[keyparts].store_length;
+ keyparts++;
+ found_part_ref_or_null|= keyuse->optimize & ~KEY_OPTIMIZE_EQ;
+ }
+ }
+ }
+ keyuse++;
+ } while (keyuse->table == table && keyuse->key == key);
+
+ if (!keyparts && allow_full_scan)
+ {
+ /* It's a LooseIndexScan strategy scanning whole index */
+ j->type= JT_ALL;
+ j->index= key;
+ DBUG_RETURN(FALSE);
+ }
+
+ DBUG_ASSERT(length > 0);
+ DBUG_ASSERT(keyparts != 0);
+ } /* not ftkey */
+
+ /* set up fieldref */
+ j->ref.key_parts= keyparts;
+ j->ref.key_length= length;
+ j->ref.key= (int) key;
+ if (!(j->ref.key_buff= (uchar*) thd->calloc(ALIGN_SIZE(length)*2)) ||
+ !(j->ref.key_copy= (store_key**) thd->alloc((sizeof(store_key*) *
+ (keyparts+1)))) ||
+ !(j->ref.items=(Item**) thd->alloc(sizeof(Item*)*keyparts)) ||
+ !(j->ref.cond_guards= (bool**) thd->alloc(sizeof(uint*)*keyparts)))
+ {
+ DBUG_RETURN(TRUE);
+ }
+ j->ref.key_buff2=j->ref.key_buff+ALIGN_SIZE(length);
+ j->ref.key_err=1;
+ j->ref.has_record= FALSE;
+ j->ref.null_rejecting= 0;
+ j->ref.disable_cache= FALSE;
+ j->ref.null_ref_part= NO_REF_PART;
+ j->ref.const_ref_part_map= 0;
+ j->ref.uses_splitting= FALSE;
+ keyuse=org_keyuse;
+
+ store_key **ref_key= j->ref.key_copy;
+ uchar *key_buff=j->ref.key_buff, *null_ref_key= 0;
+ uint null_ref_part= NO_REF_PART;
+ bool keyuse_uses_no_tables= TRUE;
+ uint not_null_keyparts= 0;
+ if (ftkey)
+ {
+ j->ref.items[0]=((Item_func*)(keyuse->val))->key_item();
+ /* Predicates pushed down into subquery can't be used FT access */
+ j->ref.cond_guards[0]= NULL;
+ if (keyuse->used_tables)
+ DBUG_RETURN(TRUE); // not supported yet. SerG
+
+ j->type=JT_FT;
+ }
+ else
+ {
+ uint i;
+ for (i=0 ; i < keyparts ; keyuse++,i++)
+ {
+ while (((~used_tables) & keyuse->used_tables) ||
+ (keyuse->validity_ref && !(*keyuse->validity_ref)) ||
+ !j->keyuse_is_valid_for_access_in_chosen_plan(join, keyuse) ||
+ keyuse->keypart == NO_KEYPART ||
+ (keyuse->keypart !=
+ (is_hash_join_key_no(key) ?
+ keyinfo->key_part[i].field->field_index : i)) ||
+ !are_tables_local(j, keyuse->val->used_tables()))
+ keyuse++; /* Skip other parts */
+
+ uint maybe_null= MY_TEST(keyinfo->key_part[i].null_bit);
+ j->ref.items[i]=keyuse->val; // Save for cond removal
+ j->ref.cond_guards[i]= keyuse->cond_guard;
+
+ if (!keyuse->val->maybe_null() || keyuse->null_rejecting)
+ not_null_keyparts++;
+ /*
+ Set ref.null_rejecting to true only if we are going to inject a
+ "keyuse->val IS NOT NULL" predicate.
+ */
+ Item *real= (keyuse->val)->real_item();
+ if (keyuse->null_rejecting && (real->type() == Item::FIELD_ITEM) &&
+ ((Item_field*)real)->field->maybe_null())
+ j->ref.null_rejecting|= (key_part_map)1 << i;
+
+ keyuse_uses_no_tables= keyuse_uses_no_tables && !keyuse->used_tables;
+ j->ref.uses_splitting |= (keyuse->validity_ref != NULL);
+ /*
+ We don't want to compute heavy expressions in EXPLAIN, an example would
+ select * from t1 where t1.key=(select thats very heavy);
+
+ (select thats very heavy) => is a constant here
+ eg: (select avg(order_cost) from orders) => constant but expensive
+ */
+ if (!keyuse->val->used_tables() && !thd->lex->describe)
+ { // Compare against constant
+ store_key_item tmp(thd,
+ keyinfo->key_part[i].field,
+ key_buff + maybe_null,
+ maybe_null ? key_buff : 0,
+ keyinfo->key_part[i].length,
+ keyuse->val,
+ FALSE);
+ if (unlikely(thd->is_error()))
+ DBUG_RETURN(TRUE);
+ tmp.copy(thd);
+ j->ref.const_ref_part_map |= key_part_map(1) << i ;
+ }
+ else
+ {
+ *ref_key++= get_store_key(thd,
+ keyuse,join->const_table_map,
+ &keyinfo->key_part[i],
+ key_buff, maybe_null);
+ if (!keyuse->val->used_tables())
+ j->ref.const_ref_part_map |= key_part_map(1) << i ;
+ }
+ /*
+ Remember if we are going to use REF_OR_NULL
+ But only if field _really_ can be null i.e. we force JT_REF
+ instead of JT_REF_OR_NULL in case if field can't be null
+ */
+ if ((keyuse->optimize & KEY_OPTIMIZE_REF_OR_NULL) && maybe_null)
+ {
+ null_ref_key= key_buff;
+ null_ref_part= i;
+ }
+ key_buff+= keyinfo->key_part[i].store_length;
+ }
+ } /* not ftkey */
+ *ref_key=0; // end_marker
+ if (j->type == JT_FT)
+ DBUG_RETURN(0);
+ ulong key_flags= j->table->actual_key_flags(keyinfo);
+ if (j->type == JT_CONST)
+ j->table->const_table= 1;
+ else if (!((keyparts == keyinfo->user_defined_key_parts &&
+ (
+ (key_flags & (HA_NOSAME | HA_NULL_PART_KEY)) == HA_NOSAME ||
+ /* Unique key and all keyparts are NULL rejecting */
+ ((key_flags & HA_NOSAME) && keyparts == not_null_keyparts)
+ )) ||
+ /* true only for extended keys */
+ (keyparts > keyinfo->user_defined_key_parts &&
+ MY_TEST(key_flags & HA_EXT_NOSAME) &&
+ keyparts == keyinfo->ext_key_parts)
+ ) ||
+ null_ref_key)
+ {
+ /* Must read with repeat */
+ j->type= null_ref_key ? JT_REF_OR_NULL : JT_REF;
+ j->ref.null_ref_key= null_ref_key;
+ j->ref.null_ref_part= null_ref_part;
+ }
+ else if (keyuse_uses_no_tables)
+ {
+ /*
+ This happen if we are using a constant expression in the ON part
+ of an LEFT JOIN.
+ SELECT * FROM a LEFT JOIN b ON b.key=30
+ Here we should not mark the table as a 'const' as a field may
+ have a 'normal' value or a NULL value.
+ */
+ j->type=JT_CONST;
+ }
+ else
+ j->type=JT_EQ_REF;
+
+ if (j->type == JT_EQ_REF)
+ j->read_record.unlock_row= join_read_key_unlock_row;
+ else if (j->type == JT_CONST)
+ j->read_record.unlock_row= join_const_unlock_row;
+ else
+ j->read_record.unlock_row= rr_unlock_row;
+ DBUG_RETURN(0);
+}
+
+
+
+static store_key *
+get_store_key(THD *thd, KEYUSE *keyuse, table_map used_tables,
+ KEY_PART_INFO *key_part, uchar *key_buff, uint maybe_null)
+{
+ if (!((~used_tables) & keyuse->used_tables)) // if const item
+ {
+ return new store_key_const_item(thd,
+ key_part->field,
+ key_buff + maybe_null,
+ maybe_null ? key_buff : 0,
+ key_part->length,
+ keyuse->val);
+ }
+ else if (keyuse->val->type() == Item::FIELD_ITEM ||
+ (keyuse->val->type() == Item::REF_ITEM &&
+ ((((Item_ref*)keyuse->val)->ref_type() == Item_ref::OUTER_REF &&
+ (*(Item_ref**)((Item_ref*)keyuse->val)->ref)->ref_type() ==
+ Item_ref::DIRECT_REF) ||
+ ((Item_ref*)keyuse->val)->ref_type() == Item_ref::VIEW_REF) &&
+ keyuse->val->real_item()->type() == Item::FIELD_ITEM))
+ return new store_key_field(thd,
+ key_part->field,
+ key_buff + maybe_null,
+ maybe_null ? key_buff : 0,
+ key_part->length,
+ ((Item_field*) keyuse->val->real_item())->field,
+ keyuse->val->real_item()->full_name());
+
+ return new store_key_item(thd,
+ key_part->field,
+ key_buff + maybe_null,
+ maybe_null ? key_buff : 0,
+ key_part->length,
+ keyuse->val, FALSE);
+}
+
+
+inline void add_cond_and_fix(THD *thd, Item **e1, Item *e2)
+{
+ if (*e1)
+ {
+ if (!e2)
+ return;
+ Item *res;
+ if ((res= new (thd->mem_root) Item_cond_and(thd, *e1, e2)))
+ {
+ res->fix_fields(thd, 0);
+ res->update_used_tables();
+ *e1= res;
+ }
+ }
+ else
+ *e1= e2;
+}
+
+
+/**
+ Add to join_tab->select_cond[i] "table.field IS NOT NULL" conditions
+ we've inferred from ref/eq_ref access performed.
+
+ This function is a part of "Early NULL-values filtering for ref access"
+ optimization.
+
+ Example of this optimization:
+ For query SELECT * FROM t1,t2 WHERE t2.key=t1.field @n
+ and plan " any-access(t1), ref(t2.key=t1.field) " @n
+ add "t1.field IS NOT NULL" to t1's table condition. @n
+
+ Description of the optimization:
+
+ We look through equalities chosen to perform ref/eq_ref access,
+ pick equalities that have form "tbl.part_of_key = othertbl.field"
+ (where othertbl is a non-const table and othertbl.field may be NULL)
+ and add them to conditions on correspoding tables (othertbl in this
+ example).
+
+ Exception from that is the case when referred_tab->join != join.
+ I.e. don't add NOT NULL constraints from any embedded subquery.
+ Consider this query:
+ @code
+ SELECT A.f2 FROM t1 LEFT JOIN t2 A ON A.f2 = f1
+ WHERE A.f3=(SELECT MIN(f3) FROM t2 C WHERE A.f4 = C.f4) OR A.f3 IS NULL;
+ @endocde
+ Here condition A.f3 IS NOT NULL is going to be added to the WHERE
+ condition of the embedding query.
+ Another example:
+ SELECT * FROM t10, t11 WHERE (t10.a < 10 OR t10.a IS NULL)
+ AND t11.b <=> t10.b AND (t11.a = (SELECT MAX(a) FROM t12
+ WHERE t12.b = t10.a ));
+ Here condition t10.a IS NOT NULL is going to be added.
+ In both cases addition of NOT NULL condition will erroneously reject
+ some rows of the result set.
+ referred_tab->join != join constraint would disallow such additions.
+
+ This optimization doesn't affect the choices that ref, range, or join
+ optimizer make. This was intentional because this was added after 4.1
+ was GA.
+
+ Implementation overview
+ 1. update_ref_and_keys() accumulates info about null-rejecting
+ predicates in in KEY_FIELD::null_rejecting
+ 1.1 add_key_part saves these to KEYUSE.
+ 2. create_ref_for_key copies them to TABLE_REF.
+ 3. add_not_null_conds adds "x IS NOT NULL" to join_tab->select_cond of
+ appropiate JOIN_TAB members.
+*/
+
+static void add_not_null_conds(JOIN *join)
+{
+ JOIN_TAB *tab;
+ DBUG_ENTER("add_not_null_conds");
+
+ for (tab= first_linear_tab(join, WITH_BUSH_ROOTS, WITHOUT_CONST_TABLES);
+ tab;
+ tab= next_linear_tab(join, tab, WITH_BUSH_ROOTS))
+ {
+ if (tab->type == JT_REF || tab->type == JT_EQ_REF ||
+ tab->type == JT_REF_OR_NULL)
+ {
+ for (uint keypart= 0; keypart < tab->ref.key_parts; keypart++)
+ {
+ if (tab->ref.null_rejecting & ((key_part_map)1 << keypart))
+ {
+ Item *item= tab->ref.items[keypart];
+ Item *notnull;
+ Item *real= item->real_item();
+ if (real->can_eval_in_optimize() && real->type() != Item::FIELD_ITEM)
+ {
+ /*
+ It could be constant instead of field after constant
+ propagation.
+ */
+ continue;
+ }
+ DBUG_ASSERT(real->type() == Item::FIELD_ITEM);
+ Item_field *not_null_item= (Item_field*)real;
+ JOIN_TAB *referred_tab= not_null_item->field->table->reginfo.join_tab;
+ /*
+ For UPDATE queries such as:
+ UPDATE t1 SET t1.f2=(SELECT MAX(t2.f4) FROM t2 WHERE t2.f3=t1.f1);
+ not_null_item is the t1.f1, but it's referred_tab is 0.
+ */
+ if (!(notnull= new (join->thd->mem_root)
+ Item_func_isnotnull(join->thd, item)))
+ DBUG_VOID_RETURN;
+ /*
+ We need to do full fix_fields() call here in order to have correct
+ notnull->const_item(). This is needed e.g. by test_quick_select
+ when it is called from make_join_select after this function is
+ called.
+ */
+ if (notnull->fix_fields(join->thd, &notnull))
+ DBUG_VOID_RETURN;
+
+ DBUG_EXECUTE("where",print_where(notnull,
+ (referred_tab ?
+ referred_tab->table->alias.c_ptr() :
+ "outer_ref_cond"),
+ QT_ORDINARY););
+ if (!tab->first_inner)
+ {
+ COND *new_cond= (referred_tab && referred_tab->join == join) ?
+ referred_tab->select_cond :
+ join->outer_ref_cond;
+ add_cond_and_fix(join->thd, &new_cond, notnull);
+ if (referred_tab && referred_tab->join == join)
+ referred_tab->set_select_cond(new_cond, __LINE__);
+ else
+ join->outer_ref_cond= new_cond;
+ }
+ else
+ add_cond_and_fix(join->thd, tab->first_inner->on_expr_ref, notnull);
+ }
+ }
+ }
+ }
+ DBUG_VOID_RETURN;
+}
+
+/**
+ Build a predicate guarded by match variables for embedding outer joins.
+ The function recursively adds guards for predicate cond
+ assending from tab to the first inner table next embedding
+ nested outer join and so on until it reaches root_tab
+ (root_tab can be 0).
+
+ In other words:
+ add_found_match_trig_cond(tab->first_inner_tab, y, 0) is the way one should
+ wrap parts of WHERE. The idea is that the part of WHERE should be only
+ evaluated after we've finished figuring out whether outer joins.
+ ^^^ is the above correct?
+
+ @param tab the first inner table for most nested outer join
+ @param cond the predicate to be guarded (must be set)
+ @param root_tab the first inner table to stop
+
+ @return
+ - pointer to the guarded predicate, if success
+ - 0, otherwise
+*/
+
+static COND*
+add_found_match_trig_cond(THD *thd, JOIN_TAB *tab, COND *cond,
+ JOIN_TAB *root_tab)
+{
+ COND *tmp;
+ DBUG_ASSERT(cond != 0);
+ if (tab == root_tab)
+ return cond;
+ if ((tmp= add_found_match_trig_cond(thd, tab->first_upper, cond, root_tab)))
+ tmp= new (thd->mem_root) Item_func_trig_cond(thd, tmp, &tab->found);
+ if (tmp)
+ {
+ tmp->quick_fix_field();
+ tmp->update_used_tables();
+ }
+ return tmp;
+}
+
+
+bool TABLE_LIST::is_active_sjm()
+{
+ return sj_mat_info && sj_mat_info->is_used;
+}
+
+
+/**
+ Fill in outer join related info for the execution plan structure.
+
+ For each outer join operation left after simplification of the
+ original query the function set up the following pointers in the linear
+ structure join->join_tab representing the selected execution plan.
+ The first inner table t0 for the operation is set to refer to the last
+ inner table tk through the field t0->last_inner.
+ Any inner table ti for the operation are set to refer to the first
+ inner table ti->first_inner.
+ The first inner table t0 for the operation is set to refer to the
+ first inner table of the embedding outer join operation, if there is any,
+ through the field t0->first_upper.
+ The on expression for the outer join operation is attached to the
+ corresponding first inner table through the field t0->on_expr_ref.
+ Here ti are structures of the JOIN_TAB type.
+
+ In other words, for each join tab, set
+ - first_inner
+ - last_inner
+ - first_upper
+ - on_expr_ref, cond_equal
+
+ EXAMPLE. For the query:
+ @code
+ SELECT * FROM t1
+ LEFT JOIN
+ (t2, t3 LEFT JOIN t4 ON t3.a=t4.a)
+ ON (t1.a=t2.a AND t1.b=t3.b)
+ WHERE t1.c > 5,
+ @endcode
+
+ given the execution plan with the table order t1,t2,t3,t4
+ is selected, the following references will be set;
+ t4->last_inner=[t4], t4->first_inner=[t4], t4->first_upper=[t2]
+ t2->last_inner=[t4], t2->first_inner=t3->first_inner=[t2],
+ on expression (t1.a=t2.a AND t1.b=t3.b) will be attached to
+ *t2->on_expr_ref, while t3.a=t4.a will be attached to *t4->on_expr_ref.
+
+ @param join reference to the info fully describing the query
+
+ @note
+ The function assumes that the simplification procedure has been
+ already applied to the join query (see simplify_joins).
+ This function can be called only after the execution plan
+ has been chosen.
+*/
+
+static bool
+make_outerjoin_info(JOIN *join)
+{
+ DBUG_ENTER("make_outerjoin_info");
+
+ /*
+ Create temp. tables for merged SJ-Materialization nests. We need to do
+ this now, because further code relies on tab->table and
+ tab->table->pos_in_table_list being set.
+ */
+ JOIN_TAB *tab;
+ for (tab= first_linear_tab(join, WITH_BUSH_ROOTS, WITHOUT_CONST_TABLES);
+ tab;
+ tab= next_linear_tab(join, tab, WITH_BUSH_ROOTS))
+ {
+ if (tab->bush_children)
+ {
+ if (setup_sj_materialization_part1(tab))
+ DBUG_RETURN(TRUE);
+ tab->table->reginfo.join_tab= tab;
+ }
+ }
+
+ for (tab= first_linear_tab(join, WITH_BUSH_ROOTS, WITHOUT_CONST_TABLES);
+ tab;
+ tab= next_linear_tab(join, tab, WITH_BUSH_ROOTS))
+ {
+ TABLE *table= tab->table;
+ TABLE_LIST *tbl= table->pos_in_table_list;
+ TABLE_LIST *embedding= tbl->embedding;
+
+ if (tbl->outer_join & (JOIN_TYPE_LEFT | JOIN_TYPE_RIGHT))
+ {
+ /*
+ Table tab is the only one inner table for outer join.
+ (Like table t4 for the table reference t3 LEFT JOIN t4 ON t3.a=t4.a
+ is in the query above.)
+ */
+ tab->last_inner= tab->first_inner= tab;
+ tab->on_expr_ref= &tbl->on_expr;
+ tab->cond_equal= tbl->cond_equal;
+ if (embedding && !embedding->is_active_sjm())
+ tab->first_upper= embedding->nested_join->first_nested;
+ }
+ else if (!embedding)
+ tab->table->reginfo.not_exists_optimize= 0;
+
+ for ( ; embedding ; embedding= embedding->embedding)
+ {
+ if (embedding->is_active_sjm())
+ {
+ /* We're trying to walk out of an SJ-Materialization nest. Don't do this. */
+ break;
+ }
+ /* Ignore sj-nests: */
+ if (!(embedding->on_expr && embedding->outer_join))
+ {
+ tab->table->reginfo.not_exists_optimize= 0;
+ continue;
+ }
+ NESTED_JOIN *nested_join= embedding->nested_join;
+ if (!nested_join->counter)
+ {
+ /*
+ Table tab is the first inner table for nested_join.
+ Save reference to it in the nested join structure.
+ */
+ nested_join->first_nested= tab;
+ tab->on_expr_ref= &embedding->on_expr;
+ tab->cond_equal= tbl->cond_equal;
+ if (embedding->embedding)
+ tab->first_upper= embedding->embedding->nested_join->first_nested;
+ }
+ if (!tab->first_inner)
+ tab->first_inner= nested_join->first_nested;
+ if (++nested_join->counter < nested_join->n_tables)
+ break;
+ /* Table tab is the last inner table for nested join. */
+ nested_join->first_nested->last_inner= tab;
+ }
+ }
+ DBUG_RETURN(FALSE);
+}
+
+
+/*
+ @brief
+ Build a temporary join prefix condition for JOIN_TABs up to the last tab
+
+ @param ret OUT the condition is returned here
+
+ @return
+ false OK
+ true Out of memory
+
+ @detail
+ Walk through the join prefix (from the first table to the last_tab) and
+ build a condition:
+
+ join_tab_1_cond AND join_tab_2_cond AND ... AND last_tab_conds
+
+ The condition is only intended to be used by the range optimizer, so:
+ - it is not normalized (can have Item_cond_and inside another
+ Item_cond_and)
+ - it does not include join->exec_const_cond and other similar conditions.
+*/
+
+bool build_tmp_join_prefix_cond(JOIN *join, JOIN_TAB *last_tab, Item **ret)
+{
+ THD *const thd= join->thd;
+ Item_cond_and *all_conds= NULL;
+
+ Item *res= NULL;
+
+ // Pick the ON-expression. Use the same logic as in get_sargable_cond():
+ if (last_tab->on_expr_ref)
+ res= *last_tab->on_expr_ref;
+ else if (last_tab->table->pos_in_table_list &&
+ last_tab->table->pos_in_table_list->embedding &&
+ !last_tab->table->pos_in_table_list->embedding->sj_on_expr)
+ {
+ res= last_tab->table->pos_in_table_list->embedding->on_expr;
+ }
+
+ for (JOIN_TAB *tab= first_depth_first_tab(join);
+ tab;
+ tab= next_depth_first_tab(join, tab))
+ {
+ if (tab->select_cond)
+ {
+ if (!res)
+ res= tab->select_cond;
+ else
+ {
+ if (!all_conds)
+ {
+ if (!(all_conds= new (thd->mem_root)Item_cond_and(thd, res,
+ tab->select_cond)))
+ return true;
+ res= all_conds;
+ }
+ else
+ all_conds->add(tab->select_cond, thd->mem_root);
+ }
+ }
+ if (tab == last_tab)
+ break;
+ }
+ *ret= all_conds? all_conds: res;
+ return false;
+}
+
+
+static bool
+make_join_select(JOIN *join,SQL_SELECT *select,COND *cond)
+{
+ THD *thd= join->thd;
+ DBUG_ENTER("make_join_select");
+ if (select)
+ {
+ add_not_null_conds(join);
+ table_map used_tables;
+ /*
+ Step #1: Extract constant condition
+ - Extract and check the constant part of the WHERE
+ - Extract constant parts of ON expressions from outer
+ joins and attach them appropriately.
+ */
+ if (cond) /* Because of QUICK_GROUP_MIN_MAX_SELECT */
+ { /* there may be a select without a cond. */
+ if (join->table_count > 1)
+ cond->update_used_tables(); // Tablenr may have changed
+
+ /*
+ Extract expressions that depend on constant tables
+ 1. Const part of the join's WHERE clause can be checked immediately
+ and if it is not satisfied then the join has empty result
+ 2. Constant parts of outer joins' ON expressions must be attached
+ there inside the triggers.
+ */
+ { // Check const tables
+ Item* const_cond= NULL;
+ const_cond= make_cond_for_table(thd, cond,
+ join->const_table_map,
+ (table_map) 0, -1, FALSE, FALSE);
+ if (!const_cond && thd->is_error())
+ DBUG_RETURN(1);
+
+ /* Add conditions added by add_not_null_conds(). */
+ for (uint i= 0 ; i < join->const_tables ; i++)
+ add_cond_and_fix(thd, &const_cond,
+ join->join_tab[i].select_cond);
+
+ DBUG_EXECUTE("where",print_where(const_cond,"constants",
+ QT_ORDINARY););
+
+ if (const_cond)
+ {
+ Json_writer_object trace_const_cond(thd);
+ trace_const_cond.add("condition_on_constant_tables", const_cond);
+ if (const_cond->is_expensive())
+ {
+ trace_const_cond.add("evaluated", "false")
+ .add("cause", "expensive cond");
+ }
+ else
+ {
+ bool const_cond_result;
+ {
+ Json_writer_array a(thd, "computing_condition");
+ const_cond_result= const_cond->val_int() != 0;
+ }
+ if (!const_cond_result)
+ {
+ DBUG_PRINT("info",("Found impossible WHERE condition"));
+ trace_const_cond.add("evaluated", "true")
+ .add("found", "impossible where");
+ join->exec_const_cond= NULL;
+ DBUG_RETURN(1);
+ }
+ }
+ join->exec_const_cond= const_cond;
+ }
+
+ if (join->table_count != join->const_tables)
+ {
+ COND *outer_ref_cond= make_cond_for_table(thd, cond,
+ join->const_table_map |
+ OUTER_REF_TABLE_BIT,
+ OUTER_REF_TABLE_BIT,
+ -1, FALSE, FALSE);
+ if (outer_ref_cond)
+ {
+ add_cond_and_fix(thd, &outer_ref_cond, join->outer_ref_cond);
+ join->outer_ref_cond= outer_ref_cond;
+ }
+ else if (thd->is_error())
+ DBUG_RETURN(1);
+ }
+ else
+ {
+ COND *pseudo_bits_cond=
+ make_cond_for_table(thd, cond,
+ join->const_table_map |
+ PSEUDO_TABLE_BITS,
+ PSEUDO_TABLE_BITS,
+ -1, FALSE, FALSE);
+ if (pseudo_bits_cond)
+ {
+ add_cond_and_fix(thd, &pseudo_bits_cond,
+ join->pseudo_bits_cond);
+ join->pseudo_bits_cond= pseudo_bits_cond;
+ }
+ else if (thd->is_error())
+ DBUG_RETURN(1);
+ }
+ }
+ }
+
+ /*
+ Step #2: Extract WHERE/ON parts
+ */
+ Json_writer_object trace_wrapper(thd);
+ Json_writer_object trace_conditions(thd, "attaching_conditions_to_tables");
+ Json_writer_array trace_attached_comp(thd,
+ "attached_conditions_computation");
+ uint i;
+ for (i= join->top_join_tab_count - 1; i >= join->const_tables; i--)
+ {
+ if (!join->join_tab[i].bush_children)
+ break;
+ }
+ uint last_top_base_tab_idx= i;
+
+ table_map save_used_tables= 0;
+ used_tables=((select->const_tables=join->const_table_map) |
+ OUTER_REF_TABLE_BIT | RAND_TABLE_BIT);
+ JOIN_TAB *tab;
+ table_map current_map;
+ i= join->const_tables;
+ for (tab= first_depth_first_tab(join); tab;
+ tab= next_depth_first_tab(join, tab))
+ {
+ bool is_hj;
+
+ /*
+ first_inner is the X in queries like:
+ SELECT * FROM t1 LEFT OUTER JOIN (t2 JOIN t3) ON X
+ */
+ JOIN_TAB *first_inner_tab= tab->first_inner;
+
+ if (!tab->bush_children)
+ current_map= tab->table->map;
+ else
+ current_map= tab->bush_children->start->emb_sj_nest->sj_inner_tables;
+
+ bool use_quick_range=0;
+ COND *tmp;
+
+ /*
+ Tables that are within SJ-Materialization nests cannot have their
+ conditions referring to preceding non-const tables.
+ - If we're looking at the first SJM table, reset used_tables
+ to refer to only allowed tables
+ */
+ if (tab->emb_sj_nest && tab->emb_sj_nest->sj_mat_info &&
+ tab->emb_sj_nest->sj_mat_info->is_used &&
+ !(used_tables & tab->emb_sj_nest->sj_inner_tables))
+ {
+ save_used_tables= used_tables;
+ used_tables= join->const_table_map | OUTER_REF_TABLE_BIT |
+ RAND_TABLE_BIT;
+ }
+
+ used_tables|=current_map;
+
+ if (tab->type == JT_REF && tab->quick &&
+ (((uint) tab->ref.key == tab->quick->index &&
+ tab->ref.key_length < tab->quick->max_used_key_length) ||
+ (!is_hash_join_key_no(tab->ref.key) &&
+ tab->table->intersect_keys.is_set(tab->ref.key))))
+ {
+ /* Range uses longer key; Use this instead of ref on key */
+ Json_writer_object ref_to_range(thd);
+ ref_to_range.add("ref_to_range", true);
+ ref_to_range.add("cause", "range uses longer key");
+ tab->type=JT_ALL;
+ use_quick_range=1;
+ tab->use_quick=1;
+ tab->ref.key= -1;
+ tab->ref.key_parts=0; // Don't use ref key.
+ join->best_positions[i].records_read= rows2double(tab->quick->records);
+ /*
+ We will use join cache here : prevent sorting of the first
+ table only and sort at the end.
+ */
+ if (i != join->const_tables &&
+ join->table_count > join->const_tables + 1 &&
+ join->best_positions[i].use_join_buffer)
+ join->full_join= 1;
+ }
+
+ tmp= NULL;
+
+ if (cond)
+ {
+ if (tab->bush_children)
+ {
+ // Reached the materialization tab
+ tmp= make_cond_after_sjm(thd, cond, cond, save_used_tables,
+ used_tables, /*inside_or_clause=*/FALSE);
+ used_tables= save_used_tables | used_tables;
+ save_used_tables= 0;
+ }
+ else
+ {
+ tmp= make_cond_for_table(thd, cond, used_tables, current_map, i,
+ FALSE, FALSE);
+ if (!tmp && thd->is_error())
+ DBUG_RETURN(1);
+
+ if (tab == join->join_tab + last_top_base_tab_idx)
+ {
+ /*
+ This pushes conjunctive conditions of WHERE condition such that:
+ - their used_tables() contain RAND_TABLE_BIT
+ - the conditions does not refer to any fields
+ (such like rand() > 0.5)
+ */
+ table_map rand_table_bit= (table_map) RAND_TABLE_BIT;
+ COND *rand_cond= make_cond_for_table(thd, cond, used_tables,
+ rand_table_bit, -1,
+ FALSE, FALSE);
+ if (rand_cond)
+ add_cond_and_fix(thd, &tmp, rand_cond);
+ else if (thd->is_error())
+ DBUG_RETURN(1);
+ }
+ }
+ /* Add conditions added by add_not_null_conds(). */
+ if (tab->select_cond)
+ add_cond_and_fix(thd, &tmp, tab->select_cond);
+ }
+
+ is_hj= (tab->type == JT_REF || tab->type == JT_EQ_REF) &&
+ (join->allowed_join_cache_types & JOIN_CACHE_HASHED_BIT) &&
+ ((join->max_allowed_join_cache_level+1)/2 == 2 ||
+ ((join->max_allowed_join_cache_level+1)/2 > 2 &&
+ is_hash_join_key_no(tab->ref.key))) &&
+ (!tab->emb_sj_nest ||
+ join->allowed_semijoin_with_cache) &&
+ (!(tab->table->map & join->outer_join) ||
+ join->allowed_outer_join_with_cache);
+
+ if (cond && !tmp && tab->quick)
+ { // Outer join
+ if (tab->type != JT_ALL && !is_hj)
+ {
+ /*
+ Don't use the quick method
+ We come here in the case where we have 'key=constant' and
+ the test is removed by make_cond_for_table()
+ */
+ delete tab->quick;
+ tab->quick= 0;
+ }
+ else
+ {
+ /*
+ Hack to handle the case where we only refer to a table
+ in the ON part of an OUTER JOIN. In this case we want the code
+ below to check if we should use 'quick' instead.
+ */
+ DBUG_PRINT("info", ("Item_int"));
+ tmp= (Item*) Item_true;
+ }
+
+ }
+ if (tmp || !cond || tab->type == JT_REF || tab->type == JT_REF_OR_NULL ||
+ tab->type == JT_EQ_REF || first_inner_tab)
+ {
+ DBUG_EXECUTE("where",print_where(tmp,
+ tab->table? tab->table->alias.c_ptr() :"sjm-nest",
+ QT_ORDINARY););
+ SQL_SELECT *sel= tab->select= ((SQL_SELECT*)
+ thd->memdup((uchar*) select,
+ sizeof(*select)));
+ if (!sel)
+ DBUG_RETURN(1); // End of memory
+ /*
+ If tab is an inner table of an outer join operation,
+ add a match guard to the pushed down predicate.
+ The guard will turn the predicate on only after
+ the first match for outer tables is encountered.
+ */
+ if (cond && tmp)
+ {
+ /*
+ Because of QUICK_GROUP_MIN_MAX_SELECT there may be a select without
+ a cond, so neutralize the hack above.
+ */
+ COND *tmp_cond;
+ if (!(tmp_cond= add_found_match_trig_cond(thd, first_inner_tab, tmp,
+ 0)))
+ DBUG_RETURN(1);
+ sel->cond= tmp_cond;
+ tab->set_select_cond(tmp_cond, __LINE__);
+ /* Push condition to storage engine if this is enabled
+ and the condition is not guarded */
+ if (tab->table)
+ {
+ tab->table->file->pushed_cond= NULL;
+ if ((tab->table->file->ha_table_flags() &
+ HA_CAN_TABLE_CONDITION_PUSHDOWN) &&
+ !first_inner_tab)
+ {
+ Json_writer_object wrap(thd);
+ Json_writer_object trace_cp(thd, "table_condition_pushdown");
+ trace_cp.add_table_name(tab->table);
+
+ COND *push_cond=
+ make_cond_for_table(thd, tmp_cond, current_map, current_map,
+ -1, FALSE, FALSE);
+ if (push_cond)
+ {
+ trace_cp.add("push_cond", push_cond);
+ /* Push condition to handler */
+ if (!tab->table->file->cond_push(push_cond))
+ tab->table->file->pushed_cond= push_cond;
+ }
+ else if (thd->is_error())
+ DBUG_RETURN(1);
+ }
+ }
+ }
+ else
+ {
+ sel->cond= NULL;
+ tab->set_select_cond(NULL, __LINE__);
+ }
+
+ sel->head=tab->table;
+ DBUG_EXECUTE("where",
+ print_where(tmp,
+ tab->table ? tab->table->alias.c_ptr() :
+ "(sjm-nest)",
+ QT_ORDINARY););
+ if (tab->quick)
+ {
+ /* Use quick key read if it's a constant and it's not used
+ with key reading */
+ if ((tab->needed_reg.is_clear_all() && tab->type != JT_EQ_REF &&
+ tab->type != JT_FT &&
+ ((tab->type != JT_CONST && tab->type != JT_REF) ||
+ (uint) tab->ref.key == tab->quick->index)) || is_hj)
+ {
+ DBUG_ASSERT(tab->quick->is_valid());
+ sel->quick=tab->quick; // Use value from get_quick_...
+ sel->quick_keys.clear_all();
+ sel->needed_reg.clear_all();
+ if (is_hj && tab->rowid_filter)
+ {
+ delete tab->rowid_filter;
+ tab->rowid_filter= 0;
+ }
+ }
+ else
+ {
+ delete tab->quick;
+ }
+ tab->quick=0;
+ }
+ uint ref_key= sel->head? (uint) sel->head->reginfo.join_tab->ref.key+1 : 0;
+ if (i == join->const_tables && ref_key)
+ {
+ if (!tab->const_keys.is_clear_all() &&
+ tab->table->reginfo.impossible_range)
+ DBUG_RETURN(1);
+ }
+ else if (tab->type == JT_ALL && ! use_quick_range)
+ {
+ if (!tab->const_keys.is_clear_all() &&
+ tab->table->reginfo.impossible_range)
+ DBUG_RETURN(1); // Impossible range
+ /*
+ We plan to scan all rows.
+ Check again if we should use an index.
+
+ There are two cases:
+ 1) There could be an index usage the refers to a previous
+ table that we didn't consider before, but could be consider
+ now as a "last resort". For example
+ SELECT * from t1,t2 where t1.a between t2.a and t2.b;
+ 2) If the current table is the first non const table
+ and there is a limit it still possibly beneficial
+ to use the index even if the index range is big as
+ we can stop when we've found limit rows.
+
+ (1) - Don't switch the used index if we are using semi-join
+ LooseScan on this table. Using different index will not
+ produce the desired ordering and de-duplication.
+ */
+
+ if (!tab->table->is_filled_at_execution() &&
+ !tab->loosescan_match_tab && // (1)
+ ((cond && (!tab->keys.is_subset(tab->const_keys) && i > 0)) ||
+ (!tab->const_keys.is_clear_all() && i == join->const_tables &&
+ join->unit->lim.get_select_limit() <
+ join->best_positions[i].records_read &&
+ !(join->select_options & OPTION_FOUND_ROWS))))
+ {
+ /* Join with outer join condition */
+ COND *orig_cond=sel->cond;
+
+ if (build_tmp_join_prefix_cond(join, tab, &sel->cond))
+ return true;
+
+ /*
+ We can't call sel->cond->fix_fields,
+ as it will break tab->on_expr if it's AND condition
+ (fix_fields currently removes extra AND/OR levels).
+ Yet attributes of the just built condition are not needed.
+ Thus we call sel->cond->quick_fix_field for safety.
+ */
+ if (sel->cond && !sel->cond->fixed())
+ sel->cond->quick_fix_field();
+ quick_select_return res;
+
+ if ((res= sel->test_quick_select(thd, tab->keys,
+ ((used_tables & ~ current_map) |
+ OUTER_REF_TABLE_BIT),
+ (join->select_options &
+ OPTION_FOUND_ROWS ?
+ HA_POS_ERROR :
+ join->unit->lim.get_select_limit()),
+ 0,
+ FALSE, FALSE, FALSE)) ==
+ SQL_SELECT::IMPOSSIBLE_RANGE)
+ {
+ /*
+ Before reporting "Impossible WHERE" for the whole query
+ we have to check isn't it only "impossible ON" instead
+ */
+ sel->cond=orig_cond;
+ if (!*tab->on_expr_ref ||
+ (res= sel->test_quick_select(thd, tab->keys,
+ used_tables & ~ current_map,
+ (join->select_options &
+ OPTION_FOUND_ROWS ?
+ HA_POS_ERROR :
+ join->unit->lim.get_select_limit()),
+ 0, FALSE, FALSE, FALSE, TRUE)) ==
+ SQL_SELECT::IMPOSSIBLE_RANGE)
+ DBUG_RETURN(1); // Impossible WHERE
+ }
+ else
+ sel->cond=orig_cond;
+
+ if (res == SQL_SELECT::ERROR)
+ DBUG_RETURN(1); /* Some error in one of test_quick_select calls */
+
+ /* Fix for EXPLAIN */
+ if (sel->quick)
+ join->best_positions[i].records_read= (double)sel->quick->records;
+ }
+ else
+ {
+ sel->needed_reg=tab->needed_reg;
+ }
+ sel->quick_keys= tab->table->opt_range_keys;
+ if (!sel->quick_keys.is_subset(tab->checked_keys) ||
+ !sel->needed_reg.is_subset(tab->checked_keys))
+ {
+ /*
+ "Range checked for each record" is a "last resort" access method
+ that should only be used when the other option is a cross-product
+ join.
+
+ We use the following condition (it's approximate):
+ 1. There are potential keys for (sel->needed_reg)
+ 2. There were no possible ways to construct a quick select, or
+ the quick select would be more expensive than the full table
+ scan.
+ */
+ tab->use_quick= (!sel->needed_reg.is_clear_all() &&
+ (sel->quick_keys.is_clear_all() ||
+ (sel->quick &&
+ sel->quick->read_time >
+ tab->table->file->scan_time() +
+ tab->table->file->stats.records/TIME_FOR_COMPARE
+ ))) ?
+ 2 : 1;
+ sel->read_tables= used_tables & ~current_map;
+ sel->quick_keys.clear_all();
+ }
+ if (i != join->const_tables && tab->use_quick != 2 &&
+ !tab->first_inner)
+ { /* Read with cache */
+ /*
+ TODO: the execution also gets here when we will not be using
+ join buffer. Review these cases and perhaps, remove this call.
+ (The final decision whether to use join buffer is made in
+ check_join_cache_usage, so we should only call make_scan_filter()
+ there, too).
+ */
+ if (tab->make_scan_filter())
+ DBUG_RETURN(1);
+ }
+ }
+ }
+
+ /*
+ Push down conditions from all ON expressions.
+ Each of these conditions are guarded by a variable
+ that turns if off just before null complemented row for
+ outer joins is formed. Thus, the condition from an
+ 'on expression' are guaranteed not to be checked for
+ the null complemented row.
+ */
+
+ /*
+ First push down constant conditions from ON expressions.
+ - Each pushed-down condition is wrapped into trigger which is
+ enabled only for non-NULL-complemented record
+ - The condition is attached to the first_inner_table.
+
+ With regards to join nests:
+ - if we start at top level, don't walk into nests
+ - if we start inside a nest, stay within that nest.
+ */
+ JOIN_TAB *start_from= tab->bush_root_tab?
+ tab->bush_root_tab->bush_children->start :
+ join->join_tab + join->const_tables;
+ JOIN_TAB *end_with= tab->bush_root_tab?
+ tab->bush_root_tab->bush_children->end :
+ join->join_tab + join->top_join_tab_count;
+ for (JOIN_TAB *join_tab= start_from;
+ join_tab != end_with;
+ join_tab++)
+ {
+ if (*join_tab->on_expr_ref)
+ {
+ JOIN_TAB *cond_tab= join_tab->first_inner;
+ COND *tmp_cond= make_cond_for_table(thd, *join_tab->on_expr_ref,
+ join->const_table_map,
+ (table_map) 0, -1, FALSE, FALSE);
+ if (!tmp_cond)
+ {
+ if (!thd->is_error())
+ continue;
+ DBUG_RETURN(1);
+ }
+ tmp_cond= new (thd->mem_root) Item_func_trig_cond(thd, tmp_cond,
+ &cond_tab->not_null_compl);
+ if (!tmp_cond)
+ DBUG_RETURN(1);
+ tmp_cond->quick_fix_field();
+ cond_tab->select_cond= !cond_tab->select_cond ? tmp_cond :
+ new (thd->mem_root) Item_cond_and(thd, cond_tab->select_cond,
+ tmp_cond);
+ if (!cond_tab->select_cond)
+ DBUG_RETURN(1);
+ cond_tab->select_cond->quick_fix_field();
+ cond_tab->select_cond->update_used_tables();
+ if (cond_tab->select)
+ cond_tab->select->cond= cond_tab->select_cond;
+ }
+ }
+
+
+ /* Push down non-constant conditions from ON expressions */
+ JOIN_TAB *last_tab= tab;
+
+ /*
+ while we're inside of an outer join and last_tab is
+ the last of its tables ...
+ */
+ while (first_inner_tab && first_inner_tab->last_inner == last_tab)
+ {
+ /*
+ Table tab is the last inner table of an outer join.
+ An on expression is always attached to it.
+ */
+ COND *on_expr= *first_inner_tab->on_expr_ref;
+
+ table_map used_tables2= (join->const_table_map |
+ OUTER_REF_TABLE_BIT | RAND_TABLE_BIT);
+
+ start_from= tab->bush_root_tab?
+ tab->bush_root_tab->bush_children->start :
+ join->join_tab + join->const_tables;
+ for (JOIN_TAB *inner_tab= start_from;
+ inner_tab <= last_tab;
+ inner_tab++)
+ {
+ DBUG_ASSERT(inner_tab->table);
+ current_map= inner_tab->table->map;
+ used_tables2|= current_map;
+ /*
+ psergey: have put the -1 below. It's bad, will need to fix it.
+ */
+ COND *tmp_cond= make_cond_for_table(thd, on_expr, used_tables2,
+ current_map,
+ /*(inner_tab - first_tab)*/ -1,
+ FALSE, FALSE);
+ if (!tmp_cond && thd->is_error())
+ DBUG_RETURN(1);
+ if (tab == last_tab)
+ {
+ /*
+ This pushes conjunctive conditions of ON expression of an outer
+ join such that:
+ - their used_tables() contain RAND_TABLE_BIT
+ - the conditions does not refer to any fields
+ (such like rand() > 0.5)
+ */
+ table_map rand_table_bit= (table_map) RAND_TABLE_BIT;
+ COND *rand_cond= make_cond_for_table(thd, on_expr, used_tables2,
+ rand_table_bit, -1,
+ FALSE, FALSE);
+ if (rand_cond)
+ add_cond_and_fix(thd, &tmp_cond, rand_cond);
+ else if (thd->is_error())
+ DBUG_RETURN(1);
+ }
+ bool is_sjm_lookup_tab= FALSE;
+ if (inner_tab->bush_children)
+ {
+ /*
+ 'inner_tab' is an SJ-Materialization tab, i.e. we have a join
+ order like this:
+
+ ot1 sjm_tab LEFT JOIN ot2 ot3
+ ^ ^
+ 'tab'-+ +--- left join we're adding triggers for
+
+ LEFT JOIN's ON expression may not have references to subquery
+ columns. The subquery was in the WHERE clause, so IN-equality
+ is in the WHERE clause, also.
+ However, equality propagation code may have propagated the
+ IN-equality into ON expression, and we may get things like
+
+ subquery_inner_table=const
+
+ in the ON expression. We must not check such conditions during
+ SJM-lookup, because 1) subquery_inner_table has no valid current
+ row (materialization temp.table has it instead), and 2) they
+ would be true anyway.
+ */
+ SJ_MATERIALIZATION_INFO *sjm=
+ inner_tab->bush_children->start->emb_sj_nest->sj_mat_info;
+ if (sjm->is_used && !sjm->is_sj_scan)
+ is_sjm_lookup_tab= TRUE;
+ }
+
+ if (inner_tab == first_inner_tab && inner_tab->on_precond &&
+ !is_sjm_lookup_tab)
+ add_cond_and_fix(thd, &tmp_cond, inner_tab->on_precond);
+ if (tmp_cond && !is_sjm_lookup_tab)
+ {
+ JOIN_TAB *cond_tab= (inner_tab < first_inner_tab ?
+ first_inner_tab : inner_tab);
+ Item **sel_cond_ref= (inner_tab < first_inner_tab ?
+ &first_inner_tab->on_precond :
+ &inner_tab->select_cond);
+ /*
+ First add the guards for match variables of
+ all embedding outer join operations.
+ */
+ if (!(tmp_cond= add_found_match_trig_cond(thd,
+ cond_tab->first_inner,
+ tmp_cond,
+ first_inner_tab)))
+ DBUG_RETURN(1);
+ /*
+ Now add the guard turning the predicate off for
+ the null complemented row.
+ */
+ DBUG_PRINT("info", ("Item_func_trig_cond"));
+ tmp_cond= new (thd->mem_root) Item_func_trig_cond(thd, tmp_cond,
+ &first_inner_tab->
+ not_null_compl);
+ DBUG_PRINT("info", ("Item_func_trig_cond %p",
+ tmp_cond));
+ if (tmp_cond)
+ tmp_cond->quick_fix_field();
+ /* Add the predicate to other pushed down predicates */
+ DBUG_PRINT("info", ("Item_cond_and"));
+ *sel_cond_ref= !(*sel_cond_ref) ?
+ tmp_cond :
+ new (thd->mem_root) Item_cond_and(thd, *sel_cond_ref, tmp_cond);
+ DBUG_PRINT("info", ("Item_cond_and %p",
+ (*sel_cond_ref)));
+ if (!(*sel_cond_ref))
+ DBUG_RETURN(1);
+ (*sel_cond_ref)->quick_fix_field();
+ (*sel_cond_ref)->update_used_tables();
+ if (cond_tab->select)
+ cond_tab->select->cond= cond_tab->select_cond;
+ }
+ }
+ first_inner_tab= first_inner_tab->first_upper;
+ }
+ if (!tab->bush_children)
+ i++;
+ }
+
+ if (unlikely(thd->trace_started()))
+ {
+ trace_attached_comp.end();
+ Json_writer_array trace_attached_summary(thd,
+ "attached_conditions_summary");
+ for (tab= first_depth_first_tab(join); tab;
+ tab= next_depth_first_tab(join, tab))
+ {
+ if (!tab->table)
+ continue;
+ Item *const cond = tab->select_cond;
+ Json_writer_object trace_one_table(thd);
+ trace_one_table.add_table_name(tab);
+ trace_one_table.add("attached", cond);
+ }
+ }
+ }
+ DBUG_RETURN(0);
+}
+
+
+static
+uint get_next_field_for_derived_key(uchar *arg)
+{
+ KEYUSE *keyuse= *(KEYUSE **) arg;
+ if (!keyuse)
+ return (uint) (-1);
+ TABLE *table= keyuse->table;
+ uint key= keyuse->key;
+ uint fldno= keyuse->keypart;
+ uint keypart= keyuse->keypart_map == (key_part_map) 1 ?
+ 0 : (keyuse-1)->keypart+1;
+ for ( ;
+ keyuse->table == table && keyuse->key == key && keyuse->keypart == fldno;
+ keyuse++)
+ keyuse->keypart= keypart;
+ if (keyuse->key != key)
+ keyuse= 0;
+ *((KEYUSE **) arg)= keyuse;
+ return fldno;
+}
+
+
+static
+uint get_next_field_for_derived_key_simple(uchar *arg)
+{
+ KEYUSE *keyuse= *(KEYUSE **) arg;
+ if (!keyuse)
+ return (uint) (-1);
+ TABLE *table= keyuse->table;
+ uint key= keyuse->key;
+ uint fldno= keyuse->keypart;
+ for ( ;
+ keyuse->table == table && keyuse->key == key && keyuse->keypart == fldno;
+ keyuse++)
+ ;
+ if (keyuse->key != key)
+ keyuse= 0;
+ *((KEYUSE **) arg)= keyuse;
+ return fldno;
+}
+
+static
+bool generate_derived_keys_for_table(KEYUSE *keyuse, uint count, uint keys)
+{
+ TABLE *table= keyuse->table;
+ if (table->alloc_keys(keys))
+ return TRUE;
+ uint key_count= 0;
+ KEYUSE *first_keyuse= keyuse;
+ uint prev_part= keyuse->keypart;
+ uint parts= 0;
+ uint i= 0;
+
+ for ( ; i < count && key_count < keys; )
+ {
+ do
+ {
+ keyuse->key= table->s->keys;
+ keyuse->keypart_map= (key_part_map) (1 << parts);
+ keyuse++;
+ i++;
+ }
+ while (i < count && keyuse->used_tables == first_keyuse->used_tables &&
+ keyuse->keypart == prev_part);
+ parts++;
+ if (i < count && keyuse->used_tables == first_keyuse->used_tables)
+ {
+ prev_part= keyuse->keypart;
+ }
+ else
+ {
+ KEYUSE *save_first_keyuse= first_keyuse;
+ if (table->check_tmp_key(table->s->keys, parts,
+ get_next_field_for_derived_key_simple,
+ (uchar *) &first_keyuse))
+
+ {
+ JOIN_TAB *tab;
+ first_keyuse= save_first_keyuse;
+ if (table->add_tmp_key(table->s->keys, parts,
+ get_next_field_for_derived_key,
+ (uchar *) &first_keyuse,
+ FALSE))
+ return TRUE;
+ table->reginfo.join_tab->keys.set_bit(table->s->keys);
+ tab= table->reginfo.join_tab;
+ for (uint i=0; i < parts; i++)
+ tab->key_dependent|= save_first_keyuse[i].used_tables;
+ }
+ else
+ {
+ /* Mark keyuses for this key to be excluded */
+ for (KEYUSE *curr=save_first_keyuse; curr < keyuse; curr++)
+ {
+ curr->key= MAX_KEY;
+ }
+ }
+ first_keyuse= keyuse;
+ key_count++;
+ parts= 0;
+ prev_part= keyuse->keypart;
+ }
+ }
+
+ return FALSE;
+}
+
+
+static
+bool generate_derived_keys(DYNAMIC_ARRAY *keyuse_array)
+{
+ KEYUSE *keyuse= dynamic_element(keyuse_array, 0, KEYUSE*);
+ size_t elements= keyuse_array->elements;
+ TABLE *prev_table= 0;
+ for (size_t i= 0; i < elements; i++, keyuse++)
+ {
+ if (!keyuse->table)
+ break;
+ KEYUSE *first_table_keyuse= NULL;
+ table_map last_used_tables= 0;
+ uint count= 0;
+ uint keys= 0;
+ TABLE_LIST *derived= NULL;
+ if (keyuse->table != prev_table)
+ derived= keyuse->table->pos_in_table_list;
+ while (derived && derived->is_materialized_derived())
+ {
+ if (keyuse->table != prev_table)
+ {
+ prev_table= keyuse->table;
+ while (keyuse->table == prev_table && keyuse->key != MAX_KEY)
+ {
+ keyuse++;
+ i++;
+ }
+ if (keyuse->table != prev_table)
+ {
+ keyuse--;
+ i--;
+ derived= NULL;
+ continue;
+ }
+ first_table_keyuse= keyuse;
+ last_used_tables= keyuse->used_tables;
+ count= 0;
+ keys= 0;
+ }
+ else if (keyuse->used_tables != last_used_tables)
+ {
+ keys++;
+ last_used_tables= keyuse->used_tables;
+ }
+ count++;
+ keyuse++;
+ i++;
+ if (keyuse->table != prev_table)
+ {
+ if (generate_derived_keys_for_table(first_table_keyuse, count, ++keys))
+ return TRUE;
+ keyuse--;
+ i--;
+ derived= NULL;
+ }
+ }
+ }
+ return FALSE;
+}
+
+
+/*
+ @brief
+ Drops unused keys for each materialized derived table/view
+
+ @details
+ For materialized derived tables only ref access can be used, it employs
+ only one index, thus we don't need the rest. For each materialized derived
+ table/view call TABLE::use_index to save one index chosen by the optimizer
+ and free others. No key is chosen then all keys will be dropped.
+*/
+
+void JOIN::drop_unused_derived_keys()
+{
+ JOIN_TAB *tab;
+ for (tab= first_linear_tab(this, WITH_BUSH_ROOTS, WITHOUT_CONST_TABLES);
+ tab;
+ tab= next_linear_tab(this, tab, WITH_BUSH_ROOTS))
+ {
+
+ TABLE *tmp_tbl= tab->table;
+ if (!tmp_tbl)
+ continue;
+ if (!tmp_tbl->pos_in_table_list->is_materialized_derived())
+ continue;
+ if (tmp_tbl->max_keys > 1 && !tab->is_ref_for_hash_join())
+ tmp_tbl->use_index(tab->ref.key);
+ if (tmp_tbl->s->keys)
+ {
+ if (tab->ref.key >= 0 && tab->ref.key < MAX_KEY)
+ tab->ref.key= 0;
+ else
+ tmp_tbl->s->keys= 0;
+ }
+ tab->keys= (key_map) (tmp_tbl->s->keys ? 1 : 0);
+ }
+}
+
+
+/*
+ Evaluate the bitmap of used tables for items from the select list
+*/
+
+inline void JOIN::eval_select_list_used_tables()
+{
+ select_list_used_tables= 0;
+ Item *item;
+ List_iterator_fast<Item> it(fields_list);
+ while ((item= it++))
+ {
+ select_list_used_tables|= item->used_tables();
+ }
+ Item_outer_ref *ref;
+ List_iterator_fast<Item_outer_ref> ref_it(select_lex->inner_refs_list);
+ while ((ref= ref_it++))
+ {
+ item= ref->outer_ref;
+ select_list_used_tables|= item->used_tables();
+ }
+}
+
+
+/*
+ Determine {after which table we'll produce ordered set}
+
+ SYNOPSIS
+ make_join_orderinfo()
+ join
+
+
+ DESCRIPTION
+ Determine if the set is already ordered for ORDER BY, so it can
+ disable join cache because it will change the ordering of the results.
+ Code handles sort table that is at any location (not only first after
+ the const tables) despite the fact that it's currently prohibited.
+ We must disable join cache if the first non-const table alone is
+ ordered. If there is a temp table the ordering is done as a last
+ operation and doesn't prevent join cache usage.
+
+ RETURN
+ Number of table after which the set will be ordered
+ join->tables if we don't need an ordered set
+*/
+
+static uint make_join_orderinfo(JOIN *join)
+{
+ /*
+ This function needs to be fixed to take into account that we now have SJM
+ nests.
+ */
+ DBUG_ASSERT(0);
+
+ JOIN_TAB *tab;
+ if (join->need_tmp)
+ return join->table_count;
+ tab= join->get_sort_by_join_tab();
+ return tab ? (uint)(tab-join->join_tab) : join->table_count;
+}
+
+/*
+ Deny usage of join buffer for the specified table
+
+ SYNOPSIS
+ set_join_cache_denial()
+ tab join table for which join buffer usage is to be denied
+
+ DESCRIPTION
+ The function denies usage of join buffer when joining the table 'tab'.
+ The table is marked as not employing any join buffer. If a join cache
+ object has been already allocated for the table this object is destroyed.
+
+ RETURN
+ none
+*/
+
+static
+void set_join_cache_denial(JOIN_TAB *join_tab)
+{
+ if (join_tab->cache)
+ {
+ /*
+ If there is a previous cache linked to this cache through the
+ next_cache pointer: remove the link.
+ */
+ if (join_tab->cache->prev_cache)
+ join_tab->cache->prev_cache->next_cache= 0;
+ /*
+ Same for the next_cache
+ */
+ if (join_tab->cache->next_cache)
+ join_tab->cache->next_cache->prev_cache= 0;
+
+ join_tab->cache->free();
+ join_tab->cache= 0;
+ }
+ if (join_tab->use_join_cache)
+ {
+ join_tab->use_join_cache= FALSE;
+ join_tab->used_join_cache_level= 0;
+ /*
+ It could be only sub_select(). It could not be sub_seject_sjm because we
+ don't do join buffering for the first table in sjm nest.
+ */
+ join_tab[-1].next_select= sub_select;
+ if (join_tab->type == JT_REF && join_tab->is_ref_for_hash_join())
+ {
+ join_tab->type= JT_ALL;
+ join_tab->ref.key_parts= 0;
+ }
+ join_tab->join->return_tab= join_tab;
+ }
+}
+
+
+/**
+ The default implementation of unlock-row method of READ_RECORD,
+ used in all access methods.
+*/
+
+void rr_unlock_row(st_join_table *tab)
+{
+ READ_RECORD *info= &tab->read_record;
+ info->table->file->unlock_row();
+}
+
+
+/**
+ Pick the appropriate access method functions
+
+ Sets the functions for the selected table access method
+
+ @param tab Table reference to put access method
+*/
+
+static void
+pick_table_access_method(JOIN_TAB *tab)
+{
+ switch (tab->type)
+ {
+ case JT_REF:
+ tab->read_first_record= join_read_always_key;
+ tab->read_record.read_record_func= join_read_next_same;
+ break;
+
+ case JT_REF_OR_NULL:
+ tab->read_first_record= join_read_always_key_or_null;
+ tab->read_record.read_record_func= join_read_next_same_or_null;
+ break;
+
+ case JT_CONST:
+ tab->read_first_record= join_read_const;
+ tab->read_record.read_record_func= join_no_more_records;
+ break;
+
+ case JT_EQ_REF:
+ tab->read_first_record= join_read_key;
+ tab->read_record.read_record_func= join_no_more_records;
+ break;
+
+ case JT_FT:
+ tab->read_first_record= join_ft_read_first;
+ tab->read_record.read_record_func= join_ft_read_next;
+ break;
+
+ case JT_SYSTEM:
+ tab->read_first_record= join_read_system;
+ tab->read_record.read_record_func= join_no_more_records;
+ break;
+
+ /* keep gcc happy */
+ default:
+ break;
+ }
+}
+
+
+/*
+ Revise usage of join buffer for the specified table and the whole nest
+
+ SYNOPSIS
+ revise_cache_usage()
+ tab join table for which join buffer usage is to be revised
+
+ DESCRIPTION
+ The function revise the decision to use a join buffer for the table 'tab'.
+ If this table happened to be among the inner tables of a nested outer join/
+ semi-join the functions denies usage of join buffers for all of them
+
+ RETURN
+ none
+*/
+
+static
+void revise_cache_usage(JOIN_TAB *join_tab)
+{
+ JOIN_TAB *tab;
+ JOIN_TAB *first_inner;
+
+ if (join_tab->first_inner)
+ {
+ JOIN_TAB *end_tab= join_tab;
+ for (first_inner= join_tab->first_inner;
+ first_inner;
+ first_inner= first_inner->first_upper)
+ {
+ for (tab= end_tab; tab >= first_inner; tab--)
+ set_join_cache_denial(tab);
+ end_tab= first_inner;
+ }
+ }
+ else if (join_tab->first_sj_inner_tab)
+ {
+ first_inner= join_tab->first_sj_inner_tab;
+ for (tab= join_tab; tab >= first_inner; tab--)
+ {
+ set_join_cache_denial(tab);
+ }
+ }
+ else set_join_cache_denial(join_tab);
+}
+
+
+/*
+ end_select-compatible function that writes the record into a sjm temptable
+
+ SYNOPSIS
+ end_sj_materialize()
+ join The join
+ join_tab Points to right after the last join_tab in materialization bush
+ end_of_records FALSE <=> This call is made to pass another record
+ combination
+ TRUE <=> EOF (no action)
+
+ DESCRIPTION
+ This function is used by semi-join materialization to capture suquery's
+ resultset and write it into the temptable (that is, materialize it).
+
+ NOTE
+ This function is used only for semi-join materialization. Non-semijoin
+ materialization uses different mechanism.
+
+ RETURN
+ NESTED_LOOP_OK
+ NESTED_LOOP_ERROR
+*/
+
+enum_nested_loop_state
+end_sj_materialize(JOIN *join, JOIN_TAB *join_tab, bool end_of_records)
+{
+ int error;
+ THD *thd= join->thd;
+ SJ_MATERIALIZATION_INFO *sjm= join_tab[-1].emb_sj_nest->sj_mat_info;
+ DBUG_ENTER("end_sj_materialize");
+ if (!end_of_records)
+ {
+ TABLE *table= sjm->table;
+
+ List_iterator<Item> it(sjm->sjm_table_cols);
+ Item *item;
+ while ((item= it++))
+ {
+ if (item->is_null())
+ DBUG_RETURN(NESTED_LOOP_OK);
+ }
+ fill_record(thd, table, table->field, sjm->sjm_table_cols, TRUE, FALSE);
+ if (unlikely(thd->is_error()))
+ DBUG_RETURN(NESTED_LOOP_ERROR); /* purecov: inspected */
+ if (unlikely((error= table->file->ha_write_tmp_row(table->record[0]))))
+ {
+ /* create_myisam_from_heap will generate error if needed */
+ if (table->file->is_fatal_error(error, HA_CHECK_DUP) &&
+ create_internal_tmp_table_from_heap(thd, table,
+ sjm->sjm_table_param.start_recinfo,
+ &sjm->sjm_table_param.recinfo, error, 1, NULL))
+ DBUG_RETURN(NESTED_LOOP_ERROR); /* purecov: inspected */
+ }
+ }
+ DBUG_RETURN(NESTED_LOOP_OK);
+}
+
+
+/*
+ Check whether a join buffer can be used to join the specified table
+
+ SYNOPSIS
+ check_join_cache_usage()
+ tab joined table to check join buffer usage for
+ options options of the join
+ no_jbuf_after don't use join buffering after table with this number
+ prev_tab previous join table
+
+ DESCRIPTION
+ The function finds out whether the table 'tab' can be joined using a join
+ buffer. This check is performed after the best execution plan for 'join'
+ has been chosen. If the function decides that a join buffer can be employed
+ then it selects the most appropriate join cache object that contains this
+ join buffer.
+ The result of the check and the type of the the join buffer to be used
+ depend on:
+ - the access method to access rows of the joined table
+ - whether the join table is an inner table of an outer join or semi-join
+ - whether the optimizer switches
+ outer_join_with_cache, semijoin_with_cache, join_cache_incremental,
+ join_cache_hashed, join_cache_bka,
+ are set on or off
+ - the join cache level set for the query
+ - the join 'options'.
+
+ In any case join buffer is not used if the number of the joined table is
+ greater than 'no_jbuf_after'. It's also never used if the value of
+ join_cache_level is equal to 0.
+ If the optimizer switch outer_join_with_cache is off no join buffer is
+ used for outer join operations.
+ If the optimizer switch semijoin_with_cache is off no join buffer is used
+ for semi-join operations.
+ If the optimizer switch join_cache_incremental is off no incremental join
+ buffers are used.
+ If the optimizer switch join_cache_hashed is off then the optimizer uses
+ neither BNLH algorithm, nor BKAH algorithm to perform join operations.
+
+ If the optimizer switch join_cache_bka is off then the optimizer uses
+ neither BKA algorithm, nor BKAH algorithm to perform join operation.
+ The valid settings for join_cache_level lay in the interval 0..8.
+ If it set to 0 no join buffers are used to perform join operations.
+ Currently we differentiate between join caches of 8 levels:
+ 1 : non-incremental join cache used for BNL join algorithm
+ 2 : incremental join cache used for BNL join algorithm
+ 3 : non-incremental join cache used for BNLH join algorithm
+ 4 : incremental join cache used for BNLH join algorithm
+ 5 : non-incremental join cache used for BKA join algorithm
+ 6 : incremental join cache used for BKA join algorithm
+ 7 : non-incremental join cache used for BKAH join algorithm
+ 8 : incremental join cache used for BKAH join algorithm
+ If the value of join_cache_level is set to n then no join caches of
+ levels higher than n can be employed.
+
+ If the optimizer switches outer_join_with_cache, semijoin_with_cache,
+ join_cache_incremental, join_cache_hashed, join_cache_bka are all on
+ the following rules are applied.
+ If join_cache_level==1|2 then join buffer is used for inner joins, outer
+ joins and semi-joins with 'JT_ALL' access method. In this case a
+ JOIN_CACHE_BNL object is employed.
+ If join_cache_level==3|4 and then join buffer is used for a join operation
+ (inner join, outer join, semi-join) with 'JT_REF'/'JT_EQREF' access method
+ then a JOIN_CACHE_BNLH object is employed.
+ If an index is used to access rows of the joined table and the value of
+ join_cache_level==5|6 then a JOIN_CACHE_BKA object is employed.
+ If an index is used to access rows of the joined table and the value of
+ join_cache_level==7|8 then a JOIN_CACHE_BKAH object is employed.
+ If the value of join_cache_level is odd then creation of a non-linked
+ join cache is forced.
+
+ Currently for any join operation a join cache of the level of the
+ highest allowed and applicable level is used.
+ For example, if join_cache_level is set to 6 and the optimizer switch
+ join_cache_bka is off, while the optimizer switch join_cache_hashed is
+ on then for any inner join operation with JT_REF/JT_EQREF access method
+ to the joined table the BNLH join algorithm will be used, while for
+ the table accessed by the JT_ALL methods the BNL algorithm will be used.
+
+ If the function decides that a join buffer can be used to join the table
+ 'tab' then it sets the value of tab->use_join_buffer to TRUE and assigns
+ the selected join cache object to the field 'cache' of the previous
+ join table.
+ If the function creates a join cache object it tries to initialize it. The
+ failure to do this results in an invocation of the function that destructs
+ the created object.
+ If the function decides that but some reasons no join buffer can be used
+ for a table it calls the function revise_cache_usage that checks
+ whether join cache should be denied for some previous tables. In this case
+ a pointer to the first table for which join cache usage has been denied
+ is passed in join->return_val (see the function set_join_cache_denial).
+
+ The functions changes the value the fields tab->icp_other_tables_ok and
+ tab->idx_cond_fact_out to FALSE if the chosen join cache algorithm
+ requires it.
+
+ NOTES
+ An inner table of a nested outer join or a nested semi-join can be currently
+ joined only when a linked cache object is employed. In these cases setting
+ join_cache_incremental to 'off' results in denial of usage of any join
+ buffer when joining the table.
+ For a nested outer join/semi-join, currently, we either use join buffers for
+ all inner tables or for none of them.
+ Some engines (e.g. Falcon) currently allow to use only a join cache
+ of the type JOIN_CACHE_BKAH when the joined table is accessed through
+ an index. For these engines setting the value of join_cache_level to 5 or 6
+ results in that no join buffer is used to join the table.
+
+ RETURN VALUE
+ cache level if cache is used, otherwise returns 0
+
+ TODO
+ Support BKA inside SJ-Materialization nests. When doing this, we'll need
+ to only store sj-inner tables in the join buffer.
+#if 0
+ JOIN_TAB *first_tab= join->join_tab+join->const_tables;
+ uint n_tables= i-join->const_tables;
+ / *
+ We normally put all preceding tables into the join buffer, except
+ for the constant tables.
+ If we're inside a semi-join materialization nest, e.g.
+
+ outer_tbl1 outer_tbl2 ( inner_tbl1, inner_tbl2 ) ...
+ ^-- we're here
+
+ then we need to put into the join buffer only the tables from
+ within the nest.
+ * /
+ if (i >= first_sjm_table && i < last_sjm_table)
+ {
+ n_tables= i - first_sjm_table; // will be >0 if we got here
+ first_tab= join->join_tab + first_sjm_table;
+ }
+#endif
+*/
+
+static
+uint check_join_cache_usage(JOIN_TAB *tab,
+ ulonglong options,
+ uint no_jbuf_after,
+ uint table_index,
+ JOIN_TAB *prev_tab)
+{
+ Cost_estimate cost;
+ uint flags= 0;
+ ha_rows rows= 0;
+ uint bufsz= 4096;
+ JOIN_CACHE *prev_cache=0;
+ JOIN *join= tab->join;
+ MEM_ROOT *root= join->thd->mem_root;
+ uint cache_level= tab->used_join_cache_level;
+ bool force_unlinked_cache=
+ !(join->allowed_join_cache_types & JOIN_CACHE_INCREMENTAL_BIT);
+ bool no_hashed_cache=
+ !(join->allowed_join_cache_types & JOIN_CACHE_HASHED_BIT);
+ bool no_bka_cache=
+ !(join->allowed_join_cache_types & JOIN_CACHE_BKA_BIT);
+
+ join->return_tab= 0;
+
+ if (tab->no_forced_join_cache)
+ goto no_join_cache;
+
+ /*
+ Don't use join cache if @@join_cache_level==0 or this table is the first
+ one join suborder (either at top level or inside a bush)
+ */
+ if (cache_level == 0 || !prev_tab)
+ return 0;
+
+ if (force_unlinked_cache && (cache_level%2 == 0))
+ cache_level--;
+
+ if (options & SELECT_NO_JOIN_CACHE)
+ goto no_join_cache;
+
+ if (tab->use_quick == 2)
+ goto no_join_cache;
+
+ if (tab->table->map & join->complex_firstmatch_tables)
+ goto no_join_cache;
+
+ /*
+ Don't use join cache if we're inside a join tab range covered by LooseScan
+ strategy (TODO: LooseScan is very similar to FirstMatch so theoretically it
+ should be possible to use join buffering in the same way we're using it for
+ multi-table firstmatch ranges).
+ */
+ if (tab->inside_loosescan_range)
+ goto no_join_cache;
+
+ if (tab->is_inner_table_of_semijoin() &&
+ !join->allowed_semijoin_with_cache)
+ goto no_join_cache;
+ if (tab->is_inner_table_of_outer_join() &&
+ !join->allowed_outer_join_with_cache)
+ goto no_join_cache;
+
+ if (tab->table->pos_in_table_list->table_function &&
+ !tab->table->pos_in_table_list->table_function->join_cache_allowed())
+ goto no_join_cache;
+
+ /*
+ Non-linked join buffers can't guarantee one match
+ */
+ if (tab->is_nested_inner())
+ {
+ if (force_unlinked_cache || cache_level == 1)
+ goto no_join_cache;
+ if (cache_level & 1)
+ cache_level--;
+ }
+
+ /*
+ Don't use BKA for materialized tables. We could actually have a
+ meaningful use of BKA when linked join buffers are used.
+
+ The problem is, the temp.table is not filled (actually not even opened
+ properly) yet, and this doesn't let us call
+ handler->multi_range_read_info(). It is possible to come up with
+ estimates, etc. without acessing the table, but it seems not to worth the
+ effort now.
+ */
+ if (tab->table->pos_in_table_list->is_materialized_derived())
+ {
+ no_bka_cache= true;
+ /*
+ Don't use hash join algorithm if the temporary table for the rows
+ of the derived table will be created with an equi-join key.
+ */
+ if (tab->table->s->keys)
+ no_hashed_cache= true;
+ }
+
+ /*
+ Don't use join buffering if we're dictated not to by no_jbuf_after
+ (This is not meaningfully used currently)
+ */
+ if (table_index > no_jbuf_after)
+ goto no_join_cache;
+
+ /*
+ TODO: BNL join buffer should be perfectly ok with tab->bush_children.
+ */
+ if (tab->loosescan_match_tab || tab->bush_children)
+ goto no_join_cache;
+
+ for (JOIN_TAB *first_inner= tab->first_inner; first_inner;
+ first_inner= first_inner->first_upper)
+ {
+ if (first_inner != tab &&
+ (!first_inner->use_join_cache || !(tab-1)->use_join_cache))
+ goto no_join_cache;
+ }
+ if (tab->first_sj_inner_tab && tab->first_sj_inner_tab != tab &&
+ (!tab->first_sj_inner_tab->use_join_cache || !(tab-1)->use_join_cache))
+ goto no_join_cache;
+ if (!prev_tab->use_join_cache)
+ {
+ /*
+ Check whether table tab and the previous one belong to the same nest of
+ inner tables and if so do not use join buffer when joining table tab.
+ */
+ if (tab->first_inner && tab != tab->first_inner)
+ {
+ for (JOIN_TAB *first_inner= tab[-1].first_inner;
+ first_inner;
+ first_inner= first_inner->first_upper)
+ {
+ if (first_inner == tab->first_inner)
+ goto no_join_cache;
+ }
+ }
+ else if (tab->first_sj_inner_tab && tab != tab->first_sj_inner_tab &&
+ tab->first_sj_inner_tab == tab[-1].first_sj_inner_tab)
+ goto no_join_cache;
+ }
+
+ prev_cache= prev_tab->cache;
+
+ switch (tab->type) {
+ case JT_ALL:
+ if (cache_level == 1)
+ prev_cache= 0;
+ if ((tab->cache= new (root) JOIN_CACHE_BNL(join, tab, prev_cache)))
+ {
+ tab->icp_other_tables_ok= FALSE;
+ /* If make_join_select() hasn't called make_scan_filter(), do it now */
+ if (!tab->cache_select && tab->make_scan_filter())
+ goto no_join_cache;
+ return (2 - MY_TEST(!prev_cache));
+ }
+ goto no_join_cache;
+ case JT_SYSTEM:
+ case JT_CONST:
+ case JT_REF:
+ case JT_EQ_REF:
+ if (cache_level <=2 || (no_hashed_cache && no_bka_cache))
+ goto no_join_cache;
+ if (tab->ref.is_access_triggered())
+ goto no_join_cache;
+
+ if (!tab->is_ref_for_hash_join() && !no_bka_cache)
+ {
+ flags= HA_MRR_NO_NULL_ENDPOINTS | HA_MRR_SINGLE_POINT;
+ if (tab->table->covering_keys.is_set(tab->ref.key))
+ flags|= HA_MRR_INDEX_ONLY;
+ rows= tab->table->file->multi_range_read_info(tab->ref.key, 10, 20,
+ tab->ref.key_parts,
+ &bufsz, &flags, &cost);
+ }
+
+ if ((cache_level <=4 && !no_hashed_cache) || no_bka_cache ||
+ tab->is_ref_for_hash_join() ||
+ ((flags & HA_MRR_NO_ASSOCIATION) && cache_level <=6))
+ {
+ if (!tab->hash_join_is_possible() ||
+ tab->make_scan_filter())
+ goto no_join_cache;
+ if (cache_level == 3)
+ prev_cache= 0;
+ if ((tab->cache= new (root) JOIN_CACHE_BNLH(join, tab, prev_cache)))
+ {
+ tab->icp_other_tables_ok= FALSE;
+ return (4 - MY_TEST(!prev_cache));
+ }
+ goto no_join_cache;
+ }
+ if (cache_level > 4 && no_bka_cache)
+ goto no_join_cache;
+
+ if ((flags & HA_MRR_NO_ASSOCIATION) &&
+ (cache_level <= 6 || no_hashed_cache))
+ goto no_join_cache;
+
+ if ((rows != HA_POS_ERROR) && !(flags & HA_MRR_USE_DEFAULT_IMPL))
+ {
+ if (cache_level <= 6 || no_hashed_cache)
+ {
+ if (cache_level == 5)
+ prev_cache= 0;
+ if ((tab->cache= new (root) JOIN_CACHE_BKA(join, tab, flags, prev_cache)))
+ return (6 - MY_TEST(!prev_cache));
+ goto no_join_cache;
+ }
+ else
+ {
+ if (cache_level == 7)
+ prev_cache= 0;
+ if ((tab->cache= new (root) JOIN_CACHE_BKAH(join, tab, flags, prev_cache)))
+ {
+ tab->idx_cond_fact_out= FALSE;
+ return (8 - MY_TEST(!prev_cache));
+ }
+ goto no_join_cache;
+ }
+ }
+ goto no_join_cache;
+ default : ;
+ }
+
+no_join_cache:
+ if (tab->type != JT_ALL && tab->is_ref_for_hash_join())
+ {
+ tab->type= JT_ALL;
+ tab->ref.key_parts= 0;
+ }
+ revise_cache_usage(tab);
+ return 0;
+}
+
+
+/*
+ Check whether join buffers can be used to join tables of a join
+
+ SYNOPSIS
+ check_join_cache_usage()
+ join join whose tables are to be checked
+ options options of the join
+ no_jbuf_after don't use join buffering after table with this number
+ (The tables are assumed to be numbered in
+ first_linear_tab(join, WITHOUT_CONST_TABLES),
+ next_linear_tab(join, WITH_CONST_TABLES) order).
+
+ DESCRIPTION
+ For each table after the first non-constant table the function checks
+ whether the table can be joined using a join buffer. If the function decides
+ that a join buffer can be employed then it selects the most appropriate join
+ cache object that contains this join buffer whose level is not greater
+ than join_cache_level set for the join. To make this check the function
+ calls the function check_join_cache_usage for every non-constant table.
+
+ NOTES
+ In some situations (e.g. for nested outer joins, for nested semi-joins) only
+ incremental buffers can be used. If it turns out that for some inner table
+ no join buffer can be used then any inner table of an outer/semi-join nest
+ cannot use join buffer. In the case when already chosen buffer must be
+ denied for a table the function recalls check_join_cache_usage()
+ starting from this table. The pointer to the table from which the check
+ has to be restarted is returned in join->return_val (see the description
+ of check_join_cache_usage).
+*/
+
+void check_join_cache_usage_for_tables(JOIN *join, ulonglong options,
+ uint no_jbuf_after)
+{
+ JOIN_TAB *tab;
+ JOIN_TAB *prev_tab;
+
+ for (tab= first_linear_tab(join, WITH_BUSH_ROOTS, WITHOUT_CONST_TABLES);
+ tab;
+ tab= next_linear_tab(join, tab, WITH_BUSH_ROOTS))
+ {
+ tab->used_join_cache_level= join->max_allowed_join_cache_level;
+ }
+
+ uint idx= join->const_tables;
+ for (tab= first_linear_tab(join, WITH_BUSH_ROOTS, WITHOUT_CONST_TABLES);
+ tab;
+ tab= next_linear_tab(join, tab, WITH_BUSH_ROOTS))
+ {
+restart:
+ tab->icp_other_tables_ok= TRUE;
+ tab->idx_cond_fact_out= TRUE;
+
+ /*
+ Check if we have a preceding join_tab, as something that will feed us
+ records that we could buffer. We don't have it, if
+ - this is the first non-const table in the join order,
+ - this is the first table inside an SJM nest.
+ */
+ prev_tab= tab - 1;
+ if (tab == join->join_tab + join->const_tables ||
+ (tab->bush_root_tab && tab->bush_root_tab->bush_children->start == tab))
+ prev_tab= NULL;
+
+ switch (tab->type) {
+ case JT_SYSTEM:
+ case JT_CONST:
+ case JT_EQ_REF:
+ case JT_REF:
+ case JT_REF_OR_NULL:
+ case JT_ALL:
+ tab->used_join_cache_level= check_join_cache_usage(tab, options,
+ no_jbuf_after,
+ idx,
+ prev_tab);
+ tab->use_join_cache= MY_TEST(tab->used_join_cache_level);
+ /*
+ psergey-merge: todo: raise the question that this is really stupid that
+ we can first allocate a join buffer, then decide not to use it and free
+ it.
+ */
+ if (join->return_tab)
+ {
+ tab= join->return_tab;
+ goto restart;
+ }
+ break;
+ default:
+ tab->used_join_cache_level= 0;
+ }
+ if (!tab->bush_children)
+ idx++;
+ }
+}
+
+/**
+ Remove pushdown conditions that are already checked by the scan phase
+ of BNL/BNLH joins.
+
+ @note
+ If the single-table condition for this table will be used by a
+ blocked join to pre-filter this table's rows, there is no need
+ to re-check the same single-table condition for each joined record.
+
+ This method removes from JOIN_TAB::select_cond and JOIN_TAB::select::cond
+ all top-level conjuncts that also appear in in JOIN_TAB::cache_select::cond.
+*/
+
+void JOIN_TAB::remove_redundant_bnl_scan_conds()
+{
+ if (!(select_cond && cache_select && cache &&
+ (cache->get_join_alg() == JOIN_CACHE::BNL_JOIN_ALG ||
+ cache->get_join_alg() == JOIN_CACHE::BNLH_JOIN_ALG)))
+ return;
+
+ /*
+ select->cond is not processed separately. This method assumes it is always
+ the same as select_cond.
+ */
+ if (select && select->cond != select_cond)
+ return;
+
+ if (is_cond_and(select_cond))
+ {
+ List_iterator<Item> pushed_cond_li(*((Item_cond*) select_cond)->argument_list());
+ Item *pushed_item;
+ Item_cond_and *reduced_select_cond= new (join->thd->mem_root)
+ Item_cond_and(join->thd);
+
+ if (is_cond_and(cache_select->cond))
+ {
+ List_iterator<Item> scan_cond_li(*((Item_cond*) cache_select->cond)->argument_list());
+ Item *scan_item;
+ while ((pushed_item= pushed_cond_li++))
+ {
+ bool found_cond= false;
+ scan_cond_li.rewind();
+ while ((scan_item= scan_cond_li++))
+ {
+ if (pushed_item->eq(scan_item, 0))
+ {
+ found_cond= true;
+ break;
+ }
+ }
+ if (!found_cond)
+ reduced_select_cond->add(pushed_item, join->thd->mem_root);
+ }
+ }
+ else
+ {
+ while ((pushed_item= pushed_cond_li++))
+ {
+ if (!pushed_item->eq(cache_select->cond, 0))
+ reduced_select_cond->add(pushed_item, join->thd->mem_root);
+ }
+ }
+
+ /*
+ JOIN_CACHE::check_match uses JOIN_TAB::select->cond instead of
+ JOIN_TAB::select_cond. set_cond() sets both pointers.
+ */
+ if (reduced_select_cond->argument_list()->is_empty())
+ set_cond(NULL);
+ else if (reduced_select_cond->argument_list()->elements == 1)
+ set_cond(reduced_select_cond->argument_list()->head());
+ else
+ {
+ reduced_select_cond->quick_fix_field();
+ set_cond(reduced_select_cond);
+ }
+ }
+ else if (select_cond->eq(cache_select->cond, 0))
+ set_cond(NULL);
+}
+
+
+/*
+ Plan refinement stage: do various setup things for the executor
+
+ SYNOPSIS
+ make_join_readinfo()
+ join Join being processed
+ options Join's options (checking for SELECT_DESCRIBE,
+ SELECT_NO_JOIN_CACHE)
+ no_jbuf_after Don't use join buffering after table with this number.
+
+ DESCRIPTION
+ Plan refinement stage: do various set ups for the executioner
+ - set up use of join buffering
+ - push index conditions
+ - increment relevant counters
+ - etc
+
+ RETURN
+ FALSE - OK
+ TRUE - Out of memory
+*/
+
+static bool
+make_join_readinfo(JOIN *join, ulonglong options, uint no_jbuf_after)
+{
+ JOIN_TAB *tab;
+ uint i;
+ DBUG_ENTER("make_join_readinfo");
+
+ bool statistics= MY_TEST(!(join->select_options & SELECT_DESCRIBE));
+ bool sorted= 1;
+
+ join->complex_firstmatch_tables= table_map(0);
+
+ if (!join->select_lex->sj_nests.is_empty() &&
+ setup_semijoin_dups_elimination(join, options, no_jbuf_after))
+ DBUG_RETURN(TRUE); /* purecov: inspected */
+
+ /* For const tables, set partial_join_cardinality to 1. */
+ for (tab= join->join_tab; tab != join->join_tab + join->const_tables; tab++)
+ tab->partial_join_cardinality= 1;
+
+ JOIN_TAB *prev_tab= NULL;
+ i= join->const_tables;
+ for (tab= first_linear_tab(join, WITH_BUSH_ROOTS, WITHOUT_CONST_TABLES);
+ tab;
+ prev_tab=tab, tab= next_linear_tab(join, tab, WITH_BUSH_ROOTS))
+ {
+ /*
+ The approximation below for partial join cardinality is not good because
+ - it does not take into account some pushdown predicates
+ - it does not differentiate between inner joins, outer joins and
+ semi-joins.
+ Later it should be improved.
+ */
+
+ if (tab->bush_root_tab && tab->bush_root_tab->bush_children->start == tab)
+ prev_tab= NULL;
+ DBUG_ASSERT(tab->bush_children || tab->table == join->best_positions[i].table->table);
+
+ tab->partial_join_cardinality= join->best_positions[i].records_read *
+ (prev_tab? prev_tab->partial_join_cardinality : 1);
+ if (!tab->bush_children)
+ i++;
+ }
+
+ check_join_cache_usage_for_tables(join, options, no_jbuf_after);
+
+ JOIN_TAB *first_tab;
+ for (tab= first_tab= first_linear_tab(join, WITH_BUSH_ROOTS, WITHOUT_CONST_TABLES);
+ tab;
+ tab= next_linear_tab(join, tab, WITH_BUSH_ROOTS))
+ {
+ if (tab->bush_children)
+ {
+ if (setup_sj_materialization_part2(tab))
+ return TRUE;
+ }
+
+ TABLE *table=tab->table;
+ uint jcl= tab->used_join_cache_level;
+ tab->read_record.table= table;
+ tab->read_record.unlock_row= rr_unlock_row;
+ tab->read_record.print_error= true;
+ tab->sorted= sorted;
+ sorted= 0; // only first must be sorted
+
+
+ /*
+ We should not set tab->next_select for the last table in the
+ SMJ-nest, as setup_sj_materialization() has already set it to
+ end_sj_materialize.
+ */
+ if (!(tab->bush_root_tab &&
+ tab->bush_root_tab->bush_children->end == tab + 1))
+ {
+ tab->next_select=sub_select; /* normal select */
+ }
+
+
+ if (tab->loosescan_match_tab)
+ {
+ if (!(tab->loosescan_buf= (uchar*)join->thd->alloc(tab->
+ loosescan_key_len)))
+ return TRUE; /* purecov: inspected */
+ tab->sorted= TRUE;
+ }
+ table->status=STATUS_NO_RECORD;
+ pick_table_access_method (tab);
+
+ if (jcl)
+ tab[-1].next_select=sub_select_cache;
+
+ if (tab->cache && tab->cache->get_join_alg() == JOIN_CACHE::BNLH_JOIN_ALG)
+ tab->type= JT_HASH;
+
+ switch (tab->type) {
+ case JT_SYSTEM: // Only happens with left join
+ case JT_CONST: // Only happens with left join
+ /* Only happens with outer joins */
+ tab->read_first_record= tab->type == JT_SYSTEM ? join_read_system
+ : join_read_const;
+ tab->read_record.unlock_row= join_const_unlock_row;
+ if (!(table->covering_keys.is_set(tab->ref.key) && !table->no_keyread) &&
+ (!jcl || jcl > 4) && !tab->ref.is_access_triggered())
+ push_index_cond(tab, tab->ref.key);
+ break;
+ case JT_EQ_REF:
+ tab->read_record.unlock_row= join_read_key_unlock_row;
+ /* fall through */
+ if (!(table->covering_keys.is_set(tab->ref.key) && !table->no_keyread) &&
+ (!jcl || jcl > 4) && !tab->ref.is_access_triggered())
+ push_index_cond(tab, tab->ref.key);
+ break;
+ case JT_REF_OR_NULL:
+ case JT_REF:
+ if (tab->select)
+ {
+ delete tab->select->quick;
+ tab->select->quick=0;
+ }
+ delete tab->quick;
+ tab->quick=0;
+ if (!(table->covering_keys.is_set(tab->ref.key) && !table->no_keyread) &&
+ (!jcl || jcl > 4) && !tab->ref.is_access_triggered())
+ push_index_cond(tab, tab->ref.key);
+ break;
+ case JT_ALL:
+ case JT_HASH:
+ /*
+ If previous table use cache
+ If the incoming data set is already sorted don't use cache.
+ Also don't use cache if this is the first table in semi-join
+ materialization nest.
+ */
+ /* These init changes read_record */
+ if (tab->use_quick == 2)
+ {
+ join->thd->set_status_no_good_index_used();
+ tab->read_first_record= join_init_quick_read_record;
+ if (statistics)
+ join->thd->inc_status_select_range_check();
+ }
+ else
+ {
+ if (!tab->bush_children)
+ tab->read_first_record= join_init_read_record;
+ if (tab == first_tab)
+ {
+ if (tab->select && tab->select->quick)
+ {
+ if (statistics)
+ join->thd->inc_status_select_range();
+ }
+ else
+ {
+ join->thd->set_status_no_index_used();
+ if (statistics)
+ {
+ join->thd->inc_status_select_scan();
+ join->thd->query_plan_flags|= QPLAN_FULL_SCAN;
+ }
+ }
+ }
+ else
+ {
+ if (tab->select && tab->select->quick)
+ {
+ if (statistics)
+ join->thd->inc_status_select_full_range_join();
+ }
+ else
+ {
+ join->thd->set_status_no_index_used();
+ if (statistics)
+ {
+ join->thd->inc_status_select_full_join();
+ join->thd->query_plan_flags|= QPLAN_FULL_JOIN;
+ }
+ }
+ }
+ if (!table->no_keyread)
+ {
+ if (!(tab->select && tab->select->quick &&
+ tab->select->quick->index != MAX_KEY && //not index_merge
+ table->covering_keys.is_set(tab->select->quick->index)) &&
+ (!table->covering_keys.is_clear_all() &&
+ !(tab->select && tab->select->quick)))
+ { // Only read index tree
+ if (tab->loosescan_match_tab)
+ tab->index= tab->loosescan_key;
+ else
+ {
+#ifdef BAD_OPTIMIZATION
+ /*
+ It has turned out that the below change, while speeding things
+ up for disk-bound loads, slows them down for cases when the data
+ is in disk cache (see BUG#35850):
+ See bug #26447: "Using the clustered index for a table scan
+ is always faster than using a secondary index".
+ */
+ if (table->file->pk_is_clustering_key(table->s->primary_key))
+ tab->index= table->s->primary_key;
+ else
+#endif
+ tab->index=find_shortest_key(table, & table->covering_keys);
+ }
+ tab->read_first_record= join_read_first;
+ /* Read with index_first / index_next */
+ tab->type= tab->type == JT_ALL ? JT_NEXT : JT_HASH_NEXT;
+ }
+ }
+ if (tab->select && tab->select->quick &&
+ tab->select->quick->index != MAX_KEY &&
+ !tab->table->covering_keys.is_set(tab->select->quick->index))
+ push_index_cond(tab, tab->select->quick->index);
+ }
+ break;
+ case JT_FT:
+ break;
+ /* purecov: begin deadcode */
+ default:
+ DBUG_PRINT("error",("Table type %d found",tab->type));
+ break;
+ case JT_UNKNOWN:
+ case JT_MAYBE_REF:
+ abort();
+ /* purecov: end */
+ }
+
+ DBUG_EXECUTE("where",
+ char buff[256];
+ String str(buff,sizeof(buff),system_charset_info);
+ str.length(0);
+ if (tab->table)
+ str.append(tab->table->alias);
+ else
+ str.append(STRING_WITH_LEN("<no_table_name>"));
+ str.append(STRING_WITH_LEN(" final_pushdown_cond"));
+ print_where(tab->select_cond, str.c_ptr_safe(), QT_ORDINARY););
+ }
+ uint n_top_tables= (uint)(join->join_tab_ranges.head()->end -
+ join->join_tab_ranges.head()->start);
+
+ join->join_tab[n_top_tables - 1].next_select=0; /* Set by do_select */
+
+ /*
+ If a join buffer is used to join a table the ordering by an index
+ for the first non-constant table cannot be employed anymore.
+ */
+ for (tab= join->join_tab + join->const_tables ;
+ tab != join->join_tab + n_top_tables ; tab++)
+ {
+ if (tab->use_join_cache)
+ {
+ JOIN_TAB *sort_by_tab= join->group && join->simple_group &&
+ join->group_list ?
+ join->join_tab+join->const_tables :
+ join->get_sort_by_join_tab();
+ /*
+ It could be that sort_by_tab==NULL, and the plan is to use filesort()
+ on the first table.
+ */
+ if (join->order)
+ {
+ join->simple_order= 0;
+ join->need_tmp= 1;
+ }
+
+ if (join->group && !join->group_optimized_away)
+ {
+ join->need_tmp= 1;
+ join->simple_group= 0;
+ }
+
+ if (sort_by_tab)
+ {
+ join->need_tmp= 1;
+ join->simple_order= join->simple_group= 0;
+ if (sort_by_tab->type == JT_NEXT &&
+ !sort_by_tab->table->covering_keys.is_set(sort_by_tab->index))
+ {
+ sort_by_tab->type= JT_ALL;
+ sort_by_tab->read_first_record= join_init_read_record;
+ }
+ else if (sort_by_tab->type == JT_HASH_NEXT &&
+ !sort_by_tab->table->covering_keys.is_set(sort_by_tab->index))
+ {
+ sort_by_tab->type= JT_HASH;
+ sort_by_tab->read_first_record= join_init_read_record;
+ }
+ }
+ break;
+ }
+ }
+
+ DBUG_RETURN(FALSE);
+}
+
+
+/**
+ Give error if we some tables are done with a full join.
+
+ This is used by multi_table_update and multi_table_delete when running
+ in safe mode.
+
+ @param join Join condition
+
+ @retval
+ 0 ok
+ @retval
+ 1 Error (full join used)
+*/
+
+bool error_if_full_join(JOIN *join)
+{
+ for (JOIN_TAB *tab=first_top_level_tab(join, WITH_CONST_TABLES); tab;
+ tab= next_top_level_tab(join, tab))
+ {
+ if (tab->type == JT_ALL && (!tab->select || !tab->select->quick))
+ {
+ my_message(ER_UPDATE_WITHOUT_KEY_IN_SAFE_MODE,
+ ER_THD(join->thd,
+ ER_UPDATE_WITHOUT_KEY_IN_SAFE_MODE), MYF(0));
+ return(1);
+ }
+ }
+ return(0);
+}
+
+
+/**
+ Build rowid filter.
+
+ @retval
+ 0 ok
+ @retval
+ 1 Error, transaction should be rolled back
+*/
+
+bool JOIN_TAB::build_range_rowid_filter_if_needed()
+{
+ bool result= false;
+ if (rowid_filter && !is_rowid_filter_built)
+ {
+ /**
+ The same handler object (table->file) is used to build a filter
+ and to perfom a primary table access (by the main query).
+
+ To estimate the time for filter building tracker should be changed
+ and after building of the filter has been finished it should be
+ switched back to the previos tracker.
+ */
+ Exec_time_tracker *table_tracker= table->file->get_time_tracker();
+ Rowid_filter_tracker *rowid_tracker= rowid_filter->get_tracker();
+ table->file->set_time_tracker(rowid_tracker->get_time_tracker());
+ rowid_tracker->start_tracking(join->thd);
+ Rowid_filter::build_return_code build_rc= rowid_filter->build();
+ if (build_rc == Rowid_filter::SUCCESS)
+ is_rowid_filter_built= true;
+ else
+ {
+ delete rowid_filter;
+ rowid_filter= 0;
+ }
+ rowid_tracker->stop_tracking(join->thd);
+ table->file->set_time_tracker(table_tracker);
+ result= (build_rc == Rowid_filter::FATAL_ERROR);
+ }
+ return result;
+}
+
+
+/**
+ cleanup JOIN_TAB.
+
+ DESCRIPTION
+ This is invoked when we've finished all join executions.
+*/
+
+void JOIN_TAB::cleanup()
+{
+ DBUG_ENTER("JOIN_TAB::cleanup");
+
+ DBUG_PRINT("enter", ("tab: %p table %s.%s",
+ this,
+ (table ? table->s->db.str : "?"),
+ (table ? table->s->table_name.str : "?")));
+ delete select;
+ select= 0;
+ delete quick;
+ quick= 0;
+ if (rowid_filter)
+ {
+ delete rowid_filter;
+ rowid_filter= 0;
+ }
+ if (cache)
+ {
+ cache->free();
+ cache= 0;
+ }
+ limit= 0;
+ // Free select that was created for filesort outside of create_sort_index
+ if (filesort && filesort->select && !filesort->own_select)
+ delete filesort->select;
+ delete filesort;
+ filesort= NULL;
+ /* Skip non-existing derived tables/views result tables */
+ if (table &&
+ (table->s->tmp_table != INTERNAL_TMP_TABLE || table->is_created()))
+ {
+ table->file->ha_end_keyread();
+ table->file->ha_index_or_rnd_end();
+ }
+ if (table)
+ {
+ table->file->ha_end_keyread();
+ if (type == JT_FT)
+ table->file->ha_ft_end();
+ else
+ table->file->ha_index_or_rnd_end();
+ preread_init_done= FALSE;
+ if (table->pos_in_table_list &&
+ table->pos_in_table_list->jtbm_subselect)
+ {
+ if (table->pos_in_table_list->jtbm_subselect->is_jtbm_const_tab)
+ {
+ /*
+ Set this to NULL so that cleanup_empty_jtbm_semi_joins() doesn't
+ attempt to make another free_tmp_table call.
+ */
+ table->pos_in_table_list->table= NULL;
+ free_tmp_table(join->thd, table);
+ }
+ else
+ {
+ TABLE_LIST *tmp= table->pos_in_table_list;
+ end_read_record(&read_record);
+ tmp->jtbm_subselect->cleanup();
+ /*
+ The above call freed the materializedd temptable. Set it to NULL so
+ that we don't attempt to touch it if JOIN_TAB::cleanup() is invoked
+ multiple times (it may be)
+ */
+ tmp->table= NULL;
+ }
+ table= NULL;
+ DBUG_VOID_RETURN;
+ }
+ /*
+ We need to reset this for next select
+ (Tested in part_of_refkey)
+ */
+ table->reginfo.join_tab= 0;
+ }
+ end_read_record(&read_record);
+ explain_plan= NULL;
+ DBUG_VOID_RETURN;
+}
+
+
+/**
+ Estimate the time to get rows of the joined table
+*/
+
+double JOIN_TAB::scan_time()
+{
+ double res;
+ if (table->is_created())
+ {
+ if (table->is_filled_at_execution())
+ {
+ get_delayed_table_estimates(table, &records, &read_time,
+ &startup_cost);
+ found_records= records;
+ table->opt_range_condition_rows= records;
+ }
+ else
+ {
+ found_records= records= table->stat_records();
+ read_time= table->file->scan_time();
+ /*
+ table->opt_range_condition_rows has already been set to
+ table->file->stats.records
+ */
+ }
+ res= read_time;
+ }
+ else
+ {
+ found_records= records=table->stat_records();
+ read_time= found_records ? (double)found_records: 10.0;// TODO:fix this stub
+ res= read_time;
+ }
+ return res;
+}
+
+
+/**
+ Estimate the number of rows that a an access method will read from a table.
+
+ @todo: why not use JOIN_TAB::found_records
+*/
+
+ha_rows JOIN_TAB::get_examined_rows()
+{
+ double examined_rows;
+ const SQL_SELECT *sel= get_sql_select();
+
+ if (sel && sel->quick && use_quick != 2)
+ examined_rows= (double)sel->quick->records;
+ else if (type == JT_NEXT || type == JT_ALL ||
+ type == JT_HASH || type ==JT_HASH_NEXT)
+ {
+ if (limit)
+ {
+ /*
+ @todo This estimate is wrong, a LIMIT query may examine much more rows
+ than the LIMIT itself.
+ */
+ examined_rows= (double)limit;
+ }
+ else
+ {
+ if (table->is_filled_at_execution())
+ examined_rows= (double)records;
+ else
+ {
+ /*
+ handler->info(HA_STATUS_VARIABLE) has been called in
+ make_join_statistics()
+ */
+ examined_rows= (double)table->stat_records();
+ }
+ }
+ }
+ else
+ examined_rows= records_read;
+
+ if (examined_rows >= (double) HA_ROWS_MAX)
+ return HA_ROWS_MAX;
+ return (ha_rows) examined_rows;
+}
+
+
+/**
+ Initialize the join_tab before reading.
+ Currently only derived table/view materialization is done here.
+
+ TODO: consider moving this together with join_tab_execution_startup
+*/
+bool JOIN_TAB::preread_init()
+{
+ TABLE_LIST *derived= table->pos_in_table_list;
+ DBUG_ENTER("JOIN_TAB::preread_init");
+
+ if (!derived || !derived->is_materialized_derived())
+ {
+ preread_init_done= TRUE;
+ DBUG_RETURN(FALSE);
+ }
+
+ /* Materialize derived table/view. */
+ if ((!derived->get_unit()->executed ||
+ derived->is_recursive_with_table() ||
+ derived->get_unit()->uncacheable) &&
+ mysql_handle_single_derived(join->thd->lex,
+ derived, DT_CREATE | DT_FILL))
+ DBUG_RETURN(TRUE);
+
+ if (!(derived->get_unit()->uncacheable & UNCACHEABLE_DEPENDENT) ||
+ derived->is_nonrecursive_derived_with_rec_ref() ||
+ is_split_derived)
+ preread_init_done= TRUE;
+ if (select && select->quick)
+ select->quick->replace_handler(table->file);
+
+ DBUG_EXECUTE_IF("show_explain_probe_join_tab_preread",
+ if (dbug_user_var_equals_int(join->thd,
+ "show_explain_probe_select_id",
+ join->select_lex->select_number))
+ dbug_serve_apcs(join->thd, 1);
+ );
+
+ /* init ftfuns for just initialized derived table */
+ if (table->fulltext_searched)
+ if (init_ftfuncs(join->thd, join->select_lex, MY_TEST(join->order)))
+ DBUG_RETURN(TRUE);
+
+ DBUG_RETURN(FALSE);
+}
+
+
+bool JOIN_TAB::pfs_batch_update(JOIN *join)
+{
+ /*
+ Use PFS batch mode if
+ 1. tab is an inner-most table, or
+ 2. will read more than one row (not eq_ref or const access type)
+ 3. no subqueries
+ */
+
+ return join->join_tab + join->table_count - 1 == this && // 1
+ type != JT_EQ_REF && type != JT_CONST && type != JT_SYSTEM && // 2
+ (!select_cond || !select_cond->with_subquery()); // 3
+}
+
+
+/**
+ Build a TABLE_REF structure for index lookup in the temporary table
+
+ @param thd Thread handle
+ @param tmp_key The temporary table key
+ @param it The iterator of items for lookup in the key
+ @param skip Number of fields from the beginning to skip
+
+ @details
+ Build TABLE_REF object for lookup in the key 'tmp_key' using items
+ accessible via item iterator 'it'.
+
+ @retval TRUE Error
+ @retval FALSE OK
+*/
+
+bool TABLE_REF::tmp_table_index_lookup_init(THD *thd,
+ KEY *tmp_key,
+ Item_iterator &it,
+ bool value,
+ uint skip)
+{
+ uint tmp_key_parts= tmp_key->user_defined_key_parts;
+ uint i;
+ DBUG_ENTER("TABLE_REF::tmp_table_index_lookup_init");
+
+ key= 0; /* The only temp table index. */
+ key_length= tmp_key->key_length;
+ if (!(key_buff=
+ (uchar*) thd->calloc(ALIGN_SIZE(tmp_key->key_length) * 2)) ||
+ !(key_copy=
+ (store_key**) thd->alloc((sizeof(store_key*) *
+ (tmp_key_parts + 1)))) ||
+ !(items=
+ (Item**) thd->alloc(sizeof(Item*) * tmp_key_parts)))
+ DBUG_RETURN(TRUE);
+
+ key_buff2= key_buff + ALIGN_SIZE(tmp_key->key_length);
+
+ KEY_PART_INFO *cur_key_part= tmp_key->key_part;
+ store_key **ref_key= key_copy;
+ uchar *cur_ref_buff= key_buff;
+
+ it.open();
+ for (i= 0; i < skip; i++) it.next();
+ for (i= 0; i < tmp_key_parts; i++, cur_key_part++, ref_key++)
+ {
+ Item *item= it.next();
+ DBUG_ASSERT(item);
+ items[i]= item;
+ int null_count= MY_TEST(cur_key_part->field->real_maybe_null());
+ *ref_key= new store_key_item(thd, cur_key_part->field,
+ /* TIMOUR:
+ the NULL byte is taken into account in
+ cur_key_part->store_length, so instead of
+ cur_ref_buff + MY_TEST(maybe_null), we could
+ use that information instead.
+ */
+ cur_ref_buff + null_count,
+ null_count ? cur_ref_buff : 0,
+ cur_key_part->length, items[i], value);
+ cur_ref_buff+= cur_key_part->store_length;
+ }
+ *ref_key= NULL; /* End marker. */
+ key_err= 1;
+ key_parts= tmp_key_parts;
+ DBUG_RETURN(FALSE);
+}
+
+
+/*
+ Check if ref access uses "Full scan on NULL key" (i.e. it actually alternates
+ between ref access and full table scan)
+*/
+
+bool TABLE_REF::is_access_triggered()
+{
+ for (uint i = 0; i < key_parts; i++)
+ {
+ if (cond_guards[i])
+ return TRUE;
+ }
+ return FALSE;
+}
+
+
+/**
+ Partially cleanup JOIN after it has executed: close index or rnd read
+ (table cursors), free quick selects.
+
+ This function is called in the end of execution of a JOIN, before the used
+ tables are unlocked and closed.
+
+ For a join that is resolved using a temporary table, the first sweep is
+ performed against actual tables and an intermediate result is inserted
+ into the temprorary table.
+ The last sweep is performed against the temporary table. Therefore,
+ the base tables and associated buffers used to fill the temporary table
+ are no longer needed, and this function is called to free them.
+
+ For a join that is performed without a temporary table, this function
+ is called after all rows are sent, but before EOF packet is sent.
+
+ For a simple SELECT with no subqueries this function performs a full
+ cleanup of the JOIN and calls mysql_unlock_read_tables to free used base
+ tables.
+
+ If a JOIN is executed for a subquery or if it has a subquery, we can't
+ do the full cleanup and need to do a partial cleanup only.
+ - If a JOIN is not the top level join, we must not unlock the tables
+ because the outer select may not have been evaluated yet, and we
+ can't unlock only selected tables of a query.
+ - Additionally, if this JOIN corresponds to a correlated subquery, we
+ should not free quick selects and join buffers because they will be
+ needed for the next execution of the correlated subquery.
+ - However, if this is a JOIN for a [sub]select, which is not
+ a correlated subquery itself, but has subqueries, we can free it
+ fully and also free JOINs of all its subqueries. The exception
+ is a subquery in SELECT list, e.g: @n
+ SELECT a, (select MY_MAX(b) from t1) group by c @n
+ This subquery will not be evaluated at first sweep and its value will
+ not be inserted into the temporary table. Instead, it's evaluated
+ when selecting from the temporary table. Therefore, it can't be freed
+ here even though it's not correlated.
+
+ @todo
+ Unlock tables even if the join isn't top level select in the tree
+*/
+
+void JOIN::join_free()
+{
+ SELECT_LEX_UNIT *tmp_unit;
+ SELECT_LEX *sl;
+ /*
+ Optimization: if not EXPLAIN and we are done with the JOIN,
+ free all tables.
+ */
+ bool full= !(select_lex->uncacheable) && !(thd->lex->describe);
+ bool can_unlock= full;
+ DBUG_ENTER("JOIN::join_free");
+
+ cleanup(full);
+
+ for (tmp_unit= select_lex->first_inner_unit();
+ tmp_unit;
+ tmp_unit= tmp_unit->next_unit())
+ {
+ if (tmp_unit->with_element && tmp_unit->with_element->is_recursive)
+ continue;
+ for (sl= tmp_unit->first_select(); sl; sl= sl->next_select())
+ {
+ Item_subselect *subselect= sl->master_unit()->item;
+ bool full_local= full && (!subselect || subselect->is_evaluated());
+ /*
+ If this join is evaluated, we can fully clean it up and clean up all
+ its underlying joins even if they are correlated -- they will not be
+ used any more anyway.
+ If this join is not yet evaluated, we still must clean it up to
+ close its table cursors -- it may never get evaluated, as in case of
+ ... HAVING FALSE OR a IN (SELECT ...))
+ but all table cursors must be closed before the unlock.
+ */
+ sl->cleanup_all_joins(full_local);
+ /* Can't unlock if at least one JOIN is still needed */
+ can_unlock= can_unlock && full_local;
+ }
+ }
+ /*
+ We are not using tables anymore
+ Unlock all tables. We may be in an INSERT .... SELECT statement.
+ */
+ if (can_unlock && lock && thd->lock && ! thd->locked_tables_mode &&
+ !(select_options & SELECT_NO_UNLOCK) &&
+ !select_lex->subquery_in_having &&
+ (select_lex == (thd->lex->unit.fake_select_lex ?
+ thd->lex->unit.fake_select_lex :
+ thd->lex->first_select_lex())))
+ {
+ /*
+ TODO: unlock tables even if the join isn't top level select in the
+ tree.
+ */
+ mysql_unlock_read_tables(thd, lock); // Don't free join->lock
+ lock= 0;
+ }
+
+ DBUG_VOID_RETURN;
+}
+
+
+/**
+ Free resources of given join.
+
+ @param full true if we should free all resources, call with full==1
+ should be last, before it this function can be called with
+ full==0
+
+ @note
+ With subquery this function definitely will be called several times,
+ but even for simple query it can be called several times.
+*/
+
+void JOIN::cleanup(bool full)
+{
+ DBUG_ENTER("JOIN::cleanup");
+ DBUG_PRINT("enter", ("select: %d (%p) join: %p full: %u",
+ select_lex->select_number, select_lex, this,
+ (uint) full));
+
+ if (full)
+ have_query_plan= QEP_DELETED;
+
+ if (original_join_tab)
+ {
+ /* Free the original optimized join created for the group_by_handler */
+ join_tab= original_join_tab;
+ original_join_tab= 0;
+ }
+
+ if (join_tab)
+ {
+ JOIN_TAB *tab;
+
+ if (full)
+ {
+ /*
+ Call cleanup() on join tabs used by the join optimization
+ (join->join_tab may now be pointing to result of make_simple_join
+ reading from the temporary table)
+
+ We also need to check table_count to handle various degenerate joins
+ w/o tables: they don't have some members initialized and
+ WALK_OPTIMIZATION_TABS may not work correctly for them.
+ */
+ if (top_join_tab_count && tables_list)
+ {
+ for (tab= first_breadth_first_tab(); tab;
+ tab= next_breadth_first_tab(first_breadth_first_tab(),
+ top_join_tab_count, tab))
+ {
+ tab->cleanup();
+ delete tab->filesort_result;
+ tab->filesort_result= NULL;
+ }
+ }
+ cleaned= true;
+ //psergey2: added (Q: why not in the above loop?)
+ {
+ JOIN_TAB *curr_tab= join_tab + exec_join_tab_cnt();
+ for (uint i= 0; i < aggr_tables; i++, curr_tab++)
+ {
+ if (curr_tab->aggr)
+ {
+ free_tmp_table(thd, curr_tab->table);
+ curr_tab->table= NULL;
+ delete curr_tab->tmp_table_param;
+ curr_tab->tmp_table_param= NULL;
+ curr_tab->aggr= NULL;
+
+ delete curr_tab->filesort_result;
+ curr_tab->filesort_result= NULL;
+ }
+ }
+ aggr_tables= 0; // psergey3
+ }
+ }
+ else
+ {
+ for (tab= first_linear_tab(this, WITH_BUSH_ROOTS, WITH_CONST_TABLES); tab;
+ tab= next_linear_tab(this, tab, WITH_BUSH_ROOTS))
+ {
+ tab->partial_cleanup();
+ }
+ }
+ }
+ if (full)
+ {
+ cleanup_empty_jtbm_semi_joins(this, join_list);
+
+ // Run Cached_item DTORs!
+ group_fields.delete_elements();
+ order_fields.delete_elements();
+
+ /*
+ We can't call delete_elements() on copy_funcs as this will cause
+ problems in free_elements() as some of the elements are then deleted.
+ */
+ tmp_table_param.copy_funcs.empty();
+ /*
+ If we have tmp_join and 'this' JOIN is not tmp_join and
+ tmp_table_param.copy_field's of them are equal then we have to remove
+ pointer to tmp_table_param.copy_field from tmp_join, because it will
+ be removed in tmp_table_param.cleanup().
+ */
+ tmp_table_param.cleanup();
+
+ delete pushdown_query;
+ pushdown_query= 0;
+
+ if (!join_tab)
+ {
+ List_iterator<TABLE_LIST> li(*join_list);
+ TABLE_LIST *table_ref;
+ while ((table_ref= li++))
+ {
+ if (table_ref->table &&
+ table_ref->jtbm_subselect &&
+ table_ref->jtbm_subselect->is_jtbm_const_tab)
+ {
+ free_tmp_table(thd, table_ref->table);
+ table_ref->table= NULL;
+ }
+ }
+ }
+ free_pushdown_handlers(*join_list);
+ }
+ /* Restore ref array to original state */
+ if (current_ref_ptrs != items0)
+ {
+ set_items_ref_array(items0);
+ set_group_rpa= false;
+ }
+ DBUG_VOID_RETURN;
+}
+
+/**
+ Clean up all derived pushdown handlers in this join.
+
+ @detail
+ Note that dt_handler is picked at the prepare stage (as opposed
+ to optimization stage where one could expect this).
+ Because of that, we have to do cleanups in this function that is called
+ from JOIN::cleanup() and not in JOIN_TAB::cleanup.
+ */
+void JOIN::free_pushdown_handlers(List<TABLE_LIST>& join_list)
+{
+ List_iterator<TABLE_LIST> li(join_list);
+ TABLE_LIST *table_ref;
+ while ((table_ref= li++))
+ {
+ if (table_ref->nested_join)
+ free_pushdown_handlers(table_ref->nested_join->join_list);
+ if (table_ref->pushdown_derived)
+ {
+ delete table_ref->pushdown_derived;
+ table_ref->pushdown_derived= NULL;
+ }
+ delete table_ref->dt_handler;
+ table_ref->dt_handler= NULL;
+ }
+}
+
+/**
+ Remove the following expressions from ORDER BY and GROUP BY:
+ Constant expressions @n
+ Expression that only uses tables that are of type EQ_REF and the reference
+ is in the ORDER list or if all refereed tables are of the above type.
+
+ In the following, the X field can be removed:
+ @code
+ SELECT * FROM t1,t2 WHERE t1.a=t2.a ORDER BY t1.a,t2.X
+ SELECT * FROM t1,t2,t3 WHERE t1.a=t2.a AND t2.b=t3.b ORDER BY t1.a,t3.X
+ @endcode
+
+ These can't be optimized:
+ @code
+ SELECT * FROM t1,t2 WHERE t1.a=t2.a ORDER BY t2.X,t1.a
+ SELECT * FROM t1,t2 WHERE t1.a=t2.a AND t1.b=t2.b ORDER BY t1.a,t2.c
+ SELECT * FROM t1,t2 WHERE t1.a=t2.a ORDER BY t2.b,t1.a
+ @endcode
+
+ TODO: this function checks ORDER::used, which can only have a value of 0.
+*/
+
+static bool
+eq_ref_table(JOIN *join, ORDER *start_order, JOIN_TAB *tab)
+{
+ if (tab->cached_eq_ref_table) // If cached
+ return tab->eq_ref_table;
+ tab->cached_eq_ref_table=1;
+ /* We can skip const tables only if not an outer table */
+ if (tab->type == JT_CONST && !tab->first_inner)
+ return (tab->eq_ref_table=1); /* purecov: inspected */
+ if (tab->type != JT_EQ_REF || tab->table->maybe_null)
+ return (tab->eq_ref_table=0); // We must use this
+ Item **ref_item=tab->ref.items;
+ Item **end=ref_item+tab->ref.key_parts;
+ uint found=0;
+ table_map map=tab->table->map;
+
+ for (; ref_item != end ; ref_item++)
+ {
+ if (! (*ref_item)->const_item())
+ { // Not a const ref
+ ORDER *order;
+ for (order=start_order ; order ; order=order->next)
+ {
+ if ((*ref_item)->eq(order->item[0],0))
+ break;
+ }
+ if (order)
+ {
+ if (!(order->used & map))
+ {
+ found++;
+ order->used|= map;
+ }
+ continue; // Used in ORDER BY
+ }
+ if (!only_eq_ref_tables(join,start_order, (*ref_item)->used_tables()))
+ return (tab->eq_ref_table=0);
+ }
+ }
+ /* Check that there was no reference to table before sort order */
+ for (; found && start_order ; start_order=start_order->next)
+ {
+ if (start_order->used & map)
+ {
+ found--;
+ continue;
+ }
+ if (start_order->depend_map & map)
+ return (tab->eq_ref_table=0);
+ }
+ return tab->eq_ref_table=1;
+}
+
+
+static bool
+only_eq_ref_tables(JOIN *join,ORDER *order,table_map tables)
+{
+ tables&= ~PSEUDO_TABLE_BITS;
+ for (JOIN_TAB **tab=join->map2table ; tables ; tab++, tables>>=1)
+ {
+ if (tables & 1 && !eq_ref_table(join, order, *tab))
+ return 0;
+ }
+ return 1;
+}
+
+
+/** Update the dependency map for the tables. */
+
+static void update_depend_map(JOIN *join)
+{
+ JOIN_TAB *join_tab;
+ for (join_tab= first_linear_tab(join, WITH_BUSH_ROOTS, WITH_CONST_TABLES);
+ join_tab;
+ join_tab= next_linear_tab(join, join_tab, WITH_BUSH_ROOTS))
+ {
+ TABLE_REF *ref= &join_tab->ref;
+ table_map depend_map=0;
+ Item **item=ref->items;
+ uint i;
+ for (i=0 ; i < ref->key_parts ; i++,item++)
+ depend_map|=(*item)->used_tables();
+ depend_map&= ~OUTER_REF_TABLE_BIT;
+ ref->depend_map= depend_map;
+ for (JOIN_TAB **tab=join->map2table;
+ depend_map ;
+ tab++,depend_map>>=1 )
+ {
+ if (depend_map & 1)
+ ref->depend_map|=(*tab)->ref.depend_map;
+ }
+ }
+}
+
+
+/** Update the dependency map for the sort order. */
+
+static void update_depend_map_for_order(JOIN *join, ORDER *order)
+{
+ for (; order ; order=order->next)
+ {
+ table_map depend_map;
+ order->item[0]->update_used_tables();
+ order->depend_map=depend_map=order->item[0]->used_tables();
+ order->used= 0;
+ // Not item_sum(), RAND() and no reference to table outside of sub select
+ if (!(order->depend_map & (OUTER_REF_TABLE_BIT | RAND_TABLE_BIT))
+ && !order->item[0]->with_sum_func() &&
+ join->join_tab)
+ {
+ for (JOIN_TAB **tab=join->map2table;
+ depend_map ;
+ tab++, depend_map>>=1)
+ {
+ if (depend_map & 1)
+ order->depend_map|=(*tab)->ref.depend_map;
+ }
+ }
+ }
+}
+
+
+/**
+ Remove all constants from ORDER and check if ORDER only contains simple
+ expressions.
+
+ We also remove all duplicate expressions, keeping only the first one.
+
+ simple_order is set to 1 if sort_order only uses fields from head table
+ and the head table is not a LEFT JOIN table.
+
+ @param join Join handler
+ @param first_order List of SORT or GROUP order
+ @param cond WHERE statement
+ @param change_list Set to 1 if we should remove things from list.
+ If this is not set, then only simple_order is
+ calculated. This is not set when we
+ are using ROLLUP
+ @param simple_order Set to 1 if we are only using simple
+ expressions.
+
+ @return
+ Returns new sort order
+*/
+
+static ORDER *
+remove_const(JOIN *join,ORDER *first_order, COND *cond,
+ bool change_list, bool *simple_order)
+{
+ /*
+ We can't do ORDER BY using filesort if the select list contains a non
+ deterministic value like RAND() or ROWNUM().
+ For example:
+ SELECT a,ROWNUM() FROM t1 ORDER BY a;
+
+ If we would first sort the table 't1', the ROWNUM() column would be
+ generated during end_send() and the order would be wrong.
+
+ Previously we had here also a test of ROLLUP:
+ 'join->rollup.state == ROLLUP::STATE_NONE'
+
+ I deleted this because the ROLLUP was never enforced because of a
+ bug where the inital value of simple_order was ignored. Having
+ ROLLUP tested now when the code is fixed, causes many test failure
+ and some wrong results so better to leave the code as it was
+ related to ROLLUP.
+ */
+ *simple_order= !join->select_lex->rownum_in_field_list;
+ if (join->only_const_tables())
+ return change_list ? 0 : first_order; // No need to sort
+
+ ORDER *order,**prev_ptr, *tmp_order;
+ table_map UNINIT_VAR(first_table); /* protected by first_is_base_table */
+ table_map not_const_tables= ~join->const_table_map;
+ table_map ref;
+ bool first_is_base_table= FALSE;
+ DBUG_ENTER("remove_const");
+
+ /*
+ Join tab is set after make_join_statistics() has been called.
+ In case of one table with GROUP BY this function is called before
+ join_tab is set for the GROUP_BY expression
+ */
+ if (join->join_tab)
+ {
+ if (join->join_tab[join->const_tables].table)
+ {
+ first_table= join->join_tab[join->const_tables].table->map;
+ first_is_base_table= TRUE;
+ }
+
+ /*
+ Cleanup to avoid interference of calls of this function for
+ ORDER BY and GROUP BY
+ */
+ for (JOIN_TAB *tab= join->join_tab + join->const_tables;
+ tab < join->join_tab + join->top_join_tab_count;
+ tab++)
+ tab->cached_eq_ref_table= FALSE;
+
+ JOIN_TAB *head= join->join_tab + join->const_tables;
+ *simple_order&= head->on_expr_ref[0] == NULL;
+ if (*simple_order && head->table->file->ha_table_flags() & HA_SLOW_RND_POS)
+ {
+ uint u1, u2, u3, u4;
+ /*
+ normally the condition is (see filesort_use_addons())
+
+ length + sortlength <= max_length_for_sort_data
+
+ but for HA_SLOW_RND_POS tables we relax it a bit, as the alternative
+ is to use a temporary table, which is rather expensive.
+
+ TODO proper cost estimations
+ */
+ *simple_order= filesort_use_addons(head->table, 0, &u1, &u2, &u3, &u4);
+ }
+ }
+ else
+ {
+ first_is_base_table= FALSE;
+ first_table= 0; // Not used, for gcc
+ }
+
+ prev_ptr= &first_order;
+
+ /* NOTE: A variable of not_const_tables ^ first_table; breaks gcc 2.7 */
+
+ update_depend_map_for_order(join, first_order);
+ for (order=first_order; order ; order=order->next)
+ {
+ table_map order_tables=order->item[0]->used_tables();
+ if (order->item[0]->with_sum_func() ||
+ order->item[0]->with_window_func() ||
+ /*
+ If the outer table of an outer join is const (either by itself or
+ after applying WHERE condition), grouping on a field from such a
+ table will be optimized away and filesort without temporary table
+ will be used unless we prevent that now. Filesort is not fit to
+ handle joins and the join condition is not applied. We can't detect
+ the case without an expensive test, however, so we force temporary
+ table for all queries containing more than one table, ROLLUP, and an
+ outer join.
+ */
+ (join->table_count > 1 && join->rollup.state == ROLLUP::STATE_INITED &&
+ join->outer_join))
+ *simple_order=0; // Must do a temp table to sort
+ else if (!(order_tables & not_const_tables))
+ {
+ if (order->item[0]->with_subquery())
+ {
+ /*
+ Delay the evaluation of constant ORDER and/or GROUP expressions that
+ contain subqueries until the execution phase.
+ */
+ join->exec_const_order_group_cond.push_back(order->item[0],
+ join->thd->mem_root);
+ }
+ DBUG_PRINT("info",("removing: %s", order->item[0]->full_name()));
+ continue;
+ }
+ else
+ {
+ if (order_tables & (RAND_TABLE_BIT | OUTER_REF_TABLE_BIT))
+ *simple_order=0;
+ else
+ {
+ if (cond && const_expression_in_where(cond,order->item[0]))
+ {
+ DBUG_PRINT("info",("removing: %s", order->item[0]->full_name()));
+ continue;
+ }
+ if (first_is_base_table &&
+ (ref=order_tables & (not_const_tables ^ first_table)))
+ {
+ if (!(order_tables & first_table) &&
+ only_eq_ref_tables(join,first_order, ref))
+ {
+ DBUG_PRINT("info",("removing: %s", order->item[0]->full_name()));
+ continue;
+ }
+ /*
+ UseMultipleEqualitiesToRemoveTempTable:
+ Can use multiple-equalities here to check that ORDER BY columns
+ can be used without tmp. table.
+ */
+ bool can_subst_to_first_table= false;
+ if (optimizer_flag(join->thd, OPTIMIZER_SWITCH_ORDERBY_EQ_PROP) &&
+ first_is_base_table &&
+ order->item[0]->real_item()->type() == Item::FIELD_ITEM &&
+ join->cond_equal)
+ {
+ table_map first_table_bit=
+ join->join_tab[join->const_tables].table->map;
+
+ Item *item= order->item[0];
+
+ /*
+ TODO: equality substitution in the context of ORDER BY is
+ sometimes allowed when it is not allowed in the general case.
+
+ We make the below call for its side effect: it will locate the
+ multiple equality the item belongs to and set item->item_equal
+ accordingly.
+ */
+ Item *res= item->propagate_equal_fields(join->thd,
+ Value_source::
+ Context_identity(),
+ join->cond_equal);
+ Item_equal *item_eq;
+ if ((item_eq= res->get_item_equal()))
+ {
+ Item *first= item_eq->get_first(NO_PARTICULAR_TAB, NULL);
+ if (first->const_item() || first->used_tables() ==
+ first_table_bit)
+ {
+ can_subst_to_first_table= true;
+ }
+ }
+ }
+
+ if (!can_subst_to_first_table)
+ {
+ *simple_order=0; // Must do a temp table to sort
+ }
+ }
+ }
+ }
+ /* Remove ORDER BY entries that we have seen before */
+ for (tmp_order= first_order;
+ tmp_order != order;
+ tmp_order= tmp_order->next)
+ {
+ if (tmp_order->item[0]->eq(order->item[0],1))
+ break;
+ }
+ if (tmp_order != order)
+ continue; // Duplicate order by. Remove
+
+ if (change_list)
+ *prev_ptr= order; // use this entry
+ prev_ptr= &order->next;
+ }
+ if (change_list)
+ *prev_ptr=0;
+ if (prev_ptr == &first_order) // Nothing to sort/group
+ *simple_order=1;
+#ifndef DBUG_OFF
+ if (unlikely(join->thd->is_error()))
+ DBUG_PRINT("error",("Error from remove_const"));
+#endif
+ DBUG_PRINT("exit",("simple_order: %d",(int) *simple_order));
+ DBUG_RETURN(first_order);
+}
+
+
+/**
+ Filter out ORDER items those are equal to constants in WHERE
+
+ This function is a limited version of remove_const() for use
+ with non-JOIN statements (i.e. single-table UPDATE and DELETE).
+
+
+ @param order Linked list of ORDER BY arguments
+ @param cond WHERE expression
+
+ @return pointer to new filtered ORDER list or NULL if whole list eliminated
+
+ @note
+ This function overwrites input order list.
+*/
+
+ORDER *simple_remove_const(ORDER *order, COND *where)
+{
+ if (!order || !where)
+ return order;
+
+ ORDER *first= NULL, *prev= NULL;
+ for (; order; order= order->next)
+ {
+ DBUG_ASSERT(!order->item[0]->with_sum_func()); // should never happen
+ if (!const_expression_in_where(where, order->item[0]))
+ {
+ if (!first)
+ first= order;
+ if (prev)
+ prev->next= order;
+ prev= order;
+ }
+ }
+ if (prev)
+ prev->next= NULL;
+ return first;
+}
+
+
+/*
+ Set all fields in the table to have a null value
+
+ @param tables Table list
+*/
+
+static void make_tables_null_complemented(List<TABLE_LIST> *tables)
+{
+ List_iterator<TABLE_LIST> ti(*tables);
+ TABLE_LIST *table;
+ while ((table= ti++))
+ {
+ /*
+ Don't touch semi-join materialization tables, as the a join_free()
+ call may have freed them (and HAVING clause can't have references to
+ them anyway).
+ */
+ if (!table->is_jtbm())
+ {
+ TABLE *tbl= table->table;
+ mark_as_null_row(tbl); // Set fields to NULL
+ }
+ }
+}
+
+
+static int
+return_zero_rows(JOIN *join, select_result *result, List<TABLE_LIST> *tables,
+ List<Item> *fields, bool send_row, ulonglong select_options,
+ const char *info, Item *having, List<Item> *all_fields)
+{
+ DBUG_ENTER("return_zero_rows");
+
+ if (select_options & SELECT_DESCRIBE)
+ {
+ select_describe(join, FALSE, FALSE, FALSE, info);
+ DBUG_RETURN(0);
+ }
+
+ if (send_row)
+ {
+ /*
+ Set all tables to have NULL row. This is needed as we will be evaluating
+ HAVING condition.
+ */
+ make_tables_null_complemented(tables);
+
+ List_iterator_fast<Item> it(*all_fields);
+ Item *item;
+ /*
+ Inform all items (especially aggregating) to calculate HAVING correctly,
+ also we will need it for sending results.
+ */
+ join->no_rows_in_result_called= 1;
+ while ((item= it++))
+ item->no_rows_in_result();
+ if (having && having->val_int() == 0)
+ send_row=0;
+ }
+
+ /* Update results for FOUND_ROWS */
+ if (!join->send_row_on_empty_set())
+ {
+ join->thd->set_examined_row_count(0);
+ join->thd->limit_found_rows= 0;
+ }
+
+ if (!(result->send_result_set_metadata(*fields,
+ Protocol::SEND_NUM_ROWS | Protocol::SEND_EOF)))
+ {
+ bool send_error= FALSE;
+ if (send_row)
+ send_error= result->send_data_with_check(*fields, join->unit, 0) > 0;
+ if (likely(!send_error))
+ result->send_eof(); // Should be safe
+ }
+ /*
+ JOIN::join_free() must be called after the virtual method
+ select::send_result_set_metadata() returned control since
+ implementation of this method could use data strutcures
+ that are released by the method JOIN::join_free().
+ */
+ join->join_free();
+
+ DBUG_RETURN(0);
+}
+
+/**
+ Reset table rows to contain a null-complement row (all fields are null)
+
+ Used only in JOIN::clear() and in do_select() if there where no matching rows.
+
+ @param join JOIN
+ @param cleared_tables Used to mark all cleared tables in the map. Needed for
+ unclear_tables() to know which tables to restore to
+ their original state.
+*/
+
+static void clear_tables(JOIN *join, table_map *cleared_tables)
+{
+ DBUG_ASSERT(cleared_tables);
+ for (uint i= 0 ; i < join->table_count ; i++)
+ {
+ TABLE *table= join->table[i];
+
+ if (table->null_row)
+ continue; // Nothing more to do
+ (*cleared_tables)|= (((table_map) 1) << i);
+ if (table->s->null_bytes)
+ {
+ /*
+ Remember null bits for the record so that we can restore the
+ original const record in unclear_tables()
+ */
+ memcpy(table->record[1], table->null_flags, table->s->null_bytes);
+ }
+ mark_as_null_row(table); // All fields are NULL
+ }
+}
+
+
+/**
+ Reverse null marking for tables and restore null bits.
+ This return the tables to the state of before clear_tables().
+
+ We have to do this because the tables may be re-used in a sub query
+ and the subquery will assume that the const tables contains the original
+ data before clear_tables().
+*/
+
+static void unclear_tables(JOIN *join, table_map *cleared_tables)
+{
+ for (uint i= 0 ; i < join->table_count ; i++)
+ {
+ if ((*cleared_tables) & (((table_map) 1) << i))
+ {
+ TABLE *table= join->table[i];
+ if (table->s->null_bytes)
+ memcpy(table->null_flags, table->record[1], table->s->null_bytes);
+ unmark_as_null_row(table);
+ }
+ }
+}
+
+
+/*****************************************************************************
+ Make som simple condition optimization:
+ If there is a test 'field = const' change all refs to 'field' to 'const'
+ Remove all dummy tests 'item = item', 'const op const'.
+ Remove all 'item is NULL', when item can never be null!
+ item->marker should be 0 for all items on entry
+ Return in cond_value FALSE if condition is impossible (1 = 2)
+*****************************************************************************/
+
+class COND_CMP :public ilink {
+public:
+ static void *operator new(size_t size, MEM_ROOT *mem_root)
+ {
+ return alloc_root(mem_root, size);
+ }
+ static void operator delete(void *ptr __attribute__((unused)),
+ size_t size __attribute__((unused)))
+ { TRASH_FREE(ptr, size); }
+
+ static void operator delete(void *, MEM_ROOT*) {}
+
+ Item *and_level;
+ Item_bool_func2 *cmp_func;
+ COND_CMP(Item *a,Item_bool_func2 *b) :and_level(a),cmp_func(b) {}
+};
+
+/**
+ Find the multiple equality predicate containing a field.
+
+ The function retrieves the multiple equalities accessed through
+ the con_equal structure from current level and up looking for
+ an equality containing field. It stops retrieval as soon as the equality
+ is found and set up inherited_fl to TRUE if it's found on upper levels.
+
+ @param cond_equal multiple equalities to search in
+ @param field field to look for
+ @param[out] inherited_fl set up to TRUE if multiple equality is found
+ on upper levels (not on current level of
+ cond_equal)
+
+ @return
+ - Item_equal for the found multiple equality predicate if a success;
+ - NULL otherwise.
+*/
+
+Item_equal *find_item_equal(COND_EQUAL *cond_equal, Field *field,
+ bool *inherited_fl)
+{
+ Item_equal *item= 0;
+ bool in_upper_level= FALSE;
+ while (cond_equal)
+ {
+ List_iterator_fast<Item_equal> li(cond_equal->current_level);
+ while ((item= li++))
+ {
+ if (item->contains(field))
+ goto finish;
+ }
+ in_upper_level= TRUE;
+ cond_equal= cond_equal->upper_levels;
+ }
+ in_upper_level= FALSE;
+finish:
+ *inherited_fl= in_upper_level;
+ return item;
+}
+
+
+/**
+ Check whether an equality can be used to build multiple equalities.
+
+ This function first checks whether the equality (left_item=right_item)
+ is a simple equality i.e. the one that equates a field with another field
+ or a constant (field=field_item or field=const_item).
+ If this is the case the function looks for a multiple equality
+ in the lists referenced directly or indirectly by cond_equal inferring
+ the given simple equality. If it doesn't find any, it builds a multiple
+ equality that covers the predicate, i.e. the predicate can be inferred
+ from this multiple equality.
+ The built multiple equality could be obtained in such a way:
+ create a binary multiple equality equivalent to the predicate, then
+ merge it, if possible, with one of old multiple equalities.
+ This guarantees that the set of multiple equalities covering equality
+ predicates will be minimal.
+
+ EXAMPLE:
+ For the where condition
+ @code
+ WHERE a=b AND b=c AND
+ (b=2 OR f=e)
+ @endcode
+ the check_equality will be called for the following equality
+ predicates a=b, b=c, b=2 and f=e.
+ - For a=b it will be called with *cond_equal=(0,[]) and will transform
+ *cond_equal into (0,[Item_equal(a,b)]).
+ - For b=c it will be called with *cond_equal=(0,[Item_equal(a,b)])
+ and will transform *cond_equal into CE=(0,[Item_equal(a,b,c)]).
+ - For b=2 it will be called with *cond_equal=(ptr(CE),[])
+ and will transform *cond_equal into (ptr(CE),[Item_equal(2,a,b,c)]).
+ - For f=e it will be called with *cond_equal=(ptr(CE), [])
+ and will transform *cond_equal into (ptr(CE),[Item_equal(f,e)]).
+
+ @note
+ Now only fields that have the same type definitions (verified by
+ the Field::eq_def method) are placed to the same multiple equalities.
+ Because of this some equality predicates are not eliminated and
+ can be used in the constant propagation procedure.
+ We could weeken the equlity test as soon as at least one of the
+ equal fields is to be equal to a constant. It would require a
+ more complicated implementation: we would have to store, in
+ general case, its own constant for each fields from the multiple
+ equality. But at the same time it would allow us to get rid
+ of constant propagation completely: it would be done by the call
+ to cond->build_equal_items().
+
+
+ The implementation does not follow exactly the above rules to
+ build a new multiple equality for the equality predicate.
+ If it processes the equality of the form field1=field2, it
+ looks for multiple equalities me1 containig field1 and me2 containing
+ field2. If only one of them is found the fuction expands it with
+ the lacking field. If multiple equalities for both fields are
+ found they are merged. If both searches fail a new multiple equality
+ containing just field1 and field2 is added to the existing
+ multiple equalities.
+ If the function processes the predicate of the form field1=const,
+ it looks for a multiple equality containing field1. If found, the
+ function checks the constant of the multiple equality. If the value
+ is unknown, it is setup to const. Otherwise the value is compared with
+ const and the evaluation of the equality predicate is performed.
+ When expanding/merging equality predicates from the upper levels
+ the function first copies them for the current level. It looks
+ acceptable, as this happens rarely. The implementation without
+ copying would be much more complicated.
+
+ For description of how equality propagation works with SJM nests, grep
+ for EqualityPropagationAndSjmNests.
+
+ @param left_item left term of the quality to be checked
+ @param right_item right term of the equality to be checked
+ @param item equality item if the equality originates from a condition
+ predicate, 0 if the equality is the result of row
+ elimination
+ @param cond_equal multiple equalities that must hold together with the
+ equality
+
+ @retval
+ TRUE if the predicate is a simple equality predicate to be used
+ for building multiple equalities
+ @retval
+ FALSE otherwise
+*/
+
+bool check_simple_equality(THD *thd, const Item::Context &ctx,
+ Item *left_item, Item *right_item,
+ COND_EQUAL *cond_equal)
+{
+ Item *orig_left_item= left_item;
+ Item *orig_right_item= right_item;
+ if (left_item->type() == Item::REF_ITEM)
+ {
+ Item_ref::Ref_Type left_ref= ((Item_ref*)left_item)->ref_type();
+
+ if (left_ref == Item_ref::VIEW_REF ||
+ left_ref == Item_ref::REF)
+ {
+ if (((Item_ref*)left_item)->get_depended_from())
+ return FALSE;
+ if (left_ref == Item_ref::VIEW_REF &&
+ ((Item_direct_view_ref*)left_item)->get_null_ref_table() !=
+ NO_NULL_TABLE &&
+ !left_item->real_item()->used_tables())
+ return FALSE;
+ left_item= left_item->real_item();
+ }
+ }
+ if (right_item->type() == Item::REF_ITEM)
+ {
+ Item_ref::Ref_Type right_ref= ((Item_ref*)right_item)->ref_type();
+ if (right_ref == Item_ref::VIEW_REF ||
+ (right_ref == Item_ref::REF))
+ {
+ if (((Item_ref*)right_item)->get_depended_from())
+ return FALSE;
+ if (right_ref == Item_ref::VIEW_REF &&
+ ((Item_direct_view_ref*)right_item)->get_null_ref_table() !=
+ NO_NULL_TABLE &&
+ !right_item->real_item()->used_tables())
+ return FALSE;
+ right_item= right_item->real_item();
+ }
+ }
+ if (left_item->type() == Item::FIELD_ITEM &&
+ right_item->type() == Item::FIELD_ITEM &&
+ !((Item_field*)left_item)->get_depended_from() &&
+ !((Item_field*)right_item)->get_depended_from())
+ {
+ /* The predicate the form field1=field2 is processed */
+
+ Field *left_field= ((Item_field*) left_item)->field;
+ Field *right_field= ((Item_field*) right_item)->field;
+
+ if (!left_field->eq_def(right_field) &&
+ !fields_equal_using_narrowing(thd, left_field, right_field))
+ return FALSE;
+
+ /* Search for multiple equalities containing field1 and/or field2 */
+ bool left_copyfl, right_copyfl;
+ Item_equal *left_item_equal=
+ find_item_equal(cond_equal, left_field, &left_copyfl);
+ Item_equal *right_item_equal=
+ find_item_equal(cond_equal, right_field, &right_copyfl);
+
+ /* As (NULL=NULL) != TRUE we can't just remove the predicate f=f */
+ if (left_field->eq(right_field)) /* f = f */
+ return (!(left_field->maybe_null() && !left_item_equal));
+
+ if (left_item_equal && left_item_equal == right_item_equal)
+ {
+ /*
+ The equality predicate is inference of one of the existing
+ multiple equalities, i.e the condition is already covered
+ by upper level equalities
+ */
+ return TRUE;
+ }
+
+ /* Copy the found multiple equalities at the current level if needed */
+ if (left_copyfl)
+ {
+ /* left_item_equal of an upper level contains left_item */
+ left_item_equal= new (thd->mem_root) Item_equal(thd, left_item_equal);
+ left_item_equal->set_context_field(((Item_field*) left_item));
+ cond_equal->current_level.push_back(left_item_equal, thd->mem_root);
+ }
+ if (right_copyfl)
+ {
+ /* right_item_equal of an upper level contains right_item */
+ right_item_equal= new (thd->mem_root) Item_equal(thd, right_item_equal);
+ right_item_equal->set_context_field(((Item_field*) right_item));
+ cond_equal->current_level.push_back(right_item_equal, thd->mem_root);
+ }
+
+ if (left_item_equal)
+ {
+ /* left item was found in the current or one of the upper levels */
+ if (! right_item_equal)
+ left_item_equal->add(orig_right_item, thd->mem_root);
+ else
+ {
+ /* Merge two multiple equalities forming a new one */
+ left_item_equal->merge(thd, right_item_equal);
+ /* Remove the merged multiple equality from the list */
+ List_iterator<Item_equal> li(cond_equal->current_level);
+ while ((li++) != right_item_equal) ;
+ li.remove();
+ }
+ }
+ else
+ {
+ /* left item was not found neither the current nor in upper levels */
+ if (right_item_equal)
+ right_item_equal->add(orig_left_item, thd->mem_root);
+ else
+ {
+ /* None of the fields was found in multiple equalities */
+ Type_handler_hybrid_field_type
+ tmp(orig_left_item->type_handler_for_comparison());
+ if (tmp.aggregate_for_comparison(orig_right_item->
+ type_handler_for_comparison()))
+ return false;
+ Item_equal *item_equal=
+ new (thd->mem_root) Item_equal(thd, tmp.type_handler(),
+ orig_left_item, orig_right_item,
+ false);
+ item_equal->set_context_field((Item_field*)left_item);
+ cond_equal->current_level.push_back(item_equal, thd->mem_root);
+ }
+ }
+ return TRUE;
+ }
+
+ {
+ /* The predicate of the form field=const/const=field is processed */
+ Item *const_item= 0;
+ Item_field *field_item= 0;
+ Item *orig_field_item= 0;
+ if (left_item->type() == Item::FIELD_ITEM &&
+ !((Item_field*)left_item)->get_depended_from() &&
+ right_item->can_eval_in_optimize())
+ {
+ orig_field_item= orig_left_item;
+ field_item= (Item_field *) left_item;
+ const_item= right_item;
+ }
+ else if (right_item->type() == Item::FIELD_ITEM &&
+ !((Item_field*)right_item)->get_depended_from() &&
+ left_item->can_eval_in_optimize())
+ {
+ orig_field_item= orig_right_item;
+ field_item= (Item_field *) right_item;
+ const_item= left_item;
+ }
+
+ if (const_item &&
+ field_item->field->test_if_equality_guarantees_uniqueness(const_item))
+ {
+ /*
+ field_item and const_item are arguments of a scalar or a row
+ comparison function:
+ WHERE column=constant
+ WHERE (column, ...) = (constant, ...)
+
+ The owner comparison function has previously called fix_fields(),
+ so field_item and const_item should be directly comparable items,
+ field_item->cmp_context and const_item->cmp_context should be set.
+ In case of string comparison, charsets and collations of
+ field_item and const_item should have already be aggregated
+ for comparison, all necessary character set converters installed
+ and fixed.
+
+ In case of string comparison, const_item can be either:
+ - a weaker constant that does not need to be converted to field_item:
+ WHERE latin1_field = 'latin1_const'
+ WHERE varbinary_field = 'latin1_const'
+ WHERE latin1_bin_field = 'latin1_general_ci_const'
+ - a stronger constant that does not need to be converted to field_item:
+ WHERE latin1_field = binary 0xDF
+ WHERE latin1_field = 'a' COLLATE latin1_bin
+ - a result of conversion (e.g. from the session character set)
+ to the character set of field_item:
+ WHERE latin1_field = 'utf8_string_with_latin1_repertoire'
+ */
+ bool copyfl;
+
+ Item_equal *item_equal = find_item_equal(cond_equal,
+ field_item->field, &copyfl);
+ if (copyfl)
+ {
+ item_equal= new (thd->mem_root) Item_equal(thd, item_equal);
+ cond_equal->current_level.push_back(item_equal, thd->mem_root);
+ item_equal->set_context_field(field_item);
+ }
+ Item *const_item2= field_item->field->get_equal_const_item(thd, ctx,
+ const_item);
+ if (!const_item2)
+ return false;
+
+ if (item_equal)
+ {
+ /*
+ The flag cond_false will be set to 1 after this, if item_equal
+ already contains a constant and its value is not equal to
+ the value of const_item.
+ */
+ item_equal->add_const(thd, const_item2);
+ }
+ else
+ {
+ Type_handler_hybrid_field_type
+ tmp(orig_left_item->type_handler_for_comparison());
+ if (tmp.aggregate_for_comparison(orig_right_item->
+ type_handler_for_comparison()))
+ return false;
+ item_equal= new (thd->mem_root) Item_equal(thd, tmp.type_handler(),
+ const_item2,
+ orig_field_item, true);
+ item_equal->set_context_field(field_item);
+ cond_equal->current_level.push_back(item_equal, thd->mem_root);
+ }
+ return TRUE;
+ }
+ }
+ return FALSE;
+}
+
+
+/**
+ Convert row equalities into a conjunction of regular equalities.
+
+ The function converts a row equality of the form (E1,...,En)=(E'1,...,E'n)
+ into a list of equalities E1=E'1,...,En=E'n. For each of these equalities
+ Ei=E'i the function checks whether it is a simple equality or a row
+ equality. If it is a simple equality it is used to expand multiple
+ equalities of cond_equal. If it is a row equality it converted to a
+ sequence of equalities between row elements. If Ei=E'i is neither a
+ simple equality nor a row equality the item for this predicate is added
+ to eq_list.
+
+ @param thd thread handle
+ @param left_row left term of the row equality to be processed
+ @param right_row right term of the row equality to be processed
+ @param cond_equal multiple equalities that must hold together with the
+ predicate
+ @param eq_list results of conversions of row equalities that are not
+ simple enough to form multiple equalities
+
+ @retval
+ TRUE if conversion has succeeded (no fatal error)
+ @retval
+ FALSE otherwise
+*/
+
+static bool check_row_equality(THD *thd, const Arg_comparator *comparators,
+ Item *left_row, Item_row *right_row,
+ COND_EQUAL *cond_equal, List<Item>* eq_list)
+{
+ uint n= left_row->cols();
+ for (uint i= 0 ; i < n; i++)
+ {
+ bool is_converted;
+ Item *left_item= left_row->element_index(i);
+ Item *right_item= right_row->element_index(i);
+ if (left_item->type() == Item::ROW_ITEM &&
+ right_item->type() == Item::ROW_ITEM)
+ {
+ /*
+ Item_splocal for ROW SP variables return Item::ROW_ITEM.
+ Here we know that left_item and right_item are not Item_splocal,
+ because ROW SP variables with nested ROWs are not supported yet.
+ It's safe to cast left_item and right_item to Item_row.
+ */
+ DBUG_ASSERT(!left_item->get_item_splocal());
+ DBUG_ASSERT(!right_item->get_item_splocal());
+ is_converted= check_row_equality(thd,
+ comparators[i].subcomparators(),
+ (Item_row *) left_item,
+ (Item_row *) right_item,
+ cond_equal, eq_list);
+ }
+ else
+ {
+ const Arg_comparator *tmp= &comparators[i];
+ is_converted= check_simple_equality(thd,
+ Item::Context(Item::ANY_SUBST,
+ tmp->compare_type_handler(),
+ tmp->compare_collation()),
+ left_item, right_item,
+ cond_equal);
+ }
+
+ if (!is_converted)
+ {
+ Item_func_eq *eq_item;
+ if (!(eq_item= new (thd->mem_root) Item_func_eq(thd, left_item, right_item)) ||
+ eq_item->set_cmp_func(thd))
+ return FALSE;
+ eq_item->quick_fix_field();
+ eq_list->push_back(eq_item, thd->mem_root);
+ }
+ }
+ return TRUE;
+}
+
+
+/**
+ Eliminate row equalities and form multiple equalities predicates.
+
+ This function checks whether the item is a simple equality
+ i.e. the one that equates a field with another field or a constant
+ (field=field_item or field=constant_item), or, a row equality.
+ For a simple equality the function looks for a multiple equality
+ in the lists referenced directly or indirectly by cond_equal inferring
+ the given simple equality. If it doesn't find any, it builds/expands
+ multiple equality that covers the predicate.
+ Row equalities are eliminated substituted for conjunctive regular
+ equalities which are treated in the same way as original equality
+ predicates.
+
+ @param thd thread handle
+ @param item predicate to process
+ @param cond_equal multiple equalities that must hold together with the
+ predicate
+ @param eq_list results of conversions of row equalities that are not
+ simple enough to form multiple equalities
+
+ @retval
+ TRUE if re-writing rules have been applied
+ @retval
+ FALSE otherwise, i.e.
+ if the predicate is not an equality,
+ or, if the equality is neither a simple one nor a row equality,
+ or, if the procedure fails by a fatal error.
+*/
+
+bool Item_func_eq::check_equality(THD *thd, COND_EQUAL *cond_equal,
+ List<Item> *eq_list)
+{
+ Item *left_item= arguments()[0];
+ Item *right_item= arguments()[1];
+
+ if (left_item->type() == Item::ROW_ITEM &&
+ right_item->type() == Item::ROW_ITEM)
+ {
+ /*
+ Item_splocal::type() for ROW variables returns Item::ROW_ITEM.
+ Distinguish ROW-type Item_splocal from Item_row.
+ Example query:
+ SELECT 1 FROM DUAL WHERE row_sp_variable=ROW(100,200);
+ */
+ if (left_item->get_item_splocal() ||
+ right_item->get_item_splocal())
+ return false;
+ return check_row_equality(thd,
+ cmp.subcomparators(),
+ (Item_row *) left_item,
+ (Item_row *) right_item,
+ cond_equal, eq_list);
+ }
+ return check_simple_equality(thd,
+ Context(ANY_SUBST,
+ compare_type_handler(),
+ compare_collation()),
+ left_item, right_item, cond_equal);
+}
+
+
+/**
+ Item_xxx::build_equal_items()
+
+ Replace all equality predicates in a condition referenced by "this"
+ by multiple equality items.
+
+ At each 'and' level the function detects items for equality predicates
+ and replaced them by a set of multiple equality items of class Item_equal,
+ taking into account inherited equalities from upper levels.
+ If an equality predicate is used not in a conjunction it's just
+ replaced by a multiple equality predicate.
+ For each 'and' level the function set a pointer to the inherited
+ multiple equalities in the cond_equal field of the associated
+ object of the type Item_cond_and.
+ The function also traverses the cond tree and and for each field reference
+ sets a pointer to the multiple equality item containing the field, if there
+ is any. If this multiple equality equates fields to a constant the
+ function replaces the field reference by the constant in the cases
+ when the field is not of a string type or when the field reference is
+ just an argument of a comparison predicate.
+ The function also determines the maximum number of members in
+ equality lists of each Item_cond_and object assigning it to
+ thd->lex->current_select->max_equal_elems.
+
+ @note
+ Multiple equality predicate =(f1,..fn) is equivalent to the conjuction of
+ f1=f2, .., fn-1=fn. It substitutes any inference from these
+ equality predicates that is equivalent to the conjunction.
+ Thus, =(a1,a2,a3) can substitute for ((a1=a3) AND (a2=a3) AND (a2=a1)) as
+ it is equivalent to ((a1=a2) AND (a2=a3)).
+ The function always makes a substitution of all equality predicates occurred
+ in a conjuction for a minimal set of multiple equality predicates.
+ This set can be considered as a canonical representation of the
+ sub-conjunction of the equality predicates.
+ E.g. (t1.a=t2.b AND t2.b>5 AND t1.a=t3.c) is replaced by
+ (=(t1.a,t2.b,t3.c) AND t2.b>5), not by
+ (=(t1.a,t2.b) AND =(t1.a,t3.c) AND t2.b>5);
+ while (t1.a=t2.b AND t2.b>5 AND t3.c=t4.d) is replaced by
+ (=(t1.a,t2.b) AND =(t3.c=t4.d) AND t2.b>5),
+ but if additionally =(t4.d,t2.b) is inherited, it
+ will be replaced by (=(t1.a,t2.b,t3.c,t4.d) AND t2.b>5)
+
+ The function performs the substitution in a recursive descent by
+ the condtion tree, passing to the next AND level a chain of multiple
+ equality predicates which have been built at the upper levels.
+ The Item_equal items built at the level are attached to other
+ non-equality conjucts as a sublist. The pointer to the inherited
+ multiple equalities is saved in the and condition object (Item_cond_and).
+ This chain allows us for any field reference occurrence easily to find a
+ multiple equality that must be held for this occurrence.
+ For each AND level we do the following:
+ - scan it for all equality predicate (=) items
+ - join them into disjoint Item_equal() groups
+ - process the included OR conditions recursively to do the same for
+ lower AND levels.
+
+ We need to do things in this order as lower AND levels need to know about
+ all possible Item_equal objects in upper levels.
+
+ @param thd thread handle
+ @param inherited path to all inherited multiple equality items
+
+ @return
+ pointer to the transformed condition,
+ whose Used_tables_and_const_cache is up to date,
+ so no additional update_used_tables() is needed on the result.
+*/
+
+COND *Item_cond_and::build_equal_items(THD *thd,
+ COND_EQUAL *inherited,
+ bool link_item_fields,
+ COND_EQUAL **cond_equal_ref)
+{
+ Item_equal *item_equal;
+ COND_EQUAL cond_equal;
+ cond_equal.upper_levels= inherited;
+
+ if (check_stack_overrun(thd, STACK_MIN_SIZE, NULL))
+ return this; // Fatal error flag is set!
+
+ List<Item> eq_list;
+ List<Item> *cond_args= argument_list();
+
+ List_iterator<Item> li(*cond_args);
+ Item *item;
+
+ DBUG_ASSERT(!cond_equal_ref || !cond_equal_ref[0]);
+ /*
+ Retrieve all conjuncts of this level detecting the equality
+ that are subject to substitution by multiple equality items and
+ removing each such predicate from the conjunction after having
+ found/created a multiple equality whose inference the predicate is.
+ */
+ while ((item= li++))
+ {
+ /*
+ PS/SP note: we can safely remove a node from AND-OR
+ structure here because it's restored before each
+ re-execution of any prepared statement/stored procedure.
+ */
+ if (item->check_equality(thd, &cond_equal, &eq_list))
+ li.remove();
+ }
+
+ /*
+ Check if we eliminated all the predicates of the level, e.g.
+ (a=a AND b=b AND a=a).
+ */
+ if (!cond_args->elements &&
+ !cond_equal.current_level.elements &&
+ !eq_list.elements)
+ return (Item*) Item_true;
+
+ List_iterator_fast<Item_equal> it(cond_equal.current_level);
+ while ((item_equal= it++))
+ {
+ item_equal->set_link_equal_fields(link_item_fields);
+ item_equal->fix_fields(thd, NULL);
+ item_equal->update_used_tables();
+ set_if_bigger(thd->lex->current_select->max_equal_elems,
+ item_equal->n_field_items());
+ }
+
+ m_cond_equal.copy(cond_equal);
+ cond_equal.current_level= m_cond_equal.current_level;
+ inherited= &m_cond_equal;
+
+ /*
+ Make replacement of equality predicates for lower levels
+ of the condition expression.
+ */
+ li.rewind();
+ while ((item= li++))
+ {
+ Item *new_item;
+ if ((new_item= item->build_equal_items(thd, inherited, false, NULL))
+ != item)
+ {
+ /* This replacement happens only for standalone equalities */
+ /*
+ This is ok with PS/SP as the replacement is done for
+ cond_args of an AND/OR item, which are restored for each
+ execution of PS/SP.
+ */
+ li.replace(new_item);
+ }
+ }
+ cond_args->append(&eq_list);
+ cond_args->append((List<Item> *)&cond_equal.current_level);
+ update_used_tables();
+ if (cond_equal_ref)
+ *cond_equal_ref= &m_cond_equal;
+ return this;
+}
+
+
+COND *Item_cond::build_equal_items(THD *thd,
+ COND_EQUAL *inherited,
+ bool link_item_fields,
+ COND_EQUAL **cond_equal_ref)
+{
+ List<Item> *cond_args= argument_list();
+
+ List_iterator<Item> li(*cond_args);
+ Item *item;
+
+ DBUG_ASSERT(!cond_equal_ref || !cond_equal_ref[0]);
+ /*
+ Make replacement of equality predicates for lower levels
+ of the condition expression.
+ Update used_tables_cache and const_item_cache on the way.
+ */
+ used_tables_and_const_cache_init();
+ while ((item= li++))
+ {
+ Item *new_item;
+ if ((new_item= item->build_equal_items(thd, inherited, false, NULL))
+ != item)
+ {
+ /* This replacement happens only for standalone equalities */
+ /*
+ This is ok with PS/SP as the replacement is done for
+ arguments of an AND/OR item, which are restored for each
+ execution of PS/SP.
+ */
+ li.replace(new_item);
+ }
+ used_tables_and_const_cache_join(new_item);
+ }
+ return this;
+}
+
+
+COND *Item_func_eq::build_equal_items(THD *thd,
+ COND_EQUAL *inherited,
+ bool link_item_fields,
+ COND_EQUAL **cond_equal_ref)
+{
+ COND_EQUAL cond_equal;
+ cond_equal.upper_levels= inherited;
+ List<Item> eq_list;
+
+ DBUG_ASSERT(!cond_equal_ref || !cond_equal_ref[0]);
+ /*
+ If an equality predicate forms the whole and level,
+ we call it standalone equality and it's processed here.
+ E.g. in the following where condition
+ WHERE a=5 AND (b=5 or a=c)
+ (b=5) and (a=c) are standalone equalities.
+ In general we can't leave alone standalone eqalities:
+ for WHERE a=b AND c=d AND (b=c OR d=5)
+ b=c is replaced by =(a,b,c,d).
+ */
+ if (Item_func_eq::check_equality(thd, &cond_equal, &eq_list))
+ {
+ Item_equal *item_equal;
+ int n= cond_equal.current_level.elements + eq_list.elements;
+ if (n == 0)
+ return (Item*) Item_true;
+ else if (n == 1)
+ {
+ if ((item_equal= cond_equal.current_level.pop()))
+ {
+ item_equal->fix_fields(thd, NULL);
+ item_equal->update_used_tables();
+ set_if_bigger(thd->lex->current_select->max_equal_elems,
+ item_equal->n_field_items());
+ item_equal->upper_levels= inherited;
+ if (cond_equal_ref)
+ *cond_equal_ref= new (thd->mem_root) COND_EQUAL(item_equal,
+ thd->mem_root);
+ return item_equal;
+ }
+ Item *res= eq_list.pop();
+ res->update_used_tables();
+ DBUG_ASSERT(res->type() == FUNC_ITEM);
+ return res;
+ }
+ else
+ {
+ /*
+ Here a new AND level must be created. It can happen only
+ when a row equality is processed as a standalone predicate.
+ */
+ Item_cond_and *and_cond= new (thd->mem_root) Item_cond_and(thd, eq_list);
+ and_cond->quick_fix_field();
+ List<Item> *cond_args= and_cond->argument_list();
+ List_iterator_fast<Item_equal> it(cond_equal.current_level);
+ while ((item_equal= it++))
+ {
+ if (item_equal->fix_length_and_dec(thd))
+ return NULL;
+ item_equal->update_used_tables();
+ set_if_bigger(thd->lex->current_select->max_equal_elems,
+ item_equal->n_field_items());
+ }
+ and_cond->m_cond_equal.copy(cond_equal);
+ cond_equal.current_level= and_cond->m_cond_equal.current_level;
+ cond_args->append((List<Item> *)&cond_equal.current_level);
+ and_cond->update_used_tables();
+ if (cond_equal_ref)
+ *cond_equal_ref= &and_cond->m_cond_equal;
+ return and_cond;
+ }
+ }
+ return Item_func::build_equal_items(thd, inherited, link_item_fields,
+ cond_equal_ref);
+}
+
+
+COND *Item_func::build_equal_items(THD *thd, COND_EQUAL *inherited,
+ bool link_item_fields,
+ COND_EQUAL **cond_equal_ref)
+{
+ /*
+ For each field reference in cond, not from equal item predicates,
+ set a pointer to the multiple equality it belongs to (if there is any)
+ as soon the field is not of a string type or the field reference is
+ an argument of a comparison predicate.
+ */
+ COND *cond= propagate_equal_fields(thd, Context_boolean(), inherited);
+ cond->update_used_tables();
+ DBUG_ASSERT(cond == this);
+ DBUG_ASSERT(!cond_equal_ref || !cond_equal_ref[0]);
+ return cond;
+}
+
+
+COND *Item_equal::build_equal_items(THD *thd, COND_EQUAL *inherited,
+ bool link_item_fields,
+ COND_EQUAL **cond_equal_ref)
+{
+ COND *cond= Item_func::build_equal_items(thd, inherited, link_item_fields,
+ cond_equal_ref);
+ if (cond_equal_ref)
+ *cond_equal_ref= new (thd->mem_root) COND_EQUAL(this, thd->mem_root);
+ return cond;
+}
+
+
+/**
+ Build multiple equalities for a condition and all on expressions that
+ inherit these multiple equalities.
+
+ The function first applies the cond->build_equal_items() method
+ to build all multiple equalities for condition cond utilizing equalities
+ referred through the parameter inherited. The extended set of
+ equalities is returned in the structure referred by the cond_equal_ref
+ parameter. After this the function calls itself recursively for
+ all on expressions whose direct references can be found in join_list
+ and who inherit directly the multiple equalities just having built.
+
+ @note
+ The on expression used in an outer join operation inherits all equalities
+ from the on expression of the embedding join, if there is any, or
+ otherwise - from the where condition.
+ This fact is not obvious, but presumably can be proved.
+ Consider the following query:
+ @code
+ SELECT * FROM (t1,t2) LEFT JOIN (t3,t4) ON t1.a=t3.a AND t2.a=t4.a
+ WHERE t1.a=t2.a;
+ @endcode
+ If the on expression in the query inherits =(t1.a,t2.a), then we
+ can build the multiple equality =(t1.a,t2.a,t3.a,t4.a) that infers
+ the equality t3.a=t4.a. Although the on expression
+ t1.a=t3.a AND t2.a=t4.a AND t3.a=t4.a is not equivalent to the one
+ in the query the latter can be replaced by the former: the new query
+ will return the same result set as the original one.
+
+ Interesting that multiple equality =(t1.a,t2.a,t3.a,t4.a) allows us
+ to use t1.a=t3.a AND t3.a=t4.a under the on condition:
+ @code
+ SELECT * FROM (t1,t2) LEFT JOIN (t3,t4) ON t1.a=t3.a AND t3.a=t4.a
+ WHERE t1.a=t2.a
+ @endcode
+ This query equivalent to:
+ @code
+ SELECT * FROM (t1 LEFT JOIN (t3,t4) ON t1.a=t3.a AND t3.a=t4.a),t2
+ WHERE t1.a=t2.a
+ @endcode
+ Similarly the original query can be rewritten to the query:
+ @code
+ SELECT * FROM (t1,t2) LEFT JOIN (t3,t4) ON t2.a=t4.a AND t3.a=t4.a
+ WHERE t1.a=t2.a
+ @endcode
+ that is equivalent to:
+ @code
+ SELECT * FROM (t2 LEFT JOIN (t3,t4)ON t2.a=t4.a AND t3.a=t4.a), t1
+ WHERE t1.a=t2.a
+ @endcode
+ Thus, applying equalities from the where condition we basically
+ can get more freedom in performing join operations.
+ Although we don't use this property now, it probably makes sense to use
+ it in the future.
+ @param thd Thread handler
+ @param cond condition to build the multiple equalities for
+ @param inherited path to all inherited multiple equality items
+ @param join_list list of join tables to which the condition
+ refers to
+ @ignore_on_conds TRUE <-> do not build multiple equalities
+ for on expressions
+ @param[out] cond_equal_ref pointer to the structure to place built
+ equalities in
+ @param link_equal_items equal fields are to be linked
+
+ @return
+ pointer to the transformed condition containing multiple equalities
+*/
+
+static COND *build_equal_items(JOIN *join, COND *cond,
+ COND_EQUAL *inherited,
+ List<TABLE_LIST> *join_list,
+ bool ignore_on_conds,
+ COND_EQUAL **cond_equal_ref,
+ bool link_equal_fields)
+{
+ THD *thd= join->thd;
+
+ *cond_equal_ref= NULL;
+
+ if (cond)
+ {
+ cond= cond->build_equal_items(thd, inherited, link_equal_fields,
+ cond_equal_ref);
+ if (*cond_equal_ref)
+ {
+ (*cond_equal_ref)->upper_levels= inherited;
+ inherited= *cond_equal_ref;
+ }
+ }
+
+ if (join_list && !ignore_on_conds)
+ {
+ TABLE_LIST *table;
+ List_iterator<TABLE_LIST> li(*join_list);
+
+ while ((table= li++))
+ {
+ if (table->on_expr)
+ {
+ List<TABLE_LIST> *nested_join_list= table->nested_join ?
+ &table->nested_join->join_list : NULL;
+ /*
+ We can modify table->on_expr because its old value will
+ be restored before re-execution of PS/SP.
+ */
+ table->on_expr= build_equal_items(join, table->on_expr, inherited,
+ nested_join_list, ignore_on_conds,
+ &table->cond_equal);
+ if (unlikely(join->thd->trace_started()))
+ {
+ const char *table_name;
+ if (table->nested_join)
+ table_name= table->nested_join->join_list.head()->alias.str;
+ else
+ table_name= table->alias.str;
+ trace_condition(join->thd, "ON expr", "build_equal_items",
+ table->on_expr, table_name);
+ }
+ }
+ }
+ }
+
+ return cond;
+}
+
+
+/**
+ Compare field items by table order in the execution plan.
+
+ If field1 and field2 belong to different tables then
+ field1 considered as better than field2 if the table containing
+ field1 is accessed earlier than the table containing field2.
+ The function finds out what of two fields is better according
+ this criteria.
+ If field1 and field2 belong to the same table then the result
+ of comparison depends on whether the fields are parts of
+ the key that are used to access this table.
+
+ @param field1 first field item to compare
+ @param field2 second field item to compare
+ @param table_join_idx index to tables determining table order
+
+ @retval
+ 1 if field1 is better than field2
+ @retval
+ -1 if field2 is better than field1
+ @retval
+ 0 otherwise
+*/
+
+static int compare_fields_by_table_order(Item *field1,
+ Item *field2,
+ void *table_join_idx)
+{
+ int cmp= 0;
+ bool outer_ref= 0;
+ Item *field1_real= field1->real_item();
+ Item *field2_real= field2->real_item();
+
+ if (field1->const_item() || field1_real->const_item())
+ return -1;
+ if (field2->const_item() || field2_real->const_item())
+ return 1;
+ Item_field *f1= (Item_field *) field1_real;
+ Item_field *f2= (Item_field *) field2_real;
+ if (f1->used_tables() & OUTER_REF_TABLE_BIT)
+ {
+ outer_ref= 1;
+ cmp= -1;
+ }
+ if (f2->used_tables() & OUTER_REF_TABLE_BIT)
+ {
+ outer_ref= 1;
+ cmp++;
+ }
+ if (outer_ref)
+ return cmp;
+ JOIN_TAB **idx= (JOIN_TAB **) table_join_idx;
+
+ JOIN_TAB *tab1= idx[f1->field->table->tablenr];
+ JOIN_TAB *tab2= idx[f2->field->table->tablenr];
+
+ /*
+ if one of the table is inside a merged SJM nest and another one isn't,
+ compare SJM bush roots of the tables.
+ */
+ if (tab1->bush_root_tab != tab2->bush_root_tab)
+ {
+ if (tab1->bush_root_tab)
+ tab1= tab1->bush_root_tab;
+
+ if (tab2->bush_root_tab)
+ tab2= tab2->bush_root_tab;
+ }
+
+ cmp= (int)(tab1 - tab2);
+
+ if (!cmp)
+ {
+ /* Fields f1, f2 belong to the same table */
+
+ JOIN_TAB *tab= idx[f1->field->table->tablenr];
+ uint keyno= MAX_KEY;
+ if (tab->ref.key_parts)
+ keyno= tab->ref.key;
+ else if (tab->select && tab->select->quick)
+ keyno = tab->select->quick->index;
+ if (keyno != MAX_KEY)
+ {
+ if (f1->field->part_of_key.is_set(keyno))
+ cmp= -1;
+ if (f2->field->part_of_key.is_set(keyno))
+ cmp++;
+ /*
+ Here:
+ if both f1, f2 are components of the key tab->ref.key then cmp==0,
+ if only f1 is a component of the key then cmp==-1 (f1 is better),
+ if only f2 is a component of the key then cmp==1, (f2 is better),
+ if none of f1,f1 is component of the key cmp==0.
+ */
+ if (!cmp)
+ {
+ KEY *key_info= tab->table->key_info + keyno;
+ for (uint i= 0; i < key_info->user_defined_key_parts; i++)
+ {
+ Field *fld= key_info->key_part[i].field;
+ if (fld->eq(f1->field))
+ {
+ cmp= -1; // f1 is better
+ break;
+ }
+ if (fld->eq(f2->field))
+ {
+ cmp= 1; // f2 is better
+ break;
+ }
+ }
+ }
+ }
+ if (!cmp)
+ cmp= f1->field->field_index-f2->field->field_index;
+ }
+ return cmp < 0 ? -1 : (cmp ? 1 : 0);
+}
+
+
+static TABLE_LIST* embedding_sjm(Item *item)
+{
+ Item_field *item_field= (Item_field *) (item->real_item());
+ TABLE_LIST *nest= item_field->field->table->pos_in_table_list->embedding;
+ if (nest && nest->sj_mat_info && nest->sj_mat_info->is_used)
+ return nest;
+ else
+ return NULL;
+}
+
+/**
+ Generate minimal set of simple equalities equivalent to a multiple equality.
+
+ The function retrieves the fields of the multiple equality item
+ item_equal and for each field f:
+ - if item_equal contains const it generates the equality f=const_item;
+ - otherwise, if f is not the first field, generates the equality
+ f=item_equal->get_first().
+ All generated equality are added to the cond conjunction.
+
+ @param cond condition to add the generated equality to
+ @param upper_levels structure to access multiple equality of upper levels
+ @param item_equal multiple equality to generate simple equality from
+
+ @note
+ Before generating an equality function checks that it has not
+ been generated for multiple equalities of the upper levels.
+ E.g. for the following where condition
+ WHERE a=5 AND ((a=b AND b=c) OR c>4)
+ the upper level AND condition will contain =(5,a),
+ while the lower level AND condition will contain =(5,a,b,c).
+ When splitting =(5,a,b,c) into a separate equality predicates
+ we should omit 5=a, as we have it already in the upper level.
+ The following where condition gives us a more complicated case:
+ WHERE t1.a=t2.b AND t3.c=t4.d AND (t2.b=t3.c OR t4.e>5 ...) AND ...
+ Given the tables are accessed in the order t1->t2->t3->t4 for
+ the selected query execution plan the lower level multiple
+ equality =(t1.a,t2.b,t3.c,t4.d) formally should be converted to
+ t1.a=t2.b AND t1.a=t3.c AND t1.a=t4.d. But t1.a=t2.a will be
+ generated for the upper level. Also t3.c=t4.d will be generated there.
+ So only t1.a=t3.c should be left in the lower level.
+ If cond is equal to 0, then not more then one equality is generated
+ and a pointer to it is returned as the result of the function.
+
+ Equality substutution and semi-join materialization nests:
+
+ In case join order looks like this:
+
+ outer_tbl1 outer_tbl2 SJM (inner_tbl1 inner_tbl2) outer_tbl3
+
+ We must not construct equalities like
+
+ outer_tbl1.col = inner_tbl1.col
+
+ because they would get attached to inner_tbl1 and will get evaluated
+ during materialization phase, when we don't have current value of
+ outer_tbl1.col.
+
+ Item_equal::get_first() also takes similar measures for dealing with
+ equality substitution in presense of SJM nests.
+
+ Grep for EqualityPropagationAndSjmNests for a more verbose description.
+
+ @return
+ - The condition with generated simple equalities or
+ a pointer to the simple generated equality, if success.
+ - 0, otherwise.
+*/
+
+Item *eliminate_item_equal(THD *thd, COND *cond, COND_EQUAL *upper_levels,
+ Item_equal *item_equal)
+{
+ List<Item> eq_list;
+ Item_func_eq *eq_item= 0;
+ if (((Item *) item_equal)->const_item() && !item_equal->val_int())
+ return (Item*) Item_false;
+ Item *item_const= item_equal->get_const();
+ Item_equal_fields_iterator it(*item_equal);
+ Item *head;
+ TABLE_LIST *current_sjm= NULL;
+ Item *current_sjm_head= NULL;
+
+ DBUG_ASSERT(!cond ||
+ cond->is_bool_literal() ||
+ (cond->type() == Item::FUNC_ITEM &&
+ ((Item_func *) cond)->functype() == Item_func::EQ_FUNC) ||
+ (cond->type() == Item::COND_ITEM &&
+ ((Item_func *) cond)->functype() == Item_func::COND_AND_FUNC));
+
+ /*
+ Pick the "head" item: the constant one or the first in the join order
+ (if the first in the join order happends to be inside an SJM nest, that's
+ ok, because this is where the value will be unpacked after
+ materialization).
+ */
+ if (item_const)
+ head= item_const;
+ else
+ {
+ TABLE_LIST *emb_nest;
+ head= item_equal->get_first(NO_PARTICULAR_TAB, NULL);
+ it++;
+ if ((emb_nest= embedding_sjm(head)))
+ {
+ current_sjm= emb_nest;
+ current_sjm_head= head;
+ }
+ }
+
+ Item *field_item;
+ /*
+ For each other item, generate "item=head" equality (except the tables that
+ are within SJ-Materialization nests, for those "head" is defined
+ differently)
+ */
+ while ((field_item= it++))
+ {
+ Item_equal *upper= field_item->find_item_equal(upper_levels);
+ Item *item= field_item;
+ TABLE_LIST *field_sjm= embedding_sjm(field_item);
+ if (!field_sjm)
+ {
+ current_sjm= NULL;
+ current_sjm_head= NULL;
+ }
+
+ /*
+ Check if "field_item=head" equality is already guaranteed to be true
+ on upper AND-levels.
+ */
+ if (upper)
+ {
+ TABLE_LIST *native_sjm= embedding_sjm(item_equal->context_field);
+ Item *upper_const= upper->get_const();
+ if (item_const && upper_const)
+ {
+ /*
+ Upper item also has "field_item=const".
+ Don't produce equality if const is equal to item_const.
+ */
+ Item_func_eq *func= new (thd->mem_root) Item_func_eq(thd, item_const, upper_const);
+ func->set_cmp_func(thd);
+ func->quick_fix_field();
+ if (func->val_int())
+ item= 0;
+ }
+ else
+ {
+ Item_equal_fields_iterator li(*item_equal);
+ while ((item= li++) != field_item)
+ {
+ if (embedding_sjm(item) == field_sjm &&
+ item->find_item_equal(upper_levels) == upper)
+ break;
+ }
+ }
+ if (embedding_sjm(field_item) != native_sjm)
+ item= NULL; /* Don't produce equality */
+ }
+
+ bool produce_equality= MY_TEST(item == field_item);
+ if (!item_const && field_sjm && field_sjm != current_sjm)
+ {
+ /* Entering an SJM nest */
+ current_sjm_head= field_item;
+ if (!field_sjm->sj_mat_info->is_sj_scan)
+ produce_equality= FALSE;
+ }
+
+ if (produce_equality)
+ {
+ if (eq_item && eq_list.push_back(eq_item, thd->mem_root))
+ return 0;
+
+ /*
+ If we're inside an SJM-nest (current_sjm!=NULL), and the multi-equality
+ doesn't include a constant, we should produce equality with the first
+ of the equal items in this SJM (except for the first element inside the
+ SJM. For that, we produce the equality with the "head" item).
+
+ In other cases, get the "head" item, which is either first of the
+ equals on top level, or the constant.
+ */
+ Item *head_item= (!item_const && current_sjm &&
+ current_sjm_head != field_item) ? current_sjm_head: head;
+ eq_item= new (thd->mem_root) Item_func_eq(thd,
+ field_item->remove_item_direct_ref(),
+ head_item->remove_item_direct_ref());
+
+ if (!eq_item || eq_item->set_cmp_func(thd))
+ return 0;
+ eq_item->quick_fix_field();
+ }
+ current_sjm= field_sjm;
+ }
+
+ /*
+ We have produced zero, one, or more pair-wise equalities eq_i. We want to
+ return an expression in form:
+
+ cond AND eq_1 AND eq_2 AND eq_3 AND ...
+
+ 'cond' is a parameter for this function, which may be NULL, an Item_bool(1),
+ or an Item_func_eq or an Item_cond_and.
+
+ We want to return a well-formed condition: no nested Item_cond_and objects,
+ or Item_cond_and with a single child:
+ - if 'cond' is an Item_cond_and, we add eq_i as its tail
+ - if 'cond' is Item_bool(1), we return eq_i
+ - otherwise, we create our own Item_cond_and and put 'cond' at the front of
+ it.
+ - if we have only one condition to return, we don't create an Item_cond_and
+ */
+
+ if (eq_item && eq_list.push_back(eq_item, thd->mem_root))
+ return 0;
+ COND *res= 0;
+ switch (eq_list.elements)
+ {
+ case 0:
+ res= cond ? cond : (Item*) Item_true;
+ break;
+ case 1:
+ if (!cond || cond->is_bool_literal())
+ res= eq_item;
+ break;
+ default:
+ break;
+ }
+ if (!res)
+ {
+ if (cond)
+ {
+ if (cond->type() == Item::COND_ITEM)
+ {
+ res= cond;
+ ((Item_cond *) res)->add_at_end(&eq_list);
+ }
+ else if (eq_list.push_front(cond, thd->mem_root))
+ return 0;
+ }
+ }
+ if (!res)
+ res= new (thd->mem_root) Item_cond_and(thd, eq_list);
+ if (res)
+ {
+ res->quick_fix_field();
+ res->update_used_tables();
+ }
+
+ return res;
+}
+
+
+/**
+ Substitute every field reference in a condition by the best equal field
+ and eliminate all multiple equality predicates.
+
+ The function retrieves the cond condition and for each encountered
+ multiple equality predicate it sorts the field references in it
+ according to the order of tables specified by the table_join_idx
+ parameter. Then it eliminates the multiple equality predicate it
+ replacing it by the conjunction of simple equality predicates
+ equating every field from the multiple equality to the first
+ field in it, or to the constant, if there is any.
+ After this the function retrieves all other conjuncted
+ predicates substitute every field reference by the field reference
+ to the first equal field or equal constant if there are any.
+
+ @param context_tab Join tab that 'cond' will be attached to, or
+ NO_PARTICULAR_TAB. See notes above.
+ @param cond condition to process
+ @param cond_equal multiple equalities to take into consideration
+ @param table_join_idx index to tables determining field preference
+ @param do_substitution if false: do not do any field substitution
+
+ @note
+ At the first glance full sort of fields in multiple equality
+ seems to be an overkill. Yet it's not the case due to possible
+ new fields in multiple equality item of lower levels. We want
+ the order in them to comply with the order of upper levels.
+
+ context_tab may be used to specify which join tab `cond` will be
+ attached to. There are two possible cases:
+
+ 1. context_tab != NO_PARTICULAR_TAB
+ We're doing substitution for an Item which will be evaluated in the
+ context of a particular item. For example, if the optimizer does a
+ ref access on "tbl1.key= expr" then
+ = equality substitution will be perfomed on 'expr'
+ = it is known in advance that 'expr' will be evaluated when
+ table t1 is accessed.
+ Note that in this kind of substution we never have to replace Item_equal
+ objects. For example, for
+
+ t.key= func(col1=col2 AND col2=const)
+
+ we will not build Item_equal or do equality substution (if we decide to,
+ this function will need to be fixed to handle it)
+
+ 2. context_tab == NO_PARTICULAR_TAB
+ We're doing substitution in WHERE/ON condition, which is not yet
+ attached to any particular join_tab. We will use information about the
+ chosen join order to make "optimal" substitions, i.e. those that allow
+ to apply filtering as soon as possible. See eliminate_item_equal() and
+ Item_equal::get_first() for details.
+
+ @return
+ The transformed condition, or NULL in case of error
+*/
+
+static COND* substitute_for_best_equal_field(THD *thd, JOIN_TAB *context_tab,
+ COND *cond,
+ COND_EQUAL *cond_equal,
+ void *table_join_idx,
+ bool do_substitution)
+{
+ Item_equal *item_equal;
+ COND *org_cond= cond; // Return this in case of fatal error
+
+ if (cond->type() == Item::COND_ITEM)
+ {
+ List<Item> *cond_list= ((Item_cond*) cond)->argument_list();
+
+ bool and_level= ((Item_cond*) cond)->functype() ==
+ Item_func::COND_AND_FUNC;
+ if (and_level)
+ {
+ cond_equal= &((Item_cond_and *) cond)->m_cond_equal;
+ cond_list->disjoin((List<Item> *) &cond_equal->current_level);/* remove Item_equal objects from the AND. */
+
+ List_iterator_fast<Item_equal> it(cond_equal->current_level);
+ while ((item_equal= it++))
+ {
+ item_equal->sort(&compare_fields_by_table_order, table_join_idx);
+ }
+ }
+
+ List_iterator<Item> li(*cond_list);
+ Item *item;
+ while ((item= li++))
+ {
+ Item *new_item= substitute_for_best_equal_field(thd, context_tab,
+ item, cond_equal,
+ table_join_idx,
+ do_substitution);
+ /*
+ This works OK with PS/SP re-execution as changes are made to
+ the arguments of AND/OR items only
+ */
+ if (new_item && new_item != item)
+ li.replace(new_item);
+ }
+
+ if (and_level)
+ {
+ COND *eq_cond= 0;
+ List_iterator_fast<Item_equal> it(cond_equal->current_level);
+ bool false_eq_cond= FALSE;
+ bool all_deleted= true;
+ while ((item_equal= it++))
+ {
+ if (item_equal->get_extraction_flag() == MARKER_DELETION)
+ continue;
+ all_deleted= false;
+ eq_cond= eliminate_item_equal(thd, eq_cond, cond_equal->upper_levels,
+ item_equal);
+ if (!eq_cond)
+ {
+ eq_cond= 0;
+ break;
+ }
+ else if (eq_cond->is_bool_literal() && !eq_cond->val_bool())
+ {
+ /*
+ This occurs when eliminate_item_equal() founds that cond is
+ always false and substitutes it with Item_int 0.
+ Due to this, value of item_equal will be 0, so just return it.
+ */
+ cond= eq_cond;
+ false_eq_cond= TRUE;
+ break;
+ }
+ }
+ if (eq_cond && !false_eq_cond)
+ {
+ /* Insert the generated equalities before all other conditions */
+ if (eq_cond->type() == Item::COND_ITEM)
+ ((Item_cond *) cond)->add_at_head(
+ ((Item_cond *) eq_cond)->argument_list());
+ else
+ {
+ if (cond_list->is_empty())
+ cond= eq_cond;
+ else
+ {
+ /* Do not add an equality condition if it's always true */
+ if (!eq_cond->is_bool_literal() &&
+ cond_list->push_front(eq_cond, thd->mem_root))
+ eq_cond= 0;
+ }
+ }
+ }
+ if (!eq_cond && !all_deleted)
+ {
+ /*
+ We are out of memory doing the transformation.
+ This is a fatal error now. However we bail out by returning the
+ original condition that we had before we started the transformation.
+ */
+ cond_list->append((List<Item> *) &cond_equal->current_level);
+ }
+ }
+ }
+ else if (cond->type() == Item::FUNC_ITEM &&
+ ((Item_func*) cond)->functype() == Item_func::MULT_EQUAL_FUNC)
+ {
+ item_equal= (Item_equal *) cond;
+ item_equal->sort(&compare_fields_by_table_order, table_join_idx);
+ cond_equal= item_equal->upper_levels;
+ if (cond_equal && cond_equal->current_level.head() == item_equal)
+ cond_equal= cond_equal->upper_levels;
+ if (item_equal->get_extraction_flag() == MARKER_DELETION)
+ return 0;
+ cond= eliminate_item_equal(thd, 0, cond_equal, item_equal);
+ return cond ? cond : org_cond;
+ }
+ else if (do_substitution)
+ {
+ while (cond_equal)
+ {
+ List_iterator_fast<Item_equal> it(cond_equal->current_level);
+ while((item_equal= it++))
+ {
+ REPLACE_EQUAL_FIELD_ARG arg= {item_equal, context_tab};
+ if (!(cond= cond->transform(thd, &Item::replace_equal_field,
+ (uchar *) &arg)))
+ return 0;
+ }
+ cond_equal= cond_equal->upper_levels;
+ }
+ }
+ return cond;
+}
+
+
+/**
+ Check appearance of new constant items in multiple equalities
+ of a condition after reading a constant table.
+
+ The function retrieves the cond condition and for each encountered
+ multiple equality checks whether new constants have appeared after
+ reading the constant (single row) table tab. If so it adjusts
+ the multiple equality appropriately.
+
+ @param cond condition whose multiple equalities are to be checked
+ @param table constant table that has been read
+ @param const_key mark key parts as constant
+*/
+
+static void update_const_equal_items(THD *thd, COND *cond, JOIN_TAB *tab,
+ bool const_key)
+{
+ if (!(cond->used_tables() & tab->table->map))
+ return;
+
+ if (cond->type() == Item::COND_ITEM)
+ {
+ List<Item> *cond_list= ((Item_cond*) cond)->argument_list();
+ List_iterator_fast<Item> li(*cond_list);
+ Item *item;
+ while ((item= li++))
+ update_const_equal_items(thd, item, tab,
+ cond->is_top_level_item() &&
+ ((Item_cond*) cond)->functype() ==
+ Item_func::COND_AND_FUNC);
+ }
+ else if (cond->type() == Item::FUNC_ITEM &&
+ ((Item_func*) cond)->functype() == Item_func::MULT_EQUAL_FUNC)
+ {
+ Item_equal *item_equal= (Item_equal *) cond;
+ bool contained_const= item_equal->get_const() != NULL;
+ item_equal->update_const(thd);
+ if (!contained_const && item_equal->get_const())
+ {
+ /* Update keys for range analysis */
+ Item_equal_fields_iterator it(*item_equal);
+ while (it++)
+ {
+ Field *field= it.get_curr_field();
+ JOIN_TAB *stat= field->table->reginfo.join_tab;
+ key_map possible_keys= field->key_start;
+ possible_keys.intersect(field->table->keys_in_use_for_query);
+ stat[0].const_keys.merge(possible_keys);
+
+ /*
+ For each field in the multiple equality (for which we know that it
+ is a constant) we have to find its corresponding key part, and set
+ that key part in const_key_parts.
+ */
+ if (!possible_keys.is_clear_all())
+ {
+ TABLE *field_tab= field->table;
+ KEYUSE *use;
+ for (use= stat->keyuse; use && use->table == field_tab; use++)
+ if (const_key &&
+ !use->is_for_hash_join() && possible_keys.is_set(use->key) &&
+ field_tab->key_info[use->key].key_part[use->keypart].field ==
+ field)
+ field_tab->const_key_parts[use->key]|= use->keypart_map;
+ }
+ }
+ }
+ }
+}
+
+
+/**
+ Check if
+ WHERE expr=value AND expr=const
+ can be rewritten as:
+ WHERE const=value AND expr=const
+
+ @param target - the target operator whose "expr" argument will be
+ replaced to "const".
+ @param target_expr - the target's "expr" which will be replaced to "const".
+ @param target_value - the target's second argument, it will remain unchanged.
+ @param source - the equality expression ("=" or "<=>") that
+ can be used to rewrite the "target" part
+ (under certain conditions, see the code).
+ @param source_expr - the source's "expr". It should be exactly equal to
+ the target's "expr" to make condition rewrite possible.
+ @param source_const - the source's "const" argument, it will be inserted
+ into "target" instead of "expr".
+*/
+static bool
+can_change_cond_ref_to_const(Item_bool_func2 *target,
+ Item *target_expr, Item *target_value,
+ Item_bool_func2 *source,
+ Item *source_expr, Item *source_const)
+{
+ return target_expr->eq(source_expr,0) &&
+ target_value != source_const &&
+ target->compare_type_handler()->
+ can_change_cond_ref_to_const(target, target_expr, target_value,
+ source, source_expr, source_const);
+}
+
+
+/*
+ change field = field to field = const for each found field = const in the
+ and_level
+*/
+
+static void
+change_cond_ref_to_const(THD *thd, I_List<COND_CMP> *save_list,
+ Item *and_father, Item *cond,
+ Item_bool_func2 *field_value_owner,
+ Item *field, Item *value)
+{
+ if (cond->type() == Item::COND_ITEM)
+ {
+ bool and_level= ((Item_cond*) cond)->functype() ==
+ Item_func::COND_AND_FUNC;
+ List_iterator<Item> li(*((Item_cond*) cond)->argument_list());
+ Item *item;
+ while ((item=li++))
+ change_cond_ref_to_const(thd, save_list,and_level ? cond : item, item,
+ field_value_owner, field, value);
+ return;
+ }
+ if (cond->eq_cmp_result() == Item::COND_OK)
+ return; // Not a boolean function
+
+ Item_bool_func2 *func= (Item_bool_func2*) cond;
+ Item **args= func->arguments();
+ Item *left_item= args[0];
+ Item *right_item= args[1];
+ Item_func::Functype functype= func->functype();
+
+ if (can_change_cond_ref_to_const(func, right_item, left_item,
+ field_value_owner, field, value))
+ {
+ Item *tmp=value->clone_item(thd);
+ if (tmp)
+ {
+ tmp->collation.set(right_item->collation);
+ thd->change_item_tree(args + 1, tmp);
+ func->update_used_tables();
+ if ((functype == Item_func::EQ_FUNC || functype == Item_func::EQUAL_FUNC)
+ && and_father != cond && !left_item->const_item())
+ {
+ cond->marker= MARKER_CHANGE_COND;
+ COND_CMP *tmp2;
+ /* Will work, even if malloc would fail */
+ if ((tmp2= new (thd->mem_root) COND_CMP(and_father, func)))
+ save_list->push_back(tmp2);
+ }
+ /*
+ LIKE can be optimized for BINARY/VARBINARY/BLOB columns, e.g.:
+
+ from: WHERE CONCAT(c1)='const1' AND CONCAT(c1) LIKE 'const2'
+ to: WHERE CONCAT(c1)='const1' AND 'const1' LIKE 'const2'
+
+ So make sure to use set_cmp_func() only for non-LIKE operators.
+ */
+ if (functype != Item_func::LIKE_FUNC)
+ ((Item_bool_rowready_func2*) func)->set_cmp_func(thd);
+ }
+ }
+ else if (can_change_cond_ref_to_const(func, left_item, right_item,
+ field_value_owner, field, value))
+ {
+ Item *tmp= value->clone_item(thd);
+ if (tmp)
+ {
+ tmp->collation.set(left_item->collation);
+ thd->change_item_tree(args, tmp);
+ value= tmp;
+ func->update_used_tables();
+ if ((functype == Item_func::EQ_FUNC || functype == Item_func::EQUAL_FUNC)
+ && and_father != cond && !right_item->const_item())
+ {
+ args[0]= args[1]; // For easy check
+ thd->change_item_tree(args + 1, value);
+ cond->marker= MARKER_CHANGE_COND;
+ COND_CMP *tmp2;
+ /* Will work, even if malloc would fail */
+ if ((tmp2=new (thd->mem_root) COND_CMP(and_father, func)))
+ save_list->push_back(tmp2);
+ }
+ if (functype != Item_func::LIKE_FUNC)
+ ((Item_bool_rowready_func2*) func)->set_cmp_func(thd);
+ }
+ }
+}
+
+
+static void
+propagate_cond_constants(THD *thd, I_List<COND_CMP> *save_list,
+ COND *and_father, COND *cond)
+{
+ if (cond->type() == Item::COND_ITEM)
+ {
+ bool and_level= ((Item_cond*) cond)->functype() ==
+ Item_func::COND_AND_FUNC;
+ List_iterator_fast<Item> li(*((Item_cond*) cond)->argument_list());
+ Item *item;
+ I_List<COND_CMP> save;
+ while ((item=li++))
+ {
+ propagate_cond_constants(thd, &save,and_level ? cond : item, item);
+ }
+ if (and_level)
+ { // Handle other found items
+ I_List_iterator<COND_CMP> cond_itr(save);
+ COND_CMP *cond_cmp;
+ while ((cond_cmp=cond_itr++))
+ {
+ Item **args= cond_cmp->cmp_func->arguments();
+ if (!args[0]->const_item())
+ change_cond_ref_to_const(thd, &save,cond_cmp->and_level,
+ cond_cmp->and_level,
+ cond_cmp->cmp_func, args[0], args[1]);
+ }
+ }
+ }
+ else if (and_father != cond && cond->marker == MARKER_UNUSED) // In a AND group
+ {
+ if (cond->type() == Item::FUNC_ITEM &&
+ (((Item_func*) cond)->functype() == Item_func::EQ_FUNC ||
+ ((Item_func*) cond)->functype() == Item_func::EQUAL_FUNC))
+ {
+ Item_bool_func2 *func= dynamic_cast<Item_bool_func2*>(cond);
+ Item **args= func->arguments();
+ bool left_const= args[0]->can_eval_in_optimize();
+ bool right_const= args[1]->can_eval_in_optimize();
+ if (!(left_const && right_const) &&
+ args[0]->cmp_type() == args[1]->cmp_type())
+ {
+ if (right_const)
+ {
+ resolve_const_item(thd, &args[1], args[0]);
+ func->update_used_tables();
+ change_cond_ref_to_const(thd, save_list, and_father, and_father,
+ func, args[0], args[1]);
+ }
+ else if (left_const)
+ {
+ resolve_const_item(thd, &args[0], args[1]);
+ func->update_used_tables();
+ change_cond_ref_to_const(thd, save_list, and_father, and_father,
+ func, args[1], args[0]);
+ }
+ }
+ }
+ }
+}
+
+/**
+ Simplify joins replacing outer joins by inner joins whenever it's
+ possible.
+
+ The function, during a retrieval of join_list, eliminates those
+ outer joins that can be converted into inner join, possibly nested.
+ It also moves the on expressions for the converted outer joins
+ and from inner joins to conds.
+ The function also calculates some attributes for nested joins:
+ - used_tables
+ - not_null_tables
+ - dep_tables.
+ - on_expr_dep_tables
+ The first two attributes are used to test whether an outer join can
+ be substituted for an inner join. The third attribute represents the
+ relation 'to be dependent on' for tables. If table t2 is dependent
+ on table t1, then in any evaluated execution plan table access to
+ table t2 must precede access to table t2. This relation is used also
+ to check whether the query contains invalid cross-references.
+ The forth attribute is an auxiliary one and is used to calculate
+ dep_tables.
+ As the attribute dep_tables qualifies possibles orders of tables in the
+ execution plan, the dependencies required by the straight join
+ modifiers are reflected in this attribute as well.
+ The function also removes all braces that can be removed from the join
+ expression without changing its meaning.
+
+ @note
+ An outer join can be replaced by an inner join if the where condition
+ or the on expression for an embedding nested join contains a conjunctive
+ predicate rejecting null values for some attribute of the inner tables.
+
+ E.g. in the query:
+ @code
+ SELECT * FROM t1 LEFT JOIN t2 ON t2.a=t1.a WHERE t2.b < 5
+ @endcode
+ the predicate t2.b < 5 rejects nulls.
+ The query is converted first to:
+ @code
+ SELECT * FROM t1 INNER JOIN t2 ON t2.a=t1.a WHERE t2.b < 5
+ @endcode
+ then to the equivalent form:
+ @code
+ SELECT * FROM t1, t2 ON t2.a=t1.a WHERE t2.b < 5 AND t2.a=t1.a
+ @endcode
+
+
+ Similarly the following query:
+ @code
+ SELECT * from t1 LEFT JOIN (t2, t3) ON t2.a=t1.a t3.b=t1.b
+ WHERE t2.c < 5
+ @endcode
+ is converted to:
+ @code
+ SELECT * FROM t1, (t2, t3) WHERE t2.c < 5 AND t2.a=t1.a t3.b=t1.b
+
+ @endcode
+
+ One conversion might trigger another:
+ @code
+ SELECT * FROM t1 LEFT JOIN t2 ON t2.a=t1.a
+ LEFT JOIN t3 ON t3.b=t2.b
+ WHERE t3 IS NOT NULL =>
+ SELECT * FROM t1 LEFT JOIN t2 ON t2.a=t1.a, t3
+ WHERE t3 IS NOT NULL AND t3.b=t2.b =>
+ SELECT * FROM t1, t2, t3
+ WHERE t3 IS NOT NULL AND t3.b=t2.b AND t2.a=t1.a
+ @endcode
+
+ The function removes all unnecessary braces from the expression
+ produced by the conversions.
+ E.g.
+ @code
+ SELECT * FROM t1, (t2, t3) WHERE t2.c < 5 AND t2.a=t1.a AND t3.b=t1.b
+ @endcode
+ finally is converted to:
+ @code
+ SELECT * FROM t1, t2, t3 WHERE t2.c < 5 AND t2.a=t1.a AND t3.b=t1.b
+
+ @endcode
+
+
+ It also will remove braces from the following queries:
+ @code
+ SELECT * from (t1 LEFT JOIN t2 ON t2.a=t1.a) LEFT JOIN t3 ON t3.b=t2.b
+ SELECT * from (t1, (t2,t3)) WHERE t1.a=t2.a AND t2.b=t3.b.
+ @endcode
+
+ The benefit of this simplification procedure is that it might return
+ a query for which the optimizer can evaluate execution plan with more
+ join orders. With a left join operation the optimizer does not
+ consider any plan where one of the inner tables is before some of outer
+ tables.
+
+ IMPLEMENTATION
+ The function is implemented by a recursive procedure. On the recursive
+ ascent all attributes are calculated, all outer joins that can be
+ converted are replaced and then all unnecessary braces are removed.
+ As join list contains join tables in the reverse order sequential
+ elimination of outer joins does not require extra recursive calls.
+
+ SEMI-JOIN NOTES
+ Remove all semi-joins that have are within another semi-join (i.e. have
+ an "ancestor" semi-join nest)
+
+ EXAMPLES
+ Here is an example of a join query with invalid cross references:
+ @code
+ SELECT * FROM t1 LEFT JOIN t2 ON t2.a=t3.a LEFT JOIN t3 ON t3.b=t1.b
+ @endcode
+
+ @param join reference to the query info
+ @param join_list list representation of the join to be converted
+ @param conds conditions to add on expressions for converted joins
+ @param top true <=> conds is the where condition
+ @param in_sj TRUE <=> processing semi-join nest's children
+ @return
+ - The new condition, if success
+ - 0, otherwise
+*/
+
+static COND *
+simplify_joins(JOIN *join, List<TABLE_LIST> *join_list, COND *conds, bool top,
+ bool in_sj)
+{
+ TABLE_LIST *table;
+ NESTED_JOIN *nested_join;
+ TABLE_LIST *prev_table= 0;
+ List_iterator<TABLE_LIST> li(*join_list);
+ bool straight_join= MY_TEST(join->select_options & SELECT_STRAIGHT_JOIN);
+ DBUG_ENTER("simplify_joins");
+
+ /*
+ Try to simplify join operations from join_list.
+ The most outer join operation is checked for conversion first.
+ */
+ while ((table= li++))
+ {
+ table_map used_tables;
+ table_map not_null_tables= (table_map) 0;
+
+ if ((nested_join= table->nested_join))
+ {
+ /*
+ If the element of join_list is a nested join apply
+ the procedure to its nested join list first.
+ */
+ if (table->on_expr)
+ {
+ Item *expr= table->on_expr;
+ /*
+ If an on expression E is attached to the table,
+ check all null rejected predicates in this expression.
+ If such a predicate over an attribute belonging to
+ an inner table of an embedded outer join is found,
+ the outer join is converted to an inner join and
+ the corresponding on expression is added to E.
+ */
+ expr= simplify_joins(join, &nested_join->join_list,
+ expr, FALSE, in_sj || table->sj_on_expr);
+
+ if (!table->prep_on_expr || expr != table->on_expr)
+ {
+ DBUG_ASSERT(expr);
+
+ table->on_expr= expr;
+ table->prep_on_expr= expr->copy_andor_structure(join->thd);
+ }
+ }
+ nested_join->used_tables= (table_map) 0;
+ nested_join->not_null_tables=(table_map) 0;
+ conds= simplify_joins(join, &nested_join->join_list, conds, top,
+ in_sj || table->sj_on_expr);
+ used_tables= nested_join->used_tables;
+ not_null_tables= nested_join->not_null_tables;
+ /* The following two might become unequal after table elimination: */
+ nested_join->n_tables= nested_join->join_list.elements;
+ }
+ else
+ {
+ if (!table->prep_on_expr)
+ table->prep_on_expr= table->on_expr;
+ used_tables= table->get_map();
+ if (conds)
+ not_null_tables= conds->not_null_tables();
+ }
+
+ if (table->embedding)
+ {
+ table->embedding->nested_join->used_tables|= used_tables;
+ table->embedding->nested_join->not_null_tables|= not_null_tables;
+ }
+
+ if (!(table->outer_join & (JOIN_TYPE_LEFT | JOIN_TYPE_RIGHT)) ||
+ (used_tables & not_null_tables))
+ {
+ /*
+ For some of the inner tables there are conjunctive predicates
+ that reject nulls => the outer join can be replaced by an inner join.
+ */
+ if (table->outer_join && !table->embedding && table->table)
+ table->table->maybe_null= FALSE;
+ table->outer_join= 0;
+ if (!(straight_join || table->straight))
+ {
+ table->dep_tables= 0;
+ TABLE_LIST *embedding= table->embedding;
+ while (embedding)
+ {
+ if (embedding->nested_join->join_list.head()->outer_join)
+ {
+ if (!embedding->sj_subq_pred)
+ table->dep_tables= embedding->dep_tables;
+ break;
+ }
+ embedding= embedding->embedding;
+ }
+ }
+ if (table->on_expr)
+ {
+ /* Add ON expression to the WHERE or upper-level ON condition. */
+ if (conds)
+ {
+ conds= and_conds(join->thd, conds, table->on_expr);
+ conds->top_level_item();
+ /* conds is always a new item as both cond and on_expr existed */
+ DBUG_ASSERT(!conds->fixed());
+ conds->fix_fields(join->thd, &conds);
+ }
+ else
+ conds= table->on_expr;
+ table->prep_on_expr= table->on_expr= 0;
+ }
+ }
+
+ /*
+ Only inner tables of non-convertible outer joins
+ remain with on_expr.
+ */
+ if (table->on_expr)
+ {
+ table_map table_on_expr_used_tables= table->on_expr->used_tables();
+ table->dep_tables|= table_on_expr_used_tables;
+ if (table->embedding)
+ {
+ table->dep_tables&= ~table->embedding->nested_join->used_tables;
+ /*
+ Embedding table depends on tables used
+ in embedded on expressions.
+ */
+ table->embedding->on_expr_dep_tables|= table_on_expr_used_tables;
+ }
+ else
+ table->dep_tables&= ~table->get_map();
+ }
+
+ if (prev_table)
+ {
+ /* The order of tables is reverse: prev_table follows table */
+ if (prev_table->straight || straight_join)
+ prev_table->dep_tables|= used_tables;
+ if (prev_table->on_expr)
+ {
+ prev_table->dep_tables|= table->on_expr_dep_tables;
+ table_map prev_used_tables= prev_table->nested_join ?
+ prev_table->nested_join->used_tables :
+ prev_table->get_map();
+ /*
+ If on expression contains only references to inner tables
+ we still make the inner tables dependent on the outer tables.
+ It would be enough to set dependency only on one outer table
+ for them. Yet this is really a rare case.
+ Note:
+ RAND_TABLE_BIT mask should not be counted as it
+ prevents update of inner table dependences.
+ For example it might happen if RAND() function
+ is used in JOIN ON clause.
+ */
+ if (!((prev_table->on_expr->used_tables() &
+ ~(OUTER_REF_TABLE_BIT | RAND_TABLE_BIT)) &
+ ~prev_used_tables))
+ prev_table->dep_tables|= used_tables;
+ }
+ }
+ prev_table= table;
+ }
+
+ /*
+ Flatten nested joins that can be flattened.
+ no ON expression and not a semi-join => can be flattened.
+ */
+ li.rewind();
+ while ((table= li++))
+ {
+ nested_join= table->nested_join;
+ if (table->sj_on_expr && !in_sj)
+ {
+ /*
+ If this is a semi-join that is not contained within another semi-join
+ leave it intact (otherwise it is flattened)
+ */
+ /*
+ Make sure that any semi-join appear in
+ the join->select_lex->sj_nests list only once
+ */
+ List_iterator_fast<TABLE_LIST> sj_it(join->select_lex->sj_nests);
+ TABLE_LIST *sj_nest;
+ while ((sj_nest= sj_it++))
+ {
+ if (table == sj_nest)
+ break;
+ }
+ if (sj_nest)
+ continue;
+ join->select_lex->sj_nests.push_back(table, join->thd->mem_root);
+
+ /*
+ Also, walk through semi-join children and mark those that are now
+ top-level
+ */
+ TABLE_LIST *tbl;
+ List_iterator<TABLE_LIST> it(nested_join->join_list);
+ while ((tbl= it++))
+ {
+ if (!tbl->on_expr && tbl->table)
+ tbl->table->maybe_null= FALSE;
+ }
+ }
+ else if (nested_join && !table->on_expr)
+ {
+ TABLE_LIST *tbl;
+ List_iterator<TABLE_LIST> it(nested_join->join_list);
+ List<TABLE_LIST> repl_list;
+ while ((tbl= it++))
+ {
+ tbl->embedding= table->embedding;
+ if (!tbl->embedding && !tbl->on_expr && tbl->table)
+ tbl->table->maybe_null= FALSE;
+ tbl->join_list= table->join_list;
+ repl_list.push_back(tbl, join->thd->mem_root);
+ tbl->dep_tables|= table->dep_tables;
+ }
+ li.replace(repl_list);
+ }
+ }
+ DBUG_RETURN(conds);
+}
+
+
+/**
+ Assign each nested join structure a bit in nested_join_map.
+
+ Assign each nested join structure (except ones that embed only one element
+ and so are redundant) a bit in nested_join_map.
+
+ @param join Join being processed
+ @param join_list List of tables
+ @param first_unused Number of first unused bit in nested_join_map before the
+ call
+
+ @note
+ This function is called after simplify_joins(), when there are no
+ redundant nested joins, #non_redundant_nested_joins <= #tables_in_join so
+ we will not run out of bits in nested_join_map.
+
+ @return
+ First unused bit in nested_join_map after the call.
+*/
+
+static uint build_bitmap_for_nested_joins(List<TABLE_LIST> *join_list,
+ uint first_unused)
+{
+ List_iterator<TABLE_LIST> li(*join_list);
+ TABLE_LIST *table;
+ DBUG_ENTER("build_bitmap_for_nested_joins");
+ while ((table= li++))
+ {
+ NESTED_JOIN *nested_join;
+ if ((nested_join= table->nested_join))
+ {
+ /*
+ It is guaranteed by simplify_joins() function that a nested join
+ that has only one child represents a single table VIEW (and the child
+ is an underlying table). We don't assign bits to such nested join
+ structures because
+ 1. it is redundant (a "sequence" of one table cannot be interleaved
+ with anything)
+ 2. we could run out bits in nested_join_map otherwise.
+ */
+ if (nested_join->n_tables != 1)
+ {
+ /* Don't assign bits to sj-nests */
+ if (table->on_expr)
+ nested_join->nj_map= (nested_join_map) 1 << first_unused++;
+ first_unused= build_bitmap_for_nested_joins(&nested_join->join_list,
+ first_unused);
+ }
+ }
+ }
+ DBUG_RETURN(first_unused);
+}
+
+
+/**
+ Set NESTED_JOIN::counter and n_tables in all nested joins in passed list.
+
+ For all nested joins contained in the passed join_list (including its
+ children), set:
+ - nested_join->counter=0
+ - nested_join->n_tables= {number of non-degenerate direct children}.
+
+ Non-degenerate means non-const base table or a join nest that has a
+ non-degenerate child.
+
+ @param join_list List of nested joins to process. It may also contain base
+ tables which will be ignored.
+*/
+
+static uint reset_nj_counters(JOIN *join, List<TABLE_LIST> *join_list)
+{
+ List_iterator<TABLE_LIST> li(*join_list);
+ TABLE_LIST *table;
+ DBUG_ENTER("reset_nj_counters");
+ uint n=0;
+ while ((table= li++))
+ {
+ NESTED_JOIN *nested_join;
+ bool is_eliminated_nest= FALSE;
+ if ((nested_join= table->nested_join))
+ {
+ nested_join->counter= 0;
+ nested_join->n_tables= reset_nj_counters(join, &nested_join->join_list);
+ if (!nested_join->n_tables)
+ is_eliminated_nest= TRUE;
+ }
+ const table_map removed_tables= join->eliminated_tables |
+ join->const_table_map;
+
+ if ((table->nested_join && !is_eliminated_nest) ||
+ (!table->nested_join && (table->table->map & ~removed_tables)))
+ n++;
+ }
+ DBUG_RETURN(n);
+}
+
+
+/**
+ Check interleaving with an inner tables of an outer join for
+ extension table.
+
+ Check if table next_tab can be added to current partial join order, and
+ if yes, record that it has been added.
+
+ The function assumes that both current partial join order and its
+ extension with next_tab are valid wrt table dependencies.
+
+ @verbatim
+ IMPLEMENTATION
+ LIMITATIONS ON JOIN ORDER
+ The nested [outer] joins executioner algorithm imposes these
+ limitations on join order:
+ 1. "Outer tables first" - any "outer" table must be before any
+ corresponding "inner" table.
+ 2. "No interleaving" - tables inside a nested join must form a
+ continuous sequence in join order (i.e. the sequence must not be
+ interrupted by tables that are outside of this nested join).
+
+ #1 is checked elsewhere, this function checks #2 provided that #1 has
+ been already checked.
+
+ WHY NEED NON-INTERLEAVING
+ Consider an example:
+
+ select * from t0 join t1 left join (t2 join t3) on cond1
+
+ The join order "t1 t2 t0 t3" is invalid:
+
+ table t0 is outside of the nested join, so WHERE condition
+ for t0 is attached directly to t0 (without triggers, and it
+ may be used to access t0). Applying WHERE(t0) to (t2,t0,t3)
+ record is invalid as we may miss combinations of (t1, t2, t3)
+ that satisfy condition cond1, and produce a null-complemented
+ (t1, t2.NULLs, t3.NULLs) row, which should not have been
+ produced.
+
+ If table t0 is not between t2 and t3, the problem doesn't exist:
+ If t0 is located after (t2,t3), WHERE(t0) is applied after nested
+ join processing has finished.
+ If t0 is located before (t2,t3), predicates like WHERE_cond(t0, t2)
+ are wrapped into condition triggers, which takes care of correct
+ nested join processing.
+
+ HOW IT IS IMPLEMENTED
+ The limitations on join order can be rephrased as follows: for valid
+ join order one must be able to:
+ 1. write down the used tables in the join order on one line.
+ 2. for each nested join, put one '(' and one ')' on the said line
+ 3. write "LEFT JOIN" and "ON (...)" where appropriate
+ 4. get a query equivalent to the query we're trying to execute.
+
+ Calls to check_interleaving_with_nj() are equivalent to writing the
+ above described line from left to right.
+
+ A single check_interleaving_with_nj(A,B) call is equivalent
+ to writing table B and appropriate brackets on condition that
+ table A and appropriate brackets is the last what was
+ written. Graphically the transition is as follows:
+
+ +---- current position
+ |
+ ... last_tab ))) | ( next_tab ) )..) | ...
+ X Y Z |
+ +- need to move to this
+ position.
+
+ Notes about the position:
+ The caller guarantees that there is no more then one X-bracket by
+ checking "!(remaining_tables & s->dependent)" before calling this
+ function. X-bracket may have a pair in Y-bracket.
+
+ When "writing" we store/update this auxilary info about the current
+ position:
+ 1. join->cur_embedding_map - bitmap of pairs of brackets (aka nested
+ joins) we've opened but didn't close.
+ 2. {each NESTED_JOIN structure not simplified away}->counter - number
+ of this nested join's children that have already been added to to
+ the partial join order.
+ @endverbatim
+
+ @param next_tab Table we're going to extend the current partial join with
+
+ @retval
+ FALSE Join order extended, nested joins info about current join
+ order (see NOTE section) updated.
+ @retval
+ TRUE Requested join order extension not allowed.
+*/
+
+static bool check_interleaving_with_nj(JOIN_TAB *next_tab)
+{
+ JOIN *join= next_tab->join;
+
+ if (join->cur_embedding_map & ~next_tab->embedding_map)
+ {
+ /*
+ next_tab is outside of the "pair of brackets" we're currently in.
+ Cannot add it.
+ */
+ return TRUE;
+ }
+
+ TABLE_LIST *next_emb= next_tab->table->pos_in_table_list->embedding;
+ /*
+ Do update counters for "pairs of brackets" that we've left (marked as
+ X,Y,Z in the above picture)
+ */
+ for (;next_emb && next_emb != join->emb_sjm_nest; next_emb= next_emb->embedding)
+ {
+ if (!next_emb->sj_on_expr)
+ {
+ next_emb->nested_join->counter++;
+ if (next_emb->nested_join->counter == 1)
+ {
+ /*
+ next_emb is the first table inside a nested join we've "entered". In
+ the picture above, we're looking at the 'X' bracket. Don't exit yet as
+ X bracket might have Y pair bracket.
+ */
+ join->cur_embedding_map |= next_emb->nested_join->nj_map;
+ }
+
+ if (next_emb->nested_join->n_tables !=
+ next_emb->nested_join->counter)
+ break;
+
+ /*
+ We're currently at Y or Z-bracket as depicted in the above picture.
+ Mark that we've left it and continue walking up the brackets hierarchy.
+ */
+ join->cur_embedding_map &= ~next_emb->nested_join->nj_map;
+ }
+ }
+ return FALSE;
+}
+
+
+/**
+ Nested joins perspective: Remove the last table from the join order.
+
+ The algorithm is the reciprocal of check_interleaving_with_nj(), hence
+ parent join nest nodes are updated only when the last table in its child
+ node is removed. The ASCII graphic below will clarify.
+
+ %A table nesting such as <tt> t1 x [ ( t2 x t3 ) x ( t4 x t5 ) ] </tt>is
+ represented by the below join nest tree.
+
+ @verbatim
+ NJ1
+ _/ / \
+ _/ / NJ2
+ _/ / / \
+ / / / \
+ t1 x [ (t2 x t3) x (t4 x t5) ]
+ @endverbatim
+
+ At the point in time when check_interleaving_with_nj() adds the table t5 to
+ the query execution plan, QEP, it also directs the node named NJ2 to mark
+ the table as covered. NJ2 does so by incrementing its @c counter
+ member. Since all of NJ2's tables are now covered by the QEP, the algorithm
+ proceeds up the tree to NJ1, incrementing its counter as well. All join
+ nests are now completely covered by the QEP.
+
+ restore_prev_nj_state() does the above in reverse. As seen above, the node
+ NJ1 contains the nodes t2, t3, and NJ2. Its counter being equal to 3 means
+ that the plan covers t2, t3, and NJ2, @e and that the sub-plan (t4 x t5)
+ completely covers NJ2. The removal of t5 from the partial plan will first
+ decrement NJ2's counter to 1. It will then detect that NJ2 went from being
+ completely to partially covered, and hence the algorithm must continue
+ upwards to NJ1 and decrement its counter to 2. %A subsequent removal of t4
+ will however not influence NJ1 since it did not un-cover the last table in
+ NJ2.
+
+ SYNOPSIS
+ restore_prev_nj_state()
+ last join table to remove, it is assumed to be the last in current
+ partial join order.
+
+ DESCRIPTION
+
+ Remove the last table from the partial join order and update the nested
+ joins counters and join->cur_embedding_map. It is ok to call this
+ function for the first table in join order (for which
+ check_interleaving_with_nj has not been called)
+
+ @param last join table to remove, it is assumed to be the last in current
+ partial join order.
+*/
+
+static void restore_prev_nj_state(JOIN_TAB *last)
+{
+ TABLE_LIST *last_emb= last->table->pos_in_table_list->embedding;
+ JOIN *join= last->join;
+ for (;last_emb != NULL && last_emb != join->emb_sjm_nest;
+ last_emb= last_emb->embedding)
+ {
+ if (!last_emb->sj_on_expr)
+ {
+ NESTED_JOIN *nest= last_emb->nested_join;
+ DBUG_ASSERT(nest->counter > 0);
+
+ bool was_fully_covered= nest->is_fully_covered();
+
+ join->cur_embedding_map|= nest->nj_map;
+
+ if (--nest->counter == 0)
+ join->cur_embedding_map&= ~nest->nj_map;
+
+ if (!was_fully_covered)
+ break;
+ }
+ }
+}
+
+
+/*
+ Compute allowed_top_level_tables - a bitmap of tables one can put into the
+ join order if the last table in the join prefix is not inside any outer
+ join nest.
+
+ NESTED_JOIN::direct_children_map - a bitmap of tables ... if the last
+ table in the join prefix is inside the join nest.
+
+ Note: it looks like a sensible way to do this is a top-down descent on
+ JOIN::join_list, but apparently that list is missing I_S tables.
+ e.g. for SHOW TABLES WHERE col IN (SELECT ...) it will just have a
+ semi-join nest.
+*/
+
+void JOIN::calc_allowed_top_level_tables(SELECT_LEX *lex)
+{
+ TABLE_LIST *tl;
+ List_iterator<TABLE_LIST> ti(lex->leaf_tables);
+ DBUG_ENTER("JOIN::calc_allowed_top_level_tables");
+ DBUG_ASSERT(allowed_top_level_tables == 0); // Should only be called once
+
+ while ((tl= ti++))
+ {
+ table_map map;
+ TABLE_LIST *embedding= tl->embedding;
+
+ if (tl->table)
+ map= tl->table->map;
+ else
+ {
+ DBUG_ASSERT(tl->jtbm_subselect);
+ map= table_map(1) << tl->jtbm_table_no;
+ }
+
+ if (!(embedding= tl->embedding))
+ {
+ allowed_top_level_tables |= map;
+ continue;
+ }
+
+ // Walk out of any semi-join nests
+ while (embedding && !embedding->on_expr)
+ {
+ // semi-join nest or an INSERT-INTO view...
+ embedding->nested_join->direct_children_map |= map;
+ embedding= embedding->embedding;
+ }
+
+ // Ok we are in the parent nested outer join nest.
+ if (!embedding)
+ {
+ allowed_top_level_tables |= map;
+ continue;
+ }
+ embedding->nested_join->direct_children_map |= map;
+
+ // Walk to grand-parent join nest.
+ embedding= embedding->embedding;
+
+ // Walk out of any semi-join nests
+ while (embedding && !embedding->on_expr)
+ {
+ DBUG_ASSERT(embedding->sj_on_expr);
+ embedding->nested_join->direct_children_map |= map;
+ embedding= embedding->embedding;
+ }
+
+ if (embedding)
+ {
+ DBUG_ASSERT(embedding->on_expr); // Impossible, see above
+ embedding->nested_join->direct_children_map |= map;
+ }
+ else
+ allowed_top_level_tables |= map;
+ }
+ DBUG_VOID_RETURN;
+}
+
+
+/*
+ Get the tables that one is allowed to have as the next table in the
+ current plan
+*/
+
+table_map JOIN::get_allowed_nj_tables(uint idx)
+{
+ TABLE_LIST *last_emb;
+ if (idx > const_tables &&
+ (last_emb= positions[idx-1].table->table->pos_in_table_list->embedding))
+ {
+ for (;last_emb && last_emb != emb_sjm_nest;
+ last_emb= last_emb->embedding)
+ {
+ if (!last_emb->sj_on_expr)
+ {
+ NESTED_JOIN *nest= last_emb->nested_join;
+ if (!nest->is_fully_covered())
+ {
+ // Return tables that are direct members of this join nest
+ return nest->direct_children_map;
+ }
+ }
+ }
+ }
+ // Return bitmap of tables not in any join nest
+ if (emb_sjm_nest)
+ return emb_sjm_nest->nested_join->direct_children_map;
+ return allowed_top_level_tables;
+}
+
+
+/*
+ Change access methods not to use join buffering and adjust costs accordingly
+
+ SYNOPSIS
+ optimize_wo_join_buffering()
+ join
+ first_tab The first tab to do re-optimization for
+ last_tab The last tab to do re-optimization for
+ last_remaining_tables Bitmap of tables that are not in the
+ [0...last_tab] join prefix
+ first_alt TRUE <=> Use the LooseScan plan for the first_tab
+ no_jbuf_before Don't allow to use join buffering before this
+ table
+ reopt_rec_count OUT New output record count
+ reopt_cost OUT New join prefix cost
+
+ DESCRIPTION
+ Given a join prefix [0; ... first_tab], change the access to the tables
+ in the [first_tab; last_tab] not to use join buffering. This is needed
+ because some semi-join strategies cannot be used together with the join
+ buffering.
+ In general case the best table order in [first_tab; last_tab] range with
+ join buffering is different from the best order without join buffering but
+ we don't try finding a better join order. (TODO ask Igor why did we
+ chose not to do this in the end. that's actually the difference from the
+ forking approach)
+*/
+
+void optimize_wo_join_buffering(JOIN *join, uint first_tab, uint last_tab,
+ table_map last_remaining_tables,
+ bool first_alt, uint no_jbuf_before,
+ double *outer_rec_count, double *reopt_cost)
+{
+ double cost, rec_count;
+ table_map reopt_remaining_tables= last_remaining_tables;
+ uint i;
+ THD *thd= join->thd;
+ Json_writer_temp_disable trace_wo_join_buffering(thd);
+
+ if (first_tab > join->const_tables)
+ {
+ cost= join->positions[first_tab - 1].prefix_cost;
+ rec_count= join->positions[first_tab - 1].prefix_record_count;
+ }
+ else
+ {
+ cost= 0.0;
+ rec_count= 1;
+ }
+
+ *outer_rec_count= rec_count;
+ for (i= first_tab; i <= last_tab; i++)
+ reopt_remaining_tables |= join->positions[i].table->table->map;
+
+ /*
+ best_access_path() optimization depends on the value of
+ join->cur_sj_inner_tables. Our goal in this function is to do a
+ re-optimization with disabled join buffering, but no other changes.
+ In order to achieve this, cur_sj_inner_tables needs have the same
+ value it had during the original invocations of best_access_path.
+
+ We know that this function, optimize_wo_join_buffering() is called to
+ re-optimize semi-join join order range, which allows to conclude that
+ the "original" value of cur_sj_inner_tables was 0.
+ */
+ table_map save_cur_sj_inner_tables= join->cur_sj_inner_tables;
+ join->cur_sj_inner_tables= 0;
+
+ for (i= first_tab; i <= last_tab; i++)
+ {
+ JOIN_TAB *rs= join->positions[i].table;
+ POSITION pos, loose_scan_pos;
+
+ if ((i == first_tab && first_alt) || join->positions[i].use_join_buffer)
+ {
+ /* Find the best access method that would not use join buffering */
+ best_access_path(join, rs, reopt_remaining_tables,
+ join->positions, i,
+ TRUE, rec_count,
+ &pos, &loose_scan_pos);
+ }
+ else
+ pos= join->positions[i];
+
+ if ((i == first_tab && first_alt))
+ pos= loose_scan_pos;
+
+ reopt_remaining_tables &= ~rs->table->map;
+ rec_count= COST_MULT(rec_count, pos.records_read);
+ cost= COST_ADD(cost, pos.read_time);
+ cost= COST_ADD(cost, rec_count / TIME_FOR_COMPARE);
+ //TODO: take into account join condition selectivity here
+ double pushdown_cond_selectivity= 1.0;
+ table_map real_table_bit= rs->table->map;
+ if (join->thd->variables.optimizer_use_condition_selectivity > 1)
+ {
+ pushdown_cond_selectivity= table_cond_selectivity(join, i, rs,
+ reopt_remaining_tables &
+ ~real_table_bit);
+ }
+ double partial_join_cardinality= rec_count *
+ pushdown_cond_selectivity;
+ join->positions[i].partial_join_cardinality= partial_join_cardinality;
+ (*outer_rec_count) *= pushdown_cond_selectivity;
+ if (!rs->emb_sj_nest)
+ *outer_rec_count= COST_MULT(*outer_rec_count, pos.records_read);
+
+ }
+ join->cur_sj_inner_tables= save_cur_sj_inner_tables;
+
+ *reopt_cost= cost;
+}
+
+
+static COND *
+optimize_cond(JOIN *join, COND *conds,
+ List<TABLE_LIST> *join_list, bool ignore_on_conds,
+ Item::cond_result *cond_value, COND_EQUAL **cond_equal,
+ int flags)
+{
+ THD *thd= join->thd;
+ DBUG_ENTER("optimize_cond");
+
+ if (!conds)
+ {
+ *cond_value= Item::COND_TRUE;
+ if (!ignore_on_conds)
+ build_equal_items(join, NULL, NULL, join_list, ignore_on_conds,
+ cond_equal);
+ }
+ else
+ {
+ /*
+ Build all multiple equality predicates and eliminate equality
+ predicates that can be inferred from these multiple equalities.
+ For each reference of a field included into a multiple equality
+ that occurs in a function set a pointer to the multiple equality
+ predicate. Substitute a constant instead of this field if the
+ multiple equality contains a constant.
+ */
+
+ Json_writer_object trace_wrapper(thd);
+ Json_writer_object trace_cond(thd, "condition_processing");
+ trace_cond.add("condition", join->conds == conds ? "WHERE" : "HAVING")
+ .add("original_condition", conds);
+
+ Json_writer_array trace_steps(thd, "steps");
+ DBUG_EXECUTE("where", print_where(conds, "original", QT_ORDINARY););
+ conds= build_equal_items(join, conds, NULL, join_list,
+ ignore_on_conds, cond_equal,
+ MY_TEST(flags & OPT_LINK_EQUAL_FIELDS));
+ DBUG_EXECUTE("where",print_where(conds,"after equal_items", QT_ORDINARY););
+ {
+ Json_writer_object equal_prop_wrapper(thd);
+ equal_prop_wrapper.add("transformation", "equality_propagation")
+ .add("resulting_condition", conds);
+ }
+
+ /* change field = field to field = const for each found field = const */
+ propagate_cond_constants(thd, (I_List<COND_CMP> *) 0, conds, conds);
+ /*
+ Remove all instances of item == item
+ Remove all and-levels where CONST item != CONST item
+ */
+ DBUG_EXECUTE("where",print_where(conds,"after const change", QT_ORDINARY););
+ {
+ Json_writer_object const_prop_wrapper(thd);
+ const_prop_wrapper.add("transformation", "constant_propagation")
+ .add("resulting_condition", conds);
+ }
+ conds= conds->remove_eq_conds(thd, cond_value, true);
+ if (conds && conds->type() == Item::COND_ITEM &&
+ ((Item_cond*) conds)->functype() == Item_func::COND_AND_FUNC)
+ *cond_equal= &((Item_cond_and*) conds)->m_cond_equal;
+
+ {
+ Json_writer_object cond_removal_wrapper(thd);
+ cond_removal_wrapper.add("transformation", "trivial_condition_removal")
+ .add("resulting_condition", conds);
+ }
+ DBUG_EXECUTE("info",print_where(conds,"after remove", QT_ORDINARY););
+ }
+ DBUG_RETURN(conds);
+}
+
+
+/**
+ @brief
+ Propagate multiple equalities to the sub-expressions of a condition
+
+ @param thd thread handle
+ @param cond the condition where equalities are to be propagated
+ @param *new_equalities the multiple equalities to be propagated
+ @param inherited path to all inherited multiple equality items
+ @param[out] is_simplifiable_cond 'cond' may be simplified after the
+ propagation of the equalities
+
+ @details
+ The function recursively traverses the tree of the condition 'cond' and
+ for each its AND sub-level of any depth the function merges the multiple
+ equalities from the list 'new_equalities' into the multiple equalities
+ attached to the AND item created for this sub-level.
+ The function also [re]sets references to the equalities formed by the
+ merges of multiple equalities in all field items occurred in 'cond'
+ that are encountered in the equalities.
+ If the result of any merge of multiple equalities is an impossible
+ condition the function returns TRUE in the parameter is_simplifiable_cond.
+*/
+
+void propagate_new_equalities(THD *thd, Item *cond,
+ List<Item_equal> *new_equalities,
+ COND_EQUAL *inherited,
+ bool *is_simplifiable_cond)
+{
+ if (cond->type() == Item::COND_ITEM)
+ {
+ bool and_level= ((Item_cond*) cond)->functype() == Item_func::COND_AND_FUNC;
+ if (and_level)
+ {
+ Item_cond_and *cond_and= (Item_cond_and *) cond;
+ List<Item_equal> *cond_equalities= &cond_and->m_cond_equal.current_level;
+ cond_and->m_cond_equal.upper_levels= inherited;
+ if (!cond_equalities->is_empty() && cond_equalities != new_equalities)
+ {
+ Item_equal *equal_item;
+ List_iterator<Item_equal> it(*new_equalities);
+ while ((equal_item= it++))
+ {
+ equal_item->merge_into_list(thd, cond_equalities, true, true);
+ }
+ List_iterator<Item_equal> ei(*cond_equalities);
+ while ((equal_item= ei++))
+ {
+ if (equal_item->const_item() && !equal_item->val_int())
+ {
+ *is_simplifiable_cond= true;
+ return;
+ }
+ }
+ }
+ }
+
+ Item *item;
+ List_iterator<Item> li(*((Item_cond*) cond)->argument_list());
+ while ((item= li++))
+ {
+ COND_EQUAL *new_inherited= and_level && item->type() == Item::COND_ITEM ?
+ &((Item_cond_and *) cond)->m_cond_equal :
+ inherited;
+ propagate_new_equalities(thd, item, new_equalities, new_inherited,
+ is_simplifiable_cond);
+ }
+ }
+ else if (cond->type() == Item::FUNC_ITEM &&
+ ((Item_func*) cond)->functype() == Item_func::MULT_EQUAL_FUNC)
+ {
+ Item_equal *equal_item;
+ List_iterator<Item_equal> it(*new_equalities);
+ Item_equal *equality= (Item_equal *) cond;
+ equality->upper_levels= inherited;
+ while ((equal_item= it++))
+ {
+ equality->merge_with_check(thd, equal_item, true);
+ }
+ if (equality->const_item() && !equality->val_int())
+ *is_simplifiable_cond= true;
+ }
+ else
+ {
+ cond= cond->propagate_equal_fields(thd,
+ Item::Context_boolean(), inherited);
+ cond->update_used_tables();
+ }
+}
+
+/*
+ Check if cond_is_datetime_is_null() is true for the condition cond, or
+ for any of its AND/OR-children
+*/
+bool cond_has_datetime_is_null(Item *cond)
+{
+ if (cond_is_datetime_is_null(cond))
+ return true;
+
+ if (cond->type() == Item::COND_ITEM)
+ {
+ List<Item> *cond_arg_list= ((Item_cond*) cond)->argument_list();
+ List_iterator<Item> li(*cond_arg_list);
+ Item *item;
+ while ((item= li++))
+ {
+ if (cond_has_datetime_is_null(item))
+ return true;
+ }
+ }
+ return false;
+}
+
+/*
+ Check if passed condtition has for of
+
+ not_null_date_col IS NULL
+
+ where not_null_date_col has a datte or datetime type
+*/
+
+bool cond_is_datetime_is_null(Item *cond)
+{
+ if (cond->type() == Item::FUNC_ITEM &&
+ ((Item_func*) cond)->functype() == Item_func::ISNULL_FUNC)
+ {
+ return ((Item_func_isnull*) cond)->arg_is_datetime_notnull_field();
+ }
+ return false;
+}
+
+
+/**
+ @brief
+ Evaluate all constant boolean sub-expressions in a condition
+
+ @param thd thread handle
+ @param cond condition where where to evaluate constant sub-expressions
+ @param[out] cond_value : the returned value of the condition
+ (TRUE/FALSE/UNKNOWN:
+ Item::COND_TRUE/Item::COND_FALSE/Item::COND_OK)
+ @return
+ the item that is the result of the substitution of all inexpensive constant
+ boolean sub-expressions into cond, or,
+ NULL if the condition is constant and is evaluated to FALSE.
+
+ @details
+ This function looks for all inexpensive constant boolean sub-expressions in
+ the given condition 'cond' and substitutes them for their values.
+ For example, the condition 2 > (5 + 1) or a < (10 / 2)
+ will be transformed to the condition a < (10 / 2).
+ Note that a constant sub-expression is evaluated only if it is constant and
+ inexpensive. A sub-expression with an uncorrelated subquery may be evaluated
+ only if the subquery is considered as inexpensive.
+ The function does not evaluate a constant sub-expression if it is not on one
+ of AND/OR levels of the condition 'cond'. For example, the subquery in the
+ condition a > (select max(b) from t1 where b > 5) will never be evaluated
+ by this function.
+ If a constant boolean sub-expression is evaluated to TRUE then:
+ - when the sub-expression is a conjunct of an AND formula it is simply
+ removed from this formula
+ - when the sub-expression is a disjunct of an OR formula the whole OR
+ formula is converted to TRUE
+ If a constant boolean sub-expression is evaluated to FALSE then:
+ - when the sub-expression is a disjunct of an OR formula it is simply
+ removed from this formula
+ - when the sub-expression is a conjuct of an AND formula the whole AND
+ formula is converted to FALSE
+ When a disjunct/conjunct is removed from an OR/AND formula it might happen
+ that there is only one conjunct/disjunct remaining. In this case this
+ remaining disjunct/conjunct must be merged into underlying AND/OR formula,
+ because AND/OR levels must alternate in the same way as they alternate
+ after fix_fields() is called for the original condition.
+ The specifics of merging a formula f into an AND formula A appears
+ when A contains multiple equalities and f contains multiple equalities.
+ In this case the multiple equalities from f and A have to be merged.
+ After this the resulting multiple equalities have to be propagated into
+ the all AND/OR levels of the formula A (see propagate_new_equalities()).
+ The propagation of multiple equalities might result in forming multiple
+ equalities that are always FALSE. This, in its turn, might trigger further
+ simplification of the condition.
+
+ @note
+ EXAMPLE 1:
+ SELECT * FROM t1 WHERE (b = 1 OR a = 1) AND (b = 5 AND a = 5 OR 1 != 1);
+ First 1 != 1 will be removed from the second conjunct:
+ => SELECT * FROM t1 WHERE (b = 1 OR a = 1) AND (b = 5 AND a = 5);
+ Then (b = 5 AND a = 5) will be merged into the top level condition:
+ => SELECT * FROM t1 WHERE (b = 1 OR a = 1) AND (b = 5) AND (a = 5);
+ Then (b = 5), (a = 5) will be propagated into the disjuncs of
+ (b = 1 OR a = 1):
+ => SELECT * FROM t1 WHERE ((b = 1) AND (b = 5) AND (a = 5) OR
+ (a = 1) AND (b = 5) AND (a = 5)) AND
+ (b = 5) AND (a = 5)
+ => SELECT * FROM t1 WHERE ((FALSE AND (a = 5)) OR
+ (FALSE AND (b = 5))) AND
+ (b = 5) AND (a = 5)
+ After this an additional call of remove_eq_conds() converts it
+ to FALSE
+
+ EXAMPLE 2:
+ SELECT * FROM t1 WHERE (b = 1 OR a = 5) AND (b = 5 AND a = 5 OR 1 != 1);
+ => SELECT * FROM t1 WHERE (b = 1 OR a = 5) AND (b = 5 AND a = 5);
+ => SELECT * FROM t1 WHERE (b = 1 OR a = 5) AND (b = 5) AND (a = 5);
+ => SELECT * FROM t1 WHERE ((b = 1) AND (b = 5) AND (a = 5) OR
+ (a = 5) AND (b = 5) AND (a = 5)) AND
+ (b = 5) AND (a = 5)
+ => SELECT * FROM t1 WHERE ((FALSE AND (a = 5)) OR
+ ((b = 5) AND (a = 5))) AND
+ (b = 5) AND (a = 5)
+ After this an additional call of remove_eq_conds() converts it to
+ => SELECT * FROM t1 WHERE (b = 5) AND (a = 5)
+*/
+
+
+COND *
+Item_cond::remove_eq_conds(THD *thd, Item::cond_result *cond_value,
+ bool top_level_arg)
+{
+ bool and_level= functype() == Item_func::COND_AND_FUNC;
+ List<Item> *cond_arg_list= argument_list();
+
+ if (and_level)
+ {
+ /*
+ Remove multiple equalities that became always true (e.g. after
+ constant row substitution).
+ They would be removed later in the function anyway, but the list of
+ them cond_equal.current_level also must be adjusted correspondingly.
+ So it's easier to do it at one pass through the list of the equalities.
+ */
+ List<Item_equal> *cond_equalities=
+ &((Item_cond_and *) this)->m_cond_equal.current_level;
+ cond_arg_list->disjoin((List<Item> *) cond_equalities);
+ List_iterator<Item_equal> it(*cond_equalities);
+ Item_equal *eq_item;
+ while ((eq_item= it++))
+ {
+ if (eq_item->const_item() && eq_item->val_int())
+ it.remove();
+ }
+ cond_arg_list->append((List<Item> *) cond_equalities);
+ }
+
+ List<Item_equal> new_equalities;
+ List_iterator<Item> li(*cond_arg_list);
+ bool should_fix_fields= 0;
+ Item::cond_result tmp_cond_value;
+ Item *item;
+
+ /*
+ If the list cond_arg_list became empty then it consisted only
+ of always true multiple equalities.
+ */
+ *cond_value= cond_arg_list->elements ? Item::COND_UNDEF : Item::COND_TRUE;
+
+ while ((item=li++))
+ {
+ Item *new_item= item->remove_eq_conds(thd, &tmp_cond_value, false);
+ if (!new_item)
+ {
+ /* This can happen only when item is converted to TRUE or FALSE */
+ li.remove();
+ }
+ else if (item != new_item)
+ {
+ /*
+ This can happen when:
+ - item was an OR formula converted to one disjunct
+ - item was an AND formula converted to one conjunct
+ In these cases the disjunct/conjunct must be merged into the
+ argument list of cond.
+ */
+ if (new_item->type() == Item::COND_ITEM &&
+ item->type() == Item::COND_ITEM)
+ {
+ DBUG_ASSERT(functype() == ((Item_cond *) new_item)->functype());
+ List<Item> *new_item_arg_list=
+ ((Item_cond *) new_item)->argument_list();
+ if (and_level)
+ {
+ /*
+ If new_item is an AND formula then multiple equalities
+ of new_item_arg_list must merged into multiple equalities
+ of cond_arg_list.
+ */
+ List<Item_equal> *new_item_equalities=
+ &((Item_cond_and *) new_item)->m_cond_equal.current_level;
+ if (!new_item_equalities->is_empty())
+ {
+ /*
+ Cut the multiple equalities from the new_item_arg_list and
+ append them on the list new_equalities. Later the equalities
+ from this list will be merged into the multiple equalities
+ of cond_arg_list all together.
+ */
+ new_item_arg_list->disjoin((List<Item> *) new_item_equalities);
+ new_equalities.append(new_item_equalities);
+ }
+ }
+ if (new_item_arg_list->is_empty())
+ li.remove();
+ else
+ {
+ uint cnt= new_item_arg_list->elements;
+ li.replace(*new_item_arg_list);
+ /* Make iterator li ignore new items */
+ for (cnt--; cnt; cnt--)
+ li++;
+ should_fix_fields= 1;
+ }
+ }
+ else if (and_level &&
+ new_item->type() == Item::FUNC_ITEM &&
+ ((Item_func*) new_item)->functype() ==
+ Item_func::MULT_EQUAL_FUNC)
+ {
+ li.remove();
+ new_equalities.push_back((Item_equal *) new_item, thd->mem_root);
+ }
+ else
+ {
+ if (new_item->type() == Item::COND_ITEM &&
+ ((Item_cond*) new_item)->functype() == functype())
+ {
+ List<Item> *new_item_arg_list=
+ ((Item_cond *) new_item)->argument_list();
+ uint cnt= new_item_arg_list->elements;
+ li.replace(*new_item_arg_list);
+ /* Make iterator li ignore new items */
+ for (cnt--; cnt; cnt--)
+ li++;
+ }
+ else
+ li.replace(new_item);
+ should_fix_fields= 1;
+ }
+ }
+ if (*cond_value == Item::COND_UNDEF)
+ *cond_value= tmp_cond_value;
+ switch (tmp_cond_value) {
+ case Item::COND_OK: // Not TRUE or FALSE
+ if (and_level || *cond_value == Item::COND_FALSE)
+ *cond_value=tmp_cond_value;
+ break;
+ case Item::COND_FALSE:
+ if (and_level)
+ {
+ *cond_value= tmp_cond_value;
+ return (COND*) 0; // Always false
+ }
+ break;
+ case Item::COND_TRUE:
+ if (!and_level)
+ {
+ *cond_value= tmp_cond_value;
+ return (COND*) 0; // Always true
+ }
+ break;
+ case Item::COND_UNDEF: // Impossible
+ break; /* purecov: deadcode */
+ }
+ }
+ COND *cond= this;
+ if (!new_equalities.is_empty())
+ {
+ DBUG_ASSERT(and_level);
+ /*
+ Merge multiple equalities that were cut from the results of
+ simplification of OR formulas converted into AND formulas.
+ These multiple equalities are to be merged into the
+ multiple equalities of cond_arg_list.
+ */
+ COND_EQUAL *cond_equal= &((Item_cond_and *) this)->m_cond_equal;
+ List<Item_equal> *cond_equalities= &cond_equal->current_level;
+ cond_arg_list->disjoin((List<Item> *) cond_equalities);
+ Item_equal *equality;
+ List_iterator_fast<Item_equal> it(new_equalities);
+ while ((equality= it++))
+ {
+ equality->upper_levels= cond_equal->upper_levels;
+ equality->merge_into_list(thd, cond_equalities, false, false);
+ List_iterator_fast<Item_equal> ei(*cond_equalities);
+ while ((equality= ei++))
+ {
+ if (equality->const_item() && !equality->val_int())
+ {
+ *cond_value= Item::COND_FALSE;
+ return (COND*) 0;
+ }
+ }
+ }
+ cond_arg_list->append((List<Item> *) cond_equalities);
+ /*
+ Propagate the newly formed multiple equalities to
+ the all AND/OR levels of cond
+ */
+ bool is_simplifiable_cond= false;
+ propagate_new_equalities(thd, this, cond_equalities,
+ cond_equal->upper_levels,
+ &is_simplifiable_cond);
+ /*
+ If the above propagation of multiple equalities brings us
+ to multiple equalities that are always FALSE then try to
+ simplify the condition with remove_eq_cond() again.
+ */
+ if (is_simplifiable_cond)
+ {
+ if (!(cond= cond->remove_eq_conds(thd, cond_value, false)))
+ return cond;
+ }
+ should_fix_fields= 1;
+ }
+ if (should_fix_fields)
+ cond->update_used_tables();
+
+ if (!((Item_cond*) cond)->argument_list()->elements ||
+ *cond_value != Item::COND_OK)
+ return (COND*) 0;
+ if (((Item_cond*) cond)->argument_list()->elements == 1)
+ { // Remove list
+ item= ((Item_cond*) cond)->argument_list()->head();
+ ((Item_cond*) cond)->argument_list()->empty();
+ return item;
+ }
+ *cond_value= Item::COND_OK;
+ return cond;
+}
+
+
+COND *
+Item::remove_eq_conds(THD *thd, Item::cond_result *cond_value, bool top_level_arg)
+{
+ if (can_eval_in_optimize())
+ {
+ *cond_value= eval_const_cond() ? Item::COND_TRUE : Item::COND_FALSE;
+ return (COND*) 0;
+ }
+ *cond_value= Item::COND_OK;
+ return this; // Point at next and level
+}
+
+
+COND *
+Item_bool_func2::remove_eq_conds(THD *thd, Item::cond_result *cond_value,
+ bool top_level_arg)
+{
+ if (can_eval_in_optimize())
+ {
+ *cond_value= eval_const_cond() ? Item::COND_TRUE : Item::COND_FALSE;
+ return (COND*) 0;
+ }
+ if ((*cond_value= eq_cmp_result()) != Item::COND_OK)
+ {
+ if (args[0]->eq(args[1], true))
+ {
+ if (*cond_value == Item::COND_FALSE ||
+ !args[0]->maybe_null() || functype() == Item_func::EQUAL_FUNC)
+ return (COND*) 0; // Compare of identical items
+ }
+ }
+ *cond_value= Item::COND_OK;
+ return this; // Point at next and level
+}
+
+
+/**
+ Remove const and eq items. Return new item, or NULL if no condition
+ cond_value is set to according:
+ COND_OK query is possible (field = constant)
+ COND_TRUE always true ( 1 = 1 )
+ COND_FALSE always false ( 1 = 2 )
+
+ SYNPOSIS
+ remove_eq_conds()
+ thd THD environment
+ cond the condition to handle
+ cond_value the resulting value of the condition
+
+ NOTES
+ calls the inner_remove_eq_conds to check all the tree reqursively
+
+ RETURN
+ *COND with the simplified condition
+*/
+
+COND *
+Item_func_isnull::remove_eq_conds(THD *thd, Item::cond_result *cond_value,
+ bool top_level_arg)
+{
+ Item *real_item= args[0]->real_item();
+ if (real_item->type() == Item::FIELD_ITEM)
+ {
+ Field *field= ((Item_field*) real_item)->field;
+
+ if ((field->flags & NOT_NULL_FLAG) &&
+ field->type_handler()->cond_notnull_field_isnull_to_field_eq_zero())
+ {
+ /* fix to replace 'NULL' dates with '0' (shreeve@uci.edu) */
+ /*
+ See BUG#12594011
+ Documentation says that
+ SELECT datetime_notnull d FROM t1 WHERE d IS NULL
+ shall return rows where d=='0000-00-00'
+
+ Thus, for DATE and DATETIME columns defined as NOT NULL,
+ "date_notnull IS NULL" has to be modified to
+ "date_notnull IS NULL OR date_notnull == 0" (if outer join)
+ "date_notnull == 0" (otherwise)
+
+ */
+
+ Item *item0= (Item*) Item_false;
+ Item *eq_cond= new(thd->mem_root) Item_func_eq(thd, args[0], item0);
+ if (!eq_cond)
+ return this;
+
+ COND *cond= this;
+ if (field->table->pos_in_table_list->is_inner_table_of_outer_join())
+ {
+ // outer join: transform "col IS NULL" to "col IS NULL or col=0"
+ Item *or_cond= new(thd->mem_root) Item_cond_or(thd, eq_cond, this);
+ if (!or_cond)
+ return this;
+ cond= or_cond;
+ }
+ else
+ {
+ // not outer join: transform "col IS NULL" to "col=0"
+ cond= eq_cond;
+ }
+
+ cond->fix_fields(thd, &cond);
+ /*
+ Note: although args[0] is a field, cond can still be a constant
+ (in case field is a part of a dependent subquery).
+
+ Note: we call cond->Item::remove_eq_conds() non-virtually (statically)
+ for performance purpose.
+ A non-qualified call, i.e. just cond->remove_eq_conds(),
+ would call Item_bool_func2::remove_eq_conds() instead, which would
+ try to do some extra job to detect if args[0] and args[1] are
+ equivalent items. We know they are not (we have field=0 here).
+ */
+ return cond->Item::remove_eq_conds(thd, cond_value, false);
+ }
+
+ /*
+ Handles this special case for some ODBC applications:
+ The are requesting the row that was just updated with a auto_increment
+ value with this construct:
+
+ SELECT * from table_name where auto_increment_column IS NULL
+ This will be changed to:
+ SELECT * from table_name where auto_increment_column = LAST_INSERT_ID
+
+ Note, this substitution is done if the NULL test is the only condition!
+ If the NULL test is a part of a more complex condition, it is not
+ substituted and is treated normally:
+ WHERE auto_increment IS NULL AND something_else
+ */
+
+ if (top_level_arg) // "auto_increment_column IS NULL" is the only condition
+ {
+ if (field->flags & AUTO_INCREMENT_FLAG && !field->table->maybe_null &&
+ (thd->variables.option_bits & OPTION_AUTO_IS_NULL) &&
+ (thd->first_successful_insert_id_in_prev_stmt > 0 &&
+ thd->substitute_null_with_insert_id))
+ {
+ #ifdef HAVE_QUERY_CACHE
+ query_cache_abort(thd, &thd->query_cache_tls);
+ #endif
+ COND *new_cond, *cond= this;
+ /* If this fails, we will catch it later before executing query */
+ if ((new_cond= new (thd->mem_root) Item_func_eq(thd, args[0],
+ new (thd->mem_root) Item_int(thd, "last_insert_id()",
+ thd->read_first_successful_insert_id_in_prev_stmt(),
+ MY_INT64_NUM_DECIMAL_DIGITS))))
+ {
+ cond= new_cond;
+ /*
+ Item_func_eq can't be fixed after creation so we do not check
+ cond->fixed(), also it do not need tables so we use 0 as second
+ argument.
+ */
+ cond->fix_fields(thd, &cond);
+ }
+ /*
+ IS NULL should be mapped to LAST_INSERT_ID only for first row, so
+ clear for next row
+ */
+ thd->substitute_null_with_insert_id= FALSE;
+
+ *cond_value= Item::COND_OK;
+ return cond;
+ }
+ }
+ }
+ return Item::remove_eq_conds(thd, cond_value, top_level_arg);
+}
+
+
+/**
+ Check if equality can be used in removing components of GROUP BY/DISTINCT
+
+ @param l the left comparison argument (a field if any)
+ @param r the right comparison argument (a const of any)
+
+ @details
+ Checks if an equality predicate can be used to take away
+ DISTINCT/GROUP BY because it is known to be true for exactly one
+ distinct value (e.g. <expr> == <const>).
+ Arguments must be compared in the native type of the left argument
+ and (for strings) in the native collation of the left argument.
+ Otherwise, for example,
+ <string_field> = <int_const> may match more than 1 distinct value or
+ the <string_field>.
+
+ @note We don't need to aggregate l and r collations here, because r -
+ the constant item - has already been converted to a proper collation
+ for comparison. We only need to compare this collation with field's collation.
+
+ @retval true can be used
+ @retval false cannot be used
+*/
+
+/*
+ psergey-todo: this returns false for int_column='1234' (here '1234' is a
+ constant. Need to discuss this with Bar).
+
+ See also Field::test_if_equality_guaranees_uniqueness(const Item *item);
+*/
+static bool
+test_if_equality_guarantees_uniqueness(Item *l, Item *r)
+{
+ return (r->const_item() || !(r->used_tables() & ~OUTER_REF_TABLE_BIT)) &&
+ item_cmp_type(l, r) == l->cmp_type() &&
+ (l->cmp_type() != STRING_RESULT ||
+ l->collation.collation == r->collation.collation);
+}
+
+
+/*
+ Return TRUE if i1 and i2 (if any) are equal items,
+ or if i1 is a wrapper item around the f2 field.
+*/
+
+static bool equal(Item *i1, Item *i2, Field *f2)
+{
+ DBUG_ASSERT((i2 == NULL) ^ (f2 == NULL));
+
+ if (i2 != NULL)
+ return i1->eq(i2, 1);
+ else if (i1->type() == Item::FIELD_ITEM)
+ return f2->eq(((Item_field *) i1)->field);
+ else
+ return FALSE;
+}
+
+
+/**
+ Test if a field or an item is equal to a constant value in WHERE
+
+ @param cond WHERE clause expression
+ @param comp_item Item to find in WHERE expression
+ (if comp_field != NULL)
+ @param comp_field Field to find in WHERE expression
+ (if comp_item != NULL)
+ @param[out] const_item intermediate arg, set to Item pointer to NULL
+
+ @return TRUE if the field is a constant value in WHERE
+
+ @note
+ comp_item and comp_field parameters are mutually exclusive.
+*/
+bool
+const_expression_in_where(COND *cond, Item *comp_item, Field *comp_field,
+ Item **const_item)
+{
+ DBUG_ASSERT((comp_item == NULL) ^ (comp_field == NULL));
+
+ Item *intermediate= NULL;
+ if (const_item == NULL)
+ const_item= &intermediate;
+
+ if (cond->type() == Item::COND_ITEM)
+ {
+ bool and_level= (((Item_cond*) cond)->functype()
+ == Item_func::COND_AND_FUNC);
+ List_iterator_fast<Item> li(*((Item_cond*) cond)->argument_list());
+ Item *item;
+ while ((item=li++))
+ {
+ bool res=const_expression_in_where(item, comp_item, comp_field,
+ const_item);
+ if (res) // Is a const value
+ {
+ if (and_level)
+ return 1;
+ }
+ else if (!and_level)
+ return 0;
+ }
+ return and_level ? 0 : 1;
+ }
+ else if (cond->eq_cmp_result() != Item::COND_OK)
+ { // boolean compare function
+ Item_func* func= (Item_func*) cond;
+ if (func->functype() != Item_func::EQUAL_FUNC &&
+ func->functype() != Item_func::EQ_FUNC)
+ return 0;
+ Item *left_item= ((Item_func*) cond)->arguments()[0];
+ Item *right_item= ((Item_func*) cond)->arguments()[1];
+ if (equal(left_item, comp_item, comp_field))
+ {
+ if (test_if_equality_guarantees_uniqueness (left_item, right_item))
+ {
+ if (*const_item)
+ return right_item->eq(*const_item, 1);
+ *const_item=right_item;
+ return 1;
+ }
+ }
+ else if (equal(right_item, comp_item, comp_field))
+ {
+ if (test_if_equality_guarantees_uniqueness (right_item, left_item))
+ {
+ if (*const_item)
+ return left_item->eq(*const_item, 1);
+ *const_item=left_item;
+ return 1;
+ }
+ }
+ }
+ return 0;
+}
+
+
+/****************************************************************************
+ Create internal temporary table
+****************************************************************************/
+
+Field *Item::create_tmp_field_int(MEM_ROOT *root, TABLE *table,
+ uint convert_int_length)
+{
+ const Type_handler *h= &type_handler_slong;
+ if (max_char_length() > convert_int_length)
+ h= &type_handler_slonglong;
+ if (unsigned_flag)
+ h= h->type_handler_unsigned();
+ return h->make_and_init_table_field(root, &name, Record_addr(maybe_null()),
+ *this, table);
+}
+
+Field *Item::tmp_table_field_from_field_type_maybe_null(MEM_ROOT *root,
+ TABLE *table,
+ Tmp_field_src *src,
+ const Tmp_field_param *param,
+ bool is_explicit_null)
+{
+ /*
+ item->type() == CONST_ITEM excluded due to making fields for counter
+ With help of Item_uint
+ */
+ DBUG_ASSERT(!param->make_copy_field() || type() == CONST_ITEM);
+ DBUG_ASSERT(!is_result_field());
+ Field *result;
+ if ((result= tmp_table_field_from_field_type(root, table)))
+ {
+ if (result && is_explicit_null)
+ result->is_created_from_null_item= true;
+ }
+ return result;
+}
+
+
+Field *Item_sum::create_tmp_field(MEM_ROOT *root, bool group, TABLE *table)
+{
+ Field *UNINIT_VAR(new_field);
+
+ switch (cmp_type()) {
+ case REAL_RESULT:
+ {
+ new_field= new (root)
+ Field_double(max_char_length(), maybe_null(), &name, decimals, TRUE);
+ break;
+ }
+ case INT_RESULT:
+ case TIME_RESULT:
+ case DECIMAL_RESULT:
+ case STRING_RESULT:
+ new_field= tmp_table_field_from_field_type(root, table);
+ break;
+ case ROW_RESULT:
+ // This case should never be chosen
+ DBUG_ASSERT(0);
+ new_field= 0;
+ break;
+ }
+ if (new_field)
+ new_field->init(table);
+ return new_field;
+}
+
+
+/**
+ Create a temporary field for Item_field (or its descendant),
+ either direct or referenced by an Item_ref.
+
+ param->modify_item is set when we create a field for an internal temporary
+ table. In this case we have to ensure the new field name is identical to
+ the original field name as the field will info will be sent to the client.
+ In other cases, the field name is set from orig_item or name if org_item is
+ not set.
+*/
+
+Field *
+Item_field::create_tmp_field_from_item_field(MEM_ROOT *root, TABLE *new_table,
+ Item_ref *orig_item,
+ const Tmp_field_param *param)
+{
+ DBUG_ASSERT(!is_result_field());
+ Field *result;
+ LEX_CSTRING *new_name= (orig_item ? &orig_item->name :
+ !param->modify_item() ? &name :
+ &field->field_name);
+
+ /*
+ If item have to be able to store NULLs but underlaid field can't do it,
+ create_tmp_field_from_field() can't be used for tmp field creation.
+ */
+ if (((maybe_null() && in_rollup()) ||
+ (new_table->in_use->create_tmp_table_for_derived && /* for mat. view/dt */
+ orig_item && orig_item->maybe_null())) &&
+ !field->maybe_null())
+ {
+ /*
+ The item the ref points to may have maybe_null flag set while
+ the ref doesn't have it. This may happen for outer fields
+ when the outer query decided at some point after name resolution phase
+ that this field might be null. Take this into account here.
+ */
+ Record_addr rec(orig_item ? orig_item->maybe_null() : maybe_null());
+ const Type_handler *handler= type_handler()->
+ type_handler_for_tmp_table(this);
+ result= handler->make_and_init_table_field(root, new_name,
+ rec, *this, new_table);
+ }
+ else if (param->table_cant_handle_bit_fields() &&
+ field->type() == MYSQL_TYPE_BIT)
+ {
+ const Type_handler *handler=
+ Type_handler::type_handler_long_or_longlong(max_char_length(), true);
+ result= handler->make_and_init_table_field(root, new_name,
+ Record_addr(maybe_null()),
+ *this, new_table);
+ }
+ else
+ {
+ bool tmp_maybe_null= param->modify_item() ? maybe_null() :
+ field->maybe_null();
+ result= field->create_tmp_field(root, new_table, tmp_maybe_null);
+ if (result && ! param->modify_item())
+ result->field_name= *new_name;
+ }
+ if (result && param->modify_item())
+ result_field= result;
+ return result;
+}
+
+
+Field *Item_field::create_tmp_field_ex(MEM_ROOT *root, TABLE *table,
+ Tmp_field_src *src,
+ const Tmp_field_param *param)
+{
+ DBUG_ASSERT(!is_result_field());
+ Field *result;
+ src->set_field(field);
+ if (!(result= create_tmp_field_from_item_field(root, table, NULL, param)))
+ return NULL;
+ if (!(field->flags & NO_DEFAULT_VALUE_FLAG) &&
+ field->eq_def(result))
+ src->set_default_field(field);
+ return result;
+}
+
+
+Field *Item_default_value::create_tmp_field_ex(MEM_ROOT *root, TABLE *table,
+ Tmp_field_src *src,
+ const Tmp_field_param *param)
+{
+ if (field->default_value || (field->flags & BLOB_FLAG))
+ {
+ /*
+ We have to use a copy function when using a blob with default value
+ as the we have to calculate the default value before we can use it.
+ */
+ get_tmp_field_src(src, param);
+ Field *result= tmp_table_field_from_field_type(root, table);
+ if (result && param->modify_item())
+ result_field= result;
+ return result;
+ }
+ /*
+ Same code as in Item_field::create_tmp_field_ex, except no default field
+ handling
+ */
+ src->set_field(field);
+ return create_tmp_field_from_item_field(root, table, nullptr, param);
+}
+
+
+Field *Item_ref::create_tmp_field_ex(MEM_ROOT *root, TABLE *table,
+ Tmp_field_src *src,
+ const Tmp_field_param *param)
+{
+ Item *item= real_item();
+ DBUG_ASSERT(is_result_field());
+ if (item->type() == Item::FIELD_ITEM)
+ {
+ Field *result;
+ Item_field *field= (Item_field*) item;
+ Tmp_field_param prm2(*param);
+ prm2.set_modify_item(false);
+ src->set_field(field->field);
+ if (!(result= field->create_tmp_field_from_item_field(root, table,
+ this, &prm2)))
+ return NULL;
+ if (param->modify_item())
+ result_field= result;
+ return result;
+ }
+ return Item_result_field::create_tmp_field_ex(root, table, src, param);
+}
+
+
+void Item_result_field::get_tmp_field_src(Tmp_field_src *src,
+ const Tmp_field_param *param)
+{
+ if (param->make_copy_field())
+ {
+ DBUG_ASSERT(result_field);
+ src->set_field(result_field);
+ }
+ else
+ {
+ src->set_item_result_field(this); // Save for copy_funcs
+ }
+}
+
+
+Field *
+Item_result_field::create_tmp_field_ex_from_handler(
+ MEM_ROOT *root,
+ TABLE *table,
+ Tmp_field_src *src,
+ const Tmp_field_param *param,
+ const Type_handler *h)
+{
+ /*
+ Possible Item types:
+ - Item_cache_wrapper (only for CREATE..SELECT ?)
+ - Item_func
+ - Item_subselect
+ */
+ DBUG_ASSERT(fixed());
+ DBUG_ASSERT(is_result_field());
+ DBUG_ASSERT(type() != NULL_ITEM);
+ get_tmp_field_src(src, param);
+ Field *result;
+ if ((result= h->make_and_init_table_field(root, &name,
+ Record_addr(maybe_null()),
+ *this, table)) &&
+ param->modify_item())
+ result_field= result;
+ return result;
+}
+
+
+Field *Item_func_sp::create_tmp_field_ex(MEM_ROOT *root, TABLE *table,
+ Tmp_field_src *src,
+ const Tmp_field_param *param)
+{
+ Field *result;
+ get_tmp_field_src(src, param);
+ if ((result= sp_result_field->create_tmp_field(root, table)))
+ {
+ result->field_name= name;
+ if (param->modify_item())
+ result_field= result;
+ }
+ return result;
+}
+
+
+static bool make_json_valid_expr(TABLE *table, Field *field)
+{
+ THD *thd= table->in_use;
+ Query_arena backup_arena;
+ Item *expr, *item_field;
+
+ if (!table->expr_arena && table->init_expr_arena(thd->mem_root))
+ return 1;
+
+ thd->set_n_backup_active_arena(table->expr_arena, &backup_arena);
+ if ((item_field= new (thd->mem_root) Item_field(thd, field)) &&
+ (expr= new (thd->mem_root) Item_func_json_valid(thd, item_field)))
+ field->check_constraint= add_virtual_expression(thd, expr);
+ thd->restore_active_arena(table->expr_arena, &backup_arena);
+ return field->check_constraint == NULL;
+}
+
+
+/**
+ Create field for temporary table.
+
+ @param table Temporary table
+ @param item Item to create a field for
+ @param type Type of item (normally item->type)
+ @param copy_func If set and item is a function, store copy of item
+ in this array
+ @param from_field if field will be created using other field as example,
+ pointer example field will be written here
+ @param default_field If field has a default value field, store it here
+ @param group 1 if we are going to do a relative group by on result
+ @param modify_item 1 if item->result_field should point to new item.
+ This is relevent for how fill_record() is going to
+ work:
+ If modify_item is 1 then fill_record() will update
+ the record in the original table.
+ If modify_item is 0 then fill_record() will update
+ the temporary table
+ @param table_cant_handle_bit_fields
+ Set to 1 if the temporary table cannot handle bit
+ fields. Only set for heap tables when the bit field
+ is part of an index.
+ @param make_copy_field
+ Set when using with rollup when we want to have
+ an exact copy of the field.
+ @retval
+ 0 on error
+ @retval
+ new_created field
+ Create a temporary field for Item_field (or its descendant),
+ either direct or referenced by an Item_ref.
+*/
+Field *create_tmp_field(TABLE *table, Item *item,
+ Item ***copy_func, Field **from_field,
+ Field **default_field,
+ bool group, bool modify_item,
+ bool table_cant_handle_bit_fields,
+ bool make_copy_field)
+{
+ Tmp_field_src src;
+ Tmp_field_param prm(group, modify_item, table_cant_handle_bit_fields,
+ make_copy_field);
+ Field *result= item->create_tmp_field_ex(table->in_use->mem_root,
+ table, &src, &prm);
+ if (is_json_type(item) && make_json_valid_expr(table, result))
+ result= NULL;
+
+ *from_field= src.field();
+ *default_field= src.default_field();
+ if (src.item_result_field())
+ *((*copy_func)++)= src.item_result_field();
+ return result;
+}
+
+/*
+ Set up column usage bitmaps for a temporary table
+
+ IMPLEMENTATION
+ For temporary tables, we need one bitmap with all columns set and
+ a tmp_set bitmap to be used by things like filesort.
+*/
+
+void
+setup_tmp_table_column_bitmaps(TABLE *table, uchar *bitmaps, uint field_count)
+{
+ uint bitmap_size= bitmap_buffer_size(field_count);
+
+ DBUG_ASSERT(table->s->virtual_fields == 0);
+
+ my_bitmap_init(&table->def_read_set, (my_bitmap_map*) bitmaps, field_count);
+ bitmaps+= bitmap_size;
+ my_bitmap_init(&table->tmp_set,
+ (my_bitmap_map*) bitmaps, field_count);
+ bitmaps+= bitmap_size;
+ my_bitmap_init(&table->eq_join_set,
+ (my_bitmap_map*) bitmaps, field_count);
+ bitmaps+= bitmap_size;
+ my_bitmap_init(&table->cond_set,
+ (my_bitmap_map*) bitmaps, field_count);
+ bitmaps+= bitmap_size;
+ my_bitmap_init(&table->has_value_set,
+ (my_bitmap_map*) bitmaps, field_count);
+ /* write_set and all_set are copies of read_set */
+ table->def_write_set= table->def_read_set;
+ table->s->all_set= table->def_read_set;
+ bitmap_set_all(&table->s->all_set);
+ table->default_column_bitmaps();
+}
+
+
+Create_tmp_table::Create_tmp_table(ORDER *group, bool distinct,
+ bool save_sum_fields,
+ ulonglong select_options,
+ ha_rows rows_limit)
+ :m_alloced_field_count(0),
+ m_using_unique_constraint(false),
+ m_temp_pool_slot(MY_BIT_NONE),
+ m_group(group),
+ m_distinct(distinct),
+ m_save_sum_fields(save_sum_fields),
+ m_with_cycle(false),
+ m_select_options(select_options),
+ m_rows_limit(rows_limit),
+ m_group_null_items(0),
+ current_counter(other)
+{
+ m_field_count[Create_tmp_table::distinct]= 0;
+ m_field_count[Create_tmp_table::other]= 0;
+ m_null_count[Create_tmp_table::distinct]= 0;
+ m_null_count[Create_tmp_table::other]= 0;
+ m_blobs_count[Create_tmp_table::distinct]= 0;
+ m_blobs_count[Create_tmp_table::other]= 0;
+ m_uneven_bit[Create_tmp_table::distinct]= 0;
+ m_uneven_bit[Create_tmp_table::other]= 0;
+}
+
+
+void Create_tmp_table::add_field(TABLE *table, Field *field, uint fieldnr,
+ bool force_not_null_cols)
+{
+ DBUG_ASSERT(!field->field_name.str ||
+ strlen(field->field_name.str) == field->field_name.length);
+
+ if (force_not_null_cols)
+ {
+ field->flags|= NOT_NULL_FLAG;
+ field->null_ptr= NULL;
+ }
+
+ if (!(field->flags & NOT_NULL_FLAG))
+ m_null_count[current_counter]++;
+
+ table->s->reclength+= field->pack_length();
+
+ // Assign it here, before update_data_type_statistics() changes m_blob_count
+ if (field->flags & BLOB_FLAG)
+ {
+ table->s->blob_field[m_blob_count]= fieldnr;
+ m_blobs_count[current_counter]++;
+ }
+
+ table->field[fieldnr]= field;
+ field->field_index= fieldnr;
+
+ field->update_data_type_statistics(this);
+}
+
+
+/**
+ Create a temp table according to a field list.
+
+ Given field pointers are changed to point at tmp_table for
+ send_result_set_metadata. The table object is self contained: it's
+ allocated in its own memory root, as well as Field objects
+ created for table columns.
+ This function will replace Item_sum items in 'fields' list with
+ corresponding Item_field items, pointing at the fields in the
+ temporary table, unless this was prohibited by TRUE
+ value of argument save_sum_fields. The Item_field objects
+ are created in THD memory root.
+
+ @param thd thread handle
+ @param param a description used as input to create the table
+ @param fields list of items that will be used to define
+ column types of the table (also see NOTES)
+ @param group Create an unique key over all group by fields.
+ This is used to retrive the row during
+ end_write_group() and update them.
+ @param distinct should table rows be distinct
+ @param save_sum_fields see NOTES
+ @param select_options Optiions for how the select is run.
+ See sql_priv.h for a list of options.
+ @param rows_limit Maximum number of rows to insert into the
+ temporary table
+ @param table_alias possible name of the temporary table that can
+ be used for name resolving; can be "".
+ @param do_not_open only create the TABLE object, do not
+ open the table in the engine
+ @param keep_row_order rows need to be read in the order they were
+ inserted, the engine should preserve this order
+*/
+
+TABLE *Create_tmp_table::start(THD *thd,
+ TMP_TABLE_PARAM *param,
+ const LEX_CSTRING *table_alias)
+{
+ MEM_ROOT *mem_root_save, own_root;
+ TABLE *table;
+ TABLE_SHARE *share;
+ uint copy_func_count= param->func_count;
+ char *tmpname,path[FN_REFLEN];
+ Field **reg_field;
+ uint *blob_field;
+ key_part_map *const_key_parts;
+ /* Treat sum functions as normal ones when loose index scan is used. */
+ m_save_sum_fields|= param->precomputed_group_by;
+ DBUG_ENTER("Create_tmp_table::start");
+ DBUG_PRINT("enter",
+ ("table_alias: '%s' distinct: %d save_sum_fields: %d "
+ "rows_limit: %lu group: %d", table_alias->str,
+ (int) m_distinct, (int) m_save_sum_fields,
+ (ulong) m_rows_limit, MY_TEST(m_group)));
+
+ if (use_temp_pool && !(test_flags & TEST_KEEP_TMP_TABLES))
+ m_temp_pool_slot = temp_pool_set_next();
+
+ if (m_temp_pool_slot != MY_BIT_NONE) // we got a slot
+ sprintf(path, "%s-%s-%lx-%i", tmp_file_prefix, param->tmp_name,
+ current_pid, m_temp_pool_slot);
+ else
+ {
+ /* if we run out of slots or we are not using tempool */
+ sprintf(path, "%s-%s-%lx-%llx-%x", tmp_file_prefix, param->tmp_name,
+ current_pid, thd->thread_id, thd->tmp_table++);
+ }
+
+ /*
+ No need to change table name to lower case as we are only creating
+ MyISAM, Aria or HEAP tables here
+ */
+ fn_format(path, path, mysql_tmpdir, "", MY_REPLACE_EXT|MY_UNPACK_FILENAME);
+
+ if (m_group)
+ {
+ ORDER **prev= &m_group;
+ if (!param->quick_group)
+ m_group= 0; // Can't use group key
+ else for (ORDER *tmp= m_group ; tmp ; tmp= tmp->next)
+ {
+ /* Exclude found constant from the list */
+ if ((*tmp->item)->const_item())
+ {
+ *prev= tmp->next;
+ param->group_parts--;
+ continue;
+ }
+ else
+ prev= &(tmp->next);
+ /*
+ marker == 4 means two things:
+ - store NULLs in the key, and
+ - convert BIT fields to 64-bit long, needed because MEMORY tables
+ can't index BIT fields.
+ */
+ (*tmp->item)->marker= MARKER_NULL_KEY; // Store null in key
+ if ((*tmp->item)->too_big_for_varchar())
+ m_using_unique_constraint= true;
+ }
+ if (param->group_length >= MAX_BLOB_WIDTH)
+ m_using_unique_constraint= true;
+ if (m_group)
+ m_distinct= 0; // Can't use distinct
+ }
+
+ m_alloced_field_count= param->field_count+param->func_count+param->sum_func_count;
+ DBUG_ASSERT(m_alloced_field_count);
+ const uint field_count= m_alloced_field_count;
+
+ /*
+ When loose index scan is employed as access method, it already
+ computes all groups and the result of all aggregate functions. We
+ make space for the items of the aggregate function in the list of
+ functions TMP_TABLE_PARAM::items_to_copy, so that the values of
+ these items are stored in the temporary table.
+ */
+ if (param->precomputed_group_by)
+ copy_func_count+= param->sum_func_count;
+ param->copy_func_count= copy_func_count;
+
+ init_sql_alloc(key_memory_TABLE, &own_root, TABLE_ALLOC_BLOCK_SIZE, 0,
+ MYF(MY_THREAD_SPECIFIC));
+
+ if (!multi_alloc_root(&own_root,
+ &table, sizeof(*table),
+ &share, sizeof(*share),
+ &reg_field, sizeof(Field*) * (field_count+1),
+ &m_default_field, sizeof(Field*) * (field_count),
+ &blob_field, sizeof(uint)*(field_count+1),
+ &m_from_field, sizeof(Field*)*field_count,
+ &param->items_to_copy,
+ sizeof(param->items_to_copy[0])*(copy_func_count+1),
+ &param->keyinfo, sizeof(*param->keyinfo),
+ &m_key_part_info,
+ sizeof(*m_key_part_info)*(param->group_parts+1),
+ &param->start_recinfo,
+ sizeof(*param->recinfo)*(field_count*2+4),
+ &tmpname, (uint) strlen(path)+1,
+ &m_group_buff, (m_group && ! m_using_unique_constraint ?
+ param->group_length : 0),
+ &m_bitmaps, bitmap_buffer_size(field_count)*6,
+ &const_key_parts, sizeof(*const_key_parts),
+ NullS))
+ {
+ DBUG_RETURN(NULL); /* purecov: inspected */
+ }
+ /* Copy_field belongs to TMP_TABLE_PARAM, allocate it in THD mem_root */
+ if (!(param->copy_field= new (thd->mem_root) Copy_field[field_count]))
+ {
+ free_root(&own_root, MYF(0)); /* purecov: inspected */
+ DBUG_RETURN(NULL); /* purecov: inspected */
+ }
+ strmov(tmpname, path);
+ /* make table according to fields */
+
+ bzero((char*) table,sizeof(*table));
+ bzero((char*) reg_field, sizeof(Field*) * (field_count+1));
+ bzero((char*) m_default_field, sizeof(Field*) * (field_count));
+ bzero((char*) m_from_field, sizeof(Field*) * field_count);
+ /* const_key_parts is used in sort_and_filter_keyuse */
+ bzero((char*) const_key_parts, sizeof(*const_key_parts));
+
+ table->mem_root= own_root;
+ mem_root_save= thd->mem_root;
+ thd->mem_root= &table->mem_root;
+
+ table->field=reg_field;
+ table->const_key_parts= const_key_parts;
+ table->alias.set(table_alias->str, table_alias->length, table_alias_charset);
+
+ table->reginfo.lock_type=TL_WRITE; /* Will be updated */
+ table->map=1;
+ table->temp_pool_slot= m_temp_pool_slot;
+ table->copy_blobs= 1;
+ table->in_use= thd;
+ table->no_rows_with_nulls= param->force_not_null_cols;
+ table->expr_arena= thd;
+
+ table->s= share;
+ init_tmp_table_share(thd, share, "", 0, "(temporary)", tmpname);
+ share->blob_field= blob_field;
+ share->table_charset= param->table_charset;
+ share->primary_key= MAX_KEY; // Indicate no primary key
+ if (param->schema_table)
+ share->db= INFORMATION_SCHEMA_NAME;
+
+ param->using_outer_summary_function= 0;
+ thd->mem_root= mem_root_save;
+ DBUG_RETURN(table);
+}
+
+
+bool Create_tmp_table::add_fields(THD *thd,
+ TABLE *table,
+ TMP_TABLE_PARAM *param,
+ List<Item> &fields)
+{
+ DBUG_ENTER("Create_tmp_table::add_fields");
+ DBUG_ASSERT(table);
+ DBUG_ASSERT(table->field);
+ DBUG_ASSERT(table->s->blob_field);
+ DBUG_ASSERT(table->s->reclength == 0);
+ DBUG_ASSERT(table->s->fields == 0);
+ DBUG_ASSERT(table->s->blob_fields == 0);
+
+ const bool not_all_columns= !(m_select_options & TMP_TABLE_ALL_COLUMNS);
+ bool distinct_record_structure= m_distinct;
+ uint fieldnr= 0;
+ TABLE_SHARE *share= table->s;
+ Item **copy_func= param->items_to_copy;
+
+ MEM_ROOT *mem_root_save= thd->mem_root;
+ thd->mem_root= &table->mem_root;
+
+ List_iterator_fast<Item> li(fields);
+ Item *item;
+ Field **tmp_from_field= m_from_field;
+ while (!m_with_cycle && (item= li++))
+ if (item->is_in_with_cycle())
+ {
+ m_with_cycle= true;
+ /*
+ Following distinct_record_structure is (m_distinct || m_with_cycle)
+
+ Note: distinct_record_structure can be true even if m_distinct is
+ false, for example for incr_table in recursive CTE
+ (see select_union_recursive::create_result_table)
+ */
+ distinct_record_structure= true;
+ }
+ li.rewind();
+ while ((item=li++))
+ {
+ uint uneven_delta;
+ current_counter= (((param->hidden_field_count < (fieldnr + 1)) &&
+ distinct_record_structure &&
+ (!m_with_cycle || item->is_in_with_cycle())) ?
+ distinct :
+ other);
+ Item::Type type= item->type();
+ if (type == Item::COPY_STR_ITEM)
+ {
+ item= ((Item_copy *)item)->get_item();
+ type= item->type();
+ }
+ if (not_all_columns)
+ {
+ if (item->with_sum_func() && type != Item::SUM_FUNC_ITEM)
+ {
+ if (item->used_tables() & OUTER_REF_TABLE_BIT)
+ item->update_used_tables();
+ if ((item->real_type() == Item::SUBSELECT_ITEM) ||
+ (item->used_tables() & ~OUTER_REF_TABLE_BIT))
+ {
+ /*
+ Mark that the we have ignored an item that refers to a summary
+ function. We need to know this if someone is going to use
+ DISTINCT on the result.
+ */
+ param->using_outer_summary_function=1;
+ continue;
+ }
+ }
+ if (item->const_item() &&
+ param->hidden_field_count < (fieldnr + 1))
+ continue; // We don't have to store this
+ }
+ if (type == Item::SUM_FUNC_ITEM && !m_group && !m_save_sum_fields)
+ { /* Can't calc group yet */
+ Item_sum *sum_item= (Item_sum *) item;
+ sum_item->result_field=0;
+ for (uint i= 0 ; i < sum_item->get_arg_count() ; i++)
+ {
+ Item *arg= sum_item->get_arg(i);
+ if (!arg->const_item())
+ {
+ Item *tmp_item;
+ Field *new_field=
+ create_tmp_field(table, arg, &copy_func,
+ tmp_from_field, &m_default_field[fieldnr],
+ m_group != 0, not_all_columns,
+ distinct_record_structure , false);
+ if (!new_field)
+ goto err; // Should be OOM
+ tmp_from_field++;
+
+ thd->mem_root= mem_root_save;
+ if (!(tmp_item= new (thd->mem_root)
+ Item_field(thd, new_field)))
+ goto err;
+ ((Item_field*) tmp_item)->set_refers_to_temp_table();
+ arg= sum_item->set_arg(i, thd, tmp_item);
+ thd->mem_root= &table->mem_root;
+
+ uneven_delta= m_uneven_bit_length;
+ add_field(table, new_field, fieldnr++, param->force_not_null_cols);
+ m_field_count[current_counter]++;
+ m_uneven_bit[current_counter]+= (m_uneven_bit_length - uneven_delta);
+
+ if (!(new_field->flags & NOT_NULL_FLAG))
+ {
+ /*
+ new_field->maybe_null() is still false, it will be
+ changed below. But we have to setup Item_field correctly
+ */
+ arg->set_maybe_null();
+ }
+ if (current_counter == distinct)
+ new_field->flags|= FIELD_PART_OF_TMP_UNIQUE;
+ }
+ }
+ }
+ else
+ {
+ /*
+ The last parameter to create_tmp_field_ex() is a bit tricky:
+
+ We need to set it to 0 in union, to get fill_record() to modify the
+ temporary table.
+ We need to set it to 1 on multi-table-update and in select to
+ write rows to the temporary table.
+ We here distinguish between UNION and multi-table-updates by the fact
+ that in the later case group is set to the row pointer.
+
+ The test for item->marker == MARKER_NULL_KEY is ensure we
+ don't create a group-by key over a bit field as heap tables
+ can't handle that.
+ */
+ DBUG_ASSERT(!param->schema_table);
+ Field *new_field=
+ create_tmp_field(table, item, &copy_func,
+ tmp_from_field, &m_default_field[fieldnr],
+ m_group != 0,
+ !param->force_copy_fields &&
+ (not_all_columns || m_group !=0),
+ /*
+ If item->marker == MARKER_NULL_KEY then we
+ force create_tmp_field to create a 64-bit
+ longs for BIT fields because HEAP tables
+ can't index BIT fields directly. We do the
+ same for distinct, as we want the distinct
+ index to be usable in this case too.
+ */
+ item->marker == MARKER_NULL_KEY ||
+ param->bit_fields_as_long,
+ param->force_copy_fields);
+ if (unlikely(!new_field))
+ {
+ if (unlikely(thd->is_fatal_error))
+ goto err; // Got OOM
+ continue; // Some kind of const item
+ }
+ if (type == Item::SUM_FUNC_ITEM)
+ {
+ Item_sum *agg_item= (Item_sum *) item;
+ /*
+ Update the result field only if it has never been set, or if the
+ created temporary table is not to be used for subquery
+ materialization.
+
+ The reason is that for subqueries that require
+ materialization as part of their plan, we create the
+ 'external' temporary table needed for IN execution, after
+ the 'internal' temporary table needed for grouping. Since
+ both the external and the internal temporary tables are
+ created for the same list of SELECT fields of the subquery,
+ setting 'result_field' for each invocation of
+ create_tmp_table overrides the previous value of
+ 'result_field'.
+
+ The condition below prevents the creation of the external
+ temp table to override the 'result_field' that was set for
+ the internal temp table.
+ */
+ if (!agg_item->result_field || !param->materialized_subquery)
+ agg_item->result_field= new_field;
+ }
+ tmp_from_field++;
+
+ uneven_delta= m_uneven_bit_length;
+ add_field(table, new_field, fieldnr++, param->force_not_null_cols);
+ m_field_count[current_counter]++;
+ m_uneven_bit[current_counter]+= (m_uneven_bit_length - uneven_delta);
+
+ if (item->marker == MARKER_NULL_KEY && item->maybe_null())
+ {
+ m_group_null_items++;
+ new_field->flags|= GROUP_FLAG;
+ }
+ if (current_counter == distinct)
+ new_field->flags|= FIELD_PART_OF_TMP_UNIQUE;
+ }
+ }
+
+ DBUG_ASSERT(fieldnr == m_field_count[other] + m_field_count[distinct]);
+ DBUG_ASSERT(m_blob_count == m_blobs_count[other] + m_blobs_count[distinct]);
+ share->fields= fieldnr;
+ share->blob_fields= m_blob_count;
+ table->field[fieldnr]= 0; // End marker
+ share->blob_field[m_blob_count]= 0; // End marker
+ copy_func[0]= 0; // End marker
+ param->func_count= (uint) (copy_func - param->items_to_copy);
+ DBUG_ASSERT(param->func_count <= param->copy_func_count);
+
+ share->column_bitmap_size= bitmap_buffer_size(share->fields);
+
+ thd->mem_root= mem_root_save;
+ DBUG_RETURN(false);
+
+err:
+ thd->mem_root= mem_root_save;
+ DBUG_RETURN(true);
+}
+
+
+bool Create_tmp_table::choose_engine(THD *thd, TABLE *table,
+ TMP_TABLE_PARAM *param)
+{
+ TABLE_SHARE *share= table->s;
+ DBUG_ENTER("Create_tmp_table::choose_engine");
+ /*
+ If result table is small; use a heap, otherwise TMP_TABLE_HTON (Aria)
+ In the future we should try making storage engine selection more dynamic
+ */
+
+ if (share->blob_fields || m_using_unique_constraint ||
+ (thd->variables.big_tables &&
+ !(m_select_options & SELECT_SMALL_RESULT)) ||
+ (m_select_options & TMP_TABLE_FORCE_MYISAM) ||
+ thd->variables.tmp_memory_table_size == 0)
+ {
+ share->db_plugin= ha_lock_engine(0, TMP_ENGINE_HTON);
+ table->file= get_new_handler(share, &table->mem_root,
+ share->db_type());
+ if (m_group &&
+ (param->group_parts > table->file->max_key_parts() ||
+ param->group_length > table->file->max_key_length()))
+ m_using_unique_constraint= true;
+ }
+ else
+ {
+ share->db_plugin= ha_lock_engine(0, heap_hton);
+ table->file= get_new_handler(share, &table->mem_root,
+ share->db_type());
+ }
+ DBUG_RETURN(!table->file);
+}
+
+
+bool Create_tmp_table::finalize(THD *thd,
+ TABLE *table,
+ TMP_TABLE_PARAM *param,
+ bool do_not_open, bool keep_row_order)
+{
+ DBUG_ENTER("Create_tmp_table::finalize");
+ DBUG_ASSERT(table);
+
+ uint null_pack_length[2];
+ uint null_pack_base[2];
+ uint null_counter[2]= {0, 0};
+ uint whole_null_pack_length;
+ bool use_packed_rows= false;
+ bool save_abort_on_warning;
+ uchar *pos;
+ uchar *null_flags;
+ KEY *keyinfo;
+ TMP_ENGINE_COLUMNDEF *recinfo;
+ TABLE_SHARE *share= table->s;
+ Copy_field *copy= param->copy_field;
+ MEM_ROOT *mem_root_save= thd->mem_root;
+ thd->mem_root= &table->mem_root;
+
+ DBUG_ASSERT(m_alloced_field_count >= share->fields);
+ DBUG_ASSERT(m_alloced_field_count >= share->blob_fields);
+
+ if (choose_engine(thd, table, param))
+ goto err;
+
+ if (table->file->set_ha_share_ref(&share->ha_share))
+ {
+ delete table->file;
+ table->file= 0;
+ goto err;
+ }
+ table->file->set_table(table);
+
+ if (!m_using_unique_constraint)
+ share->reclength+= m_group_null_items; // null flag is stored separately
+
+ if (share->blob_fields == 0)
+ {
+ /* We need to ensure that first byte is not 0 for the delete link */
+ if (m_field_count[other])
+ m_null_count[other]++;
+ else
+ m_null_count[distinct]++;
+ }
+
+ null_pack_length[other]= (m_null_count[other] + 7 +
+ m_uneven_bit[other]) / 8;
+ null_pack_base[other]= 0;
+ null_pack_length[distinct]= (m_null_count[distinct] + 7 +
+ m_uneven_bit[distinct]) / 8;
+ null_pack_base[distinct]= null_pack_length[other];
+ whole_null_pack_length= null_pack_length[other] +
+ null_pack_length[distinct];
+ share->reclength+= whole_null_pack_length;
+ if (!share->reclength)
+ share->reclength= 1; // Dummy select
+ share->stored_rec_length= share->reclength;
+ /* Use packed rows if there is blobs or a lot of space to gain */
+ if (share->blob_fields ||
+ (string_total_length() >= STRING_TOTAL_LENGTH_TO_PACK_ROWS &&
+ (share->reclength / string_total_length() <= RATIO_TO_PACK_ROWS ||
+ string_total_length() / string_count() >= AVG_STRING_LENGTH_TO_PACK_ROWS)))
+ use_packed_rows= 1;
+
+ {
+ uint alloc_length= ALIGN_SIZE(share->reclength + MI_UNIQUE_HASH_LENGTH+1);
+ share->rec_buff_length= alloc_length;
+ if (!(table->record[0]= (uchar*)
+ alloc_root(&table->mem_root, alloc_length*3)))
+ goto err;
+ table->record[1]= table->record[0]+alloc_length;
+ share->default_values= table->record[1]+alloc_length;
+ }
+
+ setup_tmp_table_column_bitmaps(table, m_bitmaps, table->s->fields);
+
+ recinfo=param->start_recinfo;
+ null_flags=(uchar*) table->record[0];
+ pos=table->record[0]+ whole_null_pack_length;
+ if (whole_null_pack_length)
+ {
+ bzero((uchar*) recinfo,sizeof(*recinfo));
+ recinfo->type=FIELD_NORMAL;
+ recinfo->length= whole_null_pack_length;
+ recinfo++;
+ bfill(null_flags, whole_null_pack_length, 255); // Set null fields
+
+ table->null_flags= (uchar*) table->record[0];
+ share->null_fields= m_null_count[other] + m_null_count[distinct];
+ share->null_bytes= share->null_bytes_for_compare= whole_null_pack_length;
+ }
+
+ if (share->blob_fields == 0)
+ {
+ null_counter[(m_field_count[other] ? other : distinct)]++;
+ }
+
+ /* Protect against warnings in field_conv() in the next loop*/
+ save_abort_on_warning= thd->abort_on_warning;
+ thd->abort_on_warning= 0;
+
+ for (uint i= 0; i < share->fields; i++, recinfo++)
+ {
+ Field *field= table->field[i];
+ uint length;
+ bzero((uchar*) recinfo,sizeof(*recinfo));
+
+ current_counter= ((field->flags & FIELD_PART_OF_TMP_UNIQUE) ?
+ distinct :
+ other);
+
+ if (!(field->flags & NOT_NULL_FLAG))
+ {
+ recinfo->null_bit= (uint8)1 << (null_counter[current_counter] & 7);
+ recinfo->null_pos= (null_pack_base[current_counter] +
+ null_counter[current_counter]/8);
+ field->move_field(pos, null_flags + recinfo->null_pos, recinfo->null_bit);
+ null_counter[current_counter]++;
+ }
+ else
+ field->move_field(pos,(uchar*) 0,0);
+ if (field->type() == MYSQL_TYPE_BIT)
+ {
+ /* We have to reserve place for extra bits among null bits */
+ ((Field_bit*) field)->set_bit_ptr(null_flags +
+ null_pack_base[current_counter] +
+ null_counter[current_counter]/8,
+ null_counter[current_counter] & 7);
+ null_counter[current_counter]+= (field->field_length & 7);
+ }
+ field->reset();
+
+ /*
+ Test if there is a default field value. The test for ->ptr is to skip
+ 'offset' fields generated by initialize_tables
+ */
+ if (m_default_field[i] && m_default_field[i]->ptr)
+ {
+ /*
+ default_field[i] is set only in the cases when 'field' can
+ inherit the default value that is defined for the field referred
+ by the Item_field object from which 'field' has been created.
+ */
+ Field *orig_field= m_default_field[i];
+ /* Get the value from default_values */
+ if (orig_field->is_null_in_record(orig_field->table->s->default_values))
+ field->set_null();
+ else
+ {
+ /*
+ Copy default value. We have to use field_conv() for copy, instead of
+ memcpy(), because bit_fields may be stored differently.
+ But otherwise we copy as is, in particular, ignore NO_ZERO_DATE, etc
+ */
+ Use_relaxed_field_copy urfc(thd);
+ my_ptrdiff_t ptr_diff= (orig_field->table->s->default_values -
+ orig_field->table->record[0]);
+ field->set_notnull();
+ orig_field->move_field_offset(ptr_diff);
+ field_conv(field, orig_field);
+ orig_field->move_field_offset(-ptr_diff);
+ }
+ }
+
+ if (m_from_field[i])
+ { /* Not a table Item */
+ copy->set(field, m_from_field[i], m_save_sum_fields);
+ copy++;
+ }
+ length=field->pack_length_in_rec();
+ pos+= length;
+
+ /* Make entry for create table */
+ recinfo->length=length;
+ recinfo->type= field->tmp_engine_column_type(use_packed_rows);
+
+ // fix table name in field entry
+ field->set_table_name(&table->alias);
+ }
+ /* Handle group_null_items */
+ bzero(pos, table->s->reclength - (pos - table->record[0]));
+ MEM_CHECK_DEFINED(table->record[0], table->s->reclength);
+
+ thd->abort_on_warning= save_abort_on_warning;
+ param->copy_field_end= copy;
+ param->recinfo= recinfo; // Pointer to after last field
+ store_record(table,s->default_values); // Make empty default record
+
+ if (thd->variables.tmp_memory_table_size == ~ (ulonglong) 0) // No limit
+ share->max_rows= ~(ha_rows) 0;
+ else
+ share->max_rows= (ha_rows) (((share->db_type() == heap_hton) ?
+ MY_MIN(thd->variables.tmp_memory_table_size,
+ thd->variables.max_heap_table_size) :
+ thd->variables.tmp_disk_table_size) /
+ share->reclength);
+ set_if_bigger(share->max_rows,1); // For dummy start options
+ /*
+ Push the LIMIT clause to the temporary table creation, so that we
+ materialize only up to 'rows_limit' records instead of all result records.
+ */
+ set_if_smaller(share->max_rows, m_rows_limit);
+ param->end_write_records= m_rows_limit;
+
+ keyinfo= param->keyinfo;
+
+ if (m_group)
+ {
+ DBUG_PRINT("info",("Creating group key in temporary table"));
+ table->group= m_group; /* Table is grouped by key */
+ param->group_buff= m_group_buff;
+ share->keys=1;
+ share->uniques= MY_TEST(m_using_unique_constraint);
+ table->key_info= table->s->key_info= keyinfo;
+ table->keys_in_use_for_query.set_bit(0);
+ share->keys_in_use.set_bit(0);
+ keyinfo->key_part= m_key_part_info;
+ keyinfo->flags=HA_NOSAME | HA_BINARY_PACK_KEY | HA_PACK_KEY;
+ keyinfo->ext_key_flags= keyinfo->flags;
+ keyinfo->usable_key_parts=keyinfo->user_defined_key_parts= param->group_parts;
+ keyinfo->ext_key_parts= keyinfo->user_defined_key_parts;
+ keyinfo->key_length=0;
+ keyinfo->rec_per_key=NULL;
+ keyinfo->read_stats= NULL;
+ keyinfo->collected_stats= NULL;
+ keyinfo->algorithm= HA_KEY_ALG_UNDEF;
+ keyinfo->is_statistics_from_stat_tables= FALSE;
+ keyinfo->name= group_key;
+ ORDER *cur_group= m_group;
+ for (; cur_group ; cur_group= cur_group->next, m_key_part_info++)
+ {
+ Field *field=(*cur_group->item)->get_tmp_table_field();
+ DBUG_ASSERT(field->table == table);
+ bool maybe_null=(*cur_group->item)->maybe_null();
+ m_key_part_info->null_bit=0;
+ m_key_part_info->field= field;
+ m_key_part_info->fieldnr= field->field_index + 1;
+ if (cur_group == m_group)
+ field->key_start.set_bit(0);
+ m_key_part_info->offset= field->offset(table->record[0]);
+ m_key_part_info->length= (uint16) field->key_length();
+ m_key_part_info->type= (uint8) field->key_type();
+ m_key_part_info->key_type =
+ ((ha_base_keytype) m_key_part_info->type == HA_KEYTYPE_TEXT ||
+ (ha_base_keytype) m_key_part_info->type == HA_KEYTYPE_VARTEXT1 ||
+ (ha_base_keytype) m_key_part_info->type == HA_KEYTYPE_VARTEXT2) ?
+ 0 : FIELDFLAG_BINARY;
+ m_key_part_info->key_part_flag= 0;
+ if (!m_using_unique_constraint)
+ {
+ cur_group->buff=(char*) m_group_buff;
+
+ if (maybe_null && !field->null_bit)
+ {
+ /*
+ This can only happen in the unusual case where an outer join
+ table was found to be not-nullable by the optimizer and we
+ the item can't really be null.
+ We solve this by marking the item as !maybe_null to ensure
+ that the key,field and item definition match.
+ */
+ maybe_null= 0;
+ (*cur_group->item)->base_flags&= ~item_base_t::MAYBE_NULL;
+ }
+
+ if (!(cur_group->field= field->new_key_field(thd->mem_root,table,
+ m_group_buff +
+ MY_TEST(maybe_null),
+ m_key_part_info->length,
+ field->null_ptr,
+ field->null_bit)))
+ goto err; /* purecov: inspected */
+
+ if (maybe_null)
+ {
+ /*
+ To be able to group on NULL, we reserved place in group_buff
+ for the NULL flag just before the column. (see above).
+ The field data is after this flag.
+ The NULL flag is updated in 'end_update()' and 'end_write()'
+ */
+ keyinfo->flags|= HA_NULL_ARE_EQUAL; // def. that NULL == NULL
+ m_key_part_info->null_bit=field->null_bit;
+ m_key_part_info->null_offset= (uint) (field->null_ptr -
+ (uchar*) table->record[0]);
+ cur_group->buff++; // Pointer to field data
+ m_group_buff++; // Skipp null flag
+ }
+ m_group_buff+= cur_group->field->pack_length();
+ }
+ keyinfo->key_length+= m_key_part_info->length;
+ }
+ /*
+ Ensure we didn't overrun the group buffer. The < is only true when
+ some maybe_null fields was changed to be not null fields.
+ */
+ DBUG_ASSERT(m_using_unique_constraint ||
+ m_group_buff <= param->group_buff + param->group_length);
+ }
+
+ if (m_distinct && (share->fields != param->hidden_field_count ||
+ m_with_cycle))
+ {
+ uint i;
+ Field **reg_field;
+ /*
+ Create an unique key or an unique constraint over all columns
+ that should be in the result. In the temporary table, there are
+ 'param->hidden_field_count' extra columns, whose null bits are stored
+ in the first 'hidden_null_pack_length' bytes of the row.
+ */
+ DBUG_PRINT("info",("hidden_field_count: %d", param->hidden_field_count));
+
+ if (m_blobs_count[distinct])
+ {
+ /*
+ Special mode for index creation in MyISAM used to support unique
+ indexes on blobs with arbitrary length. Such indexes cannot be
+ used for lookups.
+ */
+ share->uniques= 1;
+ }
+ keyinfo->user_defined_key_parts= m_field_count[distinct] +
+ (share->uniques ? MY_TEST(null_pack_length[distinct]) : 0);
+ keyinfo->ext_key_parts= keyinfo->user_defined_key_parts;
+ keyinfo->usable_key_parts= keyinfo->user_defined_key_parts;
+ table->distinct= 1;
+ share->keys= 1;
+ if (!(m_key_part_info= (KEY_PART_INFO*)
+ alloc_root(&table->mem_root,
+ keyinfo->user_defined_key_parts * sizeof(KEY_PART_INFO))))
+ goto err;
+ bzero((void*) m_key_part_info, keyinfo->user_defined_key_parts * sizeof(KEY_PART_INFO));
+ table->keys_in_use_for_query.set_bit(0);
+ share->keys_in_use.set_bit(0);
+ table->key_info= table->s->key_info= keyinfo;
+ keyinfo->key_part= m_key_part_info;
+ keyinfo->flags=HA_NOSAME | HA_NULL_ARE_EQUAL | HA_BINARY_PACK_KEY | HA_PACK_KEY;
+ keyinfo->ext_key_flags= keyinfo->flags;
+ keyinfo->key_length= 0; // Will compute the sum of the parts below.
+ keyinfo->name= distinct_key;
+ keyinfo->algorithm= HA_KEY_ALG_UNDEF;
+ keyinfo->is_statistics_from_stat_tables= FALSE;
+ keyinfo->read_stats= NULL;
+ keyinfo->collected_stats= NULL;
+
+ /*
+ Needed by non-merged semi-joins: SJ-Materialized table must have a valid
+ rec_per_key array, because it participates in join optimization. Since
+ the table has no data, the only statistics we can provide is "unknown",
+ i.e. zero values.
+
+ (For table record count, we calculate and set JOIN_TAB::found_records,
+ see get_delayed_table_estimates()).
+ */
+ size_t rpk_size= keyinfo->user_defined_key_parts * sizeof(keyinfo->rec_per_key[0]);
+ if (!(keyinfo->rec_per_key= (ulong*) alloc_root(&table->mem_root,
+ rpk_size)))
+ goto err;
+ bzero(keyinfo->rec_per_key, rpk_size);
+
+ /*
+ Create an extra field to hold NULL bits so that unique indexes on
+ blobs can distinguish NULL from 0. This extra field is not needed
+ when we do not use UNIQUE indexes for blobs.
+ */
+ if (null_pack_length[distinct] && share->uniques)
+ {
+ m_key_part_info->null_bit=0;
+ m_key_part_info->offset= null_pack_base[distinct];
+ m_key_part_info->length= null_pack_length[distinct];
+ m_key_part_info->field= new Field_string(table->record[0],
+ (uint32) m_key_part_info->length,
+ (uchar*) 0,
+ (uint) 0,
+ Field::NONE,
+ &null_clex_str, &my_charset_bin);
+ if (!m_key_part_info->field)
+ goto err;
+ m_key_part_info->field->init(table);
+ m_key_part_info->key_type=FIELDFLAG_BINARY;
+ m_key_part_info->type= HA_KEYTYPE_BINARY;
+ m_key_part_info->fieldnr= m_key_part_info->field->field_index + 1;
+ m_key_part_info++;
+ }
+ /* Create a distinct key over the columns we are going to return */
+ for (i= param->hidden_field_count, reg_field= table->field + i ;
+ i < share->fields;
+ i++, reg_field++)
+ {
+ if (!((*reg_field)->flags & FIELD_PART_OF_TMP_UNIQUE))
+ continue;
+ m_key_part_info->field= *reg_field;
+ (*reg_field)->flags |= PART_KEY_FLAG;
+ if (m_key_part_info == keyinfo->key_part)
+ (*reg_field)->key_start.set_bit(0);
+ m_key_part_info->null_bit= (*reg_field)->null_bit;
+ m_key_part_info->null_offset= (uint) ((*reg_field)->null_ptr -
+ (uchar*) table->record[0]);
+
+ m_key_part_info->offset= (*reg_field)->offset(table->record[0]);
+ m_key_part_info->length= (uint16) (*reg_field)->pack_length();
+ m_key_part_info->fieldnr= (*reg_field)->field_index + 1;
+ /* TODO:
+ The below method of computing the key format length of the
+ key part is a copy/paste from opt_range.cc, and table.cc.
+ This should be factored out, e.g. as a method of Field.
+ In addition it is not clear if any of the Field::*_length
+ methods is supposed to compute the same length. If so, it
+ might be reused.
+ */
+ m_key_part_info->store_length= m_key_part_info->length;
+
+ if ((*reg_field)->real_maybe_null())
+ {
+ m_key_part_info->store_length+= HA_KEY_NULL_LENGTH;
+ m_key_part_info->key_part_flag |= HA_NULL_PART;
+ }
+ m_key_part_info->key_part_flag|= (*reg_field)->key_part_flag();
+ m_key_part_info->store_length+= (*reg_field)->key_part_length_bytes();
+ keyinfo->key_length+= m_key_part_info->store_length;
+
+ m_key_part_info->type= (uint8) (*reg_field)->key_type();
+ m_key_part_info->key_type =
+ ((ha_base_keytype) m_key_part_info->type == HA_KEYTYPE_TEXT ||
+ (ha_base_keytype) m_key_part_info->type == HA_KEYTYPE_VARTEXT1 ||
+ (ha_base_keytype) m_key_part_info->type == HA_KEYTYPE_VARTEXT2) ?
+ 0 : FIELDFLAG_BINARY;
+
+ m_key_part_info++;
+ }
+ }
+
+ if (unlikely(thd->is_fatal_error)) // If end of memory
+ goto err; /* purecov: inspected */
+ share->db_record_offset= 1;
+ table->used_for_duplicate_elimination= (param->sum_func_count == 0 &&
+ (table->group || table->distinct));
+ table->keep_row_order= keep_row_order;
+
+ if (!do_not_open)
+ {
+ if (instantiate_tmp_table(table, param->keyinfo, param->start_recinfo,
+ &param->recinfo, m_select_options))
+ goto err;
+ }
+
+ /* record[0] and share->default_values should now have been set up */
+ MEM_CHECK_DEFINED(table->record[0], table->s->reclength);
+ MEM_CHECK_DEFINED(share->default_values, table->s->reclength);
+
+ empty_record(table);
+ table->status= STATUS_NO_RECORD;
+ thd->mem_root= mem_root_save;
+
+ DBUG_RETURN(false);
+
+err:
+ thd->mem_root= mem_root_save;
+ DBUG_RETURN(true); /* purecov: inspected */
+}
+
+
+bool Create_tmp_table::add_schema_fields(THD *thd, TABLE *table,
+ TMP_TABLE_PARAM *param,
+ const ST_SCHEMA_TABLE &schema_table)
+{
+ DBUG_ENTER("Create_tmp_table::add_schema_fields");
+ DBUG_ASSERT(table);
+ DBUG_ASSERT(table->field);
+ DBUG_ASSERT(table->s->blob_field);
+ DBUG_ASSERT(table->s->reclength == 0);
+ DBUG_ASSERT(table->s->fields == 0);
+ DBUG_ASSERT(table->s->blob_fields == 0);
+
+ TABLE_SHARE *share= table->s;
+ ST_FIELD_INFO *defs= schema_table.fields_info;
+ uint fieldnr;
+ MEM_ROOT *mem_root_save= thd->mem_root;
+ thd->mem_root= &table->mem_root;
+
+ for (fieldnr= 0; !defs[fieldnr].end_marker(); fieldnr++)
+ {
+ const ST_FIELD_INFO &def= defs[fieldnr];
+ Record_addr addr(def.nullable());
+ const Type_handler *h= def.type_handler();
+ Field *field= h->make_schema_field(&table->mem_root, table, addr, def);
+ if (!field)
+ {
+ thd->mem_root= mem_root_save;
+ DBUG_RETURN(true); // EOM
+ }
+ field->init(table);
+ field->flags|= NO_DEFAULT_VALUE_FLAG;
+ add_field(table, field, fieldnr, param->force_not_null_cols);
+ }
+
+ share->fields= fieldnr;
+ share->blob_fields= m_blob_count;
+ table->field[fieldnr]= 0; // End marker
+ share->blob_field[m_blob_count]= 0; // End marker
+ param->func_count= 0;
+ share->column_bitmap_size= bitmap_buffer_size(share->fields);
+
+ thd->mem_root= mem_root_save;
+ DBUG_RETURN(false);
+}
+
+
+void Create_tmp_table::cleanup_on_failure(THD *thd, TABLE *table)
+{
+ if (table)
+ free_tmp_table(thd, table);
+ if (m_temp_pool_slot != MY_BIT_NONE)
+ temp_pool_clear_bit(m_temp_pool_slot);
+}
+
+
+TABLE *create_tmp_table(THD *thd, TMP_TABLE_PARAM *param, List<Item> &fields,
+ ORDER *group, bool distinct, bool save_sum_fields,
+ ulonglong select_options, ha_rows rows_limit,
+ const LEX_CSTRING *table_alias, bool do_not_open,
+ bool keep_row_order)
+{
+ TABLE *table;
+ Create_tmp_table maker(group, distinct, save_sum_fields, select_options,
+ rows_limit);
+ if (!(table= maker.start(thd, param, table_alias)) ||
+ maker.add_fields(thd, table, param, fields) ||
+ maker.finalize(thd, table, param, do_not_open, keep_row_order))
+ {
+ maker.cleanup_on_failure(thd, table);
+ return NULL;
+ }
+ return table;
+}
+
+
+TABLE *create_tmp_table_for_schema(THD *thd, TMP_TABLE_PARAM *param,
+ const ST_SCHEMA_TABLE &schema_table,
+ longlong select_options,
+ const LEX_CSTRING &table_alias,
+ bool do_not_open, bool keep_row_order)
+{
+ TABLE *table;
+ Create_tmp_table maker((ORDER *) NULL, false, false,
+ select_options, HA_POS_ERROR);
+ if (!(table= maker.start(thd, param, &table_alias)) ||
+ maker.add_schema_fields(thd, table, param, schema_table) ||
+ maker.finalize(thd, table, param, do_not_open, keep_row_order))
+ {
+ maker.cleanup_on_failure(thd, table);
+ return NULL;
+ }
+ return table;
+}
+
+
+/****************************************************************************/
+
+void *Virtual_tmp_table::operator new(size_t size, THD *thd) throw()
+{
+ return (Virtual_tmp_table *) alloc_root(thd->mem_root, size);
+}
+
+
+bool Virtual_tmp_table::init(uint field_count)
+{
+ uint *blob_field;
+ uchar *bitmaps;
+ DBUG_ENTER("Virtual_tmp_table::init");
+ if (!multi_alloc_root(in_use->mem_root,
+ &s, sizeof(*s),
+ &field, (field_count + 1) * sizeof(Field*),
+ &blob_field, (field_count + 1) * sizeof(uint),
+ &bitmaps, bitmap_buffer_size(field_count) * 6,
+ NullS))
+ DBUG_RETURN(true);
+ s->reset();
+ s->blob_field= blob_field;
+ setup_tmp_table_column_bitmaps(this, bitmaps, field_count);
+ m_alloced_field_count= field_count;
+ DBUG_RETURN(false);
+};
+
+
+bool Virtual_tmp_table::add(List<Spvar_definition> &field_list)
+{
+ /* Create all fields and calculate the total length of record */
+ Spvar_definition *cdef; /* column definition */
+ List_iterator_fast<Spvar_definition> it(field_list);
+ DBUG_ENTER("Virtual_tmp_table::add");
+ while ((cdef= it++))
+ {
+ Field *tmp;
+ Record_addr addr(f_maybe_null(cdef->pack_flag));
+ if (!(tmp= cdef->make_field(s, in_use->mem_root, &addr, &cdef->field_name)))
+ DBUG_RETURN(true);
+ add(tmp);
+ }
+ DBUG_RETURN(false);
+}
+
+
+void Virtual_tmp_table::setup_field_pointers()
+{
+ uchar *null_pos= record[0];
+ uchar *field_pos= null_pos + s->null_bytes;
+ uint null_bit= 1;
+
+ for (Field **cur_ptr= field; *cur_ptr; ++cur_ptr)
+ {
+ Field *cur_field= *cur_ptr;
+ if ((cur_field->flags & NOT_NULL_FLAG))
+ cur_field->move_field(field_pos);
+ else
+ {
+ cur_field->move_field(field_pos, (uchar*) null_pos, null_bit);
+ null_bit<<= 1;
+ if (null_bit == (uint)1 << 8)
+ {
+ ++null_pos;
+ null_bit= 1;
+ }
+ }
+ if (cur_field->type() == MYSQL_TYPE_BIT &&
+ cur_field->key_type() == HA_KEYTYPE_BIT)
+ {
+ /* This is a Field_bit since key_type is HA_KEYTYPE_BIT */
+ static_cast<Field_bit*>(cur_field)->set_bit_ptr(null_pos, null_bit);
+ null_bit+= cur_field->field_length & 7;
+ if (null_bit > 7)
+ {
+ null_pos++;
+ null_bit-= 8;
+ }
+ }
+ cur_field->reset();
+ field_pos+= cur_field->pack_length();
+ }
+}
+
+
+bool Virtual_tmp_table::open()
+{
+ // Make sure that we added all the fields we planned to:
+ DBUG_ASSERT(s->fields == m_alloced_field_count);
+ field[s->fields]= NULL; // mark the end of the list
+ s->blob_field[s->blob_fields]= 0; // mark the end of the list
+
+ uint null_pack_length= (s->null_fields + 7) / 8; // NULL-bit array length
+ s->reclength+= null_pack_length;
+ s->rec_buff_length= ALIGN_SIZE(s->reclength + 1);
+ if (!(record[0]= (uchar*) in_use->alloc(s->rec_buff_length)))
+ return true;
+ if (null_pack_length)
+ {
+ null_flags= (uchar*) record[0];
+ s->null_bytes= s->null_bytes_for_compare= null_pack_length;
+ }
+ setup_field_pointers();
+ return false;
+}
+
+
+bool Virtual_tmp_table::sp_find_field_by_name(uint *idx,
+ const LEX_CSTRING &name) const
+{
+ Field *f;
+ for (uint i= 0; (f= field[i]); i++)
+ {
+ // Use the same comparison style with sp_context::find_variable()
+ if (!system_charset_info->strnncoll(f->field_name.str, f->field_name.length,
+ name.str, name.length))
+ {
+ *idx= i;
+ return false;
+ }
+ }
+ return true;
+}
+
+
+bool
+Virtual_tmp_table::sp_find_field_by_name_or_error(uint *idx,
+ const LEX_CSTRING &var_name,
+ const LEX_CSTRING &field_name)
+ const
+{
+ if (sp_find_field_by_name(idx, field_name))
+ {
+ my_error(ER_ROW_VARIABLE_DOES_NOT_HAVE_FIELD, MYF(0),
+ var_name.str, field_name.str);
+ return true;
+ }
+ return false;
+}
+
+
+bool Virtual_tmp_table::sp_set_all_fields_from_item_list(THD *thd,
+ List<Item> &items)
+{
+ DBUG_ASSERT(s->fields == items.elements);
+ List_iterator<Item> it(items);
+ Item *item;
+ for (uint i= 0 ; (item= it++) ; i++)
+ {
+ if (field[i]->sp_prepare_and_store_item(thd, &item))
+ return true;
+ }
+ return false;
+}
+
+
+bool Virtual_tmp_table::sp_set_all_fields_from_item(THD *thd, Item *value)
+{
+ DBUG_ASSERT(value->fixed());
+ DBUG_ASSERT(value->cols() == s->fields);
+ for (uint i= 0; i < value->cols(); i++)
+ {
+ if (field[i]->sp_prepare_and_store_item(thd, value->addr(i)))
+ return true;
+ }
+ return false;
+}
+
+
+bool open_tmp_table(TABLE *table)
+{
+ int error;
+ if (unlikely((error= table->file->ha_open(table, table->s->path.str, O_RDWR,
+ HA_OPEN_TMP_TABLE |
+ HA_OPEN_INTERNAL_TABLE))))
+ {
+ table->file->print_error(error, MYF(0)); /* purecov: inspected */
+ table->db_stat= 0;
+ return 1;
+ }
+ table->db_stat= HA_OPEN_KEYFILE;
+ (void) table->file->extra(HA_EXTRA_QUICK); /* Faster */
+ if (!table->is_created())
+ {
+ table->set_created();
+ table->in_use->inc_status_created_tmp_tables();
+ }
+
+ return 0;
+}
+
+
+#ifdef USE_ARIA_FOR_TMP_TABLES
+/*
+ Create internal (MyISAM or Maria) temporary table
+
+ SYNOPSIS
+ create_internal_tmp_table()
+ table Table object that descrimes the table to be created
+ keyinfo Description of the index (there is always one index)
+ start_recinfo engine's column descriptions
+ recinfo INOUT End of engine's column descriptions
+ options Option bits
+
+ DESCRIPTION
+ Create an internal emporary table according to passed description. The is
+ assumed to have one unique index or constraint.
+
+ The passed array or TMP_ENGINE_COLUMNDEF structures must have this form:
+
+ 1. 1-byte column (afaiu for 'deleted' flag) (note maybe not 1-byte
+ when there are many nullable columns)
+ 2. Table columns
+ 3. One free TMP_ENGINE_COLUMNDEF element (*recinfo points here)
+
+ This function may use the free element to create hash column for unique
+ constraint.
+
+ RETURN
+ FALSE - OK
+ TRUE - Error
+*/
+
+
+bool create_internal_tmp_table(TABLE *table, KEY *keyinfo,
+ TMP_ENGINE_COLUMNDEF *start_recinfo,
+ TMP_ENGINE_COLUMNDEF **recinfo,
+ ulonglong options)
+{
+ int error;
+ MARIA_KEYDEF keydef;
+ MARIA_UNIQUEDEF uniquedef;
+ TABLE_SHARE *share= table->s;
+ MARIA_CREATE_INFO create_info;
+ DBUG_ENTER("create_internal_tmp_table");
+
+ if (share->keys)
+ { // Get keys for ni_create
+ bool using_unique_constraint=0;
+ HA_KEYSEG *seg= (HA_KEYSEG*) alloc_root(&table->mem_root,
+ sizeof(*seg) * keyinfo->user_defined_key_parts);
+ if (!seg)
+ goto err;
+
+ bzero(seg, sizeof(*seg) * keyinfo->user_defined_key_parts);
+ /*
+ Note that a similar check is performed during
+ subquery_types_allow_materialization. See MDEV-7122 for more details as
+ to why. Whenever this changes, it must be updated there as well, for
+ all tmp_table engines.
+ */
+ if (keyinfo->key_length > table->file->max_key_length() ||
+ keyinfo->user_defined_key_parts > table->file->max_key_parts() ||
+ share->uniques)
+ {
+ if (!share->uniques && !(keyinfo->flags & HA_NOSAME))
+ {
+ my_error(ER_INTERNAL_ERROR, MYF(0),
+ "Using too big key for internal temp tables");
+ DBUG_RETURN(1);
+ }
+
+ /* Can't create a key; Make a unique constraint instead of a key */
+ share->keys= 0;
+ share->uniques= 1;
+ using_unique_constraint=1;
+ bzero((char*) &uniquedef,sizeof(uniquedef));
+ uniquedef.keysegs=keyinfo->user_defined_key_parts;
+ uniquedef.seg=seg;
+ uniquedef.null_are_equal=1;
+
+ /* Create extra column for hash value */
+ bzero((uchar*) *recinfo,sizeof(**recinfo));
+ (*recinfo)->type= FIELD_CHECK;
+ (*recinfo)->length= MARIA_UNIQUE_HASH_LENGTH;
+ (*recinfo)++;
+
+ /* Avoid warnings from valgrind */
+ bzero(table->record[0]+ share->reclength, MARIA_UNIQUE_HASH_LENGTH);
+ bzero(share->default_values+ share->reclength, MARIA_UNIQUE_HASH_LENGTH);
+ share->reclength+= MARIA_UNIQUE_HASH_LENGTH;
+ }
+ else
+ {
+ /* Create a key */
+ bzero((char*) &keydef,sizeof(keydef));
+ keydef.flag= keyinfo->flags & HA_NOSAME;
+ keydef.keysegs= keyinfo->user_defined_key_parts;
+ keydef.seg= seg;
+ }
+ for (uint i=0; i < keyinfo->user_defined_key_parts ; i++,seg++)
+ {
+ Field *field=keyinfo->key_part[i].field;
+ seg->flag= 0;
+ seg->language= field->charset()->number;
+ seg->length= keyinfo->key_part[i].length;
+ seg->start= keyinfo->key_part[i].offset;
+ if (field->flags & BLOB_FLAG)
+ {
+ seg->type=
+ ((keyinfo->key_part[i].key_type & FIELDFLAG_BINARY) ?
+ HA_KEYTYPE_VARBINARY2 : HA_KEYTYPE_VARTEXT2);
+ seg->bit_start= (uint8)(field->pack_length() -
+ portable_sizeof_char_ptr);
+ seg->flag= HA_BLOB_PART;
+ seg->length=0; // Whole blob in unique constraint
+ }
+ else
+ {
+ seg->type= keyinfo->key_part[i].type;
+ /* Tell handler if it can do suffic space compression */
+ if (field->real_type() == MYSQL_TYPE_STRING &&
+ keyinfo->key_part[i].length > 32)
+ seg->flag|= HA_SPACE_PACK;
+ }
+ if (!(field->flags & NOT_NULL_FLAG))
+ {
+ seg->null_bit= field->null_bit;
+ seg->null_pos= (uint) (field->null_ptr - (uchar*) table->record[0]);
+ /*
+ We are using a GROUP BY on something that contains NULL
+ In this case we have to tell Aria that two NULL should
+ on INSERT be regarded at the same value
+ */
+ if (!using_unique_constraint)
+ keydef.flag|= HA_NULL_ARE_EQUAL;
+ }
+ }
+ }
+ bzero((char*) &create_info,sizeof(create_info));
+ create_info.data_file_length= table->in_use->variables.tmp_disk_table_size;
+
+ /*
+ The logic for choosing the record format:
+ The STATIC_RECORD format is the fastest one, because it's so simple,
+ so we use this by default for short rows.
+ BLOCK_RECORD caches both row and data, so this is generally faster than
+ DYNAMIC_RECORD. The one exception is when we write to tmp table and
+ want to use keys for duplicate elimination as with BLOCK RECORD
+ we first write the row, then check for key conflicts and then we have to
+ delete the row. The cases when this can happen is when there is
+ a group by and no sum functions or if distinct is used.
+ */
+ {
+ enum data_file_type file_type= table->no_rows ? NO_RECORD :
+ (share->reclength < 64 && !share->blob_fields ? STATIC_RECORD :
+ table->used_for_duplicate_elimination ? DYNAMIC_RECORD : BLOCK_RECORD);
+ uint create_flags= HA_CREATE_TMP_TABLE | HA_CREATE_INTERNAL_TABLE |
+ (table->keep_row_order ? HA_PRESERVE_INSERT_ORDER : 0);
+
+ if (file_type != NO_RECORD && encrypt_tmp_disk_tables)
+ {
+ /* encryption is only supported for BLOCK_RECORD */
+ file_type= BLOCK_RECORD;
+ if (table->used_for_duplicate_elimination)
+ {
+ /*
+ sql-layer expect the last column to be stored/restored also
+ when it's null.
+
+ This is probably a bug (that sql-layer doesn't annotate
+ the column as not-null) but both heap, aria-static, aria-dynamic and
+ myisam has this property. aria-block_record does not since it
+ does not store null-columns at all.
+ Emulate behaviour by making column not-nullable when creating the
+ table.
+ */
+ uint cols= (uint)(*recinfo-start_recinfo);
+ start_recinfo[cols-1].null_bit= 0;
+ }
+ }
+
+ if (unlikely((error= maria_create(share->path.str, file_type, share->keys,
+ &keydef, (uint) (*recinfo-start_recinfo),
+ start_recinfo, share->uniques, &uniquedef,
+ &create_info, create_flags))))
+ {
+ table->file->print_error(error,MYF(0)); /* purecov: inspected */
+ table->db_stat=0;
+ goto err;
+ }
+ }
+
+ table->in_use->inc_status_created_tmp_disk_tables();
+ table->in_use->inc_status_created_tmp_tables();
+ share->db_record_offset= 1;
+ table->set_created();
+ DBUG_RETURN(0);
+ err:
+ DBUG_RETURN(1);
+}
+
+#else
+
+/*
+ Create internal (MyISAM or Maria) temporary table
+
+ SYNOPSIS
+ create_internal_tmp_table()
+ table Table object that descrimes the table to be created
+ keyinfo Description of the index (there is always one index)
+ start_recinfo engine's column descriptions
+ recinfo INOUT End of engine's column descriptions
+ options Option bits
+
+ DESCRIPTION
+ Create an internal emporary table according to passed description. The is
+ assumed to have one unique index or constraint.
+
+ The passed array or TMP_ENGINE_COLUMNDEF structures must have this form:
+
+ 1. 1-byte column (afaiu for 'deleted' flag) (note maybe not 1-byte
+ when there are many nullable columns)
+ 2. Table columns
+ 3. One free TMP_ENGINE_COLUMNDEF element (*recinfo points here)
+
+ This function may use the free element to create hash column for unique
+ constraint.
+
+ RETURN
+ FALSE - OK
+ TRUE - Error
+*/
+
+/* Create internal MyISAM temporary table */
+
+bool create_internal_tmp_table(TABLE *table, KEY *keyinfo,
+ TMP_ENGINE_COLUMNDEF *start_recinfo,
+ TMP_ENGINE_COLUMNDEF **recinfo,
+ ulonglong options)
+{
+ int error;
+ MI_KEYDEF keydef;
+ MI_UNIQUEDEF uniquedef;
+ TABLE_SHARE *share= table->s;
+ DBUG_ENTER("create_internal_tmp_table");
+
+ if (share->keys)
+ { // Get keys for ni_create
+ bool using_unique_constraint=0;
+ HA_KEYSEG *seg= (HA_KEYSEG*) alloc_root(&table->mem_root,
+ sizeof(*seg) * keyinfo->user_defined_key_parts);
+ if (!seg)
+ goto err;
+
+ bzero(seg, sizeof(*seg) * keyinfo->user_defined_key_parts);
+ /*
+ Note that a similar check is performed during
+ subquery_types_allow_materialization. See MDEV-7122 for more details as
+ to why. Whenever this changes, it must be updated there as well, for
+ all tmp_table engines.
+ */
+ if (keyinfo->key_length > table->file->max_key_length() ||
+ keyinfo->user_defined_key_parts > table->file->max_key_parts() ||
+ share->uniques)
+ {
+ /* Can't create a key; Make a unique constraint instead of a key */
+ share->keys= 0;
+ share->uniques= 1;
+ using_unique_constraint=1;
+ bzero((char*) &uniquedef,sizeof(uniquedef));
+ uniquedef.keysegs=keyinfo->user_defined_key_parts;
+ uniquedef.seg=seg;
+ uniquedef.null_are_equal=1;
+
+ /* Create extra column for hash value */
+ bzero((uchar*) *recinfo,sizeof(**recinfo));
+ (*recinfo)->type= FIELD_CHECK;
+ (*recinfo)->length=MI_UNIQUE_HASH_LENGTH;
+ (*recinfo)++;
+ /* Avoid warnings from valgrind */
+ bzero(table->record[0]+ share->reclength, MI_UNIQUE_HASH_LENGTH);
+ bzero(share->default_values+ share->reclength, MI_UNIQUE_HASH_LENGTH);
+ share->reclength+= MI_UNIQUE_HASH_LENGTH;
+ }
+ else
+ {
+ /* Create an unique key */
+ bzero((char*) &keydef,sizeof(keydef));
+ keydef.flag= ((keyinfo->flags & HA_NOSAME) | HA_BINARY_PACK_KEY |
+ HA_PACK_KEY);
+ keydef.keysegs= keyinfo->user_defined_key_parts;
+ keydef.seg= seg;
+ }
+ for (uint i=0; i < keyinfo->user_defined_key_parts ; i++,seg++)
+ {
+ Field *field=keyinfo->key_part[i].field;
+ seg->flag= 0;
+ seg->language= field->charset()->number;
+ seg->length= keyinfo->key_part[i].length;
+ seg->start= keyinfo->key_part[i].offset;
+ if (field->flags & BLOB_FLAG)
+ {
+ seg->type=
+ ((keyinfo->key_part[i].key_type & FIELDFLAG_BINARY) ?
+ HA_KEYTYPE_VARBINARY2 : HA_KEYTYPE_VARTEXT2);
+ seg->bit_start= (uint8)(field->pack_length() - portable_sizeof_char_ptr);
+ seg->flag= HA_BLOB_PART;
+ seg->length=0; // Whole blob in unique constraint
+ }
+ else
+ {
+ seg->type= keyinfo->key_part[i].type;
+ /* Tell handler if it can do suffic space compression */
+ if (field->real_type() == MYSQL_TYPE_STRING &&
+ keyinfo->key_part[i].length > 4)
+ seg->flag|= HA_SPACE_PACK;
+ }
+ if (!(field->flags & NOT_NULL_FLAG))
+ {
+ seg->null_bit= field->null_bit;
+ seg->null_pos= (uint) (field->null_ptr - (uchar*) table->record[0]);
+ /*
+ We are using a GROUP BY on something that contains NULL
+ In this case we have to tell MyISAM that two NULL should
+ on INSERT be regarded at the same value
+ */
+ if (!using_unique_constraint)
+ keydef.flag|= HA_NULL_ARE_EQUAL;
+ }
+ }
+ }
+ MI_CREATE_INFO create_info;
+ bzero((char*) &create_info,sizeof(create_info));
+ create_info.data_file_length= table->in_use->variables.tmp_disk_table_size;
+
+ if (unlikely((error= mi_create(share->path.str, share->keys, &keydef,
+ (uint) (*recinfo-start_recinfo),
+ start_recinfo,
+ share->uniques, &uniquedef,
+ &create_info,
+ HA_CREATE_TMP_TABLE |
+ HA_CREATE_INTERNAL_TABLE |
+ ((share->db_create_options &
+ HA_OPTION_PACK_RECORD) ?
+ HA_PACK_RECORD : 0)
+ ))))
+ {
+ table->file->print_error(error,MYF(0)); /* purecov: inspected */
+ table->db_stat=0;
+ goto err;
+ }
+ table->in_use->inc_status_created_tmp_disk_tables();
+ table->in_use->inc_status_created_tmp_tables();
+ share->db_record_offset= 1;
+ table->set_created();
+ DBUG_RETURN(0);
+ err:
+ DBUG_RETURN(1);
+}
+
+#endif /* USE_ARIA_FOR_TMP_TABLES */
+
+
+/*
+ If a HEAP table gets full, create a internal table in MyISAM or Maria
+ and copy all rows to this
+*/
+
+
+bool
+create_internal_tmp_table_from_heap(THD *thd, TABLE *table,
+ TMP_ENGINE_COLUMNDEF *start_recinfo,
+ TMP_ENGINE_COLUMNDEF **recinfo,
+ int error,
+ bool ignore_last_dupp_key_error,
+ bool *is_duplicate)
+{
+ TABLE new_table;
+ TABLE_SHARE share;
+ const char *save_proc_info;
+ int write_err= 0;
+ DBUG_ENTER("create_internal_tmp_table_from_heap");
+ if (is_duplicate)
+ *is_duplicate= FALSE;
+
+ if (table->s->db_type() != heap_hton || error != HA_ERR_RECORD_FILE_FULL)
+ {
+ /*
+ We don't want this error to be converted to a warning, e.g. in case of
+ INSERT IGNORE ... SELECT.
+ */
+ table->file->print_error(error, MYF(ME_FATAL));
+ DBUG_RETURN(1);
+ }
+ new_table= *table;
+ share= *table->s;
+ new_table.s= &share;
+ new_table.s->db_plugin= ha_lock_engine(thd, TMP_ENGINE_HTON);
+ if (unlikely(!(new_table.file= get_new_handler(&share, &new_table.mem_root,
+ TMP_ENGINE_HTON))))
+ DBUG_RETURN(1); // End of memory
+
+ if (unlikely(new_table.file->set_ha_share_ref(&share.ha_share)))
+ {
+ delete new_table.file;
+ DBUG_RETURN(1);
+ }
+
+ save_proc_info=thd->proc_info;
+ THD_STAGE_INFO(thd, stage_converting_heap_to_myisam);
+
+ new_table.no_rows= table->no_rows;
+ if (create_internal_tmp_table(&new_table, table->key_info, start_recinfo,
+ recinfo,
+ thd->lex->first_select_lex()->options |
+ thd->variables.option_bits))
+ goto err2;
+ if (open_tmp_table(&new_table))
+ goto err1;
+ if (table->file->indexes_are_disabled())
+ new_table.file->ha_disable_indexes(HA_KEY_SWITCH_ALL);
+ table->file->ha_index_or_rnd_end();
+ if (table->file->ha_rnd_init_with_error(1))
+ DBUG_RETURN(1);
+ if (new_table.no_rows)
+ new_table.file->extra(HA_EXTRA_NO_ROWS);
+ else
+ {
+ /* update table->file->stats.records */
+ table->file->info(HA_STATUS_VARIABLE);
+ new_table.file->ha_start_bulk_insert(table->file->stats.records);
+ }
+
+ /*
+ copy all old rows from heap table to MyISAM table
+ This is the only code that uses record[1] to read/write but this
+ is safe as this is a temporary MyISAM table without timestamp/autoincrement
+ or partitioning.
+ */
+ while (!table->file->ha_rnd_next(new_table.record[1]))
+ {
+ write_err= new_table.file->ha_write_tmp_row(new_table.record[1]);
+ DBUG_EXECUTE_IF("raise_error", write_err= HA_ERR_FOUND_DUPP_KEY ;);
+ if (write_err)
+ goto err;
+ if (unlikely(thd->check_killed()))
+ goto err_killed;
+ }
+ if (!new_table.no_rows && new_table.file->ha_end_bulk_insert())
+ goto err;
+ /* copy row that filled HEAP table */
+ if (unlikely((write_err=new_table.file->ha_write_tmp_row(table->record[0]))))
+ {
+ if (new_table.file->is_fatal_error(write_err, HA_CHECK_DUP) ||
+ !ignore_last_dupp_key_error)
+ goto err;
+ if (is_duplicate)
+ *is_duplicate= TRUE;
+ }
+ else
+ {
+ if (is_duplicate)
+ *is_duplicate= FALSE;
+ }
+
+ /* remove heap table and change to use myisam table */
+ (void) table->file->ha_rnd_end();
+ (void) table->file->ha_close(); // This deletes the table !
+ delete table->file;
+ table->file=0;
+ plugin_unlock(0, table->s->db_plugin);
+ share.db_plugin= my_plugin_lock(0, share.db_plugin);
+ new_table.s= table->s; // Keep old share
+ *table= new_table;
+ *table->s= share;
+
+ table->file->change_table_ptr(table, table->s);
+ table->use_all_columns();
+ if (save_proc_info)
+ thd_proc_info(thd, (!strcmp(save_proc_info,"Copying to tmp table") ?
+ "Copying to tmp table on disk" : save_proc_info));
+ DBUG_RETURN(0);
+
+ err:
+ DBUG_PRINT("error",("Got error: %d",write_err));
+ table->file->print_error(write_err, MYF(0));
+err_killed:
+ (void) table->file->ha_rnd_end();
+ (void) new_table.file->ha_close();
+ err1:
+ TMP_ENGINE_HTON->drop_table(TMP_ENGINE_HTON, new_table.s->path.str);
+ err2:
+ delete new_table.file;
+ thd_proc_info(thd, save_proc_info);
+ table->mem_root= new_table.mem_root;
+ DBUG_RETURN(1);
+}
+
+
+void
+free_tmp_table(THD *thd, TABLE *entry)
+{
+ MEM_ROOT own_root= entry->mem_root;
+ const char *save_proc_info;
+ DBUG_ENTER("free_tmp_table");
+ DBUG_PRINT("enter",("table: %s alias: %s",entry->s->table_name.str,
+ entry->alias.c_ptr()));
+
+ save_proc_info=thd->proc_info;
+ THD_STAGE_INFO(thd, stage_removing_tmp_table);
+
+ if (entry->file && entry->is_created())
+ {
+ if (entry->db_stat)
+ {
+ /* The table was properly opened in open_tmp_table() */
+ entry->file->ha_index_or_rnd_end();
+ entry->file->info(HA_STATUS_VARIABLE);
+ thd->tmp_tables_size+= (entry->file->stats.data_file_length +
+ entry->file->stats.index_file_length);
+ }
+ entry->file->ha_drop_table(entry->s->path.str);
+ delete entry->file;
+ entry->file= NULL;
+ entry->reset_created();
+ }
+
+ /* free blobs */
+ for (Field **ptr=entry->field ; *ptr ; ptr++)
+ (*ptr)->free();
+
+ if (entry->temp_pool_slot != MY_BIT_NONE)
+ temp_pool_clear_bit(entry->temp_pool_slot);
+
+ plugin_unlock(0, entry->s->db_plugin);
+ entry->alias.free();
+
+ if (entry->pos_in_table_list && entry->pos_in_table_list->table)
+ {
+ DBUG_ASSERT(entry->pos_in_table_list->table == entry);
+ entry->pos_in_table_list->table= NULL;
+ }
+
+ free_root(&own_root, MYF(0)); /* the table is allocated in its own root */
+ thd_proc_info(thd, save_proc_info);
+
+ DBUG_VOID_RETURN;
+}
+
+
+/**
+ @brief
+ Set write_func of AGGR_OP object
+
+ @param join_tab JOIN_TAB of the corresponding tmp table
+
+ @details
+ Function sets up write_func according to how AGGR_OP object that
+ is attached to the given join_tab will be used in the query.
+*/
+
+void set_postjoin_aggr_write_func(JOIN_TAB *tab)
+{
+ JOIN *join= tab->join;
+ TABLE *table= tab->table;
+ AGGR_OP *aggr= tab->aggr;
+ TMP_TABLE_PARAM *tmp_tbl= tab->tmp_table_param;
+
+ DBUG_ASSERT(table && aggr);
+
+ if (table->group && tmp_tbl->sum_func_count &&
+ !tmp_tbl->precomputed_group_by)
+ {
+ /*
+ Note for MyISAM tmp tables: if uniques is true keys won't be
+ created.
+ */
+ if (table->s->keys && !table->s->uniques)
+ {
+ DBUG_PRINT("info",("Using end_update"));
+ aggr->set_write_func(end_update);
+ }
+ else
+ {
+ DBUG_PRINT("info",("Using end_unique_update"));
+ aggr->set_write_func(end_unique_update);
+ }
+ }
+ else if (join->sort_and_group && !tmp_tbl->precomputed_group_by &&
+ !join->sort_and_group_aggr_tab && join->tables_list &&
+ join->top_join_tab_count)
+ {
+ DBUG_PRINT("info",("Using end_write_group"));
+ aggr->set_write_func(end_write_group);
+ join->sort_and_group_aggr_tab= tab;
+ }
+ else
+ {
+ DBUG_PRINT("info",("Using end_write"));
+ aggr->set_write_func(end_write);
+ if (tmp_tbl->precomputed_group_by)
+ {
+ /*
+ A preceding call to create_tmp_table in the case when loose
+ index scan is used guarantees that
+ TMP_TABLE_PARAM::items_to_copy has enough space for the group
+ by functions. It is OK here to use memcpy since we copy
+ Item_sum pointers into an array of Item pointers.
+ */
+ memcpy(tmp_tbl->items_to_copy + tmp_tbl->func_count,
+ join->sum_funcs,
+ sizeof(Item*)*tmp_tbl->sum_func_count);
+ tmp_tbl->items_to_copy[tmp_tbl->func_count+tmp_tbl->sum_func_count]= 0;
+ }
+ }
+}
+
+
+/**
+ @details
+ Rows produced by a join sweep may end up in a temporary table or be sent
+ to a client. Set the function of the nested loop join algorithm which
+ handles final fully constructed and matched records.
+
+ @param join join to setup the function for.
+
+ @return
+ end_select function to use. This function can't fail.
+*/
+
+Next_select_func setup_end_select_func(JOIN *join)
+{
+ TMP_TABLE_PARAM *tmp_tbl= &join->tmp_table_param;
+
+ /*
+ Choose method for presenting result to user. Use end_send_group
+ if the query requires grouping (has a GROUP BY clause and/or one or
+ more aggregate functions). Use end_send if the query should not
+ be grouped.
+ */
+ if (join->sort_and_group && !tmp_tbl->precomputed_group_by)
+ {
+ DBUG_PRINT("info",("Using end_send_group"));
+ return end_send_group;
+ }
+ DBUG_PRINT("info",("Using end_send"));
+ return end_send;
+}
+
+
+/**
+ Make a join of all tables and write it on socket or to table.
+
+ @retval
+ 0 if ok
+ @retval
+ 1 if error is sent
+ @retval
+ -1 if error should be sent
+*/
+
+static int
+do_select(JOIN *join, Procedure *procedure)
+{
+ int rc= 0;
+ enum_nested_loop_state error= NESTED_LOOP_OK;
+ DBUG_ENTER("do_select");
+
+ if (join->pushdown_query)
+ {
+ /* Select fields are in the temporary table */
+ join->fields= &join->tmp_fields_list1;
+ /* Setup HAVING to work with fields in temporary table */
+ join->set_items_ref_array(join->items1);
+ /* The storage engine will take care of the group by query result */
+ int res= join->pushdown_query->execute(join);
+
+ if (res)
+ DBUG_RETURN(res);
+
+ if (join->pushdown_query->store_data_in_temp_table)
+ {
+ JOIN_TAB *last_tab= join->join_tab + join->exec_join_tab_cnt();
+ last_tab->next_select= end_send;
+
+ enum_nested_loop_state state= last_tab->aggr->end_send();
+ if (state >= NESTED_LOOP_OK)
+ state= sub_select(join, last_tab, true);
+
+ if (state < NESTED_LOOP_OK)
+ res= 1;
+
+ if (join->result->send_eof())
+ res= 1;
+ }
+ DBUG_RETURN(res);
+ }
+
+ join->procedure= procedure;
+ join->duplicate_rows= join->send_records=0;
+ if (join->only_const_tables() && !join->need_tmp)
+ {
+ Next_select_func end_select= setup_end_select_func(join);
+
+ /*
+ HAVING will be checked after processing aggregate functions,
+ But WHERE should checked here (we alredy have read tables).
+ Notice that make_join_select() splits all conditions in this case
+ into two groups exec_const_cond and outer_ref_cond.
+ If join->table_count == join->const_tables then it is
+ sufficient to check only the condition pseudo_bits_cond.
+ */
+ DBUG_ASSERT(join->outer_ref_cond == NULL);
+ if (!join->pseudo_bits_cond || join->pseudo_bits_cond->val_int())
+ {
+ // HAVING will be checked by end_select
+ error= (*end_select)(join, 0, 0);
+ if (error >= NESTED_LOOP_OK)
+ error= (*end_select)(join, 0, 1);
+
+ /*
+ If we don't go through evaluate_join_record(), do the counting
+ here. join->send_records is increased on success in end_send(),
+ so we don't touch it here.
+ */
+ join->join_examined_rows++;
+ DBUG_ASSERT(join->join_examined_rows <= 1);
+ }
+ else if (join->send_row_on_empty_set())
+ {
+ table_map cleared_tables= (table_map) 0;
+ if (end_select == end_send_group)
+ {
+ /*
+ Was a grouping query but we did not find any rows. In this case
+ we clear all tables to get null in any referenced fields,
+ like in case of:
+ SELECT MAX(a) AS f1, a AS f2 FROM t1 WHERE VALUE(a) IS NOT NULL
+ */
+ clear_tables(join, &cleared_tables);
+ }
+ if (!join->having || join->having->val_int())
+ {
+ List<Item> *columns_list= (procedure ? &join->procedure_fields_list :
+ join->fields);
+ rc= join->result->send_data_with_check(*columns_list,
+ join->unit, 0) > 0;
+ }
+ /*
+ We have to remove the null markings from the tables as this table
+ may be part of a sub query that is re-evaluated
+ */
+ if (cleared_tables)
+ unclear_tables(join, &cleared_tables);
+ }
+ /*
+ An error can happen when evaluating the conds
+ (the join condition and piece of where clause
+ relevant to this join table).
+ */
+ if (unlikely(join->thd->is_error()))
+ error= NESTED_LOOP_ERROR;
+ }
+ else
+ {
+ DBUG_EXECUTE_IF("show_explain_probe_do_select",
+ if (dbug_user_var_equals_int(join->thd,
+ "show_explain_probe_select_id",
+ join->select_lex->select_number))
+ dbug_serve_apcs(join->thd, 1);
+ );
+
+ JOIN_TAB *join_tab= join->join_tab +
+ (join->tables_list ? join->const_tables : 0);
+ if (join->outer_ref_cond && !join->outer_ref_cond->val_int())
+ error= NESTED_LOOP_NO_MORE_ROWS;
+ else
+ error= join->first_select(join,join_tab,0);
+ if (error >= NESTED_LOOP_OK && likely(join->thd->killed != ABORT_QUERY))
+ error= join->first_select(join,join_tab,1);
+ }
+
+ join->thd->limit_found_rows= join->send_records - join->duplicate_rows;
+
+ if (error == NESTED_LOOP_NO_MORE_ROWS ||
+ unlikely(join->thd->killed == ABORT_QUERY))
+ error= NESTED_LOOP_OK;
+
+ /*
+ For "order by with limit", we cannot rely on send_records, but need
+ to use the rowcount read originally into the join_tab applying the
+ filesort. There cannot be any post-filtering conditions, nor any
+ following join_tabs in this case, so this rowcount properly represents
+ the correct number of qualifying rows.
+ */
+ if (join->order)
+ {
+ // Save # of found records prior to cleanup
+ JOIN_TAB *sort_tab;
+ JOIN_TAB *join_tab= join->join_tab;
+ uint const_tables= join->const_tables;
+
+ // Take record count from first non constant table or from last tmp table
+ if (join->aggr_tables > 0)
+ sort_tab= join_tab + join->top_join_tab_count + join->aggr_tables - 1;
+ else
+ {
+ DBUG_ASSERT(!join->only_const_tables());
+ sort_tab= join_tab + const_tables;
+ }
+ if (sort_tab->filesort &&
+ join->select_options & OPTION_FOUND_ROWS &&
+ sort_tab->filesort->sortorder &&
+ sort_tab->filesort->limit != HA_POS_ERROR)
+ {
+ join->thd->limit_found_rows= sort_tab->records;
+ }
+ }
+
+ {
+ /*
+ The following will unlock all cursors if the command wasn't an
+ update command
+ */
+ join->join_free(); // Unlock all cursors
+ }
+ if (error == NESTED_LOOP_OK)
+ {
+ /*
+ Sic: this branch works even if rc != 0, e.g. when
+ send_data above returns an error.
+ */
+ if (unlikely(join->result->send_eof()))
+ rc= 1; // Don't send error
+ DBUG_PRINT("info",("%ld records output", (long) join->send_records));
+ }
+ else
+ rc= -1;
+#ifndef DBUG_OFF
+ if (rc)
+ {
+ DBUG_PRINT("error",("Error: do_select() failed"));
+ }
+#endif
+ rc= join->thd->is_error() ? -1 : rc;
+ DBUG_RETURN(rc);
+}
+
+
+/**
+ @brief
+ Instantiates temporary table
+
+ @param table Table object that describes the table to be
+ instantiated
+ @param keyinfo Description of the index (there is always one index)
+ @param start_recinfo Column descriptions
+ @param recinfo INOUT End of column descriptions
+ @param options Option bits
+
+ @details
+ Creates tmp table and opens it.
+
+ @return
+ FALSE - OK
+ TRUE - Error
+*/
+
+bool instantiate_tmp_table(TABLE *table, KEY *keyinfo,
+ TMP_ENGINE_COLUMNDEF *start_recinfo,
+ TMP_ENGINE_COLUMNDEF **recinfo,
+ ulonglong options)
+{
+ if (table->s->db_type() == TMP_ENGINE_HTON)
+ {
+ /*
+ If it is not heap (in-memory) table then convert index to unique
+ constrain.
+ */
+ MEM_CHECK_DEFINED(table->record[0], table->s->reclength);
+ if (create_internal_tmp_table(table, keyinfo, start_recinfo, recinfo,
+ options))
+ return TRUE;
+ // Make empty record so random data is not written to disk
+ empty_record(table);
+ table->status= STATUS_NO_RECORD;
+ }
+ if (open_tmp_table(table))
+ return TRUE;
+
+ return FALSE;
+}
+
+
+/**
+ @brief
+ Accumulate rows of the result of an aggregation operation in a tmp table
+
+ @param join pointer to the structure providing all context info for the query
+ @param join_tab the JOIN_TAB object to which the operation is attached
+ @param end_records TRUE <=> all records were accumulated, send them further
+
+ @details
+ This function accumulates records of the aggreagation operation for
+ the node join_tab from the execution plan in a tmp table. To add a new
+ record the function calls join_tab->aggr->put_records.
+ When there is no more records to save, in this
+ case the end_of_records argument == true, function tells the operation to
+ send records further by calling aggr->send_records().
+ When all records are sent this function passes 'end_of_records' signal
+ further by calling sub_select() with end_of_records argument set to
+ true. After that aggr->end_send() is called to tell the operation that
+ it could end internal buffer scan.
+
+ @note
+ This function is not expected to be called when dynamic range scan is
+ used to scan join_tab because range scans aren't used for tmp tables.
+
+ @return
+ return one of enum_nested_loop_state.
+*/
+
+enum_nested_loop_state
+sub_select_postjoin_aggr(JOIN *join, JOIN_TAB *join_tab, bool end_of_records)
+{
+ enum_nested_loop_state rc;
+ AGGR_OP *aggr= join_tab->aggr;
+
+ /* This function cannot be called if join_tab has no associated aggregation */
+ DBUG_ASSERT(aggr != NULL);
+
+ DBUG_ENTER("sub_select_aggr_tab");
+
+ if (join->thd->killed)
+ {
+ /* The user has aborted the execution of the query */
+ join->thd->send_kill_message();
+ DBUG_RETURN(NESTED_LOOP_KILLED);
+ }
+
+ if (end_of_records)
+ {
+ rc= aggr->end_send();
+ if (rc >= NESTED_LOOP_OK)
+ rc= sub_select(join, join_tab, end_of_records);
+ DBUG_RETURN(rc);
+ }
+
+ rc= aggr->put_record();
+
+ DBUG_RETURN(rc);
+}
+
+
+/*
+ Fill the join buffer with partial records, retrieve all full matches for
+ them
+
+ SYNOPSIS
+ sub_select_cache()
+ join pointer to the structure providing all context info for the
+ query
+ join_tab the first next table of the execution plan to be retrieved
+ end_records true when we need to perform final steps of the retrieval
+
+ DESCRIPTION
+ For a given table Ti= join_tab from the sequence of tables of the chosen
+ execution plan T1,...,Ti,...,Tn the function just put the partial record
+ t1,...,t[i-1] into the join buffer associated with table Ti unless this
+ is the last record added into the buffer. In this case, the function
+ additionally finds all matching full records for all partial
+ records accumulated in the buffer, after which it cleans the buffer up.
+ If a partial join record t1,...,ti is extended utilizing a dynamic
+ range scan then it is not put into the join buffer. Rather all matching
+ records are found for it at once by the function sub_select.
+
+ NOTES
+ The function implements the algorithmic schema for both Blocked Nested
+ Loop Join and Batched Key Access Join. The difference can be seen only at
+ the level of of the implementation of the put_record and join_records
+ virtual methods for the cache object associated with the join_tab.
+ The put_record method accumulates records in the cache, while the
+ join_records method builds all matching join records and send them into
+ the output stream.
+
+ RETURN
+ return one of enum_nested_loop_state, except NESTED_LOOP_NO_MORE_ROWS.
+*/
+
+enum_nested_loop_state
+sub_select_cache(JOIN *join, JOIN_TAB *join_tab, bool end_of_records)
+{
+ enum_nested_loop_state rc;
+ JOIN_CACHE *cache= join_tab->cache;
+ int err;
+ DBUG_ENTER("sub_select_cache");
+
+ /*
+ This function cannot be called if join_tab has no associated join
+ buffer
+ */
+ DBUG_ASSERT(cache != NULL);
+
+ join_tab->cache->reset_join(join);
+
+ if (end_of_records)
+ {
+ rc= cache->join_records(FALSE);
+ if (rc == NESTED_LOOP_OK || rc == NESTED_LOOP_NO_MORE_ROWS ||
+ rc == NESTED_LOOP_QUERY_LIMIT)
+ rc= sub_select(join, join_tab, end_of_records);
+ DBUG_RETURN(rc);
+ }
+ if (unlikely(join->thd->check_killed()))
+ {
+ /* The user has aborted the execution of the query */
+ DBUG_RETURN(NESTED_LOOP_KILLED);
+ }
+ join_tab->jbuf_loops_tracker->on_scan_init();
+
+ if (!(err= test_if_use_dynamic_range_scan(join_tab)))
+ {
+ if (!cache->put_record())
+ DBUG_RETURN(NESTED_LOOP_OK);
+ /*
+ We has decided that after the record we've just put into the buffer
+ won't add any more records. Now try to find all the matching
+ extensions for all records in the buffer.
+ */
+ rc= cache->join_records(FALSE);
+ DBUG_RETURN(rc);
+ }
+
+ if (err < 0)
+ DBUG_RETURN(NESTED_LOOP_ERROR);
+
+ /*
+ TODO: Check whether we really need the call below and we can't do
+ without it. If it's not the case remove it.
+ */
+ rc= cache->join_records(TRUE);
+ if (rc == NESTED_LOOP_OK || rc == NESTED_LOOP_NO_MORE_ROWS ||
+ rc == NESTED_LOOP_QUERY_LIMIT)
+ rc= sub_select(join, join_tab, end_of_records);
+ DBUG_RETURN(rc);
+}
+
+/**
+ Retrieve records ends with a given beginning from the result of a join.
+
+ For a given partial join record consisting of records from the tables
+ preceding the table join_tab in the execution plan, the function
+ retrieves all matching full records from the result set and
+ send them to the result set stream.
+
+ @note
+ The function effectively implements the final (n-k) nested loops
+ of nested loops join algorithm, where k is the ordinal number of
+ the join_tab table and n is the total number of tables in the join query.
+ It performs nested loops joins with all conjunctive predicates from
+ the where condition pushed as low to the tables as possible.
+ E.g. for the query
+ @code
+ SELECT * FROM t1,t2,t3
+ WHERE t1.a=t2.a AND t2.b=t3.b AND t1.a BETWEEN 5 AND 9
+ @endcode
+ the predicate (t1.a BETWEEN 5 AND 9) will be pushed to table t1,
+ given the selected plan prescribes to nest retrievals of the
+ joined tables in the following order: t1,t2,t3.
+ A pushed down predicate are attached to the table which it pushed to,
+ at the field join_tab->select_cond.
+ When executing a nested loop of level k the function runs through
+ the rows of 'join_tab' and for each row checks the pushed condition
+ attached to the table.
+ If it is false the function moves to the next row of the
+ table. If the condition is true the function recursively executes (n-k-1)
+ remaining embedded nested loops.
+ The situation becomes more complicated if outer joins are involved in
+ the execution plan. In this case the pushed down predicates can be
+ checked only at certain conditions.
+ Suppose for the query
+ @code
+ SELECT * FROM t1 LEFT JOIN (t2,t3) ON t3.a=t1.a
+ WHERE t1>2 AND (t2.b>5 OR t2.b IS NULL)
+ @endcode
+ the optimizer has chosen a plan with the table order t1,t2,t3.
+ The predicate P1=t1>2 will be pushed down to the table t1, while the
+ predicate P2=(t2.b>5 OR t2.b IS NULL) will be attached to the table
+ t2. But the second predicate can not be unconditionally tested right
+ after a row from t2 has been read. This can be done only after the
+ first row with t3.a=t1.a has been encountered.
+ Thus, the second predicate P2 is supplied with a guarded value that are
+ stored in the field 'found' of the first inner table for the outer join
+ (table t2). When the first row with t3.a=t1.a for the current row
+ of table t1 appears, the value becomes true. For now on the predicate
+ is evaluated immediately after the row of table t2 has been read.
+ When the first row with t3.a=t1.a has been encountered all
+ conditions attached to the inner tables t2,t3 must be evaluated.
+ Only when all of them are true the row is sent to the output stream.
+ If not, the function returns to the lowest nest level that has a false
+ attached condition.
+ The predicates from on expressions are also pushed down. If in the
+ the above example the on expression were (t3.a=t1.a AND t2.a=t1.a),
+ then t1.a=t2.a would be pushed down to table t2, and without any
+ guard.
+ If after the run through all rows of table t2, the first inner table
+ for the outer join operation, it turns out that no matches are
+ found for the current row of t1, then current row from table t1
+ is complemented by nulls for t2 and t3. Then the pushed down predicates
+ are checked for the composed row almost in the same way as it had
+ been done for the first row with a match. The only difference is
+ the predicates from on expressions are not checked.
+
+ @par
+ @b IMPLEMENTATION
+ @par
+ The function forms output rows for a current partial join of k
+ tables tables recursively.
+ For each partial join record ending with a certain row from
+ join_tab it calls sub_select that builds all possible matching
+ tails from the result set.
+ To be able check predicates conditionally items of the class
+ Item_func_trig_cond are employed.
+ An object of this class is constructed from an item of class COND
+ and a pointer to a guarding boolean variable.
+ When the value of the guard variable is true the value of the object
+ is the same as the value of the predicate, otherwise it's just returns
+ true.
+ To carry out a return to a nested loop level of join table t the pointer
+ to t is remembered in the field 'return_rtab' of the join structure.
+ Consider the following query:
+ @code
+ SELECT * FROM t1,
+ LEFT JOIN
+ (t2, t3 LEFT JOIN (t4,t5) ON t5.a=t3.a)
+ ON t4.a=t2.a
+ WHERE (t2.b=5 OR t2.b IS NULL) AND (t4.b=2 OR t4.b IS NULL)
+ @endcode
+ Suppose the chosen execution plan dictates the order t1,t2,t3,t4,t5
+ and suppose for a given joined rows from tables t1,t2,t3 there are
+ no rows in the result set yet.
+ When first row from t5 that satisfies the on condition
+ t5.a=t3.a is found, the pushed down predicate t4.b=2 OR t4.b IS NULL
+ becomes 'activated', as well the predicate t4.a=t2.a. But
+ the predicate (t2.b=5 OR t2.b IS NULL) can not be checked until
+ t4.a=t2.a becomes true.
+ In order not to re-evaluate the predicates that were already evaluated
+ as attached pushed down predicates, a pointer to the the first
+ most inner unmatched table is maintained in join_tab->first_unmatched.
+ Thus, when the first row from t5 with t5.a=t3.a is found
+ this pointer for t5 is changed from t4 to t2.
+
+ @par
+ @b STRUCTURE @b NOTES
+ @par
+ join_tab->first_unmatched points always backwards to the first inner
+ table of the embedding nested join, if any.
+
+ @param join pointer to the structure providing all context info for
+ the query
+ @param join_tab the first next table of the execution plan to be retrieved
+ @param end_records true when we need to perform final steps of retrival
+
+ @return
+ return one of enum_nested_loop_state, except NESTED_LOOP_NO_MORE_ROWS.
+*/
+
+enum_nested_loop_state
+sub_select(JOIN *join,JOIN_TAB *join_tab,bool end_of_records)
+{
+ DBUG_ENTER("sub_select");
+
+ if (join_tab->split_derived_to_update && !end_of_records)
+ {
+ table_map tab_map= join_tab->split_derived_to_update;
+ for (uint i= 0; tab_map; i++, tab_map>>= 1)
+ {
+ if (tab_map & 1)
+ join->map2table[i]->preread_init_done= false;
+ }
+ }
+
+ /* Restore state if mark_as_null_row() have been called */
+ if (join_tab->last_inner)
+ {
+ JOIN_TAB *last_inner_tab= join_tab->last_inner;
+ for (JOIN_TAB *jt= join_tab; jt <= last_inner_tab; jt++)
+ jt->table->null_row= 0;
+ }
+ else
+ join_tab->table->null_row=0;
+
+ if (end_of_records)
+ {
+ enum_nested_loop_state nls=
+ (*join_tab->next_select)(join,join_tab+1,end_of_records);
+ DBUG_RETURN(nls);
+ }
+ join_tab->tracker->r_scans++;
+
+ int error;
+ enum_nested_loop_state rc= NESTED_LOOP_OK;
+ READ_RECORD *info= &join_tab->read_record;
+
+
+ for (SJ_TMP_TABLE *flush_dups_table= join_tab->flush_weedout_table;
+ flush_dups_table;
+ flush_dups_table= flush_dups_table->next_flush_table)
+ {
+ flush_dups_table->sj_weedout_delete_rows();
+ }
+
+ if (!join_tab->preread_init_done && join_tab->preread_init())
+ DBUG_RETURN(NESTED_LOOP_ERROR);
+
+ if (join_tab->build_range_rowid_filter_if_needed())
+ DBUG_RETURN(NESTED_LOOP_ERROR);
+
+ if (join_tab->rowid_filter && join_tab->rowid_filter->is_empty())
+ rc= NESTED_LOOP_NO_MORE_ROWS;
+
+ join->return_tab= join_tab;
+
+ if (join_tab->last_inner)
+ {
+ /* join_tab is the first inner table for an outer join operation. */
+
+ /* Set initial state of guard variables for this table.*/
+ join_tab->found=0;
+ join_tab->not_null_compl= 1;
+
+ /* Set first_unmatched for the last inner table of this group */
+ join_tab->last_inner->first_unmatched= join_tab;
+ if (join_tab->on_precond && !join_tab->on_precond->val_int())
+ rc= NESTED_LOOP_NO_MORE_ROWS;
+ }
+ join->thd->get_stmt_da()->reset_current_row_for_warning(1);
+
+ if (rc != NESTED_LOOP_NO_MORE_ROWS &&
+ (rc= join_tab_execution_startup(join_tab)) < 0)
+ DBUG_RETURN(rc);
+
+ if (join_tab->loosescan_match_tab)
+ join_tab->loosescan_match_tab->found_match= FALSE;
+
+ const bool pfs_batch_update= join_tab->pfs_batch_update(join);
+ if (pfs_batch_update)
+ join_tab->table->file->start_psi_batch_mode();
+
+ if (rc != NESTED_LOOP_NO_MORE_ROWS)
+ {
+ error= (*join_tab->read_first_record)(join_tab);
+ if (!error && join_tab->keep_current_rowid)
+ join_tab->table->file->position(join_tab->table->record[0]);
+ rc= evaluate_join_record(join, join_tab, error);
+ }
+
+ /*
+ Note: psergey has added the 2nd part of the following condition; the
+ change should probably be made in 5.1, too.
+ */
+ bool skip_over= FALSE;
+ while (rc == NESTED_LOOP_OK && join->return_tab >= join_tab)
+ {
+ if (join_tab->loosescan_match_tab &&
+ join_tab->loosescan_match_tab->found_match)
+ {
+ KEY *key= join_tab->table->key_info + join_tab->loosescan_key;
+ key_copy(join_tab->loosescan_buf, join_tab->table->record[0], key,
+ join_tab->loosescan_key_len);
+ skip_over= TRUE;
+ }
+
+ error= info->read_record();
+
+ if (skip_over && likely(!error))
+ {
+ if (!key_cmp(join_tab->table->key_info[join_tab->loosescan_key].key_part,
+ join_tab->loosescan_buf, join_tab->loosescan_key_len))
+ {
+ /*
+ This is the LooseScan action: skip over records with the same key
+ value if we already had a match for them.
+ */
+ continue;
+ }
+ join_tab->loosescan_match_tab->found_match= FALSE;
+ skip_over= FALSE;
+ }
+
+ if (join_tab->keep_current_rowid && likely(!error))
+ join_tab->table->file->position(join_tab->table->record[0]);
+
+ rc= evaluate_join_record(join, join_tab, error);
+ }
+
+ if (rc == NESTED_LOOP_NO_MORE_ROWS &&
+ join_tab->last_inner && !join_tab->found)
+ rc= evaluate_null_complemented_join_record(join, join_tab);
+
+ if (pfs_batch_update)
+ join_tab->table->file->end_psi_batch_mode();
+
+ if (rc == NESTED_LOOP_NO_MORE_ROWS)
+ rc= NESTED_LOOP_OK;
+ DBUG_RETURN(rc);
+}
+
+/**
+ @brief Process one row of the nested loop join.
+
+ This function will evaluate parts of WHERE/ON clauses that are
+ applicable to the partial row on hand and in case of success
+ submit this row to the next level of the nested loop.
+
+ @param join - The join object
+ @param join_tab - The most inner join_tab being processed
+ @param error > 0: Error, terminate processing
+ = 0: (Partial) row is available
+ < 0: No more rows available at this level
+ @return Nested loop state (Ok, No_more_rows, Error, Killed)
+*/
+
+static enum_nested_loop_state
+evaluate_join_record(JOIN *join, JOIN_TAB *join_tab,
+ int error)
+{
+ bool shortcut_for_distinct= join_tab->shortcut_for_distinct;
+ ha_rows found_records=join->found_records;
+ COND *select_cond= join_tab->select_cond;
+ bool select_cond_result= TRUE;
+
+ DBUG_ENTER("evaluate_join_record");
+ DBUG_PRINT("enter",
+ ("evaluate_join_record join: %p join_tab: %p "
+ "cond: %p abort: %d alias %s",
+ join, join_tab, select_cond, error,
+ join_tab->table->alias.ptr()));
+
+ if (error > 0 || unlikely(join->thd->is_error())) // Fatal error
+ DBUG_RETURN(NESTED_LOOP_ERROR);
+ if (error < 0)
+ DBUG_RETURN(NESTED_LOOP_NO_MORE_ROWS);
+ if (unlikely(join->thd->check_killed())) // Aborted by user
+ {
+ DBUG_RETURN(NESTED_LOOP_KILLED); /* purecov: inspected */
+ }
+
+ join_tab->tracker->r_rows++;
+
+ if (select_cond)
+ {
+ select_cond_result= MY_TEST(select_cond->val_int());
+
+ /* check for errors evaluating the condition */
+ if (unlikely(join->thd->is_error()))
+ DBUG_RETURN(NESTED_LOOP_ERROR);
+ }
+
+ if (!select_cond || select_cond_result)
+ {
+ /*
+ There is no select condition or the attached pushed down
+ condition is true => a match is found.
+ */
+ join_tab->tracker->r_rows_after_where++;
+
+ bool found= 1;
+ while (join_tab->first_unmatched && found)
+ {
+ /*
+ The while condition is always false if join_tab is not
+ the last inner join table of an outer join operation.
+ */
+ JOIN_TAB *first_unmatched= join_tab->first_unmatched;
+ /*
+ Mark that a match for current outer table is found.
+ This activates push down conditional predicates attached
+ to the all inner tables of the outer join.
+ */
+ first_unmatched->found= 1;
+ for (JOIN_TAB *tab= first_unmatched; tab <= join_tab; tab++)
+ {
+ /*
+ Check whether 'not exists' optimization can be used here.
+ If tab->table->reginfo.not_exists_optimize is set to true
+ then WHERE contains a conjunctive predicate IS NULL over
+ a non-nullable field of tab. When activated this predicate
+ will filter out all records with matches for the left part
+ of the outer join whose inner tables start from the
+ first_unmatched table and include table tab. To safely use
+ 'not exists' optimization we have to check that the
+ IS NULL predicate is really activated, i.e. all guards
+ that wrap it are in the 'open' state.
+ */
+ bool not_exists_opt_is_applicable=
+ tab->table->reginfo.not_exists_optimize;
+ for (JOIN_TAB *first_upper= first_unmatched->first_upper;
+ not_exists_opt_is_applicable && first_upper;
+ first_upper= first_upper->first_upper)
+ {
+ if (!first_upper->found)
+ not_exists_opt_is_applicable= false;
+ }
+ /* Check all predicates that has just been activated. */
+ /*
+ Actually all predicates non-guarded by first_unmatched->found
+ will be re-evaluated again. It could be fixed, but, probably,
+ it's not worth doing now.
+ */
+ if (tab->select_cond)
+ {
+ const longlong res= tab->select_cond->val_int();
+ if (join->thd->is_error())
+ DBUG_RETURN(NESTED_LOOP_ERROR);
+
+ if (!res)
+ {
+ /* The condition attached to table tab is false */
+ if (tab == join_tab)
+ {
+ found= 0;
+ if (not_exists_opt_is_applicable)
+ DBUG_RETURN(NESTED_LOOP_NO_MORE_ROWS);
+ }
+ else
+ {
+ /*
+ Set a return point if rejected predicate is attached
+ not to the last table of the current nest level.
+ */
+ join->return_tab= tab;
+ if (not_exists_opt_is_applicable)
+ DBUG_RETURN(NESTED_LOOP_NO_MORE_ROWS);
+ else
+ DBUG_RETURN(NESTED_LOOP_OK);
+ }
+ }
+ }
+ }
+ /*
+ Check whether join_tab is not the last inner table
+ for another embedding outer join.
+ */
+ if ((first_unmatched= first_unmatched->first_upper) &&
+ first_unmatched->last_inner != join_tab)
+ first_unmatched= 0;
+ join_tab->first_unmatched= first_unmatched;
+ }
+
+ JOIN_TAB *return_tab= join->return_tab;
+ join_tab->found_match= TRUE;
+
+ if (join_tab->check_weed_out_table && found)
+ {
+ int res= join_tab->check_weed_out_table->sj_weedout_check_row(join->thd);
+ DBUG_PRINT("info", ("weedout_check: %d", res));
+ if (res == -1)
+ DBUG_RETURN(NESTED_LOOP_ERROR);
+ else if (res == 1)
+ found= FALSE;
+ }
+ else if (join_tab->do_firstmatch)
+ {
+ /*
+ We should return to the join_tab->do_firstmatch after we have
+ enumerated all the suffixes for current prefix row combination
+ */
+ return_tab= join_tab->do_firstmatch;
+ }
+
+ /*
+ It was not just a return to lower loop level when one
+ of the newly activated predicates is evaluated as false
+ (See above join->return_tab= tab).
+ */
+ join->join_examined_rows++;
+ DBUG_PRINT("counts", ("join->examined_rows++: %lu found: %d",
+ (ulong) join->join_examined_rows, (int) found));
+
+ if (found)
+ {
+ enum enum_nested_loop_state rc;
+ /* A match from join_tab is found for the current partial join. */
+ rc= (*join_tab->next_select)(join, join_tab+1, 0);
+ join->thd->get_stmt_da()->inc_current_row_for_warning();
+ if (rc != NESTED_LOOP_OK && rc != NESTED_LOOP_NO_MORE_ROWS)
+ DBUG_RETURN(rc);
+ if (return_tab < join->return_tab)
+ join->return_tab= return_tab;
+
+ /* check for errors evaluating the condition */
+ if (unlikely(join->thd->is_error()))
+ DBUG_RETURN(NESTED_LOOP_ERROR);
+
+ if (join->return_tab < join_tab)
+ DBUG_RETURN(NESTED_LOOP_OK);
+ /*
+ Test if this was a SELECT DISTINCT query on a table that
+ was not in the field list; In this case we can abort if
+ we found a row, as no new rows can be added to the result.
+ */
+ if (shortcut_for_distinct && found_records != join->found_records)
+ DBUG_RETURN(NESTED_LOOP_NO_MORE_ROWS);
+
+ DBUG_RETURN(NESTED_LOOP_OK);
+ }
+ }
+ else
+ {
+ /*
+ The condition pushed down to the table join_tab rejects all rows
+ with the beginning coinciding with the current partial join.
+ */
+ join->join_examined_rows++;
+ }
+
+ join->thd->get_stmt_da()->inc_current_row_for_warning();
+ join_tab->read_record.unlock_row(join_tab);
+
+ DBUG_RETURN(NESTED_LOOP_OK);
+}
+
+/**
+
+ @details
+ Construct a NULL complimented partial join record and feed it to the next
+ level of the nested loop. This function is used in case we have
+ an OUTER join and no matching record was found.
+*/
+
+static enum_nested_loop_state
+evaluate_null_complemented_join_record(JOIN *join, JOIN_TAB *join_tab)
+{
+ /*
+ The table join_tab is the first inner table of a outer join operation
+ and no matches has been found for the current outer row.
+ */
+ JOIN_TAB *last_inner_tab= join_tab->last_inner;
+ /* Cache variables for faster loop */
+ COND *select_cond;
+ for ( ; join_tab <= last_inner_tab ; join_tab++)
+ {
+ /* Change the the values of guard predicate variables. */
+ join_tab->found= 1;
+ join_tab->not_null_compl= 0;
+ /* The outer row is complemented by nulls for each inner tables */
+ restore_record(join_tab->table,s->default_values); // Make empty record
+ mark_as_null_row(join_tab->table); // For group by without error
+ select_cond= join_tab->select_cond;
+ /* Check all attached conditions for inner table rows. */
+ if (select_cond && !select_cond->val_int())
+ return NESTED_LOOP_OK;
+ }
+ join_tab--;
+ /*
+ The row complemented by nulls might be the first row
+ of embedding outer joins.
+ If so, perform the same actions as in the code
+ for the first regular outer join row above.
+ */
+ for ( ; ; )
+ {
+ JOIN_TAB *first_unmatched= join_tab->first_unmatched;
+ if ((first_unmatched= first_unmatched->first_upper) &&
+ first_unmatched->last_inner != join_tab)
+ first_unmatched= 0;
+ join_tab->first_unmatched= first_unmatched;
+ if (!first_unmatched)
+ break;
+ first_unmatched->found= 1;
+ for (JOIN_TAB *tab= first_unmatched; tab <= join_tab; tab++)
+ {
+ if (tab->select_cond && !tab->select_cond->val_int())
+ {
+ join->return_tab= tab;
+ return NESTED_LOOP_OK;
+ }
+ }
+ }
+ /*
+ The row complemented by nulls satisfies all conditions
+ attached to inner tables.
+ */
+ if (join_tab->check_weed_out_table)
+ {
+ int res= join_tab->check_weed_out_table->sj_weedout_check_row(join->thd);
+ if (res == -1)
+ return NESTED_LOOP_ERROR;
+ else if (res == 1)
+ return NESTED_LOOP_OK;
+ }
+ else if (join_tab->do_firstmatch)
+ {
+ /*
+ We should return to the join_tab->do_firstmatch after we have
+ enumerated all the suffixes for current prefix row combination
+ */
+ if (join_tab->do_firstmatch < join->return_tab)
+ join->return_tab= join_tab->do_firstmatch;
+ }
+
+ /*
+ Send the row complemented by nulls to be joined with the
+ remaining tables.
+ */
+ return (*join_tab->next_select)(join, join_tab+1, 0);
+}
+
+/*****************************************************************************
+ The different ways to read a record
+ Returns -1 if row was not found, 0 if row was found and 1 on errors
+*****************************************************************************/
+
+/** Help function when we get some an error from the table handler. */
+
+int report_error(TABLE *table, int error)
+{
+ if (error == HA_ERR_END_OF_FILE || error == HA_ERR_KEY_NOT_FOUND)
+ {
+ table->status= STATUS_GARBAGE;
+ return -1; // key not found; ok
+ }
+ /*
+ Locking reads can legally return also these errors, do not
+ print them to the .err log
+ */
+ if (error != HA_ERR_LOCK_DEADLOCK && error != HA_ERR_LOCK_WAIT_TIMEOUT
+ && error != HA_ERR_TABLE_DEF_CHANGED && !table->in_use->killed)
+ sql_print_error("Got error %d when reading table '%s'",
+ error, table->s->path.str);
+ table->file->print_error(error,MYF(0));
+ return 1;
+}
+
+
+int safe_index_read(JOIN_TAB *tab)
+{
+ int error;
+ TABLE *table= tab->table;
+ if (unlikely((error=
+ table->file->ha_index_read_map(table->record[0],
+ tab->ref.key_buff,
+ make_prev_keypart_map(tab->ref.key_parts),
+ HA_READ_KEY_EXACT))))
+ return report_error(table, error);
+ return 0;
+}
+
+
+/**
+ Reads content of constant table
+
+ @param tab table
+ @param pos position of table in query plan
+
+ @retval 0 ok, one row was found or one NULL-complemented row was created
+ @retval -1 ok, no row was found and no NULL-complemented row was created
+ @retval 1 error
+*/
+
+static int
+join_read_const_table(THD *thd, JOIN_TAB *tab, POSITION *pos)
+{
+ int error;
+ TABLE_LIST *tbl;
+ DBUG_ENTER("join_read_const_table");
+ TABLE *table=tab->table;
+ table->const_table=1;
+ table->null_row=0;
+ table->status=STATUS_NO_RECORD;
+
+ if (tab->table->pos_in_table_list->is_materialized_derived() &&
+ !tab->table->pos_in_table_list->fill_me)
+ {
+ //TODO: don't get here at all
+ /* Skip materialized derived tables/views. */
+ DBUG_RETURN(0);
+ }
+ else if (tab->table->pos_in_table_list->jtbm_subselect &&
+ tab->table->pos_in_table_list->jtbm_subselect->is_jtbm_const_tab)
+ {
+ /* Row will not be found */
+ int res;
+ if (tab->table->pos_in_table_list->jtbm_subselect->jtbm_const_row_found)
+ res= 0;
+ else
+ res= -1;
+ DBUG_RETURN(res);
+ }
+ else if (tab->type == JT_SYSTEM)
+ {
+ if (unlikely((error=join_read_system(tab))))
+ { // Info for DESCRIBE
+ tab->info= ET_CONST_ROW_NOT_FOUND;
+ /* Mark for EXPLAIN that the row was not found */
+ pos->records_read=0.0;
+ pos->ref_depend_map= 0;
+ if (!table->pos_in_table_list->outer_join || error > 0)
+ DBUG_RETURN(error);
+ }
+ /*
+ The optimizer trust the engine that when stats.records is 0, there
+ was no found rows
+ */
+ DBUG_ASSERT(table->file->stats.records > 0 || error);
+ }
+ else
+ {
+ if (/*!table->file->key_read && */
+ table->covering_keys.is_set(tab->ref.key) && !table->no_keyread &&
+ (int) table->reginfo.lock_type <= (int) TL_READ_HIGH_PRIORITY)
+ {
+ table->file->ha_start_keyread(tab->ref.key);
+ tab->index= tab->ref.key;
+ }
+ error=join_read_const(tab);
+ table->file->ha_end_keyread();
+ if (unlikely(error))
+ {
+ tab->info= ET_UNIQUE_ROW_NOT_FOUND;
+ /* Mark for EXPLAIN that the row was not found */
+ pos->records_read=0.0;
+ pos->ref_depend_map= 0;
+ if (!table->pos_in_table_list->outer_join || error > 0)
+ DBUG_RETURN(error);
+ }
+ }
+ /*
+ Evaluate an on-expression only if it is not considered expensive.
+ This mainly prevents executing subqueries in optimization phase.
+ This is necessary since proper setup for such execution has not been
+ done at this stage.
+ */
+ if (*tab->on_expr_ref && !table->null_row &&
+ !(*tab->on_expr_ref)->is_expensive())
+ {
+#if !defined(DBUG_OFF) && defined(NOT_USING_ITEM_EQUAL)
+ /*
+ This test could be very useful to find bugs in the optimizer
+ where we would call this function with an expression that can't be
+ evaluated yet. We can't have this enabled by default as long as
+ have items like Item_equal, that doesn't report they are const but
+ they can still be called even if they contain not const items.
+ */
+ (*tab->on_expr_ref)->update_used_tables();
+ DBUG_ASSERT((*tab->on_expr_ref)->const_item());
+#endif
+ if ((table->null_row= MY_TEST((*tab->on_expr_ref)->val_int() == 0)))
+ mark_as_null_row(table);
+ }
+ if (!table->null_row && ! tab->join->mixed_implicit_grouping)
+ table->maybe_null= 0;
+
+ {
+ JOIN *join= tab->join;
+ List_iterator<TABLE_LIST> ti(join->select_lex->leaf_tables);
+ /* Check appearance of new constant items in Item_equal objects */
+ if (join->conds)
+ update_const_equal_items(thd, join->conds, tab, TRUE);
+ while ((tbl= ti++))
+ {
+ TABLE_LIST *embedded;
+ TABLE_LIST *embedding= tbl;
+ do
+ {
+ embedded= embedding;
+ if (embedded->on_expr)
+ update_const_equal_items(thd, embedded->on_expr, tab, TRUE);
+ embedding= embedded->embedding;
+ }
+ while (embedding &&
+ embedding->nested_join->join_list.head() == embedded);
+ }
+ }
+ DBUG_RETURN(0);
+}
+
+
+/**
+ Read a constant table when there is at most one matching row, using a table
+ scan.
+
+ @param tab Table to read
+
+ @retval 0 Row was found
+ @retval -1 Row was not found
+ @retval 1 Got an error (other than row not found) during read
+*/
+static int
+join_read_system(JOIN_TAB *tab)
+{
+ TABLE *table= tab->table;
+ int error;
+ if (table->status & STATUS_GARBAGE) // If first read
+ {
+ if (unlikely((error=
+ table->file->ha_read_first_row(table->record[0],
+ table->s->primary_key))))
+ {
+ if (error != HA_ERR_END_OF_FILE)
+ return report_error(table, error);
+ table->const_table= 1;
+ mark_as_null_row(tab->table);
+ empty_record(table); // Make empty record
+ return -1;
+ }
+ store_record(table,record[1]);
+ }
+ else if (!table->status) // Only happens with left join
+ restore_record(table,record[1]); // restore old record
+ table->null_row=0;
+ return table->status ? -1 : 0;
+}
+
+
+/**
+ Read a table when there is at most one matching row.
+
+ @param tab Table to read
+
+ @retval 0 Row was found
+ @retval -1 Row was not found
+ @retval 1 Got an error (other than row not found) during read
+*/
+
+static int
+join_read_const(JOIN_TAB *tab)
+{
+ int error;
+ TABLE *table= tab->table;
+ if (table->status & STATUS_GARBAGE) // If first read
+ {
+ table->status= 0;
+ if (cp_buffer_from_ref(tab->join->thd, table, &tab->ref))
+ error=HA_ERR_KEY_NOT_FOUND;
+ else
+ {
+ error= table->file->ha_index_read_idx_map(table->record[0],tab->ref.key,
+ (uchar*) tab->ref.key_buff,
+ make_prev_keypart_map(tab->ref.key_parts),
+ HA_READ_KEY_EXACT);
+ }
+ if (unlikely(error))
+ {
+ table->status= STATUS_NOT_FOUND;
+ mark_as_null_row(tab->table);
+ empty_record(table);
+ if (error != HA_ERR_KEY_NOT_FOUND && error != HA_ERR_END_OF_FILE)
+ return report_error(table, error);
+ return -1;
+ }
+ store_record(table,record[1]);
+ }
+ else if (!(table->status & ~STATUS_NULL_ROW)) // Only happens with left join
+ {
+ table->status=0;
+ restore_record(table,record[1]); // restore old record
+ }
+ table->null_row=0;
+ return table->status ? -1 : 0;
+}
+
+/*
+ eq_ref access method implementation: "read_first" function
+
+ SYNOPSIS
+ join_read_key()
+ tab JOIN_TAB of the accessed table
+
+ DESCRIPTION
+ This is "read_fist" function for the eq_ref access method. The difference
+ from ref access function is that is that it has a one-element lookup
+ cache (see cmp_buffer_with_ref)
+
+ RETURN
+ 0 - Ok
+ -1 - Row not found
+ 1 - Error
+*/
+
+
+static int
+join_read_key(JOIN_TAB *tab)
+{
+ return join_read_key2(tab->join->thd, tab, tab->table, &tab->ref);
+}
+
+
+/*
+ eq_ref access handler but generalized a bit to support TABLE and TABLE_REF
+ not from the join_tab. See join_read_key for detailed synopsis.
+*/
+int join_read_key2(THD *thd, JOIN_TAB *tab, TABLE *table, TABLE_REF *table_ref)
+{
+ int error;
+ if (!table->file->inited)
+ {
+ error= table->file->ha_index_init(table_ref->key, tab ? tab->sorted : TRUE);
+ if (unlikely(error))
+ {
+ (void) report_error(table, error);
+ return 1;
+ }
+ }
+
+ /*
+ The following is needed when one makes ref (or eq_ref) access from row
+ comparisons: one must call row->bring_value() to get the new values.
+ */
+ if (tab && tab->bush_children)
+ {
+ TABLE_LIST *emb_sj_nest= tab->bush_children->start->emb_sj_nest;
+ emb_sj_nest->sj_subq_pred->left_exp()->bring_value();
+ }
+
+ /* TODO: Why don't we do "Late NULLs Filtering" here? */
+
+ if (cmp_buffer_with_ref(thd, table, table_ref) ||
+ (table->status & (STATUS_GARBAGE | STATUS_NO_PARENT | STATUS_NULL_ROW)))
+ {
+ if (table_ref->key_err)
+ {
+ table->status=STATUS_NOT_FOUND;
+ return -1;
+ }
+ /*
+ Moving away from the current record. Unlock the row
+ in the handler if it did not match the partial WHERE.
+ */
+ if (tab && tab->ref.has_record && tab->ref.use_count == 0)
+ {
+ tab->read_record.table->file->unlock_row();
+ table_ref->has_record= FALSE;
+ }
+ error=table->file->ha_index_read_map(table->record[0],
+ table_ref->key_buff,
+ make_prev_keypart_map(table_ref->key_parts),
+ HA_READ_KEY_EXACT);
+ if (unlikely(error) &&
+ error != HA_ERR_KEY_NOT_FOUND && error != HA_ERR_END_OF_FILE)
+ return report_error(table, error);
+
+ if (likely(!error))
+ {
+ table_ref->has_record= TRUE;
+ table_ref->use_count= 1;
+ }
+ }
+ else if (table->status == 0)
+ {
+ DBUG_ASSERT(table_ref->has_record);
+ table_ref->use_count++;
+ }
+ table->null_row=0;
+ return table->status ? -1 : 0;
+}
+
+
+/**
+ Since join_read_key may buffer a record, do not unlock
+ it if it was not used in this invocation of join_read_key().
+ Only count locks, thus remembering if the record was left unused,
+ and unlock already when pruning the current value of
+ TABLE_REF buffer.
+ @sa join_read_key()
+*/
+
+static void
+join_read_key_unlock_row(st_join_table *tab)
+{
+ DBUG_ASSERT(tab->ref.use_count);
+ if (tab->ref.use_count)
+ tab->ref.use_count--;
+}
+
+/**
+ Rows from const tables are read once but potentially used
+ multiple times during execution of a query.
+ Ensure such rows are never unlocked during query execution.
+*/
+
+void
+join_const_unlock_row(JOIN_TAB *tab)
+{
+ DBUG_ASSERT(tab->type == JT_CONST);
+}
+
+
+/*
+ ref access method implementation: "read_first" function
+
+ SYNOPSIS
+ join_read_always_key()
+ tab JOIN_TAB of the accessed table
+
+ DESCRIPTION
+ This is "read_fist" function for the "ref" access method.
+
+ The functon must leave the index initialized when it returns.
+ ref_or_null access implementation depends on that.
+
+ RETURN
+ 0 - Ok
+ -1 - Row not found
+ 1 - Error
+*/
+
+static int
+join_read_always_key(JOIN_TAB *tab)
+{
+ int error;
+ TABLE *table= tab->table;
+
+ /* Initialize the index first */
+ if (!table->file->inited)
+ {
+ if (unlikely((error= table->file->ha_index_init(tab->ref.key,
+ tab->sorted))))
+ {
+ (void) report_error(table, error);
+ return 1;
+ }
+ }
+
+ if (unlikely(cp_buffer_from_ref(tab->join->thd, table, &tab->ref)))
+ return -1;
+ if (unlikely((error=
+ table->file->prepare_index_key_scan_map(tab->ref.key_buff,
+ make_prev_keypart_map(tab->ref.key_parts)))))
+ {
+ report_error(table,error);
+ return -1;
+ }
+ if ((error= table->file->ha_index_read_map(table->record[0],
+ tab->ref.key_buff,
+ make_prev_keypart_map(tab->ref.key_parts),
+ HA_READ_KEY_EXACT)))
+ {
+ if (error != HA_ERR_KEY_NOT_FOUND && error != HA_ERR_END_OF_FILE)
+ return report_error(table, error);
+ return -1; /* purecov: inspected */
+ }
+ return 0;
+}
+
+
+/**
+ This function is used when optimizing away ORDER BY in
+ SELECT * FROM t1 WHERE a=1 ORDER BY a DESC,b DESC.
+*/
+
+static int
+join_read_last_key(JOIN_TAB *tab)
+{
+ int error;
+ TABLE *table= tab->table;
+
+ if (!table->file->inited &&
+ unlikely((error= table->file->ha_index_init(tab->ref.key, tab->sorted))))
+ {
+ (void) report_error(table, error);
+ return 1;
+ }
+
+ if (unlikely(cp_buffer_from_ref(tab->join->thd, table, &tab->ref)))
+ return -1;
+ if (unlikely((error=
+ table->file->prepare_index_key_scan_map(tab->ref.key_buff,
+ make_prev_keypart_map(tab->ref.key_parts)))) )
+ {
+ report_error(table,error);
+ return -1;
+ }
+ if (unlikely((error=
+ table->file->ha_index_read_map(table->record[0],
+ tab->ref.key_buff,
+ make_prev_keypart_map(tab->ref.key_parts),
+ HA_READ_PREFIX_LAST))))
+ {
+ if (error != HA_ERR_KEY_NOT_FOUND && error != HA_ERR_END_OF_FILE)
+ return report_error(table, error);
+ return -1; /* purecov: inspected */
+ }
+ return 0;
+}
+
+
+ /* ARGSUSED */
+static int
+join_no_more_records(READ_RECORD *info __attribute__((unused)))
+{
+ return -1;
+}
+
+
+static int
+join_read_next_same(READ_RECORD *info)
+{
+ int error;
+ TABLE *table= info->table;
+ JOIN_TAB *tab=table->reginfo.join_tab;
+
+ if (unlikely((error= table->file->ha_index_next_same(table->record[0],
+ tab->ref.key_buff,
+ tab->ref.key_length))))
+ {
+ if (error != HA_ERR_END_OF_FILE)
+ return report_error(table, error);
+ table->status= STATUS_GARBAGE;
+ return -1;
+ }
+ return 0;
+}
+
+
+static int
+join_read_prev_same(READ_RECORD *info)
+{
+ int error;
+ TABLE *table= info->table;
+ JOIN_TAB *tab=table->reginfo.join_tab;
+
+ if (unlikely((error= table->file->ha_index_prev(table->record[0]))))
+ return report_error(table, error);
+ if (key_cmp_if_same(table, tab->ref.key_buff, tab->ref.key,
+ tab->ref.key_length))
+ {
+ table->status=STATUS_NOT_FOUND;
+ error= -1;
+ }
+ return error;
+}
+
+
+static int
+join_init_quick_read_record(JOIN_TAB *tab)
+{
+ quick_select_return res= test_if_quick_select(tab);
+
+ if (res == SQL_SELECT::ERROR)
+ return 1; /* Fatal error */
+
+ if (res == SQL_SELECT::IMPOSSIBLE_RANGE)
+ return -1; /* No possible records */
+
+ /*
+ Proceed to read rows. If we've created a quick select, use it, otherwise
+ do a full scan.
+ */
+ return join_init_read_record(tab);
+}
+
+
+int read_first_record_seq(JOIN_TAB *tab)
+{
+ if (unlikely(tab->read_record.table->file->ha_rnd_init_with_error(1)))
+ return 1;
+ return tab->read_record.read_record();
+}
+
+
+/*
+ @brief
+ Create a new (dynamic) quick select.
+*/
+
+static quick_select_return
+test_if_quick_select(JOIN_TAB *tab)
+{
+ DBUG_EXECUTE_IF("show_explain_probe_test_if_quick_select",
+ if (dbug_user_var_equals_int(tab->join->thd,
+ "show_explain_probe_select_id",
+ tab->join->select_lex->select_number))
+ dbug_serve_apcs(tab->join->thd, 1);
+ );
+
+
+ delete tab->select->quick;
+ tab->select->quick=0;
+
+ if (tab->table->file->inited != handler::NONE)
+ tab->table->file->ha_index_or_rnd_end();
+
+ quick_select_return res;
+ res= tab->select->test_quick_select(tab->join->thd, tab->keys,
+ (table_map) 0, HA_POS_ERROR, 0,
+ FALSE, /*remove where parts*/FALSE,
+ FALSE, /* no warnings */ TRUE);
+ if (tab->explain_plan && tab->explain_plan->range_checked_fer)
+ tab->explain_plan->range_checked_fer->collect_data(tab->select->quick);
+
+ return res;
+}
+
+
+/*
+ @return
+ 1 - Yes, use dynamically built range
+ 0 - No, don't use dynamic range (but there's no error)
+ -1 - Fatal error
+*/
+
+static
+int test_if_use_dynamic_range_scan(JOIN_TAB *join_tab)
+{
+ if (unlikely(join_tab->use_quick == 2))
+ {
+ quick_select_return res= test_if_quick_select(join_tab);
+ if (res == SQL_SELECT::ERROR)
+ return -1;
+ else
+ {
+ /* Both OK and IMPOSSIBLE_RANGE go here */
+ return join_tab->select->quick ? 1 : 0;
+ }
+ }
+ else
+ return 0;
+}
+
+int join_init_read_record(JOIN_TAB *tab)
+{
+ bool need_unpacking= FALSE;
+ JOIN *join= tab->join;
+ /*
+ Note: the query plan tree for the below operations is constructed in
+ save_agg_explain_data.
+ */
+ if (tab->distinct && tab->remove_duplicates()) // Remove duplicates.
+ return 1;
+
+ if (join->top_join_tab_count != join->const_tables)
+ {
+ TABLE_LIST *tbl= tab->table->pos_in_table_list;
+ need_unpacking= tbl ? tbl->is_sjm_scan_table() : FALSE;
+ }
+
+ if (tab->build_range_rowid_filter_if_needed())
+ return 1;
+
+ if (tab->filesort && tab->sort_table()) // Sort table.
+ return 1;
+
+ DBUG_EXECUTE_IF("kill_join_init_read_record",
+ tab->join->thd->set_killed(KILL_QUERY););
+
+
+ if (!tab->preread_init_done && tab->preread_init())
+ return 1;
+
+ if (tab->select && tab->select->quick && tab->select->quick->reset())
+ {
+ /* Ensures error status is propagated back to client */
+ report_error(tab->table,
+ tab->join->thd->killed ? HA_ERR_QUERY_INTERRUPTED : HA_ERR_OUT_OF_MEM);
+ return 1;
+ }
+ /* make sure we won't get ER_QUERY_INTERRUPTED from any code below */
+ DBUG_EXECUTE_IF("kill_join_init_read_record",
+ tab->join->thd->reset_killed(););
+
+ Copy_field *save_copy, *save_copy_end;
+
+ /*
+ init_read_record resets all elements of tab->read_record().
+ Remember things that we don't want to have reset.
+ */
+ save_copy= tab->read_record.copy_field;
+ save_copy_end= tab->read_record.copy_field_end;
+
+ if (init_read_record(&tab->read_record, tab->join->thd, tab->table,
+ tab->select, tab->filesort_result, 1, 1, FALSE))
+ return 1;
+
+ tab->read_record.copy_field= save_copy;
+ tab->read_record.copy_field_end= save_copy_end;
+
+ if (need_unpacking)
+ {
+ tab->read_record.read_record_func_and_unpack_calls=
+ tab->read_record.read_record_func;
+ tab->read_record.read_record_func = read_record_func_for_rr_and_unpack;
+ }
+
+ return tab->read_record.read_record();
+}
+
+
+/*
+ Helper function for sorting table with filesort.
+*/
+
+bool
+JOIN_TAB::sort_table()
+{
+ int rc;
+ DBUG_PRINT("info",("Sorting for index"));
+ THD_STAGE_INFO(join->thd, stage_creating_sort_index);
+ DBUG_ASSERT(join->ordered_index_usage != (filesort->order == join->order ?
+ JOIN::ordered_index_order_by :
+ JOIN::ordered_index_group_by));
+ rc= create_sort_index(join->thd, join, this, NULL);
+ /* Disactivate rowid filter if it was used when creating sort index */
+ if (rowid_filter)
+ table->file->rowid_filter_is_active= false;
+ return (rc != 0);
+}
+
+
+static int
+join_read_first(JOIN_TAB *tab)
+{
+ int error= 0;
+ TABLE *table=tab->table;
+ DBUG_ENTER("join_read_first");
+
+ DBUG_ASSERT(table->no_keyread ||
+ !table->covering_keys.is_set(tab->index) ||
+ table->file->keyread == tab->index);
+ tab->table->status=0;
+ tab->read_record.read_record_func= join_read_next;
+ tab->read_record.table=table;
+ if (!table->file->inited)
+ error= table->file->ha_index_init(tab->index, tab->sorted);
+ if (likely(!error))
+ error= table->file->prepare_index_scan();
+ if (unlikely(error) ||
+ unlikely(error= tab->table->file->ha_index_first(tab->table->record[0])))
+ {
+ if (error != HA_ERR_KEY_NOT_FOUND && error != HA_ERR_END_OF_FILE)
+ report_error(table, error);
+ DBUG_RETURN(-1);
+ }
+ DBUG_RETURN(0);
+}
+
+
+static int
+join_read_next(READ_RECORD *info)
+{
+ int error;
+ if (unlikely((error= info->table->file->ha_index_next(info->record()))))
+ return report_error(info->table, error);
+
+ return 0;
+}
+
+
+static int
+join_read_last(JOIN_TAB *tab)
+{
+ TABLE *table=tab->table;
+ int error= 0;
+ DBUG_ENTER("join_read_last");
+
+ DBUG_ASSERT(table->no_keyread ||
+ !table->covering_keys.is_set(tab->index) ||
+ table->file->keyread == tab->index);
+ tab->table->status=0;
+ tab->read_record.read_record_func= join_read_prev;
+ tab->read_record.table=table;
+ if (!table->file->inited)
+ error= table->file->ha_index_init(tab->index, 1);
+ if (likely(!error))
+ error= table->file->prepare_index_scan();
+ if (unlikely(error) ||
+ unlikely(error= tab->table->file->ha_index_last(tab->table->record[0])))
+ DBUG_RETURN(report_error(table, error));
+
+ DBUG_RETURN(0);
+}
+
+
+static int
+join_read_prev(READ_RECORD *info)
+{
+ int error;
+ if (unlikely((error= info->table->file->ha_index_prev(info->record()))))
+ return report_error(info->table, error);
+ return 0;
+}
+
+
+static int
+join_ft_read_first(JOIN_TAB *tab)
+{
+ int error;
+ TABLE *table= tab->table;
+
+ if (!table->file->inited &&
+ (error= table->file->ha_index_init(tab->ref.key, 1)))
+ {
+ (void) report_error(table, error);
+ return 1;
+ }
+
+ table->file->ft_init();
+
+ if (unlikely((error= table->file->ha_ft_read(table->record[0]))))
+ return report_error(table, error);
+ return 0;
+}
+
+static int
+join_ft_read_next(READ_RECORD *info)
+{
+ int error;
+ if (unlikely((error= info->table->file->ha_ft_read(info->record()))))
+ return report_error(info->table, error);
+ return 0;
+}
+
+
+/**
+ Reading of key with key reference and one part that may be NULL.
+*/
+
+int
+join_read_always_key_or_null(JOIN_TAB *tab)
+{
+ int res;
+
+ /* First read according to key which is NOT NULL */
+ *tab->ref.null_ref_key= 0; // Clear null byte
+ if ((res= join_read_always_key(tab)) >= 0)
+ return res;
+
+ /* Then read key with null value */
+ *tab->ref.null_ref_key= 1; // Set null byte
+ return safe_index_read(tab);
+}
+
+
+int
+join_read_next_same_or_null(READ_RECORD *info)
+{
+ int error;
+ if (unlikely((error= join_read_next_same(info)) >= 0))
+ return error;
+ JOIN_TAB *tab= info->table->reginfo.join_tab;
+
+ /* Test if we have already done a read after null key */
+ if (*tab->ref.null_ref_key)
+ return -1; // All keys read
+ *tab->ref.null_ref_key= 1; // Set null byte
+ return safe_index_read(tab); // then read null keys
+}
+
+
+/*****************************************************************************
+ DESCRIPTION
+ Functions that end one nested loop iteration. Different functions
+ are used to support GROUP BY clause and to redirect records
+ to a table (e.g. in case of SELECT into a temporary table) or to the
+ network client.
+
+ RETURN VALUES
+ NESTED_LOOP_OK - the record has been successfully handled
+ NESTED_LOOP_ERROR - a fatal error (like table corruption)
+ was detected
+ NESTED_LOOP_KILLED - thread shutdown was requested while processing
+ the record
+ NESTED_LOOP_QUERY_LIMIT - the record has been successfully handled;
+ additionally, the nested loop produced the
+ number of rows specified in the LIMIT clause
+ for the query
+ NESTED_LOOP_CURSOR_LIMIT - the record has been successfully handled;
+ additionally, there is a cursor and the nested
+ loop algorithm produced the number of rows
+ that is specified for current cursor fetch
+ operation.
+ All return values except NESTED_LOOP_OK abort the nested loop.
+*****************************************************************************/
+
+/* ARGSUSED */
+static enum_nested_loop_state
+end_send(JOIN *join, JOIN_TAB *join_tab, bool end_of_records)
+{
+ DBUG_ENTER("end_send");
+ /*
+ When all tables are const this function is called with jointab == NULL.
+ This function shouldn't be called for the first join_tab as it needs
+ to get fields from previous tab.
+ */
+ DBUG_ASSERT(join_tab == NULL || join_tab != join->join_tab);
+ //TODO pass fields via argument
+ List<Item> *fields= join_tab ? (join_tab-1)->fields : join->fields;
+
+ if (end_of_records)
+ {
+ if (join->procedure && join->procedure->end_of_records())
+ DBUG_RETURN(NESTED_LOOP_ERROR);
+ DBUG_RETURN(NESTED_LOOP_OK);
+ }
+
+ if (join->table_count &&
+ join->join_tab->is_using_loose_index_scan())
+ {
+ /* Copy non-aggregated fields when loose index scan is used. */
+ copy_fields(&join->tmp_table_param);
+ }
+ if (join->having && join->having->val_int() == 0)
+ DBUG_RETURN(NESTED_LOOP_OK); // Didn't match having
+ if (join->procedure)
+ {
+ if (join->procedure->send_row(join->procedure_fields_list))
+ DBUG_RETURN(NESTED_LOOP_ERROR);
+ DBUG_RETURN(NESTED_LOOP_OK);
+ }
+
+ if (join->send_records >= join->unit->lim.get_select_limit() &&
+ join->unit->lim.is_with_ties())
+ {
+ /*
+ Stop sending rows if the order fields corresponding to WITH TIES
+ have changed.
+ */
+ int idx= test_if_item_cache_changed(join->order_fields);
+ if (idx >= 0)
+ join->do_send_rows= false;
+ }
+
+ if (join->do_send_rows)
+ {
+ int error;
+ /* result < 0 if row was not accepted and should not be counted */
+ if (unlikely((error= join->result->send_data_with_check(*fields,
+ join->unit,
+ join->send_records))))
+ {
+ if (error > 0)
+ DBUG_RETURN(NESTED_LOOP_ERROR);
+ // error < 0 => duplicate row
+ join->duplicate_rows++;
+ }
+ }
+
+ join->send_records++;
+ join->accepted_rows++;
+ if (join->send_records >= join->unit->lim.get_select_limit())
+ {
+ if (!join->do_send_rows)
+ {
+ /*
+ If we have used Priority Queue for optimizing order by with limit,
+ then stop here, there are no more records to consume.
+ When this optimization is used, end_send is called on the next
+ join_tab.
+ */
+ if (join->order &&
+ join->select_options & OPTION_FOUND_ROWS &&
+ join_tab > join->join_tab &&
+ (join_tab - 1)->filesort && (join_tab - 1)->filesort->using_pq)
+ {
+ DBUG_PRINT("info", ("filesort NESTED_LOOP_QUERY_LIMIT"));
+ DBUG_RETURN(NESTED_LOOP_QUERY_LIMIT);
+ }
+ DBUG_RETURN(NESTED_LOOP_OK);
+ }
+
+ /* For WITH TIES we keep sending rows until a group has changed. */
+ if (join->unit->lim.is_with_ties())
+ {
+ /* Prepare the order_fields comparison for with ties. */
+ if (join->send_records == join->unit->lim.get_select_limit())
+ (void) test_if_group_changed(join->order_fields);
+ /* One more loop, to check if the next row matches with_ties or not. */
+ DBUG_RETURN(NESTED_LOOP_OK);
+ }
+ if (join->select_options & OPTION_FOUND_ROWS)
+ {
+ JOIN_TAB *jt=join->join_tab;
+ if ((join->table_count == 1) && !join->sort_and_group
+ && !join->send_group_parts && !join->having && !jt->select_cond &&
+ !(jt->select && jt->select->quick) &&
+ (jt->table->file->ha_table_flags() & HA_STATS_RECORDS_IS_EXACT) &&
+ (jt->ref.key < 0))
+ {
+ /* Join over all rows in table; Return number of found rows */
+ TABLE *table=jt->table;
+
+ if (jt->filesort_result) // If filesort was used
+ {
+ join->send_records= jt->filesort_result->found_rows;
+ }
+ else
+ {
+ table->file->info(HA_STATUS_VARIABLE);
+ join->send_records= table->file->stats.records;
+ }
+ }
+ else
+ {
+ join->do_send_rows= 0;
+ if (join->unit->fake_select_lex)
+ join->unit->fake_select_lex->limit_params.select_limit= 0;
+ DBUG_RETURN(NESTED_LOOP_OK);
+ }
+ }
+ DBUG_RETURN(NESTED_LOOP_QUERY_LIMIT); // Abort nicely
+ }
+ else if (join->send_records >= join->fetch_limit)
+ {
+ /*
+ There is a server side cursor and all rows for
+ this fetch request are sent.
+ */
+ DBUG_RETURN(NESTED_LOOP_CURSOR_LIMIT);
+ }
+ DBUG_RETURN(NESTED_LOOP_OK);
+}
+
+
+/*
+ @brief
+ Perform OrderedGroupBy operation and write the output into join->result.
+
+ @detail
+ The input stream is ordered by the GROUP BY expression, so groups come
+ one after another. We only need to accumulate the aggregate value, when
+ a GROUP BY group ends, check the HAVING and send the group.
+
+ Note that the output comes in the GROUP BY order, which is required by
+ the MySQL's GROUP BY semantics. No further sorting is needed.
+
+ @seealso end_write_group() also implements SortAndGroup
+*/
+
+enum_nested_loop_state
+end_send_group(JOIN *join, JOIN_TAB *join_tab, bool end_of_records)
+{
+ int idx= -1;
+ enum_nested_loop_state ok_code= NESTED_LOOP_OK;
+ /*
+ join_tab can be 0 in the case all tables are const tables and we did not
+ need a temporary table to store the result.
+ In this case we use the original given fields, which is stored in
+ join->fields.
+ */
+ List<Item> *fields= join_tab ? (join_tab-1)->fields : join->fields;
+ DBUG_ENTER("end_send_group");
+
+ if (!join->items3.is_null() && !join->set_group_rpa)
+ {
+ /* Move ref_pointer_array to points to items3 */
+ join->set_group_rpa= true;
+ join->set_items_ref_array(join->items3);
+ }
+
+ if (!join->first_record || end_of_records ||
+ (idx=test_if_group_changed(join->group_fields)) >= 0)
+ {
+
+ if (!join->group_sent &&
+ (join->first_record ||
+ (end_of_records && !join->group && !join->group_optimized_away)))
+ {
+ table_map cleared_tables= (table_map) 0;
+ if (join->procedure)
+ join->procedure->end_group();
+ /* Test if there was a group change. */
+ if (idx < (int) join->send_group_parts)
+ {
+ int error=0;
+ if (join->procedure)
+ {
+ if (join->having && join->having->val_int() == 0)
+ error= -1; // Didn't satisfy having
+ else
+ {
+ if (join->do_send_rows)
+ error=join->procedure->send_row(*fields) ? 1 : 0;
+ join->send_records++;
+ }
+ if (end_of_records && join->procedure->end_of_records())
+ error= 1; // Fatal error
+ }
+ else
+ {
+ /* Reset all sum functions on group change. */
+ if (!join->first_record)
+ {
+ /* No matching rows for group function */
+
+ List_iterator_fast<Item> it(*fields);
+ Item *item;
+ join->no_rows_in_result_called= 1;
+
+ join->clear(&cleared_tables);
+ while ((item= it++))
+ item->no_rows_in_result();
+ }
+ if (join->having && join->having->val_int() == 0)
+ error= -1; // Didn't satisfy having
+ else
+ {
+ if (join->do_send_rows)
+ {
+ error= join->result->send_data_with_check(*fields,
+ join->unit,
+ join->send_records);
+ if (unlikely(error < 0))
+ {
+ /* Duplicate row, don't count */
+ join->duplicate_rows++;
+ error= 0;
+ }
+ }
+ join->send_records++;
+ join->group_sent= true;
+ }
+ if (unlikely(join->rollup.state != ROLLUP::STATE_NONE && error <= 0))
+ {
+ if (join->rollup_send_data((uint) (idx+1)))
+ error= 1;
+ }
+ if (join->no_rows_in_result_called)
+ {
+ /* Restore null tables to original state */
+ join->no_rows_in_result_called= 0;
+ if (cleared_tables)
+ unclear_tables(join, &cleared_tables);
+ }
+ }
+ if (unlikely(error > 0))
+ DBUG_RETURN(NESTED_LOOP_ERROR); /* purecov: inspected */
+ if (end_of_records)
+ DBUG_RETURN(NESTED_LOOP_OK);
+ if (join->send_records >= join->unit->lim.get_select_limit() &&
+ join->do_send_rows)
+ {
+ /* WITH TIES can be computed during end_send_group if
+ the order by is a subset of group by and we had an index
+ available to compute group by order directly. */
+ if (!join->unit->lim.is_with_ties() ||
+ idx < (int)join->with_ties_order_count)
+ {
+ if (!(join->select_options & OPTION_FOUND_ROWS))
+ DBUG_RETURN(NESTED_LOOP_QUERY_LIMIT); // Abort nicely
+ join->do_send_rows= 0;
+ join->unit->lim.set_unlimited();
+ }
+ }
+ else if (join->send_records >= join->fetch_limit)
+ {
+ /*
+ There is a server side cursor and all rows
+ for this fetch request are sent.
+
+ Preventing code duplication. When finished with the group reset
+ the group functions and copy_fields. We fall through. bug #11904
+ */
+ ok_code= NESTED_LOOP_CURSOR_LIMIT;
+ }
+ }
+ }
+ else
+ {
+ if (end_of_records)
+ DBUG_RETURN(NESTED_LOOP_OK);
+ join->first_record=1;
+ (void) test_if_group_changed(join->group_fields);
+ }
+ if (idx < (int) join->send_group_parts)
+ {
+ /*
+ This branch is executed also for cursors which have finished their
+ fetch limit - the reason for ok_code.
+ */
+ copy_fields(&join->tmp_table_param);
+ if (init_sum_functions(join->sum_funcs, join->sum_funcs_end[idx+1]))
+ DBUG_RETURN(NESTED_LOOP_ERROR);
+ if (join->procedure)
+ join->procedure->add();
+ join->group_sent= false;
+ join->accepted_rows++;
+ DBUG_RETURN(ok_code);
+ }
+ }
+ if (update_sum_func(join->sum_funcs))
+ DBUG_RETURN(NESTED_LOOP_ERROR);
+ join->accepted_rows++;
+ if (join->procedure)
+ join->procedure->add();
+ DBUG_RETURN(NESTED_LOOP_OK);
+}
+
+
+ /* ARGSUSED */
+static enum_nested_loop_state
+end_write(JOIN *join, JOIN_TAB *join_tab __attribute__((unused)),
+ bool end_of_records)
+{
+ TABLE *const table= join_tab->table;
+ DBUG_ENTER("end_write");
+
+ if (!end_of_records)
+ {
+ copy_fields(join_tab->tmp_table_param);
+ if (copy_funcs(join_tab->tmp_table_param->items_to_copy, join->thd))
+ DBUG_RETURN(NESTED_LOOP_ERROR); /* purecov: inspected */
+
+ if (likely(!join_tab->having || join_tab->having->val_int()))
+ {
+ int error;
+ join->found_records++;
+ join->accepted_rows++;
+ if ((error= table->file->ha_write_tmp_row(table->record[0])))
+ {
+ if (likely(!table->file->is_fatal_error(error, HA_CHECK_DUP)))
+ goto end; // Ignore duplicate keys
+ bool is_duplicate;
+ if (create_internal_tmp_table_from_heap(join->thd, table,
+ join_tab->tmp_table_param->start_recinfo,
+ &join_tab->tmp_table_param->recinfo,
+ error, 1, &is_duplicate))
+ DBUG_RETURN(NESTED_LOOP_ERROR); // Not a table_is_full error
+ if (is_duplicate)
+ goto end;
+ table->s->uniques=0; // To ensure rows are the same
+ }
+ if (++join_tab->send_records >=
+ join_tab->tmp_table_param->end_write_records &&
+ join->do_send_rows)
+ {
+ if (!(join->select_options & OPTION_FOUND_ROWS))
+ DBUG_RETURN(NESTED_LOOP_QUERY_LIMIT);
+ join->do_send_rows=0;
+ join->unit->lim.set_unlimited();
+ }
+ }
+ }
+end:
+ if (unlikely(join->thd->check_killed()))
+ {
+ DBUG_RETURN(NESTED_LOOP_KILLED); /* purecov: inspected */
+ }
+ DBUG_RETURN(NESTED_LOOP_OK);
+}
+
+
+/*
+ @brief
+ Perform GROUP BY operation over rows coming in arbitrary order: use
+ TemporaryTableWithPartialSums algorithm.
+
+ @detail
+ The TemporaryTableWithPartialSums algorithm is:
+
+ CREATE TEMPORARY TABLE tmp (
+ group_by_columns PRIMARY KEY,
+ partial_sum
+ );
+
+ for each row R in join output {
+ INSERT INTO tmp (R.group_by_columns, R.sum_value)
+ ON DUPLICATE KEY UPDATE partial_sum=partial_sum + R.sum_value;
+ }
+
+ @detail
+ Also applies HAVING, etc.
+
+ @seealso end_unique_update()
+*/
+
+static enum_nested_loop_state
+end_update(JOIN *join, JOIN_TAB *join_tab __attribute__((unused)),
+ bool end_of_records)
+{
+ TABLE *const table= join_tab->table;
+ ORDER *group;
+ int error;
+ DBUG_ENTER("end_update");
+
+ if (end_of_records)
+ DBUG_RETURN(NESTED_LOOP_OK);
+
+ join->found_records++;
+ copy_fields(join_tab->tmp_table_param); // Groups are copied twice.
+ /* Make a key of group index */
+ for (group=table->group ; group ; group=group->next)
+ {
+ Item *item= *group->item;
+ if (group->fast_field_copier_setup != group->field)
+ {
+ DBUG_PRINT("info", ("new setup %p -> %p",
+ group->fast_field_copier_setup,
+ group->field));
+ group->fast_field_copier_setup= group->field;
+ group->fast_field_copier_func=
+ item->setup_fast_field_copier(group->field);
+ }
+ item->save_org_in_field(group->field, group->fast_field_copier_func);
+ /* Store in the used key if the field was 0 */
+ if (item->maybe_null())
+ group->buff[-1]= (char) group->field->is_null();
+ }
+ if (!table->file->ha_index_read_map(table->record[1],
+ join_tab->tmp_table_param->group_buff,
+ HA_WHOLE_KEY,
+ HA_READ_KEY_EXACT))
+ { /* Update old record */
+ restore_record(table,record[1]);
+ update_tmptable_sum_func(join->sum_funcs,table);
+ if (unlikely((error= table->file->ha_update_tmp_row(table->record[1],
+ table->record[0]))))
+ {
+ table->file->print_error(error,MYF(0)); /* purecov: inspected */
+ DBUG_RETURN(NESTED_LOOP_ERROR); /* purecov: inspected */
+ }
+ goto end;
+ }
+
+ init_tmptable_sum_functions(join->sum_funcs);
+ if (unlikely(copy_funcs(join_tab->tmp_table_param->items_to_copy,
+ join->thd)))
+ DBUG_RETURN(NESTED_LOOP_ERROR); /* purecov: inspected */
+ if (unlikely((error= table->file->ha_write_tmp_row(table->record[0]))))
+ {
+ if (create_internal_tmp_table_from_heap(join->thd, table,
+ join_tab->tmp_table_param->start_recinfo,
+ &join_tab->tmp_table_param->recinfo,
+ error, 0, NULL))
+ DBUG_RETURN(NESTED_LOOP_ERROR); // Not a table_is_full error
+ /* Change method to update rows */
+ if (unlikely((error= table->file->ha_index_init(0, 0))))
+ {
+ table->file->print_error(error, MYF(0));
+ DBUG_RETURN(NESTED_LOOP_ERROR);
+ }
+
+ join_tab->aggr->set_write_func(end_unique_update);
+ }
+ join_tab->send_records++;
+end:
+ join->accepted_rows++; // For rownum()
+ if (unlikely(join->thd->check_killed()))
+ {
+ DBUG_RETURN(NESTED_LOOP_KILLED); /* purecov: inspected */
+ }
+ DBUG_RETURN(NESTED_LOOP_OK);
+}
+
+
+/**
+ Like end_update, but this is done with unique constraints instead of keys.
+*/
+
+static enum_nested_loop_state
+end_unique_update(JOIN *join, JOIN_TAB *join_tab __attribute__((unused)),
+ bool end_of_records)
+{
+ TABLE *table= join_tab->table;
+ int error;
+ DBUG_ENTER("end_unique_update");
+
+ if (end_of_records)
+ DBUG_RETURN(NESTED_LOOP_OK);
+
+ init_tmptable_sum_functions(join->sum_funcs);
+ copy_fields(join_tab->tmp_table_param); // Groups are copied twice.
+ if (copy_funcs(join_tab->tmp_table_param->items_to_copy, join->thd))
+ DBUG_RETURN(NESTED_LOOP_ERROR); /* purecov: inspected */
+
+ join->accepted_rows++;
+ if (likely(!(error= table->file->ha_write_tmp_row(table->record[0]))))
+ join_tab->send_records++; // New group
+ else
+ {
+ if (unlikely((int) table->file->get_dup_key(error) < 0))
+ {
+ table->file->print_error(error,MYF(0)); /* purecov: inspected */
+ DBUG_RETURN(NESTED_LOOP_ERROR); /* purecov: inspected */
+ }
+ /* Prepare table for random positioning */
+ bool rnd_inited= (table->file->inited == handler::RND);
+ if (!rnd_inited &&
+ ((error= table->file->ha_index_end()) ||
+ (error= table->file->ha_rnd_init(0))))
+ {
+ table->file->print_error(error, MYF(0));
+ DBUG_RETURN(NESTED_LOOP_ERROR);
+ }
+ if (unlikely(table->file->ha_rnd_pos(table->record[1],table->file->dup_ref)))
+ {
+ table->file->print_error(error,MYF(0)); /* purecov: inspected */
+ DBUG_RETURN(NESTED_LOOP_ERROR); /* purecov: inspected */
+ }
+ restore_record(table,record[1]);
+ update_tmptable_sum_func(join->sum_funcs,table);
+ if (unlikely((error= table->file->ha_update_tmp_row(table->record[1],
+ table->record[0]))))
+ {
+ table->file->print_error(error,MYF(0)); /* purecov: inspected */
+ DBUG_RETURN(NESTED_LOOP_ERROR); /* purecov: inspected */
+ }
+ if (!rnd_inited &&
+ ((error= table->file->ha_rnd_end()) ||
+ (error= table->file->ha_index_init(0, 0))))
+ {
+ table->file->print_error(error, MYF(0));
+ DBUG_RETURN(NESTED_LOOP_ERROR);
+ }
+ }
+ if (unlikely(join->thd->check_killed()))
+ {
+ DBUG_RETURN(NESTED_LOOP_KILLED); /* purecov: inspected */
+ }
+ join->accepted_rows++; // For rownum()
+ DBUG_RETURN(NESTED_LOOP_OK);
+}
+
+
+/*
+ @brief
+ Perform OrderedGroupBy operation and write the output into the temporary
+ table (join_tab->table).
+
+ @detail
+ The input stream is ordered by the GROUP BY expression, so groups come
+ one after another. We only need to accumulate the aggregate value, when
+ a GROUP BY group ends, check the HAVING and write the group.
+
+ @seealso end_send_group() also implements OrderedGroupBy
+*/
+
+enum_nested_loop_state
+end_write_group(JOIN *join, JOIN_TAB *join_tab __attribute__((unused)),
+ bool end_of_records)
+{
+ TABLE *table= join_tab->table;
+ int idx= -1;
+ DBUG_ENTER("end_write_group");
+
+ join->accepted_rows++;
+ if (!join->first_record || end_of_records ||
+ (idx=test_if_group_changed(join->group_fields)) >= 0)
+ {
+ if (join->first_record || (end_of_records && !join->group))
+ {
+ table_map cleared_tables= (table_map) 0;
+ if (join->procedure)
+ join->procedure->end_group();
+ int send_group_parts= join->send_group_parts;
+ if (idx < send_group_parts)
+ {
+ if (!join->first_record)
+ {
+ /* No matching rows for group function */
+ join->clear(&cleared_tables);
+ }
+ copy_sum_funcs(join->sum_funcs,
+ join->sum_funcs_end[send_group_parts]);
+ if (!join_tab->having || join_tab->having->val_int())
+ {
+ int error= table->file->ha_write_tmp_row(table->record[0]);
+ if (unlikely(error) &&
+ create_internal_tmp_table_from_heap(join->thd, table,
+ join_tab->tmp_table_param->start_recinfo,
+ &join_tab->tmp_table_param->recinfo,
+ error, 0, NULL))
+ DBUG_RETURN(NESTED_LOOP_ERROR);
+ }
+ if (unlikely(join->rollup.state != ROLLUP::STATE_NONE))
+ {
+ if (unlikely(join->rollup_write_data((uint) (idx+1),
+ join_tab->tmp_table_param,
+ table)))
+ {
+ DBUG_RETURN(NESTED_LOOP_ERROR);
+ }
+ }
+ if (cleared_tables)
+ unclear_tables(join, &cleared_tables);
+ if (end_of_records)
+ goto end;
+ }
+ }
+ else
+ {
+ if (end_of_records)
+ goto end;
+ join->first_record=1;
+ (void) test_if_group_changed(join->group_fields);
+ }
+ if (idx < (int) join->send_group_parts)
+ {
+ copy_fields(join_tab->tmp_table_param);
+ if (unlikely(copy_funcs(join_tab->tmp_table_param->items_to_copy,
+ join->thd)))
+ DBUG_RETURN(NESTED_LOOP_ERROR);
+ if (unlikely(init_sum_functions(join->sum_funcs,
+ join->sum_funcs_end[idx+1])))
+ DBUG_RETURN(NESTED_LOOP_ERROR);
+ if (unlikely(join->procedure))
+ join->procedure->add();
+ goto end;
+ }
+ }
+ if (unlikely(update_sum_func(join->sum_funcs)))
+ DBUG_RETURN(NESTED_LOOP_ERROR);
+ if (unlikely(join->procedure))
+ join->procedure->add();
+end:
+ if (unlikely(join->thd->check_killed()))
+ {
+ DBUG_RETURN(NESTED_LOOP_KILLED); /* purecov: inspected */
+ }
+ DBUG_RETURN(NESTED_LOOP_OK);
+}
+
+
+/*****************************************************************************
+ Remove calculation with tables that aren't yet read. Remove also tests
+ against fields that are read through key where the table is not a
+ outer join table.
+ We can't remove tests that are made against columns which are stored
+ in sorted order.
+*****************************************************************************/
+
+/**
+ Check if "left_item=right_item" equality is guaranteed to be true by use of
+ [eq]ref access on left_item->field->table.
+
+ SYNOPSIS
+ test_if_ref()
+ root_cond
+ left_item
+ right_item
+
+ DESCRIPTION
+ Check if the given "left_item = right_item" equality is guaranteed to be
+ true by use of [eq_]ref access method.
+
+ We need root_cond as we can't remove ON expressions even if employed ref
+ access guarantees that they are true. This is because TODO
+
+ RETURN
+ TRUE if right_item is used removable reference key on left_item
+ FALSE Otherwise
+
+*/
+
+bool test_if_ref(Item *root_cond, Item_field *left_item,Item *right_item)
+{
+ Field *field=left_item->field;
+ JOIN_TAB *join_tab= field->table->reginfo.join_tab;
+ // No need to change const test
+ if (!field->table->const_table && join_tab &&
+ !join_tab->is_ref_for_hash_join() &&
+ (!join_tab->first_inner ||
+ *join_tab->first_inner->on_expr_ref == root_cond))
+ {
+ /*
+ If ref access uses "Full scan on NULL key" (i.e. it actually alternates
+ between ref access and full table scan), then no equality can be
+ guaranteed to be true.
+ */
+ if (join_tab->ref.is_access_triggered())
+ return FALSE;
+
+ Item *ref_item=part_of_refkey(field->table,field);
+ if (ref_item && (ref_item->eq(right_item,1) ||
+ ref_item->real_item()->eq(right_item,1)))
+ {
+ right_item= right_item->real_item();
+ if (right_item->type() == Item::FIELD_ITEM)
+ return (field->eq_def(((Item_field *) right_item)->field));
+ /* remove equalities injected by IN->EXISTS transformation */
+ else if (right_item->type() == Item::CACHE_ITEM)
+ return ((Item_cache *)right_item)->eq_def (field);
+ if (right_item->const_item() && !(right_item->is_null()))
+ {
+ /*
+ We can remove binary fields and numerical fields except float,
+ as float comparison isn't 100 % safe
+ We have to keep normal strings to be able to check for end spaces
+ */
+ if (field->binary() &&
+ field->real_type() != MYSQL_TYPE_STRING &&
+ field->real_type() != MYSQL_TYPE_VARCHAR &&
+ (field->type() != MYSQL_TYPE_FLOAT || field->decimals() == 0))
+ {
+ return !right_item->save_in_field_no_warnings(field, 1);
+ }
+ }
+ }
+ }
+ return 0; // keep test
+}
+
+
+/**
+ Extract a condition that can be checked after reading given table
+ @fn make_cond_for_table()
+
+ @param cond Condition to analyze
+ @param tables Tables for which "current field values" are available
+ @param used_table Table that we're extracting the condition for
+ tables Tables for which "current field values" are available (this
+ includes used_table)
+ (may also include PSEUDO_TABLE_BITS, and may be zero)
+ @param join_tab_idx_arg
+ The index of the JOIN_TAB this Item is being extracted
+ for. MAX_TABLES if there is no corresponding JOIN_TAB.
+ @param exclude_expensive_cond
+ Do not push expensive conditions
+ @param retain_ref_cond
+ Retain ref conditions
+
+ @retval <>NULL Generated condition
+ @retval =NULL Already checked, OR error
+
+ @details
+ Extract the condition that can be checked after reading the table
+ specified in 'used_table', given that current-field values for tables
+ specified in 'tables' bitmap are available.
+ If 'used_table' is 0
+ - extract conditions for all tables in 'tables'.
+ - extract conditions are unrelated to any tables
+ in the same query block/level(i.e. conditions
+ which have used_tables == 0).
+
+ The function assumes that
+ - Constant parts of the condition has already been checked.
+ - Condition that could be checked for tables in 'tables' has already
+ been checked.
+
+ The function takes into account that some parts of the condition are
+ guaranteed to be true by employed 'ref' access methods (the code that
+ does this is located at the end, search down for "EQ_FUNC").
+
+ @note
+ Make sure to keep the implementations of make_cond_for_table() and
+ make_cond_after_sjm() synchronized.
+ make_cond_for_info_schema() uses similar algorithm as well.
+*/
+
+static Item *
+make_cond_for_table(THD *thd, Item *cond, table_map tables,
+ table_map used_table,
+ int join_tab_idx_arg,
+ bool exclude_expensive_cond __attribute__((unused)),
+ bool retain_ref_cond)
+{
+ return make_cond_for_table_from_pred(thd, cond, cond, tables, used_table,
+ join_tab_idx_arg,
+ exclude_expensive_cond,
+ retain_ref_cond, true);
+}
+
+
+static Item *
+make_cond_for_table_from_pred(THD *thd, Item *root_cond, Item *cond,
+ table_map tables, table_map used_table,
+ int join_tab_idx_arg,
+ bool exclude_expensive_cond __attribute__
+ ((unused)),
+ bool retain_ref_cond,
+ bool is_top_and_level)
+
+{
+ table_map rand_table_bit= (table_map) RAND_TABLE_BIT;
+
+ if (used_table && !(cond->used_tables() & used_table))
+ return (COND*) 0; // Already checked
+
+ if (cond->type() == Item::COND_ITEM)
+ {
+ if (((Item_cond*) cond)->functype() == Item_func::COND_AND_FUNC)
+ {
+ /* Create new top level AND item */
+ Item_cond_and *new_cond=new (thd->mem_root) Item_cond_and(thd);
+ if (!new_cond)
+ return (COND*) 0; // OOM /* purecov: inspected */
+ List_iterator<Item> li(*((Item_cond*) cond)->argument_list());
+ Item *item;
+ while ((item=li++))
+ {
+ /*
+ Special handling of top level conjuncts with RAND_TABLE_BIT:
+ if such a conjunct contains a reference to a field that is not
+ an outer field then it is pushed to the corresponding table by
+ the same rule as all other conjuncts. Otherwise, if the conjunct
+ is used in WHERE is is pushed to the last joined table, if is it
+ is used in ON condition of an outer join it is pushed into the
+ last inner table of the outer join. Such conjuncts are pushed in
+ a call of make_cond_for_table_from_pred() with the
+ parameter 'used_table' equal to PSEUDO_TABLE_BITS.
+ */
+ if (is_top_and_level && used_table == rand_table_bit &&
+ (item->used_tables() & ~OUTER_REF_TABLE_BIT) != rand_table_bit)
+ {
+ /* The conjunct with RAND_TABLE_BIT has been allready pushed */
+ continue;
+ }
+ Item *fix=make_cond_for_table_from_pred(thd, root_cond, item,
+ tables, used_table,
+ join_tab_idx_arg,
+ exclude_expensive_cond,
+ retain_ref_cond, false);
+ if (fix)
+ new_cond->argument_list()->push_back(fix, thd->mem_root);
+ else if (thd->is_error())
+ return ((COND*) 0);
+ }
+ switch (new_cond->argument_list()->elements) {
+ case 0:
+ return (COND*) 0; // Always true
+ case 1:
+ return new_cond->argument_list()->head();
+ default:
+ /*
+ Call fix_fields to propagate all properties of the children to
+ the new parent Item. This should not be expensive because all
+ children of Item_cond_and should be fixed by now.
+ */
+ if (new_cond->fix_fields(thd, 0))
+ return (COND*) 0;
+ new_cond->used_tables_cache=
+ ((Item_cond_and*) cond)->used_tables_cache &
+ tables;
+ return new_cond;
+ }
+ }
+ else
+ { // Or list
+ if (is_top_and_level && used_table == rand_table_bit &&
+ (cond->used_tables() & ~OUTER_REF_TABLE_BIT) != rand_table_bit)
+ {
+ /* This top level formula with RAND_TABLE_BIT has been already pushed */
+ return (COND*) 0;
+ }
+
+ Item_cond_or *new_cond=new (thd->mem_root) Item_cond_or(thd);
+ if (!new_cond)
+ return (COND*) 0; // OOM /* purecov: inspected */
+ List_iterator<Item> li(*((Item_cond*) cond)->argument_list());
+ Item *item;
+ while ((item=li++))
+ {
+ Item *fix=make_cond_for_table_from_pred(thd, root_cond, item,
+ tables, 0L,
+ join_tab_idx_arg,
+ exclude_expensive_cond,
+ retain_ref_cond, false);
+ if (!fix)
+ return (COND*) 0; // Always true or error
+ new_cond->argument_list()->push_back(fix, thd->mem_root);
+ }
+ /*
+ Call fix_fields to propagate all properties of the children to
+ the new parent Item. This should not be expensive because all
+ children of Item_cond_and should be fixed by now.
+ */
+ if (new_cond->fix_fields(thd, 0))
+ return (COND*) 0;
+ new_cond->used_tables_cache= ((Item_cond_or*) cond)->used_tables_cache;
+ new_cond->top_level_item();
+ return new_cond;
+ }
+ }
+ else if (cond->basic_const_item())
+ return cond;
+
+ if (is_top_and_level && used_table == rand_table_bit &&
+ (cond->used_tables() & ~OUTER_REF_TABLE_BIT) != rand_table_bit)
+ {
+ /* This top level formula with RAND_TABLE_BIT has been already pushed */
+ return (COND*) 0;
+ }
+
+ /*
+ Because the following test takes a while and it can be done
+ table_count times, we mark each item that we have examined with the result
+ of the test
+ */
+ if ((cond->marker == MARKER_CHECK_ON_READ && !retain_ref_cond) ||
+ (cond->used_tables() & ~tables))
+ return (COND*) 0; // Can't check this yet
+
+ if (cond->marker == MARKER_PROCESSED || cond->eq_cmp_result() == Item::COND_OK)
+ {
+ cond->set_join_tab_idx((uint8) join_tab_idx_arg);
+ return cond; // Not boolean op
+ }
+
+ if (cond->type() == Item::FUNC_ITEM &&
+ ((Item_func*) cond)->functype() == Item_func::EQ_FUNC)
+ {
+ Item *left_item= ((Item_func*) cond)->arguments()[0]->real_item();
+ Item *right_item= ((Item_func*) cond)->arguments()[1]->real_item();
+ if (left_item->type() == Item::FIELD_ITEM && !retain_ref_cond &&
+ test_if_ref(root_cond, (Item_field*) left_item,right_item))
+ {
+ cond->marker= MARKER_CHECK_ON_READ; // Checked when read
+ return (COND*) 0;
+ }
+ if (right_item->type() == Item::FIELD_ITEM && !retain_ref_cond &&
+ test_if_ref(root_cond, (Item_field*) right_item,left_item))
+ {
+ cond->marker= MARKER_CHECK_ON_READ; // Checked when read
+ return (COND*) 0;
+ }
+ }
+ cond->marker= MARKER_PROCESSED;
+ cond->set_join_tab_idx((uint8) join_tab_idx_arg);
+ return cond;
+}
+
+
+/*
+ The difference of this from make_cond_for_table() is that we're in the
+ following state:
+ 1. conditions referring to 'tables' have been checked
+ 2. conditions referring to sjm_tables have been checked, too
+ 3. We need condition that couldn't be checked in #1 or #2 but
+ can be checked when we get both (tables | sjm_tables).
+
+*/
+static COND *
+make_cond_after_sjm(THD *thd, Item *root_cond, Item *cond, table_map tables,
+ table_map sjm_tables, bool inside_or_clause)
+{
+ /*
+ We assume that conditions that refer to only join prefix tables or
+ sjm_tables have already been checked.
+ */
+ if (!inside_or_clause)
+ {
+ table_map cond_used_tables= cond->used_tables();
+ if((!(cond_used_tables & ~tables) ||
+ !(cond_used_tables & ~sjm_tables)))
+ return (COND*) 0; // Already checked
+ }
+
+ /* AND/OR recursive descent */
+ if (cond->type() == Item::COND_ITEM)
+ {
+ if (((Item_cond*) cond)->functype() == Item_func::COND_AND_FUNC)
+ {
+ /* Create new top level AND item */
+ Item_cond_and *new_cond= new (thd->mem_root) Item_cond_and(thd);
+ if (!new_cond)
+ return (COND*) 0; // OOM /* purecov: inspected */
+ List_iterator<Item> li(*((Item_cond*) cond)->argument_list());
+ Item *item;
+ while ((item=li++))
+ {
+ Item *fix=make_cond_after_sjm(thd, root_cond, item, tables, sjm_tables,
+ inside_or_clause);
+ if (fix)
+ new_cond->argument_list()->push_back(fix, thd->mem_root);
+ }
+ switch (new_cond->argument_list()->elements) {
+ case 0:
+ return (COND*) 0; // Always true
+ case 1:
+ return new_cond->argument_list()->head();
+ default:
+ /*
+ Item_cond_and do not need fix_fields for execution, its parameters
+ are fixed or do not need fix_fields, too
+ */
+ new_cond->quick_fix_field();
+ new_cond->used_tables_cache=
+ ((Item_cond_and*) cond)->used_tables_cache &
+ tables;
+ return new_cond;
+ }
+ }
+ else
+ { // Or list
+ Item_cond_or *new_cond= new (thd->mem_root) Item_cond_or(thd);
+ if (!new_cond)
+ return (COND*) 0; // OOM /* purecov: inspected */
+ List_iterator<Item> li(*((Item_cond*) cond)->argument_list());
+ Item *item;
+ while ((item=li++))
+ {
+ Item *fix= make_cond_after_sjm(thd, root_cond, item, tables, sjm_tables,
+ /*inside_or_clause= */TRUE);
+ if (!fix)
+ return (COND*) 0; // Always true
+ new_cond->argument_list()->push_back(fix, thd->mem_root);
+ }
+ /*
+ Item_cond_or do not need fix_fields for execution, its parameters
+ are fixed or do not need fix_fields, too
+ */
+ new_cond->quick_fix_field();
+ new_cond->used_tables_cache= ((Item_cond_or*) cond)->used_tables_cache;
+ new_cond->top_level_item();
+ return new_cond;
+ }
+ }
+
+ /*
+ Because the following test takes a while and it can be done
+ table_count times, we mark each item that we have examined with the result
+ of the test
+ */
+
+ if (cond->marker == MARKER_CHECK_ON_READ ||
+ (cond->used_tables() & ~(tables | sjm_tables)))
+ return (COND*) 0; // Can't check this yet
+ if (cond->marker == MARKER_PROCESSED || cond->eq_cmp_result() == Item::COND_OK)
+ return cond; // Not boolean op
+
+ /*
+ Remove equalities that are guaranteed to be true by use of 'ref' access
+ method
+ */
+ if (((Item_func*) cond)->functype() == Item_func::EQ_FUNC)
+ {
+ Item *left_item= ((Item_func*) cond)->arguments()[0]->real_item();
+ Item *right_item= ((Item_func*) cond)->arguments()[1]->real_item();
+ if (left_item->type() == Item::FIELD_ITEM &&
+ test_if_ref(root_cond, (Item_field*) left_item,right_item))
+ {
+ cond->marker= MARKER_CHECK_ON_READ;
+ return (COND*) 0;
+ }
+ if (right_item->type() == Item::FIELD_ITEM &&
+ test_if_ref(root_cond, (Item_field*) right_item,left_item))
+ {
+ cond->marker= MARKER_CHECK_ON_READ;
+ return (COND*) 0;
+ }
+ }
+ cond->marker= MARKER_PROCESSED;
+ return cond;
+}
+
+
+/*
+ @brief
+
+ Check if
+ - @table uses "ref"-like access
+ - it is based on "@field=certain_item" equality
+ - the equality will be true for any record returned by the access method
+ and return the certain_item if yes.
+
+ @detail
+
+ Equality won't necessarily hold if:
+ - the used index covers only part of the @field.
+ Suppose, we have a CHAR(5) field and INDEX(field(3)). if you make a lookup
+ for 'abc', you will get both record with 'abc' and with 'abcde'.
+ - The type of access is actually ref_or_null, and so @field can be either
+ a value or NULL.
+
+ @return
+ Item that the field will be equal to
+ NULL if no such item
+*/
+
+static Item *
+part_of_refkey(TABLE *table,Field *field)
+{
+ JOIN_TAB *join_tab= table->reginfo.join_tab;
+ if (!join_tab)
+ return (Item*) 0; // field from outer non-select (UPDATE,...)
+
+ uint ref_parts= join_tab->ref.key_parts;
+ if (ref_parts) /* if it's ref/eq_ref/ref_or_null */
+ {
+ uint key= join_tab->ref.key;
+ KEY *key_info= join_tab->get_keyinfo_by_key_no(key);
+ KEY_PART_INFO *key_part= key_info->key_part;
+
+ for (uint part=0 ; part < ref_parts ; part++,key_part++)
+ {
+ if (field->eq(key_part->field))
+ {
+ /*
+ Found the field in the key. Check that
+ 1. ref_or_null doesn't alternate this component between a value and
+ a NULL
+ 2. index fully covers the key
+ */
+ if (part != join_tab->ref.null_ref_part && // (1)
+ !(key_part->key_part_flag & HA_PART_KEY_SEG)) // (2)
+ {
+ return join_tab->ref.items[part];
+ }
+ break;
+ }
+ }
+ }
+ return (Item*) 0;
+}
+
+
+/**
+ Test if one can use the key to resolve ORDER BY.
+
+ @param join if not NULL, can use the join's top-level
+ multiple-equalities.
+ @param order Sort order
+ @param table Table to sort
+ @param idx Index to check
+ @param used_key_parts [out] NULL by default, otherwise return value for
+ used key parts.
+
+
+ @note
+ used_key_parts is set to correct key parts used if return value != 0
+ (On other cases, used_key_part may be changed)
+ Note that the value may actually be greater than the number of index
+ key parts. This can happen for storage engines that have the primary
+ key parts as a suffix for every secondary key.
+
+ @retval
+ 1 key is ok.
+ @retval
+ 0 Key can't be used
+ @retval
+ -1 Reverse key can be used
+*/
+
+static int test_if_order_by_key(JOIN *join,
+ ORDER *order, TABLE *table, uint idx,
+ uint *used_key_parts)
+{
+ KEY_PART_INFO *key_part,*key_part_end;
+ key_part=table->key_info[idx].key_part;
+ key_part_end=key_part + table->key_info[idx].ext_key_parts;
+ key_part_map const_key_parts=table->const_key_parts[idx];
+ uint user_defined_kp= table->key_info[idx].user_defined_key_parts;
+ int reverse=0;
+ uint key_parts;
+ bool have_pk_suffix= false;
+ uint pk= table->s->primary_key;
+ DBUG_ENTER("test_if_order_by_key");
+
+ if ((table->file->ha_table_flags() & HA_PRIMARY_KEY_IN_READ_INDEX) &&
+ table->key_info[idx].ext_key_part_map &&
+ pk != MAX_KEY && pk != idx)
+ {
+ have_pk_suffix= true;
+ }
+
+ for (; order ; order=order->next, const_key_parts>>=1)
+ {
+ Item_field *item_field= ((Item_field*) (*order->item)->real_item());
+ Field *field= item_field->field;
+ int flag;
+
+ /*
+ Skip key parts that are constants in the WHERE clause.
+ These are already skipped in the ORDER BY by const_expression_in_where()
+ */
+ for (; const_key_parts & 1 ; const_key_parts>>= 1)
+ key_part++;
+
+ /*
+ This check was in this function historically (although I think it's
+ better to check it outside of this function):
+
+ "Test if the primary key parts were all const (i.e. there's one row).
+ The sorting doesn't matter"
+
+ So, we're checking that
+ (1) this is an extended key
+ (2) we've reached its end
+ */
+ key_parts= (uint)(key_part - table->key_info[idx].key_part);
+ if (have_pk_suffix &&
+ reverse == 0 && // all were =const so far
+ key_parts == table->key_info[idx].ext_key_parts &&
+ table->const_key_parts[pk] == PREV_BITS(uint,
+ table->key_info[pk].
+ user_defined_key_parts))
+ {
+ key_parts= 0;
+ reverse= 1; // Key is ok to use
+ goto ok;
+ }
+
+ if (key_part == key_part_end)
+ {
+ /*
+ There are some items left in ORDER BY that we don't
+ */
+ DBUG_RETURN(0);
+ }
+
+ if (key_part->field != field)
+ {
+ /*
+ Check if there is a multiple equality that allows to infer that field
+ and key_part->field are equal
+ (see also: compute_part_of_sort_key_for_equals)
+ */
+ if (item_field->item_equal &&
+ item_field->item_equal->contains(key_part->field))
+ field= key_part->field;
+ }
+ if (key_part->field != field || !field->part_of_sortkey.is_set(idx))
+ DBUG_RETURN(0);
+
+ const ORDER::enum_order keypart_order=
+ (key_part->key_part_flag & HA_REVERSE_SORT) ?
+ ORDER::ORDER_DESC : ORDER::ORDER_ASC;
+ /* set flag to 1 if we can use read-next on key, else to -1 */
+ flag= (order->direction == keypart_order) ? 1 : -1;
+ if (reverse && flag != reverse)
+ DBUG_RETURN(0);
+ reverse=flag; // Remember if reverse
+ if (key_part < key_part_end)
+ key_part++;
+ }
+
+ key_parts= (uint) (key_part - table->key_info[idx].key_part);
+
+ if (reverse == -1 &&
+ !(table->file->index_flags(idx, user_defined_kp-1, 1) & HA_READ_PREV))
+ reverse= 0; // Index can't be used
+
+ if (have_pk_suffix && reverse == -1)
+ {
+ uint pk_parts= table->key_info[pk].user_defined_key_parts;
+ if (!(table->file->index_flags(pk, pk_parts-1, 1) & HA_READ_PREV))
+ reverse= 0; // Index can't be used
+ }
+
+ok:
+ *used_key_parts= key_parts;
+ DBUG_RETURN(reverse);
+}
+
+
+/**
+ Find shortest key suitable for full table scan.
+
+ @param table Table to scan
+ @param usable_keys Allowed keys
+
+ @return
+ MAX_KEY no suitable key found
+ key index otherwise
+*/
+
+uint find_shortest_key(TABLE *table, const key_map *usable_keys)
+{
+ double min_cost= DBL_MAX;
+ uint best= MAX_KEY;
+ if (!usable_keys->is_clear_all())
+ {
+ for (uint nr=0; nr < table->s->keys ; nr++)
+ {
+ if (usable_keys->is_set(nr))
+ {
+ double cost= table->file->keyread_time(nr, 1, table->file->records());
+ if (cost < min_cost)
+ {
+ min_cost= cost;
+ best=nr;
+ }
+ DBUG_ASSERT(best < MAX_KEY);
+ }
+ }
+ }
+ return best;
+}
+
+/**
+ Test if a second key is the subkey of the first one.
+
+ @param key_part First key parts
+ @param ref_key_part Second key parts
+ @param ref_key_part_end Last+1 part of the second key
+
+ @note
+ Second key MUST be shorter than the first one.
+
+ @retval
+ 1 is a subkey
+ @retval
+ 0 no sub key
+*/
+
+inline bool
+is_subkey(KEY_PART_INFO *key_part, KEY_PART_INFO *ref_key_part,
+ KEY_PART_INFO *ref_key_part_end)
+{
+ for (; ref_key_part < ref_key_part_end; key_part++, ref_key_part++)
+ if (!key_part->field->eq(ref_key_part->field))
+ return 0;
+ return 1;
+}
+
+/**
+ Test if we can use one of the 'usable_keys' instead of 'ref' key
+ for sorting.
+
+ @param ref Number of key, used for WHERE clause
+ @param usable_keys Keys for testing
+
+ @return
+ - MAX_KEY If we can't use other key
+ - the number of found key Otherwise
+*/
+
+static uint
+test_if_subkey(ORDER *order, TABLE *table, uint ref, uint ref_key_parts,
+ const key_map *usable_keys)
+{
+ uint nr;
+ uint min_length= (uint) ~0;
+ uint best= MAX_KEY;
+ KEY_PART_INFO *ref_key_part= table->key_info[ref].key_part;
+ KEY_PART_INFO *ref_key_part_end= ref_key_part + ref_key_parts;
+
+ /*
+ Find the shortest key that
+ - produces the required ordering
+ - has key #ref (up to ref_key_parts) as its subkey.
+ */
+ for (nr= 0 ; nr < table->s->keys ; nr++)
+ {
+ uint not_used;
+ if (usable_keys->is_set(nr) &&
+ table->key_info[nr].key_length < min_length &&
+ table->key_info[nr].user_defined_key_parts >= ref_key_parts &&
+ is_subkey(table->key_info[nr].key_part, ref_key_part,
+ ref_key_part_end) &&
+ test_if_order_by_key(NULL, order, table, nr, &not_used))
+ {
+ min_length= table->key_info[nr].key_length;
+ best= nr;
+ }
+ }
+ return best;
+}
+
+
+/**
+ Check if GROUP BY/DISTINCT can be optimized away because the set is
+ already known to be distinct.
+
+ Used in removing the GROUP BY/DISTINCT of the following types of
+ statements:
+ @code
+ SELECT [DISTINCT] <unique_key_cols>... FROM <single_table_ref>
+ [GROUP BY <unique_key_cols>,...]
+ @endcode
+
+ If (a,b,c is distinct)
+ then <any combination of a,b,c>,{whatever} is also distinct
+
+ This function checks if all the key parts of any of the unique keys
+ of the table are referenced by a list : either the select list
+ through find_field_in_item_list or GROUP BY list through
+ find_field_in_order_list.
+ If the above holds and the key parts cannot contain NULLs then we
+ can safely remove the GROUP BY/DISTINCT,
+ as no result set can be more distinct than an unique key.
+
+ @param table The table to operate on.
+ @param find_func function to iterate over the list and search
+ for a field
+
+ @retval
+ 1 found
+ @retval
+ 0 not found.
+*/
+
+static bool
+list_contains_unique_index(TABLE *table,
+ bool (*find_func) (Field *, void *), void *data)
+{
+ for (uint keynr= 0; keynr < table->s->keys; keynr++)
+ {
+ if (keynr == table->s->primary_key ||
+ (table->key_info[keynr].flags & HA_NOSAME))
+ {
+ KEY *keyinfo= table->key_info + keynr;
+ KEY_PART_INFO *key_part, *key_part_end;
+
+ for (key_part=keyinfo->key_part,
+ key_part_end=key_part+ keyinfo->user_defined_key_parts;
+ key_part < key_part_end;
+ key_part++)
+ {
+ if (key_part->field->maybe_null() ||
+ !find_func(key_part->field, data))
+ break;
+ }
+ if (key_part == key_part_end)
+ return 1;
+ }
+ }
+ return 0;
+}
+
+
+/**
+ Helper function for list_contains_unique_index.
+ Find a field reference in a list of ORDER structures.
+ Finds a direct reference of the Field in the list.
+
+ @param field The field to search for.
+ @param data ORDER *.The list to search in
+
+ @retval
+ 1 found
+ @retval
+ 0 not found.
+*/
+
+static bool
+find_field_in_order_list (Field *field, void *data)
+{
+ ORDER *group= (ORDER *) data;
+ bool part_found= 0;
+ for (ORDER *tmp_group= group; tmp_group; tmp_group=tmp_group->next)
+ {
+ Item *item= (*tmp_group->item)->real_item();
+ if (item->type() == Item::FIELD_ITEM &&
+ ((Item_field*) item)->field->eq(field))
+ {
+ part_found= 1;
+ break;
+ }
+ }
+ return part_found;
+}
+
+
+/**
+ Helper function for list_contains_unique_index.
+ Find a field reference in a dynamic list of Items.
+ Finds a direct reference of the Field in the list.
+
+ @param[in] field The field to search for.
+ @param[in] data List<Item> *.The list to search in
+
+ @retval
+ 1 found
+ @retval
+ 0 not found.
+*/
+
+static bool
+find_field_in_item_list (Field *field, void *data)
+{
+ List<Item> *fields= (List<Item> *) data;
+ bool part_found= 0;
+ List_iterator<Item> li(*fields);
+ Item *item;
+
+ while ((item= li++))
+ {
+ if (item->real_item()->type() == Item::FIELD_ITEM &&
+ ((Item_field*) (item->real_item()))->field->eq(field))
+ {
+ part_found= 1;
+ break;
+ }
+ }
+ return part_found;
+}
+
+
+/*
+ Fill *col_keys with a union of Field::part_of_sortkey of all fields
+ that belong to 'table' and are equal to 'item_field'.
+*/
+
+void compute_part_of_sort_key_for_equals(JOIN *join, TABLE *table,
+ Item_field *item_field,
+ key_map *col_keys)
+{
+ col_keys->clear_all();
+ col_keys->merge(item_field->field->part_of_sortkey);
+
+ if (!optimizer_flag(join->thd, OPTIMIZER_SWITCH_ORDERBY_EQ_PROP))
+ return;
+
+ Item_equal *item_eq= NULL;
+
+ if (item_field->item_equal)
+ {
+ /*
+ The item_field is from ORDER structure, but it already has an item_equal
+ pointer set (UseMultipleEqualitiesToRemoveTempTable code have set it)
+ */
+ item_eq= item_field->item_equal;
+ }
+ else
+ {
+ /*
+ Walk through join's muliple equalities and find the one that contains
+ item_field.
+ */
+ if (!join->cond_equal)
+ return;
+ table_map needed_tbl_map= item_field->used_tables() | table->map;
+ List_iterator<Item_equal> li(join->cond_equal->current_level);
+ Item_equal *cur_item_eq;
+ while ((cur_item_eq= li++))
+ {
+ if ((cur_item_eq->used_tables() & needed_tbl_map) &&
+ cur_item_eq->contains(item_field->field))
+ {
+ item_eq= cur_item_eq;
+ item_field->item_equal= item_eq; // Save the pointer to our Item_equal.
+ break;
+ }
+ }
+ }
+
+ if (item_eq)
+ {
+ Item_equal_fields_iterator it(*item_eq);
+ Item *item;
+ /* Loop through other members that belong to table table */
+ while ((item= it++))
+ {
+ if (item->type() == Item::FIELD_ITEM &&
+ ((Item_field*)item)->field->table == table)
+ {
+ col_keys->merge(((Item_field*)item)->field->part_of_sortkey);
+ }
+ }
+ }
+}
+
+
+/**
+ Test if we can skip the ORDER BY by using an index.
+
+ If we can use an index, the JOIN_TAB / tab->select struct
+ is changed to use the index.
+
+ The index must cover all fields in <order>, or it will not be considered.
+
+ @param no_changes No changes will be made to the query plan.
+ @param fatal_error OUT A fatal error occurred
+
+ @todo
+ - sergeyp: Results of all index merge selects actually are ordered
+ by clustered PK values.
+
+ @retval
+ 0 We have to use filesort to do the sorting
+ @retval
+ 1 We can use an index.
+*/
+
+static bool
+test_if_skip_sort_order(JOIN_TAB *tab,ORDER *order,ha_rows select_limit,
+ bool no_changes, const key_map *map, bool *fatal_error)
+{
+ int ref_key;
+ uint UNINIT_VAR(ref_key_parts);
+ int order_direction= 0;
+ uint used_key_parts= 0;
+ TABLE *table=tab->table;
+ SQL_SELECT *select=tab->select;
+ key_map usable_keys;
+ QUICK_SELECT_I *save_quick= select ? select->quick : 0;
+ Item *orig_cond= 0;
+ bool orig_cond_saved= false;
+ int best_key= -1;
+ bool changed_key= false;
+ THD *thd= tab->join->thd;
+ Json_writer_object trace_wrapper(thd);
+ Json_writer_array trace_arr(thd, "test_if_skip_sort_order");
+ DBUG_ENTER("test_if_skip_sort_order");
+
+ *fatal_error= false;
+ /* Check that we are always called with first non-const table */
+ DBUG_ASSERT(tab == tab->join->join_tab + tab->join->const_tables);
+
+ /* Sorting a single row can always be skipped */
+ if (tab->type == JT_EQ_REF ||
+ tab->type == JT_CONST ||
+ tab->type == JT_SYSTEM)
+ {
+ Json_writer_object trace_skip(thd);
+ trace_skip.add("skipped", "single row access method");
+ DBUG_RETURN(1);
+ }
+
+ /*
+ Keys disabled by ALTER TABLE ... DISABLE KEYS should have already
+ been taken into account.
+ */
+ usable_keys= *map;
+
+ /* Find indexes that cover all ORDER/GROUP BY fields */
+ for (ORDER *tmp_order=order; tmp_order ; tmp_order=tmp_order->next)
+ {
+ Item *item= (*tmp_order->item)->real_item();
+ if (item->type() != Item::FIELD_ITEM)
+ {
+ usable_keys.clear_all();
+ DBUG_RETURN(0);
+ }
+
+ /*
+ Take multiple-equalities into account. Suppose we have
+ ORDER BY col1, col10
+ and there are
+ multiple-equal(col1, col2, col3),
+ multiple-equal(col10, col11).
+
+ Then,
+ - when item=col1, we find the set of indexes that cover one of {col1,
+ col2, col3}
+ - when item=col10, we find the set of indexes that cover one of {col10,
+ col11}
+
+ And we compute an intersection of these sets to find set of indexes that
+ cover all ORDER BY components.
+ */
+ key_map col_keys;
+ compute_part_of_sort_key_for_equals(tab->join, table, (Item_field*)item,
+ &col_keys);
+ usable_keys.intersect(col_keys);
+ if (usable_keys.is_clear_all())
+ goto use_filesort; // No usable keys
+ }
+
+ ref_key= -1;
+ /* Test if constant range in WHERE */
+ if (tab->ref.key >= 0 && tab->ref.key_parts)
+ {
+ ref_key= tab->ref.key;
+ ref_key_parts= tab->ref.key_parts;
+ /*
+ todo: why does JT_REF_OR_NULL mean filesort? We could find another index
+ that satisfies the ordering. I would just set ref_key=MAX_KEY here...
+ */
+ if (tab->type == JT_REF_OR_NULL || tab->type == JT_FT ||
+ tab->ref.uses_splitting)
+ goto use_filesort;
+ }
+ else if (select && select->quick) // Range found by opt_range
+ {
+ int quick_type= select->quick->get_type();
+ /*
+ assume results are not ordered when index merge is used
+ TODO: sergeyp: Results of all index merge selects actually are ordered
+ by clustered PK values.
+ */
+
+ if (quick_type == QUICK_SELECT_I::QS_TYPE_INDEX_MERGE ||
+ quick_type == QUICK_SELECT_I::QS_TYPE_INDEX_INTERSECT ||
+ quick_type == QUICK_SELECT_I::QS_TYPE_ROR_UNION ||
+ quick_type == QUICK_SELECT_I::QS_TYPE_ROR_INTERSECT)
+ {
+ /*
+ we set ref_key=MAX_KEY instead of -1, because test_if_cheaper ordering
+ assumes that "ref_key==-1" means doing full index scan.
+ (This is not very straightforward and we got into this situation for
+ historical reasons. Should be fixed at some point).
+ */
+ ref_key= MAX_KEY;
+ }
+ else
+ {
+ ref_key= select->quick->index;
+ ref_key_parts= select->quick->used_key_parts;
+ }
+ }
+
+ if (ref_key >= 0 && ref_key != MAX_KEY)
+ {
+ /* Current access method uses index ref_key with ref_key_parts parts */
+ if (!usable_keys.is_set(ref_key))
+ {
+ /* However, ref_key doesn't match the needed ordering */
+ uint new_ref_key;
+
+ /*
+ If using index only read, only consider other possible index only
+ keys
+ */
+ if (table->covering_keys.is_set(ref_key))
+ usable_keys.intersect(table->covering_keys);
+ if (tab->pre_idx_push_select_cond)
+ {
+ orig_cond= tab->set_cond(tab->pre_idx_push_select_cond);
+ orig_cond_saved= true;
+ }
+
+ if ((new_ref_key= test_if_subkey(order, table, ref_key, ref_key_parts,
+ &usable_keys)) < MAX_KEY)
+ {
+ /*
+ Index new_ref_key
+ - produces the required ordering,
+ - also has the same columns as ref_key for #ref_key_parts (this
+ means we will read the same number of rows as with ref_key).
+ */
+
+ /*
+ If new_ref_key allows to construct a quick select which uses more key
+ parts than ref(new_ref_key) would, do that.
+
+ Otherwise, construct a ref access (todo: it's not clear what is the
+ win in using ref access when we could use quick select also?)
+ */
+ if ((table->opt_range_keys.is_set(new_ref_key) &&
+ table->opt_range[new_ref_key].key_parts > ref_key_parts) ||
+ !(tab->ref.key >= 0))
+ {
+ /*
+ The range optimizer constructed QUICK_RANGE for ref_key, and
+ we want to use instead new_ref_key as the index. We can't
+ just change the index of the quick select, because this may
+ result in an inconsistent QUICK_SELECT object. Below we
+ create a new QUICK_SELECT from scratch so that all its
+ parameters are set correctly by the range optimizer.
+ */
+ key_map new_ref_key_map;
+ COND *save_cond;
+ quick_select_return res;
+ new_ref_key_map.clear_all(); // Force the creation of quick select
+ new_ref_key_map.set_bit(new_ref_key); // only for new_ref_key.
+
+ /* Reset quick; This will be restored in 'use_filesort' if needed */
+ select->quick= 0;
+ save_cond= select->cond;
+ if (select->pre_idx_push_select_cond)
+ select->cond= select->pre_idx_push_select_cond;
+ res= select->test_quick_select(tab->join->thd, new_ref_key_map, 0,
+ (tab->join->select_options &
+ OPTION_FOUND_ROWS) ?
+ HA_POS_ERROR :
+ tab->join->unit->
+ lim.get_select_limit(),
+ TRUE, TRUE, FALSE, FALSE);
+ // if we cannot use quick select
+ if (res != SQL_SELECT::OK || !tab->select->quick)
+ {
+ if (res == SQL_SELECT::ERROR)
+ *fatal_error= true;
+ select->cond= save_cond;
+ goto use_filesort;
+ }
+ tab->type= JT_ALL;
+ tab->ref.key= -1;
+ tab->ref.key_parts= 0;
+ tab->use_quick= 1;
+ best_key= new_ref_key;
+ /*
+ We don't restore select->cond as we want to use the
+ original condition as index condition pushdown is not
+ active for the new index.
+ todo: why not perform index condition pushdown for the new index?
+ */
+ }
+ else
+ {
+ /*
+ We'll use ref access method on key new_ref_key. In general case
+ the index search tuple for new_ref_key will be different (e.g.
+ when one index is defined as (part1, part2, ...) and another as
+ (part1, part2(N), ...) and the WHERE clause contains
+ "part1 = const1 AND part2=const2".
+ So we build tab->ref from scratch here.
+ */
+ KEYUSE *keyuse= tab->keyuse;
+ while (keyuse->key != new_ref_key && keyuse->table == tab->table)
+ keyuse++;
+ if (create_ref_for_key(tab->join, tab, keyuse, FALSE,
+ (tab->join->const_table_map |
+ OUTER_REF_TABLE_BIT)))
+ goto use_filesort;
+
+ pick_table_access_method(tab);
+ }
+
+ ref_key= new_ref_key;
+ changed_key= true;
+ }
+ }
+ /* Check if we get the rows in requested sorted order by using the key */
+ if (usable_keys.is_set(ref_key) &&
+ (order_direction= test_if_order_by_key(tab->join, order,table,ref_key,
+ &used_key_parts)))
+ goto check_reverse_order;
+ }
+ {
+ uint UNINIT_VAR(best_key_parts);
+ uint saved_best_key_parts= 0;
+ int best_key_direction= 0;
+ JOIN *join= tab->join;
+ ha_rows table_records= table->stat_records();
+
+ test_if_cheaper_ordering(tab, order, table, usable_keys,
+ ref_key, select_limit,
+ &best_key, &best_key_direction,
+ &select_limit, &best_key_parts,
+ &saved_best_key_parts);
+
+ /*
+ filesort() and join cache are usually faster than reading in
+ index order and not using join cache, except in case that chosen
+ index is clustered key.
+ */
+ if (best_key < 0 ||
+ ((select_limit >= table_records) &&
+ (tab->type == JT_ALL &&
+ tab->join->table_count > tab->join->const_tables + 1) &&
+ !(table->file->index_flags(best_key, 0, 1) & HA_CLUSTERED_INDEX)))
+ goto use_filesort;
+
+ if (select && // psergey: why doesn't this use a quick?
+ table->opt_range_keys.is_set(best_key) && best_key != ref_key)
+ {
+ key_map tmp_map;
+ tmp_map.clear_all(); // Force the creation of quick select
+ tmp_map.set_bit(best_key); // only best_key.
+ select->quick= 0;
+
+ bool cond_saved= false;
+ Item *saved_cond;
+
+ /*
+ Index Condition Pushdown may have removed parts of the condition for
+ this table. Temporarily put them back because we want the whole
+ condition for the range analysis.
+ */
+ if (select->pre_idx_push_select_cond)
+ {
+ saved_cond= select->cond;
+ select->cond= select->pre_idx_push_select_cond;
+ cond_saved= true;
+ }
+
+ quick_select_return res;
+ res = select->test_quick_select(join->thd, tmp_map, 0,
+ join->select_options & OPTION_FOUND_ROWS ?
+ HA_POS_ERROR :
+ join->unit->lim.get_select_limit(),
+ TRUE, FALSE, FALSE, FALSE);
+ if (res == SQL_SELECT::ERROR)
+ {
+ *fatal_error= true;
+ goto use_filesort;
+ }
+
+ if (cond_saved)
+ select->cond= saved_cond;
+ }
+ order_direction= best_key_direction;
+ /*
+ saved_best_key_parts is actual number of used keyparts found by the
+ test_if_order_by_key function. It could differ from keyinfo->user_defined_key_parts,
+ thus we have to restore it in case of desc order as it affects
+ QUICK_SELECT_DESC behaviour.
+ */
+ used_key_parts= (order_direction == -1) ?
+ saved_best_key_parts : best_key_parts;
+ changed_key= true;
+ }
+
+check_reverse_order:
+ DBUG_ASSERT(order_direction != 0);
+
+ if (order_direction == -1) // If ORDER BY ... DESC
+ {
+ int quick_type;
+ if (select && select->quick)
+ {
+ /*
+ Don't reverse the sort order, if it's already done.
+ (In some cases test_if_order_by_key() can be called multiple times
+ */
+ if (select->quick->reverse_sorted())
+ goto skipped_filesort;
+
+ quick_type= select->quick->get_type();
+ if (quick_type == QUICK_SELECT_I::QS_TYPE_INDEX_MERGE ||
+ quick_type == QUICK_SELECT_I::QS_TYPE_INDEX_INTERSECT ||
+ quick_type == QUICK_SELECT_I::QS_TYPE_ROR_INTERSECT ||
+ quick_type == QUICK_SELECT_I::QS_TYPE_ROR_UNION ||
+ quick_type == QUICK_SELECT_I::QS_TYPE_GROUP_MIN_MAX)
+ {
+ tab->limit= 0;
+ goto use_filesort; // Use filesort
+ }
+ }
+ }
+
+ /*
+ Update query plan with access pattern for doing ordered access
+ according to what we have decided above.
+ */
+ if (!no_changes) // We are allowed to update QEP
+ {
+ if (best_key >= 0)
+ {
+ bool quick_created=
+ (select && select->quick && select->quick!=save_quick);
+
+ if (!quick_created)
+ {
+ if (select) // Throw any existing quick select
+ select->quick= 0; // Cleanup either reset to save_quick,
+ // or 'delete save_quick'
+ tab->index= best_key;
+ tab->read_first_record= order_direction > 0 ?
+ join_read_first:join_read_last;
+ tab->type=JT_NEXT; // Read with index_first(), index_next()
+
+ /*
+ Currently usage of rowid filters is not supported in InnoDB
+ if the table is accessed by the primary key
+ */
+ if (tab->rowid_filter &&
+ table->file->is_clustering_key(tab->index))
+ {
+ tab->range_rowid_filter_info= 0;
+ delete tab->rowid_filter;
+ tab->rowid_filter= 0;
+ }
+
+ if (tab->pre_idx_push_select_cond)
+ {
+ tab->set_cond(tab->pre_idx_push_select_cond);
+ /*
+ orig_cond is a part of pre_idx_push_cond,
+ no need to restore it.
+ */
+ orig_cond= 0;
+ orig_cond_saved= false;
+ }
+
+ table->file->ha_index_or_rnd_end();
+ if (tab->join->select_options & SELECT_DESCRIBE)
+ {
+ tab->ref.key= -1;
+ tab->ref.key_parts= 0;
+ if (select_limit < table->stat_records())
+ tab->limit= select_limit;
+ }
+ }
+ else if (tab->type != JT_ALL || tab->select->quick)
+ {
+ /*
+ We're about to use a quick access to the table.
+ We need to change the access method so as the quick access
+ method is actually used.
+ */
+ DBUG_ASSERT(tab->select->quick);
+ tab->type=JT_ALL;
+ tab->use_quick=1;
+ tab->ref.key= -1;
+ tab->ref.key_parts=0; // Don't use ref key.
+ tab->range_rowid_filter_info= 0;
+ if (tab->rowid_filter)
+ {
+ delete tab->rowid_filter;
+ tab->rowid_filter= 0;
+ }
+ tab->read_first_record= join_init_read_record;
+ if (tab->is_using_loose_index_scan())
+ tab->join->tmp_table_param.precomputed_group_by= TRUE;
+
+ /*
+ Restore the original condition as changes done by pushdown
+ condition are not relevant anymore
+ */
+ if (tab->select && tab->select->pre_idx_push_select_cond)
+ {
+ tab->set_cond(tab->select->pre_idx_push_select_cond);
+ tab->table->file->cancel_pushed_idx_cond();
+ }
+ /*
+ TODO: update the number of records in join->best_positions[tablenr]
+ */
+ }
+ } // best_key >= 0
+
+ if (order_direction == -1) // If ORDER BY ... DESC
+ {
+ if (select && select->quick)
+ {
+ /* ORDER BY range_key DESC */
+ QUICK_SELECT_I *tmp= select->quick->make_reverse(used_key_parts);
+ if (!tmp)
+ {
+ tab->limit= 0;
+ goto use_filesort; // Reverse sort failed -> filesort
+ }
+ /*
+ Cancel Pushed Index Condition, as it doesn't work for reverse scans.
+ */
+ if (tab->select && tab->select->pre_idx_push_select_cond)
+ {
+ tab->set_cond(tab->select->pre_idx_push_select_cond);
+ tab->table->file->cancel_pushed_idx_cond();
+ }
+ if (select->quick == save_quick)
+ save_quick= 0; // make_reverse() consumed it
+ select->set_quick(tmp);
+ /* Cancel "Range checked for each record" */
+ if (tab->use_quick == 2)
+ {
+ tab->use_quick= 1;
+ tab->read_first_record= join_init_read_record;
+ }
+ }
+ else if (tab->type != JT_NEXT && tab->type != JT_REF_OR_NULL &&
+ tab->ref.key >= 0 && tab->ref.key_parts <= used_key_parts)
+ {
+ /*
+ SELECT * FROM t1 WHERE a=1 ORDER BY a DESC,b DESC
+
+ Use a traversal function that starts by reading the last row
+ with key part (A) and then traverse the index backwards.
+ */
+ tab->read_first_record= join_read_last_key;
+ tab->read_record.read_record_func= join_read_prev_same;
+ /* Cancel "Range checked for each record" */
+ if (tab->use_quick == 2)
+ {
+ tab->use_quick= 1;
+ tab->read_first_record= join_init_read_record;
+ }
+ /*
+ Cancel Pushed Index Condition, as it doesn't work for reverse scans.
+ */
+ if (tab->select && tab->select->pre_idx_push_select_cond)
+ {
+ tab->set_cond(tab->select->pre_idx_push_select_cond);
+ tab->table->file->cancel_pushed_idx_cond();
+ }
+ }
+ }
+ else if (select && select->quick)
+ {
+ /* Cancel "Range checked for each record" */
+ if (tab->use_quick == 2)
+ {
+ tab->use_quick= 1;
+ tab->read_first_record= join_init_read_record;
+ }
+ select->quick->need_sorted_output();
+ }
+
+ if (tab->type == JT_EQ_REF)
+ tab->read_record.unlock_row= join_read_key_unlock_row;
+ else if (tab->type == JT_CONST)
+ tab->read_record.unlock_row= join_const_unlock_row;
+ else
+ tab->read_record.unlock_row= rr_unlock_row;
+
+ } // QEP has been modified
+
+ /*
+ Cleanup:
+ We may have both a 'select->quick' and 'save_quick' (original)
+ at this point. Delete the one that we wan't use.
+ */
+
+skipped_filesort:
+ // Keep current (ordered) select->quick
+ if (select && save_quick != select->quick)
+ {
+ delete save_quick;
+ save_quick= NULL;
+ }
+ if (orig_cond_saved && !changed_key)
+ tab->set_cond(orig_cond);
+ if (!no_changes && changed_key && table->file->pushed_idx_cond)
+ table->file->cancel_pushed_idx_cond();
+
+ DBUG_RETURN(1);
+
+use_filesort:
+ // Restore original save_quick
+ if (select && select->quick != save_quick)
+ {
+ delete select->quick;
+ select->quick= save_quick;
+ }
+ if (orig_cond_saved)
+ tab->set_cond(orig_cond);
+
+ DBUG_RETURN(0);
+}
+
+
+/*
+ If not selecting by given key, create an index how records should be read
+
+ SYNOPSIS
+ create_sort_index()
+ thd Thread handler
+ join Join with table to sort
+ join_tab What table to sort
+ fsort Filesort object. NULL means "use tab->filesort".
+
+ IMPLEMENTATION
+ - If there is an index that can be used, the first non-const join_tab in
+ 'join' is modified to use this index.
+ - If no index, create with filesort() an index file that can be used to
+ retrieve rows in order (should be done with 'read_record').
+ The sorted data is stored in tab->filesort
+
+ RETURN VALUES
+ 0 ok
+ -1 Some fatal error
+ 1 No records
+*/
+
+int
+create_sort_index(THD *thd, JOIN *join, JOIN_TAB *tab, Filesort *fsort)
+{
+ TABLE *table;
+ SQL_SELECT *select;
+ bool quick_created= FALSE;
+ SORT_INFO *file_sort= 0;
+ DBUG_ENTER("create_sort_index");
+
+ if (fsort == NULL)
+ fsort= tab->filesort;
+
+ table= tab->table;
+ select= fsort->select;
+
+ table->status=0; // May be wrong if quick_select
+
+ if (!tab->preread_init_done && tab->preread_init())
+ goto err;
+
+ // If table has a range, move it to select
+ if (select && tab->ref.key >= 0)
+ {
+ if (!select->quick)
+ {
+ if (tab->quick)
+ {
+ select->quick= tab->quick;
+ tab->quick= NULL;
+ /*
+ We can only use 'Only index' if quick key is same as ref_key
+ and in index_merge 'Only index' cannot be used
+ */
+ if (((uint) tab->ref.key != select->quick->index))
+ table->file->ha_end_keyread();
+ }
+ else
+ {
+ /*
+ We have a ref on a const; Change this to a range that filesort
+ can use.
+ For impossible ranges (like when doing a lookup on NULL on a NOT NULL
+ field, quick will contain an empty record set.
+ */
+ if (!(select->quick= (tab->type == JT_FT ?
+ get_ft_select(thd, table, tab->ref.key) :
+ get_quick_select_for_ref(thd, table, &tab->ref,
+ tab->found_records))))
+ goto err;
+ quick_created= TRUE;
+ }
+ fsort->own_select= true;
+ }
+ else
+ {
+ DBUG_ASSERT(tab->type == JT_REF || tab->type == JT_EQ_REF);
+ // Update ref value
+ if (unlikely(cp_buffer_from_ref(thd, table, &tab->ref) &&
+ thd->is_error()))
+ goto err; // out of memory
+ }
+ }
+
+
+ /* Fill schema tables with data before filesort if it's necessary */
+ if ((join->select_lex->options & OPTION_SCHEMA_TABLE) &&
+ unlikely(get_schema_tables_result(join, PROCESSED_BY_CREATE_SORT_INDEX)))
+ goto err;
+
+ if (table->s->tmp_table)
+ table->file->info(HA_STATUS_VARIABLE); // Get record count
+ fsort->accepted_rows= &join->accepted_rows; // For ROWNUM
+ file_sort= filesort(thd, table, fsort, fsort->tracker, join, tab->table->map);
+ DBUG_ASSERT(tab->filesort_result == 0);
+ tab->filesort_result= file_sort;
+ tab->records= 0;
+ if (file_sort)
+ {
+ tab->records= join->select_options & OPTION_FOUND_ROWS ?
+ file_sort->found_rows : file_sort->return_rows;
+ tab->join->join_examined_rows+= file_sort->examined_rows;
+ }
+
+ if (quick_created)
+ {
+ /* This will delete the quick select. */
+ select->cleanup();
+ }
+
+ table->file->ha_end_keyread();
+ if (tab->type == JT_FT)
+ table->file->ha_ft_end();
+ else
+ table->file->ha_index_or_rnd_end();
+
+ DBUG_RETURN(file_sort == 0);
+err:
+ DBUG_RETURN(-1);
+}
+
+
+/**
+ Compare fields from table->record[0] and table->record[1],
+ possibly skipping few first fields.
+
+ @param table
+ @param ptr field to start the comparison from,
+ somewhere in the table->field[] array
+
+ @retval 1 different
+ @retval 0 identical
+*/
+static bool compare_record(TABLE *table, Field **ptr)
+{
+ for (; *ptr ; ptr++)
+ {
+ Field *f= *ptr;
+ if (f->is_null() != f->is_null(table->s->rec_buff_length) ||
+ (!f->is_null() && f->cmp_offset(table->s->rec_buff_length)))
+ return 1;
+ }
+ return 0;
+}
+
+static bool copy_blobs(Field **ptr)
+{
+ for (; *ptr ; ptr++)
+ {
+ if ((*ptr)->flags & BLOB_FLAG)
+ if (((Field_blob *) (*ptr))->copy())
+ return 1; // Error
+ }
+ return 0;
+}
+
+static void free_blobs(Field **ptr)
+{
+ for (; *ptr ; ptr++)
+ {
+ if ((*ptr)->flags & BLOB_FLAG)
+ ((Field_blob *) (*ptr))->free();
+ }
+}
+
+
+/*
+ @brief
+ Remove duplicates from a temporary table.
+
+ @detail
+ Remove duplicate rows from a temporary table. This is used for e.g. queries
+ like
+
+ select distinct count(*) as CNT from tbl group by col
+
+ Here, we get a group table with count(*) values. It is not possible to
+ prevent duplicates from appearing in the table (as we don't know the values
+ before we've done the grouping). Because of that, we have this function to
+ scan the temptable (maybe, multiple times) and remove the duplicate rows
+
+ Rows that do not satisfy 'having' condition are also removed.
+*/
+
+bool
+JOIN_TAB::remove_duplicates()
+
+{
+ bool error;
+ ulong keylength= 0, sort_field_keylength= 0;
+ uint field_count, item_count;
+ List<Item> *fields= (this-1)->fields;
+ Item *item;
+ THD *thd= join->thd;
+ SORT_FIELD *sortorder, *sorder;
+ DBUG_ENTER("remove_duplicates");
+
+ DBUG_ASSERT(join->aggr_tables > 0 && table->s->tmp_table != NO_TMP_TABLE);
+ THD_STAGE_INFO(join->thd, stage_removing_duplicates);
+
+ if (!(sortorder= (SORT_FIELD*) my_malloc(PSI_INSTRUMENT_ME,
+ (fields->elements+1) *
+ sizeof(SORT_FIELD),
+ MYF(MY_WME | MY_ZEROFILL))))
+ DBUG_RETURN(TRUE);
+
+ /* Calculate how many saved fields there is in list */
+ field_count= item_count= 0;
+
+ List_iterator<Item> it(*fields);
+ for (sorder= sortorder ; (item=it++) ;)
+ {
+ if (!item->const_item())
+ {
+ if (item->get_tmp_table_field())
+ {
+ /* Field is stored in temporary table, skipp */
+ field_count++;
+ }
+ else
+ {
+ /* Item is not stored in temporary table, remember it */
+ sorder->item= item;
+ sorder->type= sorder->item->type_handler()->is_packable() ?
+ SORT_FIELD_ATTR::VARIABLE_SIZE :
+ SORT_FIELD_ATTR::FIXED_SIZE;
+ /* Calculate sorder->length */
+ item->type_handler()->sort_length(thd, item, sorder);
+ sorder++;
+ item_count++;
+ }
+ }
+ }
+ sorder->item= 0; // End marker
+
+ if ((field_count + item_count == 0) && ! having &&
+ !(join->select_options & OPTION_FOUND_ROWS))
+ {
+ // only const items with no OPTION_FOUND_ROWS
+ join->unit->lim.send_first_row(); // Only send first row
+ my_free(sortorder);
+ DBUG_RETURN(false);
+ }
+
+ /*
+ The table contains first fields that will be in the output, then
+ temporary results pointed to by the fields list.
+ Example: SELECT DISTINCT sum(a), sum(d) > 2 FROM ...
+ In this case the temporary table contains sum(a), sum(d).
+ */
+
+ Field **first_field=table->field+table->s->fields - field_count;
+ for (Field **ptr=first_field; *ptr; ptr++)
+ keylength+= (*ptr)->sort_length() + (*ptr)->maybe_null();
+ for (SORT_FIELD *ptr= sortorder ; ptr->item ; ptr++)
+ sort_field_keylength+= ptr->length + (ptr->item->maybe_null() ? 1 : 0);
+
+ /*
+ Disable LIMIT ROWS EXAMINED in order to avoid interrupting prematurely
+ duplicate removal, and produce a possibly incomplete query result.
+ */
+ thd->lex->limit_rows_examined_cnt= ULONGLONG_MAX;
+ if (thd->killed == ABORT_QUERY)
+ thd->reset_killed();
+
+ table->file->info(HA_STATUS_VARIABLE);
+ table->reginfo.lock_type=TL_WRITE;
+
+ if (table->s->db_type() == heap_hton ||
+ (!table->s->blob_fields &&
+ ((ALIGN_SIZE(keylength) + HASH_OVERHEAD) * table->file->stats.records <
+ thd->variables.sortbuff_size)))
+ error= remove_dup_with_hash_index(join->thd, table, field_count,
+ first_field, sortorder,
+ keylength + sort_field_keylength, having);
+ else
+ error=remove_dup_with_compare(join->thd, table, first_field, sortorder,
+ sort_field_keylength, having);
+
+ if (join->select_lex != join->select_lex->master_unit()->fake_select_lex)
+ thd->lex->set_limit_rows_examined();
+ free_blobs(first_field);
+ my_free(sortorder);
+ DBUG_RETURN(error);
+}
+
+
+/*
+ Create a sort/compare key from items
+
+ Key is of fixed length and binary comparable
+*/
+
+static uchar *make_sort_key(SORT_FIELD *sortorder, uchar *key_buffer,
+ String *tmp_value)
+{
+ for (SORT_FIELD *ptr= sortorder ; ptr->item ; ptr++)
+ {
+ ptr->item->type_handler()->make_sort_key_part(key_buffer,
+ ptr->item,
+ ptr, tmp_value);
+ key_buffer+= (ptr->item->maybe_null() ? 1 : 0) + ptr->length;
+ }
+ return key_buffer;
+}
+
+
+/*
+ Remove duplicates by comparing all rows with all other rows
+
+ @param thd THD
+ @param table Temporary table
+ @param first_field Pointer to fields in temporary table that are part of
+ distinct, ends with null pointer
+ @param sortorder An array of Items part of distsinct. Terminated with an
+ element N with sortorder[N]->item=NULL.
+ @param keylength Length of key produced by sortorder
+ @param having Having expression (NULL if no having)
+*/
+
+static int remove_dup_with_compare(THD *thd, TABLE *table, Field **first_field,
+ SORT_FIELD *sortorder, ulong keylength,
+ Item *having)
+{
+ handler *file=table->file;
+ uchar *record=table->record[0], *key_buffer, *key_buffer2;
+ char *tmp_buffer;
+ int error;
+ String tmp_value;
+ DBUG_ENTER("remove_dup_with_compare");
+
+ if (unlikely(!my_multi_malloc(PSI_INSTRUMENT_ME,
+ MYF(MY_WME),
+ &key_buffer, keylength,
+ &key_buffer2, keylength,
+ &tmp_buffer, keylength+1,
+ NullS)))
+ DBUG_RETURN(1);
+ tmp_value.set(tmp_buffer, keylength, &my_charset_bin);
+
+ if (unlikely(file->ha_rnd_init_with_error(1)))
+ DBUG_RETURN(1);
+
+ error= file->ha_rnd_next(record);
+ for (;;)
+ {
+ if (unlikely(thd->check_killed()))
+ {
+ error= 1;
+ goto end;
+ }
+ if (unlikely(error))
+ {
+ if (error == HA_ERR_END_OF_FILE)
+ break;
+ goto err;
+ }
+ if (having && !having->val_int())
+ {
+ if (unlikely((error= file->ha_delete_row(record))))
+ goto err;
+ error= file->ha_rnd_next(record);
+ continue;
+ }
+ if (unlikely(copy_blobs(first_field)))
+ {
+ my_message(ER_OUTOFMEMORY, ER_THD(thd,ER_OUTOFMEMORY),
+ MYF(ME_FATAL));
+ error= 1;
+ goto end;
+ }
+ make_sort_key(sortorder, key_buffer, &tmp_value);
+ store_record(table,record[1]);
+
+ /* Read through rest of file and mark duplicated rows deleted */
+ bool found=0;
+ for (;;)
+ {
+ if (unlikely((error= file->ha_rnd_next(record))))
+ {
+ if (error == HA_ERR_END_OF_FILE)
+ break;
+ goto err;
+ }
+ make_sort_key(sortorder, key_buffer2, &tmp_value);
+ if (compare_record(table, first_field) == 0 &&
+ (!keylength ||
+ memcmp(key_buffer, key_buffer2, keylength) == 0))
+ {
+ if (unlikely((error= file->ha_delete_row(record))))
+ goto err;
+ }
+ else if (!found)
+ {
+ found=1;
+ if (unlikely((error= file->remember_rnd_pos())))
+ goto err;
+ }
+ }
+ if (!found)
+ break; // End of file
+ /* Restart search on saved row */
+ if (unlikely((error= file->restart_rnd_next(record))))
+ goto err;
+ }
+
+ error= 0;
+end:
+ my_free(key_buffer);
+ file->extra(HA_EXTRA_NO_CACHE);
+ (void) file->ha_rnd_end();
+ DBUG_RETURN(error);
+
+err:
+ DBUG_ASSERT(error);
+ file->print_error(error,MYF(0));
+ goto end;
+}
+
+
+/**
+ Generate a hash index for each row to quickly find duplicate rows.
+
+ @param thd THD
+ @param table Temporary table
+ @param field_count Number of fields part of distinct
+ @param first_field Pointer to fields in temporary table that are part of
+ distinct, ends with null pointer
+ @param sortorder An array of Items part of distsinct. Terminated with an
+ element N with sortorder[N]->item=NULL.
+ @param keylength Length of hash key
+ @param having Having expression (NULL if no having)
+
+ @note
+ Note that this will not work on tables with blobs!
+*/
+
+static int remove_dup_with_hash_index(THD *thd, TABLE *table,
+ uint field_count,
+ Field **first_field,
+ SORT_FIELD *sortorder,
+ ulong key_length,
+ Item *having)
+{
+ uchar *key_buffer, *key_pos, *record=table->record[0];
+ char *tmp_buffer;
+ int error;
+ handler *file= table->file;
+ ulong extra_length= ALIGN_SIZE(key_length)-key_length;
+ uint *field_lengths, *field_length;
+ HASH hash;
+ String tmp_value;
+ DBUG_ENTER("remove_dup_with_hash_index");
+
+ if (!my_multi_malloc(key_memory_hash_index_key_buffer, MYF(MY_WME),
+ &key_buffer,
+ (uint) ((key_length + extra_length) *
+ (long) file->stats.records),
+ &field_lengths,
+ (uint) (field_count*sizeof(*field_lengths)),
+ &tmp_buffer, key_length+1,
+ NullS))
+ DBUG_RETURN(1);
+
+ tmp_value.set(tmp_buffer, key_length, &my_charset_bin);
+ field_length= field_lengths;
+ for (Field **ptr= first_field ; *ptr ; ptr++)
+ (*field_length++)= (*ptr)->sort_length();
+
+ if (my_hash_init(key_memory_hash_index_key_buffer, &hash, &my_charset_bin,
+ (uint) file->stats.records, 0, key_length,
+ (my_hash_get_key) 0, 0, 0))
+ {
+ my_free(key_buffer);
+ DBUG_RETURN(1);
+ }
+
+ if (unlikely((error= file->ha_rnd_init(1))))
+ goto err;
+
+ key_pos= key_buffer;
+ for (;;)
+ {
+ uchar *org_key_pos;
+ if (unlikely(thd->check_killed()))
+ {
+ error=0;
+ goto err;
+ }
+ if (unlikely((error= file->ha_rnd_next(record))))
+ {
+ if (error == HA_ERR_END_OF_FILE)
+ break;
+ goto err;
+ }
+ if (having && !having->val_int())
+ {
+ if (unlikely((error= file->ha_delete_row(record))))
+ goto err;
+ continue;
+ }
+
+ /* copy fields to key buffer */
+ org_key_pos= key_pos;
+ field_length=field_lengths;
+ for (Field **ptr= first_field ; *ptr ; ptr++)
+ {
+ (*ptr)->make_sort_key_part(key_pos, *field_length);
+ key_pos+= (*ptr)->maybe_null() + *field_length++;
+ }
+ /* Copy result fields not stored in table to key buffer */
+ key_pos= make_sort_key(sortorder, key_pos, &tmp_value);
+
+ /* Check if it exists before */
+ if (my_hash_search(&hash, org_key_pos, key_length))
+ {
+ /* Duplicated found ; Remove the row */
+ if (unlikely((error= file->ha_delete_row(record))))
+ goto err;
+ }
+ else
+ {
+ if (my_hash_insert(&hash, org_key_pos))
+ goto err;
+ }
+ key_pos+=extra_length;
+ }
+ my_free(key_buffer);
+ my_hash_free(&hash);
+ file->extra(HA_EXTRA_NO_CACHE);
+ (void) file->ha_rnd_end();
+ DBUG_RETURN(0);
+
+err:
+ my_free(key_buffer);
+ my_hash_free(&hash);
+ file->extra(HA_EXTRA_NO_CACHE);
+ (void) file->ha_rnd_end();
+ if (unlikely(error))
+ file->print_error(error,MYF(0));
+ DBUG_RETURN(1);
+}
+
+
+/*
+ eq_ref: Create the lookup key and check if it is the same as saved key
+
+ SYNOPSIS
+ cmp_buffer_with_ref()
+ tab Join tab of the accessed table
+ table The table to read. This is usually tab->table, except for
+ semi-join when we might need to make a lookup in a temptable
+ instead.
+ tab_ref The structure with methods to collect index lookup tuple.
+ This is usually table->ref, except for the case of when we're
+ doing lookup into semi-join materialization table.
+
+ DESCRIPTION
+ Used by eq_ref access method: create the index lookup key and check if
+ we've used this key at previous lookup (If yes, we don't need to repeat
+ the lookup - the record has been already fetched)
+
+ RETURN
+ TRUE No cached record for the key, or failed to create the key (due to
+ out-of-domain error)
+ FALSE The created key is the same as the previous one (and the record
+ is already in table->record)
+*/
+
+static bool
+cmp_buffer_with_ref(THD *thd, TABLE *table, TABLE_REF *tab_ref)
+{
+ bool no_prev_key;
+ if (!tab_ref->disable_cache)
+ {
+ if (!(no_prev_key= tab_ref->key_err))
+ {
+ /* Previous access found a row. Copy its key */
+ memcpy(tab_ref->key_buff2, tab_ref->key_buff, tab_ref->key_length);
+ }
+ }
+ else
+ no_prev_key= TRUE;
+ if ((tab_ref->key_err= cp_buffer_from_ref(thd, table, tab_ref)) ||
+ no_prev_key)
+ return 1;
+ return memcmp(tab_ref->key_buff2, tab_ref->key_buff, tab_ref->key_length)
+ != 0;
+}
+
+
+bool
+cp_buffer_from_ref(THD *thd, TABLE *table, TABLE_REF *ref)
+{
+ enum_check_fields org_count_cuted_fields= thd->count_cuted_fields;
+ MY_BITMAP *old_map= dbug_tmp_use_all_columns(table, &table->write_set);
+ bool result= 0;
+ key_part_map map= 1;
+
+ thd->count_cuted_fields= CHECK_FIELD_IGNORE;
+ for (store_key **copy=ref->key_copy ; *copy ; copy++, map <<= 1)
+ {
+ while (map & ref->const_ref_part_map) // skip const ref parts
+ map <<= 1; // no store_key objects for them
+ if ((*copy)->copy(thd) & 1 ||
+ ((ref->null_rejecting & map) && (*copy)->null_key))
+ {
+ result= 1;
+ break;
+ }
+ }
+ thd->count_cuted_fields= org_count_cuted_fields;
+ dbug_tmp_restore_column_map(&table->write_set, old_map);
+ return result;
+}
+
+
+/*****************************************************************************
+ Group and order functions
+*****************************************************************************/
+
+/**
+ Resolve an ORDER BY or GROUP BY column reference.
+
+ Given a column reference (represented by 'order') from a GROUP BY or ORDER
+ BY clause, find the actual column it represents. If the column being
+ resolved is from the GROUP BY clause, the procedure searches the SELECT
+ list 'fields' and the columns in the FROM list 'tables'. If 'order' is from
+ the ORDER BY clause, only the SELECT list is being searched.
+
+ If 'order' is resolved to an Item, then order->item is set to the found
+ Item. If there is no item for the found column (that is, it was resolved
+ into a table field), order->item is 'fixed' and is added to all_fields and
+ ref_pointer_array.
+
+ ref_pointer_array and all_fields are updated.
+
+ @param[in] thd Pointer to current thread structure
+ @param[in,out] ref_pointer_array All select, group and order by fields
+ @param[in] tables List of tables to search in (usually
+ FROM clause)
+ @param[in] order Column reference to be resolved
+ @param[in] fields List of fields to search in (usually
+ SELECT list)
+ @param[in,out] all_fields All select, group and order by fields
+ @param[in] is_group_field True if order is a GROUP field, false if
+ ORDER by field
+ @param[in] add_to_all_fields If the item is to be added to all_fields and
+ ref_pointer_array, this flag can be set to
+ false to stop the automatic insertion.
+ @param[in] from_window_spec If true then order is from a window spec
+
+ @retval
+ FALSE if OK
+ @retval
+ TRUE if error occurred
+*/
+
+static bool
+find_order_in_list(THD *thd, Ref_ptr_array ref_pointer_array,
+ TABLE_LIST *tables,
+ ORDER *order, List<Item> &fields, List<Item> &all_fields,
+ bool is_group_field, bool add_to_all_fields,
+ bool from_window_spec)
+{
+ Item *order_item= *order->item; /* The item from the GROUP/ORDER caluse. */
+ Item::Type order_item_type;
+ Item **select_item; /* The corresponding item from the SELECT clause. */
+ Field *from_field; /* The corresponding field from the FROM clause. */
+ uint counter;
+ enum_resolution_type resolution;
+
+ if (order_item->is_order_clause_position() && !from_window_spec)
+ { /* Order by position */
+ uint count;
+ if (order->counter_used)
+ count= order->counter; // counter was once resolved
+ else
+ count= (uint) order_item->val_int();
+ if (!count || count > fields.elements)
+ {
+ my_error(ER_BAD_FIELD_ERROR, MYF(0),
+ order_item->full_name(), thd->where);
+ return TRUE;
+ }
+ thd->change_item_tree((Item **)&order->item, (Item *)&ref_pointer_array[count - 1]);
+ order->in_field_list= 1;
+ order->counter= count;
+ order->counter_used= 1;
+ return FALSE;
+ }
+ /* Lookup the current GROUP/ORDER field in the SELECT clause. */
+ select_item= find_item_in_list(order_item, fields, &counter,
+ REPORT_EXCEPT_NOT_FOUND, &resolution);
+ if (!select_item)
+ return TRUE; /* The item is not unique, or some other error occurred. */
+
+
+ /* Check whether the resolved field is not ambiguos. */
+ if (select_item != not_found_item)
+ {
+ Item *view_ref= NULL;
+ /*
+ If we have found field not by its alias in select list but by its
+ original field name, we should additionally check if we have conflict
+ for this name (in case if we would perform lookup in all tables).
+ */
+ if (resolution == RESOLVED_BEHIND_ALIAS &&
+ order_item->fix_fields_if_needed_for_order_by(thd, order->item))
+ return TRUE;
+
+ /* Lookup the current GROUP field in the FROM clause. */
+ order_item_type= order_item->type();
+ from_field= (Field*) not_found_field;
+ if ((is_group_field && order_item_type == Item::FIELD_ITEM) ||
+ order_item_type == Item::REF_ITEM)
+ {
+ from_field= find_field_in_tables(thd, (Item_ident*) order_item, tables,
+ NULL, ignored_tables_list_t(NULL),
+ &view_ref, IGNORE_ERRORS, FALSE, FALSE);
+ if (!from_field)
+ from_field= (Field*) not_found_field;
+ }
+
+ if (from_field == not_found_field ||
+ (from_field != view_ref_found ?
+ /* it is field of base table => check that fields are same */
+ ((*select_item)->type() == Item::FIELD_ITEM &&
+ ((Item_field*) (*select_item))->field->eq(from_field)) :
+ /*
+ in is field of view table => check that references on translation
+ table are same
+ */
+ ((*select_item)->type() == Item::REF_ITEM &&
+ view_ref->type() == Item::REF_ITEM &&
+ ((Item_ref *) (*select_item))->ref ==
+ ((Item_ref *) view_ref)->ref)))
+ {
+ /*
+ If there is no such field in the FROM clause, or it is the same field
+ as the one found in the SELECT clause, then use the Item created for
+ the SELECT field. As a result if there was a derived field that
+ 'shadowed' a table field with the same name, the table field will be
+ chosen over the derived field.
+ */
+ order->item= &ref_pointer_array[counter];
+ order->in_field_list=1;
+ return FALSE;
+ }
+ else
+ {
+ /*
+ There is a field with the same name in the FROM clause. This
+ is the field that will be chosen. In this case we issue a
+ warning so the user knows that the field from the FROM clause
+ overshadows the column reference from the SELECT list.
+ */
+ push_warning_printf(thd, Sql_condition::WARN_LEVEL_WARN,
+ ER_NON_UNIQ_ERROR,
+ ER_THD(thd, ER_NON_UNIQ_ERROR),
+ ((Item_ident*) order_item)->field_name.str,
+ thd->where);
+ }
+ }
+ else if (from_window_spec)
+ {
+ Item **found_item= find_item_in_list(order_item, all_fields, &counter,
+ REPORT_EXCEPT_NOT_FOUND, &resolution,
+ all_fields.elements - fields.elements);
+ if (found_item != not_found_item)
+ {
+ order->item= &ref_pointer_array[all_fields.elements-1-counter];
+ order->in_field_list= 0;
+ return FALSE;
+ }
+ }
+
+ order->in_field_list=0;
+ /*
+ The call to order_item->fix_fields() means that here we resolve
+ 'order_item' to a column from a table in the list 'tables', or to
+ a column in some outer query. Exactly because of the second case
+ we come to this point even if (select_item == not_found_item),
+ inspite of that fix_fields() calls find_item_in_list() one more
+ time.
+
+ We check order_item->fixed() because Item_func_group_concat can put
+ arguments for which fix_fields already was called.
+ */
+ if (order_item->fix_fields_if_needed_for_order_by(thd, order->item) ||
+ thd->is_error())
+ return TRUE; /* Wrong field. */
+ order_item= *order->item; // Item can change during fix_fields()
+
+ if (!add_to_all_fields)
+ return FALSE;
+
+ uint el= all_fields.elements;
+ /* Add new field to field list. */
+ all_fields.push_front(order_item, thd->mem_root);
+ ref_pointer_array[el]= order_item;
+ /*
+ If the order_item is a SUM_FUNC_ITEM, when fix_fields is called
+ ref_by is set to order->item which is the address of order_item.
+ But this needs to be address of order_item in the all_fields list.
+ As a result, when it gets replaced with Item_aggregate_ref
+ object in Item::split_sum_func2, we will be able to retrieve the
+ newly created object.
+ */
+ if (order_item->type() == Item::SUM_FUNC_ITEM)
+ ((Item_sum *)order_item)->ref_by= all_fields.head_ref();
+
+ order->item= &ref_pointer_array[el];
+ return FALSE;
+}
+
+
+/**
+ Change order to point at item in select list.
+
+ If item isn't a number and doesn't exits in the select list, add it the
+ the field list.
+*/
+
+int setup_order(THD *thd, Ref_ptr_array ref_pointer_array, TABLE_LIST *tables,
+ List<Item> &fields, List<Item> &all_fields, ORDER *order,
+ bool from_window_spec)
+{
+ SELECT_LEX *select = thd->lex->current_select;
+ enum_parsing_place context_analysis_place=
+ thd->lex->current_select->context_analysis_place;
+ thd->where="order clause";
+ const bool for_union= select->master_unit()->is_unit_op() &&
+ select == select->master_unit()->fake_select_lex;
+ for (uint number = 1; order; order=order->next, number++)
+ {
+ if (find_order_in_list(thd, ref_pointer_array, tables, order, fields,
+ all_fields, false, true, from_window_spec))
+ return 1;
+ Item * const item= *order->item;
+ if (item->with_window_func() && context_analysis_place != IN_ORDER_BY)
+ {
+ my_error(ER_WINDOW_FUNCTION_IN_WINDOW_SPEC, MYF(0));
+ return 1;
+ }
+
+ /*
+ UNION queries cannot be used with an aggregate function in
+ an ORDER BY clause
+ */
+
+ if (for_union && (item->with_sum_func() || item->with_window_func()))
+ {
+ my_error(ER_AGGREGATE_ORDER_FOR_UNION, MYF(0), number);
+ return 1;
+ }
+
+ if ((from_window_spec && item->with_sum_func() &&
+ item->type() != Item::SUM_FUNC_ITEM) || item->with_window_func())
+ {
+ item->split_sum_func(thd, ref_pointer_array,
+ all_fields, SPLIT_SUM_SELECT);
+ }
+ }
+ return 0;
+}
+
+
+/**
+ Intitialize the GROUP BY list.
+
+ @param thd Thread handler
+ @param ref_pointer_array We store references to all fields that was
+ not in 'fields' here.
+ @param fields All fields in the select part. Any item in
+ 'order' that is part of these list is replaced
+ by a pointer to this fields.
+ @param all_fields Total list of all unique fields used by the
+ select. All items in 'order' that was not part
+ of fields will be added first to this list.
+ @param order The fields we should do GROUP/PARTITION BY on
+ @param hidden_group_fields Pointer to flag that is set to 1 if we added
+ any fields to all_fields.
+ @param from_window_spec If true then list is from a window spec
+
+ @todo
+ change ER_WRONG_FIELD_WITH_GROUP to more detailed
+ ER_NON_GROUPING_FIELD_USED
+
+ @retval
+ 0 ok
+ @retval
+ 1 error (probably out of memory)
+*/
+
+int
+setup_group(THD *thd, Ref_ptr_array ref_pointer_array, TABLE_LIST *tables,
+ List<Item> &fields, List<Item> &all_fields, ORDER *order,
+ bool *hidden_group_fields, bool from_window_spec)
+{
+ enum_parsing_place context_analysis_place=
+ thd->lex->current_select->context_analysis_place;
+ *hidden_group_fields=0;
+ ORDER *ord;
+
+ if (!order)
+ return 0; /* Everything is ok */
+
+ uint org_fields=all_fields.elements;
+
+ thd->where="group statement";
+ for (ord= order; ord; ord= ord->next)
+ {
+ if (find_order_in_list(thd, ref_pointer_array, tables, ord, fields,
+ all_fields, true, true, from_window_spec))
+ return 1;
+ (*ord->item)->marker= MARKER_UNDEF_POS; /* Mark found */
+ if ((*ord->item)->with_sum_func() && context_analysis_place == IN_GROUP_BY)
+ {
+ my_error(ER_WRONG_GROUP_FIELD, MYF(0), (*ord->item)->full_name());
+ return 1;
+ }
+ if ((*ord->item)->with_window_func())
+ {
+ if (context_analysis_place == IN_GROUP_BY)
+ my_error(ER_WRONG_PLACEMENT_OF_WINDOW_FUNCTION, MYF(0));
+ else
+ my_error(ER_WINDOW_FUNCTION_IN_WINDOW_SPEC, MYF(0));
+ return 1;
+ }
+ if (from_window_spec && (*ord->item)->with_sum_func() &&
+ (*ord->item)->type() != Item::SUM_FUNC_ITEM)
+ (*ord->item)->split_sum_func(thd, ref_pointer_array,
+ all_fields, SPLIT_SUM_SELECT);
+ }
+ if (thd->variables.sql_mode & MODE_ONLY_FULL_GROUP_BY &&
+ context_analysis_place == IN_GROUP_BY)
+ {
+ /*
+ Don't allow one to use fields that is not used in GROUP BY
+ For each select a list of field references that aren't under an
+ aggregate function is created. Each field in this list keeps the
+ position of the select list expression which it belongs to.
+
+ First we check an expression from the select list against the GROUP BY
+ list. If it's found there then it's ok. It's also ok if this expression
+ is a constant or an aggregate function. Otherwise we scan the list
+ of non-aggregated fields and if we'll find at least one field reference
+ that belongs to this expression and doesn't occur in the GROUP BY list
+ we throw an error. If there are no fields in the created list for a
+ select list expression this means that all fields in it are used under
+ aggregate functions.
+
+ Note that for items in the select list (fields), Item_field->markers
+ contains the position of the field in the select list.
+ */
+ Item *item;
+ Item_field *field;
+ int cur_pos_in_select_list= 0;
+ List_iterator<Item> li(fields);
+ List_iterator<Item_field> naf_it(thd->lex->current_select->join->non_agg_fields);
+
+ field= naf_it++;
+ while (field && (item=li++))
+ {
+ if (item->type() != Item::SUM_FUNC_ITEM &&
+ item->marker != MARKER_UNDEF_POS &&
+ !item->const_item() &&
+ !(item->real_item()->type() == Item::FIELD_ITEM &&
+ item->used_tables() & OUTER_REF_TABLE_BIT))
+ {
+ while (field)
+ {
+ /* Skip fields from previous expressions. */
+ if (field->marker < cur_pos_in_select_list)
+ goto next_field;
+ /* Found a field from the next expression. */
+ if (field->marker > cur_pos_in_select_list)
+ break;
+ /*
+ Check whether the field occur in the GROUP BY list.
+ Throw the error later if the field isn't found.
+ */
+ for (ord= order; ord; ord= ord->next)
+ if ((*ord->item)->eq((Item*)field, 0))
+ goto next_field;
+ /*
+ TODO: change ER_WRONG_FIELD_WITH_GROUP to more detailed
+ ER_NON_GROUPING_FIELD_USED
+ */
+ my_error(ER_WRONG_FIELD_WITH_GROUP, MYF(0), field->full_name());
+ return 1;
+next_field:
+ field= naf_it++;
+ }
+ }
+ cur_pos_in_select_list++;
+ }
+ }
+ if (org_fields != all_fields.elements)
+ *hidden_group_fields=1; // group fields is not used
+ return 0;
+}
+
+/**
+ Add fields with aren't used at start of field list.
+
+ @return
+ FALSE if ok
+*/
+
+static bool
+setup_new_fields(THD *thd, List<Item> &fields,
+ List<Item> &all_fields, ORDER *new_field)
+{
+ Item **item;
+ uint counter;
+ enum_resolution_type not_used;
+ DBUG_ENTER("setup_new_fields");
+
+ thd->column_usage= MARK_COLUMNS_READ; // Not really needed, but...
+ for (; new_field ; new_field= new_field->next)
+ {
+ if ((item= find_item_in_list(*new_field->item, fields, &counter,
+ IGNORE_ERRORS, &not_used)))
+ new_field->item=item; /* Change to shared Item */
+ else
+ {
+ thd->where="procedure list";
+ if ((*new_field->item)->fix_fields(thd, new_field->item))
+ DBUG_RETURN(1); /* purecov: inspected */
+ all_fields.push_front(*new_field->item, thd->mem_root);
+ new_field->item=all_fields.head_ref();
+ }
+ }
+ DBUG_RETURN(0);
+}
+
+/**
+ Create a group by that consist of all non const fields.
+
+ Try to use the fields in the order given by 'order' to allow one to
+ optimize away 'order by'.
+
+ @retval
+ 0 OOM error if thd->is_fatal_error is set. Otherwise group was eliminated
+ # Pointer to new group
+*/
+
+ORDER *
+create_distinct_group(THD *thd, Ref_ptr_array ref_pointer_array,
+ ORDER *order_list, List<Item> &fields,
+ List<Item> &all_fields,
+ bool *all_order_by_fields_used)
+{
+ List_iterator<Item> li(fields);
+ Item *item;
+ Ref_ptr_array orig_ref_pointer_array= ref_pointer_array;
+ ORDER *order,*group,**prev;
+ uint idx= 0;
+
+ *all_order_by_fields_used= 1;
+ while ((item=li++))
+ item->marker= MARKER_UNUSED; /* Marker that field is not used */
+
+ prev= &group; group=0;
+ for (order=order_list ; order; order=order->next)
+ {
+ if (order->in_field_list)
+ {
+ ORDER *ord=(ORDER*) thd->memdup((char*) order,sizeof(ORDER));
+ if (!ord)
+ return 0;
+ *prev=ord;
+ prev= &ord->next;
+ (*ord->item)->marker= MARKER_FOUND_IN_ORDER;
+ }
+ else
+ *all_order_by_fields_used= 0;
+ }
+
+ li.rewind();
+ while ((item=li++))
+ {
+ if (!item->const_item() && !item->with_sum_func() &&
+ item->marker == MARKER_UNUSED)
+ {
+ /*
+ Don't put duplicate columns from the SELECT list into the
+ GROUP BY list.
+ */
+ ORDER *ord_iter;
+ for (ord_iter= group; ord_iter; ord_iter= ord_iter->next)
+ if ((*ord_iter->item)->eq(item, 1))
+ goto next_item;
+
+ ORDER *ord=(ORDER*) thd->calloc(sizeof(ORDER));
+ if (!ord)
+ return 0;
+
+ if (item->type() == Item::FIELD_ITEM &&
+ item->field_type() == MYSQL_TYPE_BIT)
+ {
+ /*
+ Because HEAP tables can't index BIT fields we need to use an
+ additional hidden field for grouping because later it will be
+ converted to a LONG field. Original field will remain of the
+ BIT type and will be returned [el]client.
+ */
+ Item_field *new_item= new (thd->mem_root) Item_field(thd, (Item_field*)item);
+ if (!new_item)
+ return 0;
+ int el= all_fields.elements;
+ orig_ref_pointer_array[el]= new_item;
+ all_fields.push_front(new_item, thd->mem_root);
+ ord->item=&orig_ref_pointer_array[el];
+ }
+ else
+ {
+ /*
+ We have here only field_list (not all_field_list), so we can use
+ simple indexing of ref_pointer_array (order in the array and in the
+ list are same)
+ */
+ ord->item= &ref_pointer_array[idx];
+ }
+ ord->direction= ORDER::ORDER_ASC;
+ *prev=ord;
+ prev= &ord->next;
+ }
+next_item:
+ idx++;
+ }
+ *prev=0;
+ return group;
+}
+
+
+/**
+ Update join with count of the different type of fields.
+*/
+
+void
+count_field_types(SELECT_LEX *select_lex, TMP_TABLE_PARAM *param,
+ List<Item> &fields, bool reset_with_sum_func)
+{
+ List_iterator<Item> li(fields);
+ Item *field;
+
+ param->field_count=param->sum_func_count=param->func_count=
+ param->hidden_field_count=0;
+ param->quick_group=1;
+ while ((field=li++))
+ {
+ Item::Type real_type= field->real_item()->type();
+ if (real_type == Item::FIELD_ITEM)
+ param->field_count++;
+ else if (real_type == Item::SUM_FUNC_ITEM)
+ {
+ if (! field->const_item())
+ {
+ Item_sum *sum_item=(Item_sum*) field->real_item();
+ if (!sum_item->depended_from() ||
+ sum_item->depended_from() == select_lex)
+ {
+ if (!sum_item->quick_group)
+ param->quick_group=0; // UDF SUM function
+ param->sum_func_count++;
+
+ for (uint i=0 ; i < sum_item->get_arg_count() ; i++)
+ {
+ if (sum_item->get_arg(i)->real_item()->type() == Item::FIELD_ITEM)
+ param->field_count++;
+ else
+ param->func_count++;
+ }
+ }
+ param->func_count++;
+ }
+ }
+ else
+ {
+ param->func_count++;
+ if (reset_with_sum_func)
+ field->with_flags&= ~item_with_t::SUM_FUNC;
+ }
+ }
+}
+
+
+/**
+ Return 1 if second is a subpart of first argument.
+
+ SIDE EFFECT:
+ For all the first items in the group by list that match, the sort
+ direction of the GROUP BY items are set to the same as those given by the
+ ORDER BY.
+ The direction of the group does not matter if the ORDER BY clause overrides
+ it anyway.
+*/
+
+static bool
+test_if_subpart(ORDER *group_by, ORDER *order_by)
+{
+ while (group_by && order_by)
+ {
+ if ((*group_by->item)->eq(*order_by->item, 1))
+ group_by->direction= order_by->direction;
+ else
+ return 0;
+ group_by= group_by->next;
+ order_by= order_by->next;
+ }
+ return MY_TEST(!order_by);
+}
+
+/**
+ Return table number if there is only one table in sort order
+ and group and order is compatible, else return 0.
+*/
+
+static TABLE *
+get_sort_by_table(ORDER *a,ORDER *b, List<TABLE_LIST> &tables,
+ table_map const_tables)
+{
+ TABLE_LIST *table;
+ List_iterator<TABLE_LIST> ti(tables);
+ table_map map= (table_map) 0;
+ DBUG_ENTER("get_sort_by_table");
+
+ if (!a)
+ a=b; // Only one need to be given
+ else if (!b)
+ b=a;
+
+ for (; a && b; a=a->next,b=b->next)
+ {
+ /* Skip elements of a that are constant */
+ while (!((*a->item)->used_tables() & ~const_tables))
+ {
+ if (!(a= a->next))
+ break;
+ }
+
+ /* Skip elements of b that are constant */
+ while (!((*b->item)->used_tables() & ~const_tables))
+ {
+ if (!(b= b->next))
+ break;
+ }
+
+ if (!a || !b)
+ break;
+
+ if (!(*a->item)->eq(*b->item,1))
+ DBUG_RETURN(0);
+ map|=a->item[0]->used_tables();
+ }
+ if (!map || (map & (RAND_TABLE_BIT | OUTER_REF_TABLE_BIT)))
+ DBUG_RETURN(0);
+
+ map&= ~const_tables;
+ while ((table= ti++) && !(map & table->table->map)) ;
+ if (map != table->table->map)
+ DBUG_RETURN(0); // More than one table
+ DBUG_PRINT("exit",("sort by table: %d",table->table->tablenr));
+ DBUG_RETURN(table->table);
+}
+
+
+/**
+ calc how big buffer we need for comparing group entries.
+*/
+
+void calc_group_buffer(TMP_TABLE_PARAM *param, ORDER *group)
+{
+ uint key_length=0, parts=0, null_parts=0;
+
+ for (; group ; group=group->next)
+ {
+ Item *group_item= *group->item;
+ Field *field= group_item->get_tmp_table_field();
+ if (field)
+ {
+ enum_field_types type;
+ if ((type= field->type()) == MYSQL_TYPE_BLOB)
+ key_length+=MAX_BLOB_WIDTH; // Can't be used as a key
+ else if (type == MYSQL_TYPE_VARCHAR || type == MYSQL_TYPE_VAR_STRING)
+ key_length+= field->field_length + HA_KEY_BLOB_LENGTH;
+ else if (type == MYSQL_TYPE_BIT)
+ {
+ /* Bit is usually stored as a longlong key for group fields */
+ key_length+= 8; // Big enough
+ }
+ else
+ key_length+= field->pack_length();
+ }
+ else
+ {
+ switch (group_item->cmp_type()) {
+ case REAL_RESULT:
+ key_length+= sizeof(double);
+ break;
+ case INT_RESULT:
+ key_length+= sizeof(longlong);
+ break;
+ case DECIMAL_RESULT:
+ key_length+= my_decimal_get_binary_size(group_item->max_length -
+ (group_item->decimals ? 1 : 0),
+ group_item->decimals);
+ break;
+ case TIME_RESULT:
+ {
+ /*
+ As items represented as DATE/TIME fields in the group buffer
+ have STRING_RESULT result type, we increase the length
+ by 8 as maximum pack length of such fields.
+ */
+ key_length+= 8;
+ break;
+ }
+ case STRING_RESULT:
+ {
+ enum enum_field_types type= group_item->field_type();
+ if (type == MYSQL_TYPE_BLOB)
+ key_length+= MAX_BLOB_WIDTH; // Can't be used as a key
+ else
+ {
+ /*
+ Group strings are taken as varstrings and require an length field.
+ A field is not yet created by create_tmp_field_ex()
+ and the sizes should match up.
+ */
+ key_length+= group_item->max_length + HA_KEY_BLOB_LENGTH;
+ }
+ break;
+ }
+ default:
+ /* This case should never be chosen */
+ DBUG_ASSERT(0);
+ my_error(ER_OUT_OF_RESOURCES, MYF(ME_FATAL));
+ }
+ }
+ parts++;
+ if (group_item->maybe_null())
+ null_parts++;
+ }
+ param->group_length= key_length + null_parts;
+ param->group_parts= parts;
+ param->group_null_parts= null_parts;
+}
+
+static void calc_group_buffer(JOIN *join, ORDER *group)
+{
+ if (group)
+ join->group= 1;
+ calc_group_buffer(&join->tmp_table_param, group);
+}
+
+
+/**
+ allocate group fields or take prepared (cached).
+
+ @param main_join join of current select
+ @param curr_join current join (join of current select or temporary copy
+ of it)
+
+ @retval
+ 0 ok
+ @retval
+ 1 failed
+*/
+
+static bool
+make_group_fields(JOIN *main_join, JOIN *curr_join)
+{
+ if (main_join->group_fields_cache.elements)
+ {
+ curr_join->group_fields= main_join->group_fields_cache;
+ curr_join->sort_and_group= 1;
+ }
+ else
+ {
+ if (alloc_group_fields(curr_join, curr_join->group_list))
+ return (1);
+ main_join->group_fields_cache= curr_join->group_fields;
+ }
+ return (0);
+}
+
+static bool
+fill_cached_item_list(THD *thd, List<Cached_item> *list, ORDER *order,
+ uint max_number_of_elements = UINT_MAX)
+{
+ for (; order && max_number_of_elements ;
+ order= order->next, max_number_of_elements--)
+ {
+ Cached_item *tmp= new_Cached_item(thd, *order->item, true);
+ if (!tmp || list->push_front(tmp))
+ return true;
+ }
+ return false;
+}
+
+/**
+ Get a list of buffers for saving last group.
+
+ Groups are saved in reverse order for easier check loop.
+*/
+
+static bool
+alloc_group_fields(JOIN *join, ORDER *group)
+{
+ if (fill_cached_item_list(join->thd, &join->group_fields, group))
+ return true;
+ join->sort_and_group=1; /* Mark for do_select */
+ return false;
+}
+
+static bool
+alloc_order_fields(JOIN *join, ORDER *order, uint max_number_of_elements)
+{
+ return fill_cached_item_list(join->thd, &join->order_fields, order,
+ max_number_of_elements);
+}
+
+
+/*
+ Test if a single-row cache of items changed, and update the cache.
+
+ @details Test if a list of items that typically represents a result
+ row has changed. If the value of some item changed, update the cached
+ value for this item.
+
+ @param list list of <item, cached_value> pairs stored as Cached_item.
+
+ @return -1 if no item changed
+ @return index of the first item that changed
+*/
+
+int test_if_item_cache_changed(List<Cached_item> &list)
+{
+ DBUG_ENTER("test_if_item_cache_changed");
+ List_iterator<Cached_item> li(list);
+ int idx= -1,i;
+ Cached_item *buff;
+
+ for (i=(int) list.elements-1 ; (buff=li++) ; i--)
+ {
+ if (buff->cmp())
+ idx=i;
+ }
+ DBUG_PRINT("info", ("idx: %d", idx));
+ DBUG_RETURN(idx);
+}
+
+
+/*
+ @return
+ -1 - Group not changed
+ value>=0 - Number of the component where the group changed
+*/
+
+int
+test_if_group_changed(List<Cached_item> &list)
+{
+ DBUG_ENTER("test_if_group_changed");
+ List_iterator<Cached_item> li(list);
+ int idx= -1,i;
+ Cached_item *buff;
+
+ for (i=(int) list.elements-1 ; (buff=li++) ; i--)
+ {
+ if (buff->cmp())
+ idx=i;
+ }
+ DBUG_PRINT("info", ("idx: %d", idx));
+ DBUG_RETURN(idx);
+}
+
+
+/**
+ Setup copy_fields to save fields at start of new group.
+
+ Setup copy_fields to save fields at start of new group
+
+ Only FIELD_ITEM:s and FUNC_ITEM:s needs to be saved between groups.
+ Change old item_field to use a new field with points at saved fieldvalue
+ This function is only called before use of send_result_set_metadata.
+
+ @param thd THD pointer
+ @param param temporary table parameters
+ @param ref_pointer_array array of pointers to top elements of filed list
+ @param res_selected_fields new list of items of select item list
+ @param res_all_fields new list of all items
+ @param elements number of elements in select item list
+ @param all_fields all fields list
+
+ @todo
+ In most cases this result will be sent to the user.
+ This should be changed to use copy_int or copy_real depending
+ on how the value is to be used: In some cases this may be an
+ argument in a group function, like: IF(ISNULL(col),0,COUNT(*))
+
+ @retval
+ 0 ok
+ @retval
+ !=0 error
+*/
+
+bool
+setup_copy_fields(THD *thd, TMP_TABLE_PARAM *param,
+ Ref_ptr_array ref_pointer_array,
+ List<Item> &res_selected_fields, List<Item> &res_all_fields,
+ uint elements, List<Item> &all_fields)
+{
+ Item *pos;
+ List_iterator_fast<Item> li(all_fields);
+ Copy_field *copy= NULL;
+ Copy_field *copy_start __attribute__((unused));
+ res_selected_fields.empty();
+ res_all_fields.empty();
+ List_iterator_fast<Item> itr(res_all_fields);
+ List<Item> extra_funcs;
+ uint i, border= all_fields.elements - elements;
+ DBUG_ENTER("setup_copy_fields");
+
+ if (param->field_count &&
+ !(copy=param->copy_field= new (thd->mem_root) Copy_field[param->field_count]))
+ goto err2;
+
+ param->copy_funcs.empty();
+ copy_start= copy;
+ for (i= 0; (pos= li++); i++)
+ {
+ Field *field;
+ uchar *tmp;
+ Item *real_pos= pos->real_item();
+ /*
+ Aggregate functions can be substituted for fields (by e.g. temp tables).
+ We need to filter those substituted fields out.
+ */
+ if (real_pos->type() == Item::FIELD_ITEM &&
+ !(real_pos != pos &&
+ ((Item_ref *)pos)->ref_type() == Item_ref::AGGREGATE_REF))
+ {
+ Item_field *item;
+ if (!(item= new (thd->mem_root) Item_field(thd, ((Item_field*) real_pos))))
+ goto err;
+ if (pos->type() == Item::REF_ITEM)
+ {
+ /* preserve the names of the ref when dereferncing */
+ Item_ref *ref= (Item_ref *) pos;
+ item->db_name= ref->db_name;
+ item->table_name= ref->table_name;
+ item->name= ref->name;
+ }
+ pos= item;
+ if (item->field->flags & BLOB_FLAG)
+ {
+ if (!(pos= new (thd->mem_root) Item_copy_string(thd, pos)))
+ goto err;
+ /*
+ Item_copy_string::copy for function can call
+ Item_copy_string::val_int for blob via Item_ref.
+ But if Item_copy_string::copy for blob isn't called before,
+ it's value will be wrong
+ so let's insert Item_copy_string for blobs in the beginning of
+ copy_funcs
+ (to see full test case look at having.test, BUG #4358)
+ */
+ if (param->copy_funcs.push_front(pos, thd->mem_root))
+ goto err;
+ }
+ else
+ {
+ /*
+ set up save buffer and change result_field to point at
+ saved value
+ */
+ field= item->field;
+ item->result_field=field->make_new_field(thd->mem_root,
+ field->table, 1);
+ /*
+ We need to allocate one extra byte for null handling and
+ another extra byte to not get warnings from purify in
+ Field_string::val_int
+ */
+ if (!(tmp= (uchar*) thd->alloc(field->pack_length()+2)))
+ goto err;
+ if (copy)
+ {
+ DBUG_ASSERT (param->field_count > (uint) (copy - copy_start));
+ copy->set(tmp, item->result_field);
+ item->result_field->move_field(copy->to_ptr,copy->to_null_ptr,1);
+#ifdef HAVE_valgrind
+ copy->to_ptr[copy->from_length]= 0;
+#endif
+ copy++;
+ }
+ }
+ }
+ else if ((real_pos->type() == Item::FUNC_ITEM ||
+ real_pos->real_type() == Item::SUBSELECT_ITEM ||
+ real_pos->type() == Item::CACHE_ITEM ||
+ real_pos->type() == Item::COND_ITEM) &&
+ !real_pos->with_sum_func())
+ { // Save for send fields
+ LEX_CSTRING real_name= pos->name;
+ pos= real_pos;
+ pos->name= real_name;
+ /* TODO:
+ In most cases this result will be sent to the user.
+ This should be changed to use copy_int or copy_real depending
+ on how the value is to be used: In some cases this may be an
+ argument in a group function, like: IF(ISNULL(col),0,COUNT(*))
+ */
+ if (!(pos= pos->type_handler()->create_item_copy(thd, pos)))
+ goto err;
+ if (i < border) // HAVING, ORDER and GROUP BY
+ {
+ if (extra_funcs.push_back(pos, thd->mem_root))
+ goto err;
+ }
+ else if (param->copy_funcs.push_back(pos, thd->mem_root))
+ goto err;
+ }
+ res_all_fields.push_back(pos, thd->mem_root);
+ ref_pointer_array[((i < border)? all_fields.elements-i-1 : i-border)]=
+ pos;
+ }
+ param->copy_field_end= copy;
+
+ for (i= 0; i < border; i++)
+ itr++;
+ itr.sublist(res_selected_fields, elements);
+ /*
+ Put elements from HAVING, ORDER BY and GROUP BY last to ensure that any
+ reference used in these will resolve to a item that is already calculated
+ */
+ param->copy_funcs.append(&extra_funcs);
+
+ DBUG_RETURN(0);
+
+ err:
+ if (copy)
+ delete [] param->copy_field; // This is never 0
+ param->copy_field= 0;
+err2:
+ DBUG_RETURN(TRUE);
+}
+
+
+/**
+ Make a copy of all simple SELECT'ed items.
+
+ This is done at the start of a new group so that we can retrieve
+ these later when the group changes.
+*/
+
+void
+copy_fields(TMP_TABLE_PARAM *param)
+{
+ Copy_field *ptr=param->copy_field;
+ Copy_field *end=param->copy_field_end;
+
+ DBUG_ASSERT((ptr != NULL && end >= ptr) || (ptr == NULL && end == NULL));
+
+ for (; ptr != end; ptr++)
+ (*ptr->do_copy)(ptr);
+
+ List_iterator_fast<Item> it(param->copy_funcs);
+ Item_copy *item;
+ while ((item= (Item_copy*) it++))
+ item->copy();
+}
+
+
+/**
+ Make an array of pointers to sum_functions to speed up
+ sum_func calculation.
+
+ @retval
+ 0 ok
+ @retval
+ 1 Error
+*/
+
+bool JOIN::alloc_func_list()
+{
+ uint func_count, group_parts;
+ DBUG_ENTER("alloc_func_list");
+
+ func_count= tmp_table_param.sum_func_count;
+ /*
+ If we are using rollup, we need a copy of the summary functions for
+ each level
+ */
+ if (rollup.state != ROLLUP::STATE_NONE)
+ func_count*= (send_group_parts+1);
+
+ group_parts= send_group_parts;
+ /*
+ If distinct, reserve memory for possible
+ disctinct->group_by optimization
+ */
+ if (select_distinct)
+ {
+ group_parts+= fields_list.elements;
+ /*
+ If the ORDER clause is specified then it's possible that
+ it also will be optimized, so reserve space for it too
+ */
+ if (order)
+ {
+ ORDER *ord;
+ for (ord= order; ord; ord= ord->next)
+ group_parts++;
+ }
+ }
+
+ /* This must use calloc() as rollup_make_fields depends on this */
+ sum_funcs= (Item_sum**) thd->calloc(sizeof(Item_sum**) * (func_count+1) +
+ sizeof(Item_sum***) * (group_parts+1));
+ sum_funcs_end= (Item_sum***) (sum_funcs+func_count+1);
+ DBUG_RETURN(sum_funcs == 0);
+}
+
+
+/**
+ Initialize 'sum_funcs' array with all Item_sum objects.
+
+ @param field_list All items
+ @param send_result_set_metadata Items in select list
+ @param before_group_by Set to 1 if this is called before GROUP BY handling
+
+ @retval
+ 0 ok
+ @retval
+ 1 error
+*/
+
+bool JOIN::make_sum_func_list(List<Item> &field_list,
+ List<Item> &send_result_set_metadata,
+ bool before_group_by)
+{
+ List_iterator_fast<Item> it(field_list);
+ Item_sum **func;
+ Item *item;
+ DBUG_ENTER("make_sum_func_list");
+
+ func= sum_funcs;
+ while ((item=it++))
+ {
+ if (item->type() == Item::SUM_FUNC_ITEM && !item->const_item() &&
+ (!((Item_sum*) item)->depended_from() ||
+ ((Item_sum *)item)->depended_from() == select_lex))
+ *func++= (Item_sum*) item;
+ }
+ if (before_group_by && rollup.state == ROLLUP::STATE_INITED)
+ {
+ rollup.state= ROLLUP::STATE_READY;
+ if (rollup_make_fields(field_list, send_result_set_metadata, &func))
+ DBUG_RETURN(TRUE); // Should never happen
+ }
+ else if (rollup.state == ROLLUP::STATE_NONE)
+ {
+ for (uint i=0 ; i <= send_group_parts ;i++)
+ sum_funcs_end[i]= func;
+ }
+ else if (rollup.state == ROLLUP::STATE_READY)
+ DBUG_RETURN(FALSE); // Don't put end marker
+ *func=0; // End marker
+ DBUG_RETURN(FALSE);
+}
+
+
+/**
+ Change all funcs and sum_funcs to fields in tmp table, and create
+ new list of all items.
+
+ @param thd THD pointer
+ @param ref_pointer_array array of pointers to top elements of filed list
+ @param res_selected_fields new list of items of select item list
+ @param res_all_fields new list of all items
+ @param elements number of elements in select item list
+ @param all_fields all fields list
+
+ @retval
+ 0 ok
+ @retval
+ !=0 error
+*/
+
+static bool
+change_to_use_tmp_fields(THD *thd, Ref_ptr_array ref_pointer_array,
+ List<Item> &res_selected_fields,
+ List<Item> &res_all_fields,
+ uint elements, List<Item> &all_fields)
+{
+ List_iterator_fast<Item> it(all_fields);
+ Item *item_field,*item;
+ DBUG_ENTER("change_to_use_tmp_fields");
+
+ res_selected_fields.empty();
+ res_all_fields.empty();
+
+ uint border= all_fields.elements - elements;
+ for (uint i= 0; (item= it++); i++)
+ {
+ Field *field;
+ enum Item::Type item_type= item->type();
+ if ((item->with_sum_func() && item_type != Item::SUM_FUNC_ITEM) ||
+ item->with_window_func())
+ item_field= item;
+ else if (item_type == Item::FIELD_ITEM ||
+ item_type == Item::DEFAULT_VALUE_ITEM)
+ {
+ if (!(item_field= item->get_tmp_table_item(thd)))
+ DBUG_RETURN(true);
+ }
+ else if (item_type == Item::FUNC_ITEM &&
+ ((Item_func*)item)->functype() == Item_func::SUSERVAR_FUNC)
+ {
+ field= item->get_tmp_table_field();
+ if (field != NULL)
+ {
+ /*
+ Replace "@:=<expression>" with "@:=<tmp table
+ column>". Otherwise, we would re-evaluate <expression>, and
+ if expression were a subquery, this would access
+ already-unlocked tables.
+ */
+ Item_func_set_user_var* suv=
+ new (thd->mem_root) Item_func_set_user_var(thd, (Item_func_set_user_var*) item);
+ Item_field *new_field= new (thd->mem_root) Item_field(thd, field);
+ if (!suv || !new_field)
+ DBUG_RETURN(true); // Fatal error
+ new_field->set_refers_to_temp_table();
+ List<Item> list;
+ list.push_back(new_field, thd->mem_root);
+ suv->set_arguments(thd, list);
+ item_field= suv;
+ }
+ else
+ item_field= item;
+ }
+ else if ((field= item->get_tmp_table_field()))
+ {
+ if (item->type() == Item::SUM_FUNC_ITEM && field->table->group)
+ {
+ item_field= ((Item_sum*) item)->result_item(thd, field);
+ }
+ else
+ {
+ item_field= (Item*) new (thd->mem_root) Item_field(thd, field);
+ if (item_field)
+ ((Item_field*) item_field)->set_refers_to_temp_table();
+ }
+ if (!item_field)
+ DBUG_RETURN(true); // Fatal error
+
+ if (item->real_item()->type() != Item::FIELD_ITEM)
+ field->orig_table= 0;
+ item_field->name= item->name;
+ if (item->type() == Item::REF_ITEM)
+ {
+ Item_field *ifield= (Item_field *) item_field;
+ Item_ref *iref= (Item_ref *) item;
+ ifield->table_name= iref->table_name;
+ ifield->db_name= iref->db_name;
+ }
+#ifndef DBUG_OFF
+ if (!item_field->name.str)
+ {
+ char buff[256];
+ String str(buff,sizeof(buff),&my_charset_bin);
+ str.length(0);
+ str.extra_allocation(1024);
+ item->print(&str, QT_ORDINARY);
+ item_field->name.str= thd->strmake(str.ptr(), str.length());
+ item_field->name.length= str.length();
+ }
+#endif
+ }
+ else
+ item_field= item;
+
+ res_all_fields.push_back(item_field, thd->mem_root);
+ ref_pointer_array[((i < border)? all_fields.elements-i-1 : i-border)]=
+ item_field;
+ }
+
+ List_iterator_fast<Item> itr(res_all_fields);
+ for (uint i= 0; i < border; i++)
+ itr++;
+ itr.sublist(res_selected_fields, elements);
+ DBUG_RETURN(false);
+}
+
+
+/**
+ Change all sum_func refs to fields to point at fields in tmp table.
+ Change all funcs to be fields in tmp table.
+
+ @param thd THD pointer
+ @param ref_pointer_array array of pointers to top elements of field list
+ @param res_selected_fields new list of items of select item list
+ @param res_all_fields new list of all items
+ @param elements number of elements in select item list
+ @param all_fields all fields list
+
+ @retval
+ 0 ok
+ @retval
+ 1 error
+*/
+
+static bool
+change_refs_to_tmp_fields(THD *thd, Ref_ptr_array ref_pointer_array,
+ List<Item> &res_selected_fields,
+ List<Item> &res_all_fields, uint elements,
+ List<Item> &all_fields)
+{
+ List_iterator_fast<Item> it(all_fields);
+ Item *item, *new_item;
+ res_selected_fields.empty();
+ res_all_fields.empty();
+
+ uint i, border= all_fields.elements - elements;
+ for (i= 0; (item= it++); i++)
+ {
+ if (item->type() == Item::SUM_FUNC_ITEM && item->const_item())
+ new_item= item;
+ else
+ {
+ if (!(new_item= item->get_tmp_table_item(thd)))
+ return 1;
+ }
+
+ if (res_all_fields.push_back(new_item, thd->mem_root))
+ return 1;
+ ref_pointer_array[((i < border)? all_fields.elements-i-1 : i-border)]=
+ new_item;
+ }
+
+ List_iterator_fast<Item> itr(res_all_fields);
+ for (i= 0; i < border; i++)
+ itr++;
+ itr.sublist(res_selected_fields, elements);
+
+ return thd->is_error();
+}
+
+
+
+/******************************************************************************
+ Code for calculating functions
+******************************************************************************/
+
+
+/**
+ Call ::setup for all sum functions.
+
+ @param thd thread handler
+ @param func_ptr sum function list
+
+ @retval
+ FALSE ok
+ @retval
+ TRUE error
+*/
+
+static bool setup_sum_funcs(THD *thd, Item_sum **func_ptr)
+{
+ Item_sum *func;
+ DBUG_ENTER("setup_sum_funcs");
+ while ((func= *(func_ptr++)))
+ {
+ if (func->aggregator_setup(thd))
+ DBUG_RETURN(TRUE);
+ }
+ DBUG_RETURN(FALSE);
+}
+
+
+static bool prepare_sum_aggregators(THD *thd,Item_sum **func_ptr,
+ bool need_distinct)
+{
+ Item_sum *func;
+ DBUG_ENTER("prepare_sum_aggregators");
+ while ((func= *(func_ptr++)))
+ {
+ if (func->set_aggregator(thd,
+ need_distinct && func->has_with_distinct() ?
+ Aggregator::DISTINCT_AGGREGATOR :
+ Aggregator::SIMPLE_AGGREGATOR))
+ DBUG_RETURN(TRUE);
+ }
+ DBUG_RETURN(FALSE);
+}
+
+
+static void
+init_tmptable_sum_functions(Item_sum **func_ptr)
+{
+ Item_sum *func;
+ while ((func= *(func_ptr++)))
+ func->reset_field();
+}
+
+
+/** Update record 0 in tmp_table from record 1. */
+
+static void
+update_tmptable_sum_func(Item_sum **func_ptr,
+ TABLE *tmp_table __attribute__((unused)))
+{
+ Item_sum *func;
+ while ((func= *(func_ptr++)))
+ func->update_field();
+}
+
+
+/** Copy result of sum functions to record in tmp_table. */
+
+static void
+copy_sum_funcs(Item_sum **func_ptr, Item_sum **end_ptr)
+{
+ for (; func_ptr != end_ptr ; func_ptr++)
+ (void) (*func_ptr)->save_in_result_field(1);
+ return;
+}
+
+
+static bool
+init_sum_functions(Item_sum **func_ptr, Item_sum **end_ptr)
+{
+ for (; func_ptr != end_ptr ;func_ptr++)
+ {
+ if ((*func_ptr)->reset_and_add())
+ return 1;
+ }
+ /* If rollup, calculate the upper sum levels */
+ for ( ; *func_ptr ; func_ptr++)
+ {
+ if ((*func_ptr)->aggregator_add())
+ return 1;
+ }
+ return 0;
+}
+
+
+static bool
+update_sum_func(Item_sum **func_ptr)
+{
+ Item_sum *func;
+ for (; (func= (Item_sum*) *func_ptr) ; func_ptr++)
+ if (func->aggregator_add())
+ return 1;
+ return 0;
+}
+
+/**
+ Copy result of functions to record in tmp_table.
+
+ Uses the thread pointer to check for errors in
+ some of the val_xxx() methods called by the
+ save_in_result_field() function.
+ TODO: make the Item::val_xxx() return error code
+
+ @param func_ptr array of the function Items to copy to the tmp table
+ @param thd pointer to the current thread for error checking
+ @retval
+ FALSE if OK
+ @retval
+ TRUE on error
+*/
+
+bool
+copy_funcs(Item **func_ptr, const THD *thd)
+{
+ Item *func;
+ for (; (func = *func_ptr) ; func_ptr++)
+ {
+ if (func->type() == Item::FUNC_ITEM &&
+ ((Item_func *) func)->with_window_func())
+ continue;
+ func->save_in_result_field(1);
+ /*
+ Need to check the THD error state because Item::val_xxx() don't
+ return error code, but can generate errors
+ TODO: change it for a real status check when Item::val_xxx()
+ are extended to return status code.
+ */
+ if (unlikely(thd->is_error()))
+ return TRUE;
+ }
+ return FALSE;
+}
+
+
+/**
+ Create a condition for a const reference and add this to the
+ currenct select for the table.
+*/
+
+static bool add_ref_to_table_cond(THD *thd, JOIN_TAB *join_tab)
+{
+ DBUG_ENTER("add_ref_to_table_cond");
+ if (!join_tab->ref.key_parts)
+ DBUG_RETURN(FALSE);
+
+ Item_cond_and *cond= new (thd->mem_root) Item_cond_and(thd);
+ TABLE *table=join_tab->table;
+ int error= 0;
+ if (!cond)
+ DBUG_RETURN(TRUE);
+
+ for (uint i=0 ; i < join_tab->ref.key_parts ; i++)
+ {
+ Field *field=table->field[table->key_info[join_tab->ref.key].key_part[i].
+ fieldnr-1];
+ Item *value=join_tab->ref.items[i];
+ cond->add(new (thd->mem_root)
+ Item_func_equal(thd, new (thd->mem_root) Item_field(thd, field),
+ value),
+ thd->mem_root);
+ }
+ if (unlikely(thd->is_error()))
+ DBUG_RETURN(TRUE);
+ if (!cond->fixed())
+ {
+ Item *tmp_item= (Item*) cond;
+ cond->fix_fields(thd, &tmp_item);
+ DBUG_ASSERT(cond == tmp_item);
+ }
+ if (join_tab->select)
+ {
+ Item *UNINIT_VAR(cond_copy);
+ if (join_tab->select->pre_idx_push_select_cond)
+ cond_copy= cond->copy_andor_structure(thd);
+ if (join_tab->select->cond)
+ error=(int) cond->add(join_tab->select->cond, thd->mem_root);
+ join_tab->select->cond= cond;
+ if (join_tab->select->pre_idx_push_select_cond)
+ {
+ Item *new_cond= and_conds(thd, cond_copy,
+ join_tab->select->pre_idx_push_select_cond);
+ if (new_cond->fix_fields_if_needed(thd, &new_cond))
+ error= 1;
+ join_tab->pre_idx_push_select_cond=
+ join_tab->select->pre_idx_push_select_cond= new_cond;
+ }
+ join_tab->set_select_cond(cond, __LINE__);
+ }
+ else if ((join_tab->select= make_select(join_tab->table, 0, 0, cond,
+ (SORT_INFO*) 0, 0, &error)))
+ join_tab->set_select_cond(cond, __LINE__);
+
+ DBUG_RETURN(error ? TRUE : FALSE);
+}
+
+
+/**
+ Free joins of subselect of this select.
+
+ @param thd THD pointer
+ @param select pointer to st_select_lex which subselects joins we will free
+*/
+
+void free_underlaid_joins(THD *thd, SELECT_LEX *select)
+{
+ for (SELECT_LEX_UNIT *unit= select->first_inner_unit();
+ unit;
+ unit= unit->next_unit())
+ unit->cleanup();
+}
+
+/****************************************************************************
+ ROLLUP handling
+****************************************************************************/
+
+/**
+ Replace occurrences of group by fields in an expression by ref items.
+
+ The function replaces occurrences of group by fields in expr
+ by ref objects for these fields unless they are under aggregate
+ functions.
+ The function also corrects value of the the maybe_null attribute
+ for the items of all subexpressions containing group by fields.
+
+ @b EXAMPLES
+ @code
+ SELECT a+1 FROM t1 GROUP BY a WITH ROLLUP
+ SELECT SUM(a)+a FROM t1 GROUP BY a WITH ROLLUP
+ @endcode
+
+ @b IMPLEMENTATION
+
+ The function recursively traverses the tree of the expr expression,
+ looks for occurrences of the group by fields that are not under
+ aggregate functions and replaces them for the corresponding ref items.
+
+ @note
+ This substitution is needed GROUP BY queries with ROLLUP if
+ SELECT list contains expressions over group by attributes.
+
+ @param thd reference to the context
+ @param expr expression to make replacement
+ @param group_list list of references to group by items
+ @param changed out: returns 1 if item contains a replaced field item
+
+ @todo
+ - TODO: Some functions are not null-preserving. For those functions
+ updating of the maybe_null attribute is an overkill.
+
+ @retval
+ 0 if ok
+ @retval
+ 1 on error
+*/
+
+static bool change_group_ref(THD *thd, Item_func *expr, ORDER *group_list,
+ bool *changed)
+{
+ if (expr->argument_count())
+ {
+ Name_resolution_context *context= &thd->lex->current_select->context;
+ Item **arg,**arg_end;
+ bool arg_changed= FALSE;
+ for (arg= expr->arguments(),
+ arg_end= expr->arguments() + expr->argument_count();
+ arg != arg_end; arg++)
+ {
+ Item *item= *arg;
+ if (item->type() == Item::FIELD_ITEM || item->type() == Item::REF_ITEM)
+ {
+ ORDER *group_tmp;
+ for (group_tmp= group_list; group_tmp; group_tmp= group_tmp->next)
+ {
+ if (item->eq(*group_tmp->item,0))
+ {
+ Item *new_item;
+ if (!(new_item= new (thd->mem_root) Item_ref(thd, context,
+ group_tmp->item,
+ null_clex_str,
+ item->name)))
+ return 1; // fatal_error is set
+ thd->change_item_tree(arg, new_item);
+ arg_changed= TRUE;
+ }
+ }
+ }
+ else if (item->type() == Item::FUNC_ITEM)
+ {
+ if (change_group_ref(thd, (Item_func *) item, group_list, &arg_changed))
+ return 1;
+ }
+ }
+ if (arg_changed)
+ {
+ expr->base_flags|= item_base_t::MAYBE_NULL | item_base_t::IN_ROLLUP;
+ *changed= TRUE;
+ }
+ }
+ return 0;
+}
+
+
+/** Allocate memory needed for other rollup functions. */
+
+bool JOIN::rollup_init()
+{
+ uint i,j;
+ Item **ref_array;
+
+ tmp_table_param.quick_group= 0; // Can't create groups in tmp table
+ /*
+ Each group can potentially be replaced with Item_func_rollup_const() which
+ needs a copy_func placeholder.
+ */
+ tmp_table_param.func_count+= send_group_parts;
+ rollup.state= ROLLUP::STATE_INITED;
+
+ /*
+ Create pointers to the different sum function groups
+ These are updated by rollup_make_fields()
+ */
+ tmp_table_param.group_parts= send_group_parts;
+
+ Item_null_result **null_items=
+ static_cast<Item_null_result**>(thd->alloc(sizeof(Item*)*send_group_parts));
+
+ rollup.null_items= Item_null_array(null_items, send_group_parts);
+ rollup.ref_pointer_arrays=
+ static_cast<Ref_ptr_array*>
+ (thd->alloc((sizeof(Ref_ptr_array) +
+ all_fields.elements * sizeof(Item*)) * send_group_parts));
+ rollup.fields=
+ static_cast<List<Item>*>(thd->alloc(sizeof(List<Item>) * send_group_parts));
+
+ if (!null_items || !rollup.ref_pointer_arrays || !rollup.fields)
+ return true;
+
+ ref_array= (Item**) (rollup.ref_pointer_arrays+send_group_parts);
+
+ /*
+ Prepare space for field list for the different levels
+ These will be filled up in rollup_make_fields()
+ */
+ for (i= 0 ; i < send_group_parts ; i++)
+ {
+ if (!(rollup.null_items[i]= new (thd->mem_root) Item_null_result(thd)))
+ return true;
+
+ List<Item> *rollup_fields= &rollup.fields[i];
+ rollup_fields->empty();
+ rollup.ref_pointer_arrays[i]= Ref_ptr_array(ref_array, all_fields.elements);
+ ref_array+= all_fields.elements;
+ }
+ for (i= 0 ; i < send_group_parts; i++)
+ {
+ for (j=0 ; j < fields_list.elements ; j++)
+ rollup.fields[i].push_back(rollup.null_items[i], thd->mem_root);
+ }
+ List_iterator<Item> it(all_fields);
+ Item *item;
+ while ((item= it++))
+ {
+ ORDER *group_tmp;
+ bool found_in_group= 0;
+
+ for (group_tmp= group_list; group_tmp; group_tmp= group_tmp->next)
+ {
+ if (*group_tmp->item == item)
+ {
+ item->base_flags|= item_base_t::MAYBE_NULL | item_base_t::IN_ROLLUP;
+ found_in_group= 1;
+ break;
+ }
+ }
+ if (item->type() == Item::FUNC_ITEM && !found_in_group)
+ {
+ bool changed= FALSE;
+ if (change_group_ref(thd, (Item_func *) item, group_list, &changed))
+ return 1;
+ /*
+ We have to prevent creation of a field in a temporary table for
+ an expression that contains GROUP BY attributes.
+ Marking the expression item as 'with_sum_func' will ensure this.
+ */
+ if (changed)
+ item->with_flags|= item_with_t::SUM_FUNC;
+ }
+ }
+ return 0;
+}
+
+/**
+ Wrap all constant Items in GROUP BY list.
+
+ For ROLLUP queries each constant item referenced in GROUP BY list
+ is wrapped up into an Item_func object yielding the same value
+ as the constant item. The objects of the wrapper class are never
+ considered as constant items and besides they inherit all
+ properties of the Item_result_field class.
+ This wrapping allows us to ensure writing constant items
+ into temporary tables whenever the result of the ROLLUP
+ operation has to be written into a temporary table, e.g. when
+ ROLLUP is used together with DISTINCT in the SELECT list.
+ Usually when creating temporary tables for a intermidiate
+ result we do not include fields for constant expressions.
+
+ @retval
+ 0 if ok
+ @retval
+ 1 on error
+*/
+
+bool JOIN::rollup_process_const_fields()
+{
+ ORDER *group_tmp;
+ Item *item;
+ List_iterator<Item> it(all_fields);
+
+ for (group_tmp= group_list; group_tmp; group_tmp= group_tmp->next)
+ {
+ if (!(*group_tmp->item)->const_item())
+ continue;
+ while ((item= it++))
+ {
+ if (*group_tmp->item == item)
+ {
+ Item* new_item= new (thd->mem_root) Item_func_rollup_const(thd, item);
+ if (!new_item)
+ return 1;
+ new_item->fix_fields(thd, (Item **) 0);
+ thd->change_item_tree(it.ref(), new_item);
+ for (ORDER *tmp= group_tmp; tmp; tmp= tmp->next)
+ {
+ if (*tmp->item == item)
+ thd->change_item_tree(tmp->item, new_item);
+ }
+ break;
+ }
+ }
+ it.rewind();
+ }
+ return 0;
+}
+
+
+/**
+ Fill up rollup structures with pointers to fields to use.
+
+ Creates copies of item_sum items for each sum level.
+
+ @param fields_arg List of all fields (hidden and real ones)
+ @param sel_fields Pointer to selected fields
+ @param func Store here a pointer to all fields
+
+ @retval
+ 0 if ok;
+ In this case func is pointing to next not used element.
+ @retval
+ 1 on error
+*/
+
+bool JOIN::rollup_make_fields(List<Item> &fields_arg, List<Item> &sel_fields,
+ Item_sum ***func)
+{
+ List_iterator_fast<Item> it(fields_arg);
+ Item *first_field= sel_fields.head();
+ uint level;
+
+ /*
+ Create field lists for the different levels
+
+ The idea here is to have a separate field list for each rollup level to
+ avoid all runtime checks of which columns should be NULL.
+
+ The list is stored in reverse order to get sum function in such an order
+ in func that it makes it easy to reset them with init_sum_functions()
+
+ Assuming: SELECT a, b, c SUM(b) FROM t1 GROUP BY a,b WITH ROLLUP
+
+ rollup.fields[0] will contain list where a,b,c is NULL
+ rollup.fields[1] will contain list where b,c is NULL
+ ...
+ rollup.ref_pointer_array[#] points to fields for rollup.fields[#]
+ ...
+ sum_funcs_end[0] points to all sum functions
+ sum_funcs_end[1] points to all sum functions, except grand totals
+ ...
+ */
+
+ for (level=0 ; level < send_group_parts ; level++)
+ {
+ uint i;
+ uint pos= send_group_parts - level -1;
+ bool real_fields= 0;
+ Item *item;
+ List_iterator<Item> new_it(rollup.fields[pos]);
+ Ref_ptr_array ref_array_start= rollup.ref_pointer_arrays[pos];
+ ORDER *start_group;
+
+ /* Point to first hidden field */
+ uint ref_array_ix= fields_arg.elements-1;
+
+ /* Remember where the sum functions ends for the previous level */
+ sum_funcs_end[pos+1]= *func;
+
+ /* Find the start of the group for this level */
+ for (i= 0, start_group= group_list ;
+ i++ < pos ;
+ start_group= start_group->next)
+ ;
+
+ it.rewind();
+ while ((item= it++))
+ {
+ if (item == first_field)
+ {
+ real_fields= 1; // End of hidden fields
+ ref_array_ix= 0;
+ }
+
+ if (item->type() == Item::SUM_FUNC_ITEM && !item->const_item() &&
+ (!((Item_sum*) item)->depended_from() ||
+ ((Item_sum *)item)->depended_from() == select_lex))
+
+ {
+ /*
+ This is a top level summary function that must be replaced with
+ a sum function that is reset for this level.
+
+ NOTE: This code creates an object which is not that nice in a
+ sub select. Fortunately it's not common to have rollup in
+ sub selects.
+ */
+ item= item->copy_or_same(thd);
+ ((Item_sum*) item)->make_unique();
+ *(*func)= (Item_sum*) item;
+ (*func)++;
+ }
+ else
+ {
+ /* Check if this is something that is part of this group by */
+ ORDER *group_tmp;
+ for (group_tmp= start_group, i= pos ;
+ group_tmp ; group_tmp= group_tmp->next, i++)
+ {
+ if (*group_tmp->item == item)
+ {
+ /*
+ This is an element that is used by the GROUP BY and should be
+ set to NULL in this level
+ */
+ Item_null_result *null_item= new (thd->mem_root) Item_null_result(thd);
+ if (!null_item)
+ return 1;
+ // Value will be null sometimes
+ item->set_maybe_null();
+ null_item->result_field= item->get_tmp_table_field();
+ item= null_item;
+ break;
+ }
+ }
+ }
+ ref_array_start[ref_array_ix]= item;
+ if (real_fields)
+ {
+ (void) new_it++; // Point to next item
+ new_it.replace(item); // Replace previous
+ ref_array_ix++;
+ }
+ else
+ ref_array_ix--;
+ }
+ }
+ sum_funcs_end[0]= *func; // Point to last function
+ return 0;
+}
+
+/**
+ Send all rollup levels higher than the current one to the client.
+
+ @b SAMPLE
+ @code
+ SELECT a, b, c SUM(b) FROM t1 GROUP BY a,b WITH ROLLUP
+ @endcode
+
+ @param idx Level we are on:
+ - 0 = Total sum level
+ - 1 = First group changed (a)
+ - 2 = Second group changed (a,b)
+
+ @retval
+ 0 ok
+ @retval
+ 1 If send_data_failed()
+*/
+
+int JOIN::rollup_send_data(uint idx)
+{
+ uint i;
+ for (i= send_group_parts ; i-- > idx ; )
+ {
+ int res= 0;
+ /* Get reference pointers to sum functions in place */
+ copy_ref_ptr_array(ref_ptrs, rollup.ref_pointer_arrays[i]);
+ if ((!having || having->val_int()))
+ {
+ if (send_records < unit->lim.get_select_limit() && do_send_rows &&
+ (res= result->send_data_with_check(rollup.fields[i],
+ unit, send_records)) > 0)
+ return 1;
+ if (!res)
+ send_records++;
+ }
+ }
+ /* Restore ref_pointer_array */
+ set_items_ref_array(current_ref_ptrs);
+ return 0;
+}
+
+/**
+ Write all rollup levels higher than the current one to a temp table.
+
+ @b SAMPLE
+ @code
+ SELECT a, b, SUM(c) FROM t1 GROUP BY a,b WITH ROLLUP
+ @endcode
+
+ @param idx Level we are on:
+ - 0 = Total sum level
+ - 1 = First group changed (a)
+ - 2 = Second group changed (a,b)
+ @param table reference to temp table
+
+ @retval
+ 0 ok
+ @retval
+ 1 if write_data_failed()
+*/
+
+int JOIN::rollup_write_data(uint idx, TMP_TABLE_PARAM *tmp_table_param_arg,
+ TABLE *table_arg)
+{
+ uint i;
+ for (i= send_group_parts ; i-- > idx ; )
+ {
+ /* Get reference pointers to sum functions in place */
+ copy_ref_ptr_array(ref_ptrs, rollup.ref_pointer_arrays[i]);
+ if ((!having || having->val_int()))
+ {
+ int write_error;
+ Item *item;
+ List_iterator_fast<Item> it(rollup.fields[i]);
+ while ((item= it++))
+ {
+ if (item->type() == Item::NULL_ITEM && item->is_result_field())
+ item->save_in_result_field(1);
+ }
+ copy_sum_funcs(sum_funcs_end[i+1], sum_funcs_end[i]);
+ if (unlikely((write_error=
+ table_arg->file->ha_write_tmp_row(table_arg->record[0]))))
+ {
+ if (create_internal_tmp_table_from_heap(thd, table_arg,
+ tmp_table_param_arg->start_recinfo,
+ &tmp_table_param_arg->recinfo,
+ write_error, 0, NULL))
+ return 1;
+ }
+ }
+ }
+ /* Restore ref_pointer_array */
+ set_items_ref_array(current_ref_ptrs);
+ return 0;
+}
+
+/**
+ clear results if there are not rows found for group
+ (end_send_group/end_write_group)
+*/
+
+void inline JOIN::clear_sum_funcs()
+{
+ if (sum_funcs)
+ {
+ Item_sum *func, **func_ptr= sum_funcs;
+ while ((func= *(func_ptr++)))
+ func->clear();
+ }
+}
+
+
+/*
+ Prepare for returning 'empty row' when there is no matching row.
+
+ - Mark all tables with mark_as_null_row()
+ - Make a copy of of all simple SELECT items
+ - Reset all sum functions to NULL or 0.
+*/
+
+void JOIN::clear(table_map *cleared_tables)
+{
+ clear_tables(this, cleared_tables);
+ copy_fields(&tmp_table_param);
+ clear_sum_funcs();
+}
+
+
+/**
+ Print an EXPLAIN line with all NULLs and given message in the 'Extra' column
+
+ @retval
+ 0 ok
+ 1 OOM error or error from send_data()
+*/
+
+int print_explain_message_line(select_result_sink *result,
+ uint8 options, bool is_analyze,
+ uint select_number,
+ const char *select_type,
+ ha_rows *rows,
+ const char *message)
+{
+ /* Note: for SHOW EXPLAIN, this is caller thread's THD */
+ THD *thd= result->thd;
+ MEM_ROOT *mem_root= thd->mem_root;
+ Item *item_null= new (mem_root) Item_null(thd);
+ List<Item> item_list;
+
+ item_list.push_back(new (mem_root) Item_int(thd, (int32) select_number),
+ mem_root);
+ item_list.push_back(new (mem_root) Item_string_sys(thd, select_type),
+ mem_root);
+ /* `table` */
+ item_list.push_back(item_null, mem_root);
+
+ /* `partitions` */
+ if (options & DESCRIBE_PARTITIONS)
+ item_list.push_back(item_null, mem_root);
+
+ /* type, possible_keys, key, key_len, ref */
+ for (uint i=0 ; i < 5; i++)
+ item_list.push_back(item_null, mem_root);
+
+ /* `rows` */
+ StringBuffer<64> rows_str;
+ if (rows)
+ {
+ rows_str.append_ulonglong((ulonglong)(*rows));
+ item_list.push_back(new (mem_root)
+ Item_string_sys(thd, rows_str.ptr(),
+ rows_str.length()), mem_root);
+ }
+ else
+ item_list.push_back(item_null, mem_root);
+
+ /* `r_rows` */
+ if (is_analyze)
+ item_list.push_back(item_null, mem_root);
+
+ /* `filtered` */
+ if (is_analyze || options & DESCRIBE_EXTENDED)
+ item_list.push_back(item_null, mem_root);
+
+ /* `r_filtered` */
+ if (is_analyze)
+ item_list.push_back(item_null, mem_root);
+
+ /* `Extra` */
+ if (message)
+ item_list.push_back(new (mem_root) Item_string_sys(thd, message),
+ mem_root);
+ else
+ item_list.push_back(item_null, mem_root);
+
+ if (unlikely(thd->is_error()) || unlikely(result->send_data(item_list)))
+ return 1;
+ return 0;
+}
+
+
+/*
+ Append MRR information from quick select to the given string
+*/
+
+void explain_append_mrr_info(QUICK_RANGE_SELECT *quick, String *res)
+{
+ char mrr_str_buf[128];
+ mrr_str_buf[0]=0;
+ int len;
+ handler *h= quick->head->file;
+ len= h->multi_range_read_explain_info(quick->mrr_flags, mrr_str_buf,
+ sizeof(mrr_str_buf));
+ if (len > 0)
+ {
+ //res->append(STRING_WITH_LEN("; "));
+ res->append(mrr_str_buf, len);
+ }
+}
+
+
+///////////////////////////////////////////////////////////////////////////////
+int append_possible_keys(MEM_ROOT *alloc, String_list &list, TABLE *table,
+ key_map possible_keys)
+{
+ uint j;
+ for (j=0 ; j < table->s->keys ; j++)
+ {
+ if (possible_keys.is_set(j))
+ if (!(list.append_str(alloc, table->key_info[j].name.str)))
+ return 1;
+ }
+ return 0;
+}
+
+
+bool JOIN_TAB::save_explain_data(Explain_table_access *eta,
+ table_map prefix_tables,
+ bool distinct_arg, JOIN_TAB *first_top_tab)
+{
+ int quick_type;
+ CHARSET_INFO *cs= system_charset_info;
+ THD *thd= join->thd;
+ TABLE_LIST *table_list= table->pos_in_table_list;
+ QUICK_SELECT_I *cur_quick= NULL;
+ my_bool key_read;
+ char table_name_buffer[SAFE_NAME_LEN];
+ KEY *key_info= 0;
+ uint key_len= 0;
+ quick_type= -1;
+
+ explain_plan= eta;
+ eta->key.clear();
+ eta->quick_info= NULL;
+
+ /*
+ We assume that if this table does pre-sorting, then it doesn't do filtering
+ with SQL_SELECT.
+ */
+ DBUG_ASSERT(!(select && filesort));
+ const SQL_SELECT *tab_select= get_sql_select();
+
+ if (filesort)
+ {
+ if (!(eta->pre_join_sort=
+ new (thd->mem_root) Explain_aggr_filesort(thd->mem_root,
+ thd->lex->analyze_stmt,
+ filesort)))
+ return 1;
+ }
+ // psergey-todo: data for filtering!
+ tracker= &eta->tracker;
+ jbuf_tracker= &eta->jbuf_tracker;
+ jbuf_loops_tracker= &eta->jbuf_loops_tracker;
+ jbuf_unpack_tracker= &eta->jbuf_unpack_tracker;
+
+ /* Enable the table access time tracker only for "ANALYZE stmt" */
+ if (unlikely(thd->lex->analyze_stmt ||
+ thd->variables.log_slow_verbosity &
+ LOG_SLOW_VERBOSITY_ENGINE))
+ {
+ table->file->set_time_tracker(&eta->op_tracker);
+
+ /*
+ Set handler_for_stats even if we are not running an ANALYZE command.
+ There's no harm, and in case somebody runs a SHOW ANALYZE command we'll
+ be able to print the engine statistics.
+ */
+ if (table->file->handler_stats &&
+ table->s->tmp_table != INTERNAL_TMP_TABLE)
+ eta->handler_for_stats= table->file;
+
+ if (likely(thd->lex->analyze_stmt))
+ {
+ eta->op_tracker.set_gap_tracker(&eta->extra_time_tracker);
+ eta->jbuf_unpack_tracker.set_gap_tracker(&eta->jbuf_extra_time_tracker);
+ }
+ }
+ /* No need to save id and select_type here, they are kept in Explain_select */
+
+ /* table */
+ if (table->derived_select_number)
+ {
+ /* Derived table name generation */
+ size_t len= my_snprintf(table_name_buffer, sizeof(table_name_buffer)-1,
+ "<derived%u>",
+ table->derived_select_number);
+ eta->table_name.copy(table_name_buffer, len, cs);
+ }
+ else if (bush_children)
+ {
+ JOIN_TAB *ctab= bush_children->start;
+ /* table */
+ size_t len= my_snprintf(table_name_buffer,
+ sizeof(table_name_buffer)-1,
+ "<subquery%d>",
+ ctab->emb_sj_nest->sj_subq_pred->get_identifier());
+ eta->table_name.copy(table_name_buffer, len, cs);
+ }
+ else
+ {
+ TABLE_LIST *real_table= table->pos_in_table_list;
+ /*
+ When multi-table UPDATE/DELETE does updates/deletes to a VIEW, the view
+ is merged in a certain particular way (grep for DT_MERGE_FOR_INSERT).
+
+ As a result, view's underlying tables have $tbl->pos_in_table_list={view}.
+ We don't want to print view name in EXPLAIN, we want underlying table's
+ alias (like specified in the view definition).
+ */
+ if (real_table->merged_for_insert)
+ {
+ TABLE_LIST *view_child=
+ real_table->view->first_select_lex()->table_list.first;
+ for (;view_child; view_child= view_child->next_local)
+ {
+ if (view_child->table == table)
+ {
+ real_table= view_child;
+ break;
+ }
+ }
+ }
+ eta->table_name.copy(real_table->alias.str, real_table->alias.length, cs);
+ }
+
+ /* "partitions" column */
+ {
+#ifdef WITH_PARTITION_STORAGE_ENGINE
+ partition_info *part_info;
+ if (!table->derived_select_number &&
+ (part_info= table->part_info))
+ { //TODO: all thd->mem_root here should be fixed
+ make_used_partitions_str(thd->mem_root, part_info, &eta->used_partitions,
+ eta->used_partitions_list);
+ eta->used_partitions_set= true;
+ }
+ else
+ eta->used_partitions_set= false;
+#else
+ /* just produce empty column if partitioning is not compiled in */
+ eta->used_partitions_set= false;
+#endif
+ }
+
+ /* "type" column */
+ enum join_type tab_type= type;
+ if ((type == JT_ALL || type == JT_HASH) &&
+ tab_select && tab_select->quick && use_quick != 2)
+ {
+ cur_quick= tab_select->quick;
+ quick_type= cur_quick->get_type();
+ if ((quick_type == QUICK_SELECT_I::QS_TYPE_INDEX_MERGE) ||
+ (quick_type == QUICK_SELECT_I::QS_TYPE_INDEX_INTERSECT) ||
+ (quick_type == QUICK_SELECT_I::QS_TYPE_ROR_INTERSECT) ||
+ (quick_type == QUICK_SELECT_I::QS_TYPE_ROR_UNION))
+ tab_type= type == JT_ALL ? JT_INDEX_MERGE : JT_HASH_INDEX_MERGE;
+ else
+ tab_type= type == JT_ALL ? JT_RANGE : JT_HASH_RANGE;
+ }
+ eta->type= tab_type;
+
+ /* Build "possible_keys" value */
+ // psergey-todo: why does this use thd MEM_ROOT??? Doesn't this
+ // break ANALYZE ? thd->mem_root will be freed, and after that we will
+ // attempt to print the query plan?
+ if (append_possible_keys(thd->mem_root, eta->possible_keys, table, keys))
+ return 1;
+ // psergey-todo: ^ check for error return code
+
+ /* Build "key", "key_len", and "ref" */
+
+ if (rowid_filter)
+ {
+ Range_rowid_filter *range_filter= (Range_rowid_filter *) rowid_filter;
+ QUICK_SELECT_I *quick= range_filter->get_select()->quick;
+
+ Explain_rowid_filter *erf= new (thd->mem_root) Explain_rowid_filter;
+ erf->quick= quick->get_explain(thd->mem_root);
+ erf->selectivity= range_rowid_filter_info->selectivity;
+ erf->rows= quick->records;
+ if (!(erf->tracker= new Rowid_filter_tracker(thd->lex->analyze_stmt)))
+ return 1;
+ rowid_filter->set_tracker(erf->tracker);
+ eta->rowid_filter= erf;
+ }
+
+ if (tab_type == JT_NEXT)
+ {
+ key_info= table->key_info+index;
+ key_len= key_info->key_length;
+ }
+ else if (ref.key_parts)
+ {
+ key_info= get_keyinfo_by_key_no(ref.key);
+ key_len= ref.key_length;
+ }
+
+ /*
+ In STRAIGHT_JOIN queries, there can be join tabs with JT_CONST type
+ that still have quick selects.
+ */
+ if (tab_select && tab_select->quick && tab_type != JT_CONST)
+ {
+ if (!(eta->quick_info= tab_select->quick->get_explain(thd->mem_root)))
+ return 1;
+ }
+
+ if (key_info) /* 'index' or 'ref' access */
+ {
+ eta->key.set(thd->mem_root, key_info, key_len);
+
+ if (ref.key_parts && tab_type != JT_FT)
+ {
+ store_key **key_ref= ref.key_copy;
+ for (uint kp= 0; kp < ref.key_parts; kp++)
+ {
+ if ((key_part_map(1) << kp) & ref.const_ref_part_map)
+ {
+ if (!(eta->ref_list.append_str(thd->mem_root, "const")))
+ return 1;
+ /*
+ create_ref_for_key() handles keypart=const equalities as follows:
+ - non-EXPLAIN execution will copy the "const" to lookup tuple
+ immediately and will not add an element to ref.key_copy
+ - EXPLAIN will put an element into ref.key_copy. Since we've
+ just printed "const" for it, we should skip it here
+ */
+ if (thd->lex->describe)
+ key_ref++;
+ }
+ else
+ {
+ if (!(eta->ref_list.append_str(thd->mem_root, (*key_ref)->name())))
+ return 1;
+ key_ref++;
+ }
+ }
+ }
+ }
+
+ if (tab_type == JT_HASH_NEXT) /* full index scan + hash join */
+ {
+ eta->hash_next_key.set(thd->mem_root,
+ & table->key_info[index],
+ table->key_info[index].key_length);
+ // psergey-todo: ^ is the above correct? are we necessarily joining on all
+ // columns?
+ }
+
+ if (!key_info)
+ {
+ if (table_list && /* SJM bushes don't have table_list */
+ table_list->schema_table &&
+ table_list->schema_table->i_s_requested_object & OPTIMIZE_I_S_TABLE)
+ {
+ IS_table_read_plan *is_table_read_plan= table_list->is_table_read_plan;
+ StringBuffer<64> key_name_buf;
+ if (is_table_read_plan->trivial_show_command ||
+ is_table_read_plan->has_db_lookup_value())
+ {
+ /* The "key" has the name of the column referring to the database */
+ int f_idx= table_list->schema_table->idx_field1;
+ LEX_CSTRING tmp= table_list->schema_table->fields_info[f_idx].name();
+ key_name_buf.append(tmp, cs);
+ }
+ if (is_table_read_plan->trivial_show_command ||
+ is_table_read_plan->has_table_lookup_value())
+ {
+ if (is_table_read_plan->trivial_show_command ||
+ is_table_read_plan->has_db_lookup_value())
+ key_name_buf.append(',');
+
+ int f_idx= table_list->schema_table->idx_field2;
+ LEX_CSTRING tmp= table_list->schema_table->fields_info[f_idx].name();
+ key_name_buf.append(tmp, cs);
+ }
+
+ if (key_name_buf.length())
+ eta->key.set_pseudo_key(thd->mem_root, key_name_buf.c_ptr_safe());
+ }
+ }
+
+ /* "rows" */
+ if (table_list /* SJM bushes don't have table_list */ &&
+ table_list->schema_table)
+ {
+ /* I_S tables have rows=extra=NULL */
+ eta->rows_set= false;
+ eta->filtered_set= false;
+ }
+ else
+ {
+ ha_rows examined_rows= get_examined_rows();
+
+ eta->rows_set= true;
+ eta->rows= examined_rows;
+
+ /* "filtered" */
+ float f= 0.0;
+ if (examined_rows)
+ {
+ double pushdown_cond_selectivity= cond_selectivity;
+ if (pushdown_cond_selectivity == 1.0)
+ f= (float) (100.0 * records_read / examined_rows);
+ else
+ f= (float) (100.0 * pushdown_cond_selectivity);
+ }
+ set_if_smaller(f, 100.0);
+ eta->filtered_set= true;
+ eta->filtered= f;
+ }
+
+ /* Build "Extra" field and save it */
+ key_read= table->file->keyread_enabled();
+ if ((tab_type == JT_NEXT || tab_type == JT_CONST) &&
+ table->covering_keys.is_set(index))
+ key_read=1;
+ if (quick_type == QUICK_SELECT_I::QS_TYPE_ROR_INTERSECT &&
+ !((QUICK_ROR_INTERSECT_SELECT*)cur_quick)->need_to_fetch_row)
+ key_read=1;
+
+ if (table_list->table_function)
+ eta->push_extra(ET_TABLE_FUNCTION);
+
+ if (info)
+ {
+ eta->push_extra(info);
+ }
+ else if (packed_info & TAB_INFO_HAVE_VALUE)
+ {
+ if (packed_info & TAB_INFO_USING_INDEX)
+ eta->push_extra(ET_USING_INDEX);
+ if (packed_info & TAB_INFO_USING_WHERE)
+ eta->push_extra(ET_USING_WHERE);
+ if (packed_info & TAB_INFO_FULL_SCAN_ON_NULL)
+ eta->push_extra(ET_FULL_SCAN_ON_NULL_KEY);
+ }
+ else
+ {
+ uint keyno= MAX_KEY;
+ if (ref.key_parts)
+ keyno= ref.key;
+ else if (tab_select && cur_quick)
+ keyno = cur_quick->index;
+
+ if (keyno != MAX_KEY && keyno == table->file->pushed_idx_cond_keyno &&
+ table->file->pushed_idx_cond)
+ {
+ eta->push_extra(ET_USING_INDEX_CONDITION);
+ eta->pushed_index_cond= table->file->pushed_idx_cond;
+ }
+ else if (cache_idx_cond)
+ {
+ eta->push_extra(ET_USING_INDEX_CONDITION_BKA);
+ eta->pushed_index_cond= cache_idx_cond;
+ }
+
+ if (quick_type == QUICK_SELECT_I::QS_TYPE_ROR_UNION ||
+ quick_type == QUICK_SELECT_I::QS_TYPE_ROR_INTERSECT ||
+ quick_type == QUICK_SELECT_I::QS_TYPE_INDEX_INTERSECT ||
+ quick_type == QUICK_SELECT_I::QS_TYPE_INDEX_MERGE)
+ {
+ eta->push_extra(ET_USING);
+ }
+ if (tab_select)
+ {
+ if (use_quick == 2)
+ {
+ eta->push_extra(ET_RANGE_CHECKED_FOR_EACH_RECORD);
+ eta->range_checked_fer= new (thd->mem_root) Explain_range_checked_fer;
+ if (eta->range_checked_fer)
+ eta->range_checked_fer->
+ append_possible_keys_stat(thd->mem_root, table, keys);
+ }
+ else if (tab_select->cond ||
+ (cache_select && cache_select->cond))
+ {
+ const COND *pushed_cond= table->file->pushed_cond;
+
+ if ((table->file->ha_table_flags() &
+ HA_CAN_TABLE_CONDITION_PUSHDOWN) &&
+ pushed_cond)
+ {
+ eta->push_extra(ET_USING_WHERE_WITH_PUSHED_CONDITION);
+ }
+ else
+ {
+ eta->where_cond= tab_select->cond;
+ eta->cache_cond= cache_select? cache_select->cond : NULL;
+ eta->push_extra(ET_USING_WHERE);
+ }
+ }
+ }
+ if (table_list /* SJM bushes don't have table_list */ &&
+ table_list->schema_table &&
+ table_list->schema_table->i_s_requested_object & OPTIMIZE_I_S_TABLE)
+ {
+ if (!table_list->table_open_method)
+ eta->push_extra(ET_SKIP_OPEN_TABLE);
+ else if (table_list->table_open_method == OPEN_FRM_ONLY)
+ eta->push_extra(ET_OPEN_FRM_ONLY);
+ else
+ eta->push_extra(ET_OPEN_FULL_TABLE);
+ /* psergey-note: the following has a bug.*/
+ if (table_list->is_table_read_plan->trivial_show_command ||
+ (table_list->is_table_read_plan->has_db_lookup_value() &&
+ table_list->is_table_read_plan->has_table_lookup_value()))
+ eta->push_extra(ET_SCANNED_0_DATABASES);
+ else if (table_list->is_table_read_plan->has_db_lookup_value() ||
+ table_list->is_table_read_plan->has_table_lookup_value())
+ eta->push_extra(ET_SCANNED_1_DATABASE);
+ else
+ eta->push_extra(ET_SCANNED_ALL_DATABASES);
+ }
+ if (key_read)
+ {
+ if (quick_type == QUICK_SELECT_I::QS_TYPE_GROUP_MIN_MAX)
+ {
+ QUICK_GROUP_MIN_MAX_SELECT *qgs=
+ (QUICK_GROUP_MIN_MAX_SELECT *) tab_select->quick;
+ eta->push_extra(ET_USING_INDEX_FOR_GROUP_BY);
+ eta->loose_scan_is_scanning= qgs->loose_scan_is_scanning();
+ }
+ else
+ eta->push_extra(ET_USING_INDEX);
+ }
+ if (table->reginfo.not_exists_optimize)
+ eta->push_extra(ET_NOT_EXISTS);
+
+ if (quick_type == QUICK_SELECT_I::QS_TYPE_RANGE)
+ {
+ explain_append_mrr_info((QUICK_RANGE_SELECT*)(tab_select->quick),
+ &eta->mrr_type);
+ if (eta->mrr_type.length() > 0)
+ eta->push_extra(ET_USING_MRR);
+ }
+
+ if (shortcut_for_distinct)
+ eta->push_extra(ET_DISTINCT);
+
+ if (loosescan_match_tab)
+ {
+ eta->push_extra(ET_LOOSESCAN);
+ }
+
+ if (first_weedout_table)
+ {
+ eta->start_dups_weedout= true;
+ eta->push_extra(ET_START_TEMPORARY);
+ }
+ if (check_weed_out_table)
+ {
+ eta->push_extra(ET_END_TEMPORARY);
+ eta->end_dups_weedout= true;
+ }
+
+ else if (do_firstmatch)
+ {
+ if (do_firstmatch == /*join->join_tab*/ first_top_tab - 1)
+ eta->push_extra(ET_FIRST_MATCH);
+ else
+ {
+ eta->push_extra(ET_FIRST_MATCH);
+ TABLE *prev_table=do_firstmatch->table;
+ if (prev_table->derived_select_number)
+ {
+ char namebuf[NAME_LEN];
+ /* Derived table name generation */
+ size_t len= my_snprintf(namebuf, sizeof(namebuf)-1,
+ "<derived%u>",
+ prev_table->derived_select_number);
+ eta->firstmatch_table_name.append(namebuf, len);
+ }
+ else
+ eta->firstmatch_table_name.append(&prev_table->pos_in_table_list->alias);
+ }
+ }
+
+ for (uint part= 0; part < ref.key_parts; part++)
+ {
+ if (ref.cond_guards[part])
+ {
+ eta->push_extra(ET_FULL_SCAN_ON_NULL_KEY);
+ eta->full_scan_on_null_key= true;
+ break;
+ }
+ }
+
+ if (cache)
+ {
+ eta->push_extra(ET_USING_JOIN_BUFFER);
+ if (cache->save_explain_data(&eta->bka_type))
+ return 1;
+ }
+ }
+
+ /*
+ In case this is a derived table, here we remember the number of
+ subselect that used to produce it.
+ */
+ if (!(table_list && table_list->is_with_table_recursive_reference()))
+ eta->derived_select_number= table->derived_select_number;
+
+ /* The same for non-merged semi-joins */
+ eta->non_merged_sjm_number = get_non_merged_semijoin_select();
+
+ return 0;
+}
+
+
+/*
+ Walk through join->aggr_tables and save aggregation/grouping query plan into
+ an Explain_select object
+
+ @retval
+ 0 ok
+ 1 error
+*/
+
+bool save_agg_explain_data(JOIN *join, Explain_select *xpl_sel)
+{
+ JOIN_TAB *join_tab=join->join_tab + join->exec_join_tab_cnt();
+ Explain_aggr_node *prev_node;
+ Explain_aggr_node *node= xpl_sel->aggr_tree;
+ bool is_analyze= join->thd->lex->analyze_stmt;
+ THD *thd= join->thd;
+
+ for (uint i= 0; i < join->aggr_tables; i++, join_tab++)
+ {
+ // Each aggregate means a temp.table
+ prev_node= node;
+ if (!(node= new (thd->mem_root) Explain_aggr_tmp_table))
+ return 1;
+ node->child= prev_node;
+
+ if (join_tab->window_funcs_step)
+ {
+ Explain_aggr_node *new_node=
+ join_tab->window_funcs_step->save_explain_plan(thd->mem_root,
+ is_analyze);
+ if (!new_node)
+ return 1;
+
+ prev_node=node;
+ node= new_node;
+ node->child= prev_node;
+ }
+
+ /* The below matches execution in join_init_read_record() */
+ if (join_tab->distinct)
+ {
+ prev_node= node;
+ if (!(node= new (thd->mem_root) Explain_aggr_remove_dups))
+ return 1;
+ node->child= prev_node;
+ }
+
+ if (join_tab->filesort)
+ {
+ Explain_aggr_filesort *eaf =
+ new (thd->mem_root) Explain_aggr_filesort(thd->mem_root, is_analyze, join_tab->filesort);
+ if (!eaf)
+ return 1;
+ prev_node= node;
+ node= eaf;
+ node->child= prev_node;
+ }
+ }
+ xpl_sel->aggr_tree= node;
+ return 0;
+}
+
+
+/**
+ Save Query Plan Footprint
+
+ @note
+ Currently, this function may be called multiple times
+
+ @retval
+ 0 ok
+ 1 error
+*/
+
+int JOIN::save_explain_data_intern(Explain_query *output,
+ bool need_tmp_table_arg,
+ bool need_order_arg, bool distinct_arg,
+ const char *message)
+{
+ JOIN *join= this; /* Legacy: this code used to be a non-member function */
+ DBUG_ENTER("JOIN::save_explain_data_intern");
+ DBUG_PRINT("info", ("Select %p (%u), type %s, message %s",
+ join->select_lex, join->select_lex->select_number,
+ join->select_lex->type,
+ message ? message : "NULL"));
+ DBUG_ASSERT(have_query_plan == QEP_AVAILABLE);
+ /* fake_select_lex is created/printed by Explain_union */
+ DBUG_ASSERT(join->select_lex != join->unit->fake_select_lex);
+
+ /* There should be no attempts to save query plans for merged selects */
+ DBUG_ASSERT(!join->select_lex->master_unit()->derived ||
+ join->select_lex->master_unit()->derived->is_materialized_derived() ||
+ join->select_lex->master_unit()->derived->is_with_table());
+
+ /* Don't log this into the slow query log */
+
+ if (message)
+ {
+ if (!(explain= new (output->mem_root)
+ Explain_select(output->mem_root,
+ thd->lex->analyze_stmt)))
+ DBUG_RETURN(1);
+#ifndef DBUG_OFF
+ explain->select_lex= select_lex;
+#endif
+ join->select_lex->set_explain_type(true);
+
+ explain->select_id= join->select_lex->select_number;
+ explain->select_type= join->select_lex->type;
+ explain->linkage= select_lex->get_linkage();
+ explain->using_temporary= need_tmp;
+ explain->using_filesort= need_order_arg;
+ /* Setting explain->message means that all other members are invalid */
+ explain->message= message;
+
+ if (select_lex->master_unit()->derived)
+ explain->connection_type= Explain_node::EXPLAIN_NODE_DERIVED;
+ if (save_agg_explain_data(this, explain))
+ DBUG_RETURN(1);
+
+ output->add_node(explain);
+ }
+ else if (pushdown_query)
+ {
+ if (!(explain= new (output->mem_root)
+ Explain_select(output->mem_root,
+ thd->lex->analyze_stmt)))
+ DBUG_RETURN(1);
+ select_lex->set_explain_type(true);
+
+ explain->select_id= select_lex->select_number;
+ explain->select_type= select_lex->type;
+ explain->linkage= select_lex->get_linkage();
+ explain->using_temporary= need_tmp;
+ explain->using_filesort= need_order_arg;
+ explain->message= "Storage engine handles GROUP BY";
+
+ if (select_lex->master_unit()->derived)
+ explain->connection_type= Explain_node::EXPLAIN_NODE_DERIVED;
+ output->add_node(explain);
+ }
+ else
+ {
+ Explain_select *xpl_sel;
+ explain= xpl_sel=
+ new (output->mem_root) Explain_select(output->mem_root,
+ thd->lex->analyze_stmt);
+ if (!explain)
+ DBUG_RETURN(1);
+
+ table_map used_tables=0;
+
+ join->select_lex->set_explain_type(true);
+ xpl_sel->select_id= join->select_lex->select_number;
+ xpl_sel->select_type= join->select_lex->type;
+ xpl_sel->linkage= select_lex->get_linkage();
+ xpl_sel->is_lateral= ((select_lex->get_linkage() == DERIVED_TABLE_TYPE) &&
+ (select_lex->uncacheable & UNCACHEABLE_DEPENDENT));
+ if (select_lex->master_unit()->derived)
+ xpl_sel->connection_type= Explain_node::EXPLAIN_NODE_DERIVED;
+
+ if (save_agg_explain_data(this, xpl_sel))
+ DBUG_RETURN(1);
+
+ xpl_sel->exec_const_cond= exec_const_cond;
+ xpl_sel->outer_ref_cond= outer_ref_cond;
+ xpl_sel->pseudo_bits_cond= pseudo_bits_cond;
+ if (tmp_having)
+ xpl_sel->having= tmp_having;
+ else
+ xpl_sel->having= having;
+ xpl_sel->having_value= having_value;
+
+ JOIN_TAB* const first_top_tab= join->first_breadth_first_tab();
+ JOIN_TAB* prev_bush_root_tab= NULL;
+
+ Explain_basic_join *cur_parent= xpl_sel;
+
+ for (JOIN_TAB *tab= first_explain_order_tab(join); tab;
+ tab= next_explain_order_tab(join, tab))
+ {
+ JOIN_TAB *saved_join_tab= NULL;
+ TABLE *cur_table= tab->table;
+
+ /* Don't show eliminated tables */
+ if (cur_table->map & join->eliminated_tables)
+ {
+ used_tables|= cur_table->map;
+ continue;
+ }
+
+
+ Explain_table_access *eta= (new (output->mem_root)
+ Explain_table_access(output->mem_root,
+ thd->lex->analyze_stmt));
+
+ if (!eta)
+ DBUG_RETURN(1);
+ if (tab->bush_root_tab != prev_bush_root_tab)
+ {
+ if (tab->bush_root_tab)
+ {
+ /*
+ We've entered an SJ-Materialization nest. Create an object for it.
+ */
+ if (!(cur_parent=
+ new (output->mem_root) Explain_basic_join(output->mem_root)))
+ DBUG_RETURN(1);
+
+ JOIN_TAB *first_child= tab->bush_root_tab->bush_children->start;
+ cur_parent->select_id=
+ first_child->emb_sj_nest->sj_subq_pred->get_identifier();
+ }
+ else
+ {
+ /*
+ We've just left an SJ-Materialization nest. We are at the join tab
+ that 'embeds the nest'
+ */
+ DBUG_ASSERT(tab->bush_children);
+ eta->sjm_nest= cur_parent;
+ cur_parent= xpl_sel;
+ }
+ }
+ prev_bush_root_tab= tab->bush_root_tab;
+
+ cur_parent->add_table(eta, output);
+ if (tab->save_explain_data(eta, used_tables, distinct_arg, first_top_tab))
+ DBUG_RETURN(1);
+
+ if (saved_join_tab)
+ tab= saved_join_tab;
+
+ // For next iteration
+ used_tables|= cur_table->map;
+ }
+ output->add_node(xpl_sel);
+ }
+
+ /*
+ Don't try to add query plans for child selects if this select was pushed
+ down into a Smart Storage Engine:
+ - the entire statement was pushed down ("PUSHED SELECT"), or
+ - this derived table was pushed down ("PUSHED DERIVED")
+ */
+ if (!select_lex->pushdown_select && select_lex->type != pushed_derived_text)
+ for (SELECT_LEX_UNIT *tmp_unit= join->select_lex->first_inner_unit();
+ tmp_unit;
+ tmp_unit= tmp_unit->next_unit())
+ if (tmp_unit->explainable())
+ explain->add_child(tmp_unit->first_select()->select_number);
+
+ if (select_lex->is_top_level_node())
+ output->query_plan_ready();
+
+ DBUG_RETURN(0);
+}
+
+
+/*
+ This function serves as "shortcut point" for EXPLAIN queries.
+
+ The EXPLAIN statement executes just like its SELECT counterpart would
+ execute, except that JOIN::exec() will call select_describe() instead of
+ actually executing the query.
+
+ Inside select_describe():
+ - Query plan is updated with latest QEP choices made at the start of
+ JOIN::exec().
+ - the proces of "almost execution" is invoked for the children subqueries.
+
+ Overall, select_describe() is a legacy of old EXPLAIN implementation and
+ should be removed.
+*/
+
+static void select_describe(JOIN *join, bool need_tmp_table, bool need_order,
+ bool distinct,const char *message)
+{
+ THD *thd=join->thd;
+ select_result *result=join->result;
+ DBUG_ENTER("select_describe");
+
+ if (join->select_lex->pushdown_select)
+ {
+ /*
+ The whole statement was pushed down to a Smart Storage Engine. Do not
+ attempt to produce a query plan locally.
+ */
+ DBUG_VOID_RETURN;
+ }
+
+ /* Update the QPF with latest values of using_temporary, using_filesort */
+ for (SELECT_LEX_UNIT *unit= join->select_lex->first_inner_unit();
+ unit;
+ unit= unit->next_unit())
+ {
+ /*
+ This fix_fields() call is to handle an edge case like this:
+
+ SELECT ... UNION SELECT ... ORDER BY (SELECT ...)
+
+ for such queries, we'll get here before having called
+ subquery_expr->fix_fields(), which will cause failure to
+ */
+ if (unit->item && !unit->item->fixed())
+ {
+ Item *ref= unit->item;
+ if (unit->item->fix_fields(thd, &ref))
+ DBUG_VOID_RETURN;
+ DBUG_ASSERT(ref == unit->item);
+ }
+
+ if (unit->explainable())
+ {
+ if (mysql_explain_union(thd, unit, result))
+ DBUG_VOID_RETURN;
+ }
+ }
+ DBUG_VOID_RETURN;
+}
+
+
+bool mysql_explain_union(THD *thd, SELECT_LEX_UNIT *unit, select_result *result)
+{
+ DBUG_ENTER("mysql_explain_union");
+ bool res= 0;
+ SELECT_LEX *first= unit->first_select();
+ bool is_pushed_union= unit->derived && unit->derived->pushdown_derived;
+
+ for (SELECT_LEX *sl= first; sl; sl= sl->next_select())
+ {
+ sl->set_explain_type(FALSE);
+ sl->options|= SELECT_DESCRIBE;
+ }
+
+ if (unit->is_unit_op() || unit->fake_select_lex)
+ {
+ ulonglong save_options= 0;
+
+ if (unit->union_needs_tmp_table() && unit->fake_select_lex)
+ {
+ save_options= unit->fake_select_lex->options;
+ unit->fake_select_lex->select_number= FAKE_SELECT_LEX_ID; // just for initialization
+ unit->fake_select_lex->type= unit_operation_text[unit->common_op()];
+ unit->fake_select_lex->options|= SELECT_DESCRIBE;
+ }
+ if (!(res= unit->prepare(unit->derived, result,
+ SELECT_NO_UNLOCK | SELECT_DESCRIBE)))
+ {
+ if (!is_pushed_union)
+ res= unit->exec();
+ }
+
+ if (unit->union_needs_tmp_table() && unit->fake_select_lex)
+ unit->fake_select_lex->options= save_options;
+ }
+ else
+ {
+ thd->lex->current_select= first;
+ unit->set_limit(unit->global_parameters());
+ res= mysql_select(thd, first->table_list.first, first->item_list,
+ first->where,
+ first->order_list.elements + first->group_list.elements,
+ first->order_list.first, first->group_list.first,
+ first->having, thd->lex->proc_list.first,
+ first->options | thd->variables.option_bits | SELECT_DESCRIBE,
+ result, unit, first);
+ }
+
+ DBUG_RETURN(res || thd->is_error());
+}
+
+
+static void print_table_array(THD *thd,
+ table_map eliminated_tables,
+ String *str, TABLE_LIST **table,
+ TABLE_LIST **end,
+ enum_query_type query_type)
+{
+ (*table)->print(thd, eliminated_tables, str, query_type);
+
+ for (TABLE_LIST **tbl= table + 1; tbl < end; tbl++)
+ {
+ TABLE_LIST *curr= *tbl;
+
+ /*
+ The "eliminated_tables &&" check guards againist the case of
+ printing the query for CREATE VIEW. We do that without having run
+ JOIN::optimize() and so will have nested_join->used_tables==0.
+ */
+ if (eliminated_tables &&
+ ((curr->table && (curr->table->map & eliminated_tables)) ||
+ (curr->nested_join && !(curr->nested_join->used_tables &
+ ~eliminated_tables))))
+ {
+ /* as of 5.5, print_join doesnt put eliminated elements into array */
+ DBUG_ASSERT(0);
+ continue;
+ }
+
+ /* JOIN_TYPE_OUTER is just a marker unrelated to real join */
+ if (curr->outer_join & (JOIN_TYPE_LEFT|JOIN_TYPE_RIGHT))
+ {
+ /* MySQL converts right to left joins */
+ str->append(STRING_WITH_LEN(" left join "));
+ }
+ else if (curr->straight)
+ str->append(STRING_WITH_LEN(" straight_join "));
+ else if (curr->sj_inner_tables)
+ str->append(STRING_WITH_LEN(" semi join "));
+ else
+ str->append(STRING_WITH_LEN(" join "));
+
+ curr->print(thd, eliminated_tables, str, query_type);
+ if (curr->on_expr)
+ {
+ str->append(STRING_WITH_LEN(" on("));
+ curr->on_expr->print(str, query_type);
+ str->append(')');
+ }
+ }
+}
+
+
+/*
+ Check if the passed table is
+ - a base table which was eliminated, or
+ - a join nest which only contained eliminated tables (and so was eliminated,
+ too)
+*/
+
+bool is_eliminated_table(table_map eliminated_tables, TABLE_LIST *tbl)
+{
+ return eliminated_tables &&
+ ((tbl->table && (tbl->table->map & eliminated_tables)) ||
+ (tbl->nested_join && !(tbl->nested_join->used_tables &
+ ~eliminated_tables)));
+}
+
+/**
+ Print joins from the FROM clause.
+
+ @param thd thread handler
+ @param str string where table should be printed
+ @param tables list of tables in join
+ @query_type type of the query is being generated
+*/
+
+static void print_join(THD *thd,
+ table_map eliminated_tables,
+ String *str,
+ List<TABLE_LIST> *tables,
+ enum_query_type query_type)
+{
+ /* List is reversed => we should reverse it before using */
+ List_iterator_fast<TABLE_LIST> ti(*tables);
+ TABLE_LIST **table;
+ DBUG_ENTER("print_join");
+
+ /*
+ If the QT_NO_DATA_EXPANSION flag is specified, we print the
+ original table list, including constant tables that have been
+ optimized away, as the constant tables may be referenced in the
+ expression printed by Item_field::print() when this flag is given.
+ Otherwise, only non-const tables are printed.
+
+ Example:
+
+ Original SQL:
+ select * from (select 1) t
+
+ Printed without QT_NO_DATA_EXPANSION:
+ select '1' AS `1` from dual
+
+ Printed with QT_NO_DATA_EXPANSION:
+ select `t`.`1` from (select 1 AS `1`) `t`
+ */
+ const bool print_const_tables= (query_type & QT_NO_DATA_EXPANSION);
+ size_t tables_to_print= 0;
+
+ for (TABLE_LIST *t= ti++; t ; t= ti++)
+ {
+ /* See comment in print_table_array() about the second condition */
+ if (print_const_tables || !t->optimized_away)
+ if (!is_eliminated_table(eliminated_tables, t))
+ tables_to_print++;
+ }
+ if (tables_to_print == 0)
+ {
+ str->append(STRING_WITH_LEN("dual"));
+ DBUG_VOID_RETURN; // all tables were optimized away
+ }
+ ti.rewind();
+
+ if (!(table= static_cast<TABLE_LIST **>(thd->alloc(sizeof(TABLE_LIST*) *
+ tables_to_print))))
+ DBUG_VOID_RETURN; // out of memory
+
+ TABLE_LIST *tmp, **t= table + (tables_to_print - 1);
+ while ((tmp= ti++))
+ {
+ if (tmp->optimized_away && !print_const_tables)
+ continue;
+ if (is_eliminated_table(eliminated_tables, tmp))
+ continue;
+ *t--= tmp;
+ }
+
+ DBUG_ASSERT(tables->elements >= 1);
+ /*
+ Assert that the first table in the list isn't eliminated. This comes from
+ the fact that the first table can't be inner table of an outer join.
+ */
+ DBUG_ASSERT(!eliminated_tables ||
+ !(((*table)->table && ((*table)->table->map & eliminated_tables)) ||
+ ((*table)->nested_join && !((*table)->nested_join->used_tables &
+ ~eliminated_tables))));
+ /*
+ If the first table is a semi-join nest, swap it with something that is
+ not a semi-join nest.
+ */
+ if ((*table)->sj_inner_tables)
+ {
+ TABLE_LIST **end= table + tables_to_print;
+ for (TABLE_LIST **t2= table; t2!=end; t2++)
+ {
+ if (!(*t2)->sj_inner_tables)
+ {
+ tmp= *t2;
+ *t2= *table;
+ *table= tmp;
+ break;
+ }
+ }
+ }
+ print_table_array(thd, eliminated_tables, str, table,
+ table + tables_to_print, query_type);
+ DBUG_VOID_RETURN;
+}
+
+/**
+ @brief Print an index hint
+
+ @details Prints out the USE|FORCE|IGNORE index hint.
+
+ @param thd the current thread
+ @param[out] str appends the index hint here
+ @param hint what the hint is (as string : "USE INDEX"|
+ "FORCE INDEX"|"IGNORE INDEX")
+ @param hint_length the length of the string in 'hint'
+ @param indexes a list of index names for the hint
+*/
+
+void
+Index_hint::print(THD *thd, String *str)
+{
+ switch (type)
+ {
+ case INDEX_HINT_IGNORE: str->append(STRING_WITH_LEN("IGNORE INDEX")); break;
+ case INDEX_HINT_USE: str->append(STRING_WITH_LEN("USE INDEX")); break;
+ case INDEX_HINT_FORCE: str->append(STRING_WITH_LEN("FORCE INDEX")); break;
+ }
+ str->append(STRING_WITH_LEN(" ("));
+ if (key_name.length)
+ {
+ if (thd && !system_charset_info->strnncoll(
+ (const uchar *)key_name.str, key_name.length,
+ (const uchar *)primary_key_name.str,
+ primary_key_name.length))
+ str->append(primary_key_name);
+ else
+ append_identifier(thd, str, &key_name);
+}
+ str->append(')');
+}
+
+
+/**
+ Print table as it should be in join list.
+
+ @param str string where table should be printed
+*/
+
+void TABLE_LIST::print(THD *thd, table_map eliminated_tables, String *str,
+ enum_query_type query_type)
+{
+ if (nested_join)
+ {
+ str->append('(');
+ print_join(thd, eliminated_tables, str, &nested_join->join_list, query_type);
+ str->append(')');
+ }
+ else if (jtbm_subselect)
+ {
+ if (jtbm_subselect->engine->engine_type() ==
+ subselect_engine::SINGLE_SELECT_ENGINE)
+ {
+ /*
+ We get here when conversion into materialization didn't finish (this
+ happens when
+ - The subquery is a degenerate case which produces 0 or 1 record
+ - subquery's optimization didn't finish because of @@max_join_size
+ limits
+ - ... maybe some other cases like this
+ */
+ str->append(STRING_WITH_LEN(" <materialize> ("));
+ jtbm_subselect->engine->print(str, query_type);
+ str->append(')');
+ }
+ else
+ {
+ str->append(STRING_WITH_LEN(" <materialize> ("));
+ subselect_hash_sj_engine *hash_engine;
+ hash_engine= (subselect_hash_sj_engine*)jtbm_subselect->engine;
+ hash_engine->materialize_engine->print(str, query_type);
+ str->append(')');
+ }
+ }
+ else
+ {
+ const char *cmp_name; // Name to compare with alias
+ if (view_name.str)
+ {
+ // A view
+
+ if (!(belong_to_view &&
+ belong_to_view->compact_view_format) &&
+ !(query_type & QT_ITEM_IDENT_SKIP_DB_NAMES))
+ {
+ append_identifier(thd, str, &view_db);
+ str->append('.');
+ }
+ append_identifier(thd, str, &view_name);
+ cmp_name= view_name.str;
+ }
+ else if (derived)
+ {
+ if (!is_with_table())
+ {
+ // A derived table
+ str->append('(');
+ derived->print(str, query_type);
+ str->append(')');
+ cmp_name= ""; // Force printing of alias
+ }
+ else
+ {
+ append_identifier(thd, str, &table_name);
+ cmp_name= table_name.str;
+ }
+ }
+ else if (table_function)
+ {
+ /* A table function. */
+ (void) table_function->print(thd, this, str, query_type);
+ str->append(' ');
+ append_identifier(thd, str, &alias);
+ cmp_name= alias.str;
+ }
+ else
+ {
+ // A normal table
+
+ if (!(belong_to_view &&
+ belong_to_view->compact_view_format) &&
+ !(query_type & QT_ITEM_IDENT_SKIP_DB_NAMES))
+ {
+ append_identifier(thd, str, &db);
+ str->append('.');
+ }
+ if (schema_table)
+ {
+ append_identifier(thd, str, &schema_table_name);
+ cmp_name= schema_table_name.str;
+ }
+ else
+ {
+ append_identifier(thd, str, &table_name);
+ cmp_name= table_name.str;
+ }
+#ifdef WITH_PARTITION_STORAGE_ENGINE
+ if (partition_names && partition_names->elements)
+ {
+ int i, num_parts= partition_names->elements;
+ List_iterator<String> name_it(*(partition_names));
+ str->append(STRING_WITH_LEN(" PARTITION ("));
+ for (i= 1; i <= num_parts; i++)
+ {
+ String *name= name_it++;
+ append_identifier(thd, str, name->ptr(), name->length());
+ if (i != num_parts)
+ str->append(',');
+ }
+ str->append(')');
+ }
+#endif /* WITH_PARTITION_STORAGE_ENGINE */
+ }
+ if (table && table->versioned())
+ vers_conditions.print(str, query_type);
+
+ if (my_strcasecmp(table_alias_charset, cmp_name, alias.str))
+ {
+ char t_alias_buff[MAX_ALIAS_NAME];
+ LEX_CSTRING t_alias= alias;
+
+ str->append(' ');
+ if (lower_case_table_names == 1)
+ {
+ if (alias.str && alias.str[0])
+ {
+ strmov(t_alias_buff, alias.str);
+ t_alias.length= my_casedn_str(files_charset_info, t_alias_buff);
+ t_alias.str= t_alias_buff;
+ }
+ }
+
+ append_identifier(thd, str, &t_alias);
+ }
+
+ if (index_hints)
+ {
+ List_iterator<Index_hint> it(*index_hints);
+ Index_hint *hint;
+
+ while ((hint= it++))
+ {
+ str->append(' ');
+ hint->print(thd, str);
+ }
+ }
+ }
+}
+
+enum explainable_cmd_type
+{
+ SELECT_CMD, INSERT_CMD, REPLACE_CMD, UPDATE_CMD, DELETE_CMD, NO_CMD
+};
+
+static
+const LEX_CSTRING explainable_cmd_name []=
+{
+ {STRING_WITH_LEN("select ")},
+ {STRING_WITH_LEN("insert ")},
+ {STRING_WITH_LEN("replace ")},
+ {STRING_WITH_LEN("update ")},
+ {STRING_WITH_LEN("delete ")},
+};
+
+static
+const LEX_CSTRING* get_explainable_cmd_name(enum explainable_cmd_type cmd)
+{
+ return explainable_cmd_name + cmd;
+}
+
+static
+enum explainable_cmd_type get_explainable_cmd_type(THD *thd)
+{
+ switch (thd->lex->sql_command) {
+ case SQLCOM_SELECT:
+ return SELECT_CMD;
+ case SQLCOM_INSERT:
+ case SQLCOM_INSERT_SELECT:
+ return INSERT_CMD;
+ case SQLCOM_REPLACE:
+ case SQLCOM_REPLACE_SELECT:
+ return REPLACE_CMD;
+ case SQLCOM_UPDATE:
+ case SQLCOM_UPDATE_MULTI:
+ return UPDATE_CMD;
+ case SQLCOM_DELETE:
+ case SQLCOM_DELETE_MULTI:
+ return DELETE_CMD;
+ default:
+ return SELECT_CMD;
+ }
+}
+
+
+void TABLE_LIST::print_leaf_tables(THD *thd, String *str,
+ enum_query_type query_type)
+{
+ if (merge_underlying_list)
+ {
+ for (TABLE_LIST *tbl= merge_underlying_list; tbl; tbl= tbl->next_local)
+ tbl->print_leaf_tables(thd, str, query_type);
+ }
+ else
+ print(thd, 0, str, query_type);
+}
+
+
+void st_select_lex::print_item_list(THD *thd, String *str,
+ enum_query_type query_type)
+{
+ bool first= 1;
+ /*
+ outer_select() can not be used here because it is for name resolution
+ and will return NULL at any end of name resolution chain (view/derived)
+ */
+ bool top_level= is_query_topmost(thd);
+ List_iterator_fast<Item> it(item_list);
+ Item *item;
+ while ((item= it++))
+ {
+ if (first)
+ first= 0;
+ else
+ str->append(',');
+
+ if ((is_subquery_function() && !item->is_explicit_name()) ||
+ !item->name.str)
+ {
+ /*
+ Do not print auto-generated aliases in subqueries. It has no purpose
+ in a view definition or other contexts where the query is printed.
+ */
+ item->print(str, query_type);
+ }
+ else
+ {
+ /*
+ Do not print illegal names (if it is not top level SELECT).
+ Top level view checked (and correct name are assigned),
+ other cases of top level SELECT are not important, because
+ it is not "table field".
+ */
+ if (top_level ||
+ item->is_explicit_name() ||
+ !check_column_name(item->name.str))
+ item->print_item_w_name(str, query_type);
+ else
+ item->print(str, query_type);
+ }
+ }
+}
+
+
+void st_select_lex::print_set_clause(THD *thd, String *str,
+ enum_query_type query_type)
+{
+ bool first= 1;
+ /*
+ outer_select() can not be used here because it is for name resolution
+ and will return NULL at any end of name resolution chain (view/derived)
+ */
+ List_iterator_fast<Item> it(item_list);
+ List_iterator_fast<Item> vt(thd->lex->value_list);
+ Item *item;
+ Item *val;
+ while ((item= it++, val= vt++ ))
+ {
+ if (first)
+ {
+ str->append(STRING_WITH_LEN(" set "));
+ first= 0;
+ }
+ else
+ str->append(',');
+
+ item->print(str, (enum_query_type) (query_type | QT_NO_DATA_EXPANSION));
+ str->append(STRING_WITH_LEN(" = "));
+ val->print(str, query_type);
+ }
+}
+
+
+void st_select_lex::print_on_duplicate_key_clause(THD *thd, String *str,
+ enum_query_type query_type)
+{
+ bool first= 1;
+ List_iterator_fast<Item> it(thd->lex->update_list);
+ List_iterator_fast<Item> vt(thd->lex->value_list);
+ Item *item;
+ Item *val;
+ while ((item= it++, val= vt++ ))
+ {
+ if (first)
+ {
+ str->append(STRING_WITH_LEN(" on duplicate key update "));
+ first= 0;
+ }
+ else
+ str->append(',');
+
+ item->print(str, query_type);
+ str->append(STRING_WITH_LEN(" = "));
+ val->print(str, query_type);
+ }
+}
+
+void st_select_lex::print(THD *thd, String *str, enum_query_type query_type)
+{
+ DBUG_ASSERT(thd);
+
+ if (tvc)
+ {
+ tvc->print(thd, str, query_type);
+ return;
+ }
+
+ if (is_tvc_wrapper && (query_type & QT_NO_WRAPPERS_FOR_TVC_IN_VIEW))
+ {
+ first_inner_unit()->first_select()->print(thd, str, query_type);
+ return;
+ }
+
+ bool top_level= is_query_topmost(thd);
+ enum explainable_cmd_type sel_type= SELECT_CMD;
+ if (top_level)
+ sel_type= get_explainable_cmd_type(thd);
+
+ if (sel_type == INSERT_CMD || sel_type == REPLACE_CMD)
+ {
+ str->append(get_explainable_cmd_name(sel_type));
+ str->append(STRING_WITH_LEN("into "));
+ TABLE_LIST *tbl= thd->lex->query_tables;
+ while (tbl->merge_underlying_list)
+ tbl= tbl->merge_underlying_list;
+ tbl->print(thd, 0, str, query_type);
+ if (thd->lex->field_list.elements)
+ {
+ str->append ('(');
+ List_iterator_fast<Item> it(thd->lex->field_list);
+ Item *item;
+ bool first= true;
+ while ((item= it++))
+ {
+ if (first)
+ first= false;
+ else
+ str->append(',');
+ str->append(item->name);
+ }
+ str->append(')');
+ }
+
+ str->append(' ');
+
+ if (thd->lex->sql_command == SQLCOM_INSERT ||
+ thd->lex->sql_command == SQLCOM_REPLACE)
+ {
+ str->append(STRING_WITH_LEN("values "));
+ bool is_first_elem= true;
+ List_iterator_fast<List_item> li(thd->lex->many_values);
+ List_item *list;
+
+ while ((list= li++))
+ {
+ if (is_first_elem)
+ is_first_elem= false;
+ else
+ str->append(',');
+
+ print_list_item(str, list, query_type);
+ }
+ if (thd->lex->update_list.elements)
+ print_on_duplicate_key_clause(thd, str, query_type);
+ return;
+ }
+ }
+
+ if ((query_type & QT_SHOW_SELECT_NUMBER) &&
+ thd->lex->all_selects_list &&
+ thd->lex->all_selects_list->link_next &&
+ select_number != FAKE_SELECT_LEX_ID)
+ {
+ str->append(STRING_WITH_LEN("/* select#"));
+ str->append_ulonglong(select_number);
+ if (thd->lex->describe & DESCRIBE_EXTENDED2)
+ {
+ str->append('/');
+ str->append_ulonglong(nest_level);
+
+ if (master_unit()->fake_select_lex &&
+ master_unit()->first_select() == this)
+ {
+ str->append(STRING_WITH_LEN(" Filter Select: "));
+ master_unit()->fake_select_lex->print(thd, str, query_type);
+ }
+ }
+ str->append(STRING_WITH_LEN(" */ "));
+ }
+
+ if (sel_type == SELECT_CMD ||
+ sel_type == INSERT_CMD ||
+ sel_type == REPLACE_CMD)
+ str->append(STRING_WITH_LEN("select "));
+
+ if (join && join->cleaned)
+ {
+ /*
+ JOIN already cleaned up so it is dangerous to print items
+ because temporary tables they pointed on could be freed.
+ */
+ str->append('#');
+ str->append(select_number);
+ return;
+ }
+
+ /* First add options */
+ if (options & SELECT_STRAIGHT_JOIN)
+ str->append(STRING_WITH_LEN("straight_join "));
+ if (options & SELECT_HIGH_PRIORITY)
+ str->append(STRING_WITH_LEN("high_priority "));
+ if (options & SELECT_DISTINCT)
+ str->append(STRING_WITH_LEN("distinct "));
+ if (options & SELECT_SMALL_RESULT)
+ str->append(STRING_WITH_LEN("sql_small_result "));
+ if (options & SELECT_BIG_RESULT)
+ str->append(STRING_WITH_LEN("sql_big_result "));
+ if (options & OPTION_BUFFER_RESULT)
+ str->append(STRING_WITH_LEN("sql_buffer_result "));
+ if (options & OPTION_FOUND_ROWS)
+ str->append(STRING_WITH_LEN("sql_calc_found_rows "));
+ if (this == parent_lex->first_select_lex())
+ {
+ switch (parent_lex->sql_cache)
+ {
+ case LEX::SQL_NO_CACHE:
+ str->append(STRING_WITH_LEN("sql_no_cache "));
+ break;
+ case LEX::SQL_CACHE:
+ str->append(STRING_WITH_LEN("sql_cache "));
+ break;
+ case LEX::SQL_CACHE_UNSPECIFIED:
+ break;
+ default:
+ DBUG_ASSERT(0);
+ }
+ }
+
+ //Item List
+ if (sel_type == SELECT_CMD ||
+ sel_type == INSERT_CMD ||
+ sel_type == REPLACE_CMD)
+ print_item_list(thd, str, query_type);
+ /*
+ from clause
+ TODO: support USING/FORCE/IGNORE index
+ */
+ if (table_list.elements)
+ {
+ if (sel_type == SELECT_CMD ||
+ sel_type == INSERT_CMD ||
+ sel_type == REPLACE_CMD)
+ {
+ str->append(STRING_WITH_LEN(" from "));
+ /* go through join tree */
+ print_join(thd, join? join->eliminated_tables: 0, str, &top_join_list,
+ query_type);
+ }
+ if (sel_type == UPDATE_CMD || sel_type == DELETE_CMD)
+ str->append(get_explainable_cmd_name(sel_type));
+ if (sel_type == DELETE_CMD)
+ {
+ str->append(STRING_WITH_LEN(" from "));
+ bool first= true;
+ for (TABLE_LIST *target_tbl= thd->lex->auxiliary_table_list.first;
+ target_tbl;
+ target_tbl= target_tbl->next_local)
+ {
+ if (first)
+ first= false;
+ else
+ str->append(',');
+ target_tbl->correspondent_table->print_leaf_tables(thd, str,
+ query_type);
+ }
+
+ if (!first)
+ str->append(STRING_WITH_LEN(" using "));
+ }
+ if (sel_type == UPDATE_CMD || sel_type == DELETE_CMD)
+ {
+ if (join)
+ print_join(thd, 0, str, &top_join_list, query_type);
+ else
+ {
+ bool first= true;
+ List_iterator_fast<TABLE_LIST> li(leaf_tables);
+ TABLE_LIST *tbl;
+ while ((tbl= li++))
+ {
+ if (first)
+ first= false;
+ else
+ str->append(',');
+ tbl->print(thd, 0, str, query_type);
+ }
+ }
+ }
+ }
+ else if (where)
+ {
+ /*
+ "SELECT 1 FROM DUAL WHERE 2" should not be printed as
+ "SELECT 1 WHERE 2": the 1st syntax is valid, but the 2nd is not.
+ */
+ str->append(STRING_WITH_LEN(" from DUAL "));
+ }
+
+ if (sel_type == UPDATE_CMD)
+ print_set_clause(thd, str, query_type);
+
+ // Where
+ Item *cur_where= where;
+ if (join)
+ cur_where= join->conds;
+ else if (sel_type == UPDATE_CMD || sel_type == DELETE_CMD)
+ cur_where= thd->lex->upd_del_where;
+ if (cur_where || cond_value != Item::COND_UNDEF)
+ {
+ str->append(STRING_WITH_LEN(" where "));
+ if (cur_where)
+ cur_where->print(str, query_type);
+ else
+ str->append(cond_value != Item::COND_FALSE ? '1' : '0');
+ }
+
+ // group by & olap
+ if (group_list.elements)
+ {
+ str->append(STRING_WITH_LEN(" group by "));
+ print_order(str, group_list.first, query_type);
+ switch (olap)
+ {
+ case CUBE_TYPE:
+ str->append(STRING_WITH_LEN(" with cube"));
+ break;
+ case ROLLUP_TYPE:
+ str->append(STRING_WITH_LEN(" with rollup"));
+ break;
+ default:
+ ; //satisfy compiler
+ }
+ }
+
+ // having
+ Item *cur_having= having;
+ if (join)
+ cur_having= join->having;
+
+ if (cur_having || having_value != Item::COND_UNDEF)
+ {
+ str->append(STRING_WITH_LEN(" having "));
+ if (cur_having)
+ cur_having->print(str, query_type);
+ else
+ str->append(having_value != Item::COND_FALSE ? '1' : '0');
+ }
+
+ if (order_list.elements)
+ {
+ str->append(STRING_WITH_LEN(" order by "));
+ print_order(str, order_list.first, query_type);
+ }
+
+ // limit
+ print_limit(thd, str, query_type);
+
+ // lock type
+ if (select_lock == select_lock_type::IN_SHARE_MODE)
+ str->append(STRING_WITH_LEN(" lock in share mode"));
+ else if (select_lock == select_lock_type::FOR_UPDATE)
+ str->append(STRING_WITH_LEN(" for update"));
+ if (unlikely(skip_locked))
+ str->append(STRING_WITH_LEN(" skip locked"));
+
+ if ((sel_type == INSERT_CMD || sel_type == REPLACE_CMD) &&
+ thd->lex->update_list.elements)
+ print_on_duplicate_key_clause(thd, str, query_type);
+
+ // returning clause
+ if (sel_type == DELETE_CMD && !item_list.elements)
+ {
+ print_item_list(thd, str, query_type);
+ }
+ // PROCEDURE unsupported here
+}
+
+
+/**
+ Change the select_result object of the JOIN.
+
+ If old_result is not used, forward the call to the current
+ select_result in case it is a wrapper around old_result.
+
+ Call prepare() and prepare2() on the new select_result if we decide
+ to use it.
+
+ @param new_result New select_result object
+ @param old_result Old select_result object (NULL to force change)
+
+ @retval false Success
+ @retval true Error
+*/
+
+bool JOIN::change_result(select_result *new_result, select_result *old_result)
+{
+ DBUG_ENTER("JOIN::change_result");
+ if (old_result == NULL || result == old_result)
+ {
+ result= new_result;
+ if (result->prepare(fields_list, select_lex->master_unit()) ||
+ result->prepare2(this))
+ DBUG_RETURN(true); /* purecov: inspected */
+ DBUG_RETURN(false);
+ }
+ DBUG_RETURN(result->change_result(new_result));
+}
+
+
+/**
+ @brief
+ Set allowed types of join caches that can be used for join operations
+
+ @details
+ The function sets a bitmap of allowed join buffers types in the field
+ allowed_join_cache_types of this JOIN structure:
+ bit 1 is set if tjoin buffers are allowed to be incremental
+ bit 2 is set if the join buffers are allowed to be hashed
+ but 3 is set if the join buffers are allowed to be used for BKA
+ join algorithms.
+ The allowed types are read from system variables.
+ Besides the function sets maximum allowed join cache level that is
+ also read from a system variable.
+*/
+
+void JOIN::set_allowed_join_cache_types()
+{
+ allowed_join_cache_types= 0;
+ if (optimizer_flag(thd, OPTIMIZER_SWITCH_JOIN_CACHE_INCREMENTAL))
+ allowed_join_cache_types|= JOIN_CACHE_INCREMENTAL_BIT;
+ if (optimizer_flag(thd, OPTIMIZER_SWITCH_JOIN_CACHE_HASHED))
+ allowed_join_cache_types|= JOIN_CACHE_HASHED_BIT;
+ if (optimizer_flag(thd, OPTIMIZER_SWITCH_JOIN_CACHE_BKA))
+ allowed_join_cache_types|= JOIN_CACHE_BKA_BIT;
+ allowed_semijoin_with_cache=
+ optimizer_flag(thd, OPTIMIZER_SWITCH_SEMIJOIN_WITH_CACHE);
+ allowed_outer_join_with_cache=
+ optimizer_flag(thd, OPTIMIZER_SWITCH_OUTER_JOIN_WITH_CACHE);
+ max_allowed_join_cache_level= thd->variables.join_cache_level;
+}
+
+
+/**
+ Save a query execution plan so that the caller can revert to it if needed,
+ and reset the current query plan so that it can be reoptimized.
+
+ @param save_to The object into which the current query plan state is saved
+*/
+
+void JOIN::save_query_plan(Join_plan_state *save_to)
+{
+ DYNAMIC_ARRAY tmp_keyuse;
+ /* Swap the current and the backup keyuse internal arrays. */
+ tmp_keyuse= keyuse;
+ keyuse= save_to->keyuse; /* keyuse is reset to an empty array. */
+ save_to->keyuse= tmp_keyuse;
+
+ for (uint i= 0; i < table_count; i++)
+ {
+ save_to->join_tab_keyuse[i]= join_tab[i].keyuse;
+ join_tab[i].keyuse= NULL;
+ save_to->join_tab_checked_keys[i]= join_tab[i].checked_keys;
+ join_tab[i].checked_keys.clear_all();
+ }
+ memcpy((uchar*) save_to->best_positions, (uchar*) best_positions,
+ sizeof(POSITION) * (table_count + 1));
+ memset((uchar*) best_positions, 0, sizeof(POSITION) * (table_count + 1));
+
+ /* Save SJM nests */
+ List_iterator<TABLE_LIST> it(select_lex->sj_nests);
+ TABLE_LIST *tlist;
+ SJ_MATERIALIZATION_INFO **p_info= save_to->sj_mat_info;
+ while ((tlist= it++))
+ {
+ *(p_info++)= tlist->sj_mat_info;
+ }
+}
+
+
+/**
+ Reset a query execution plan so that it can be reoptimized in-place.
+*/
+void JOIN::reset_query_plan()
+{
+ for (uint i= 0; i < table_count; i++)
+ {
+ join_tab[i].keyuse= NULL;
+ join_tab[i].checked_keys.clear_all();
+ }
+}
+
+
+/**
+ Restore a query execution plan previously saved by the caller.
+
+ @param The object from which the current query plan state is restored.
+*/
+
+void JOIN::restore_query_plan(Join_plan_state *restore_from)
+{
+ DYNAMIC_ARRAY tmp_keyuse;
+ tmp_keyuse= keyuse;
+ keyuse= restore_from->keyuse;
+ restore_from->keyuse= tmp_keyuse;
+
+ for (uint i= 0; i < table_count; i++)
+ {
+ join_tab[i].keyuse= restore_from->join_tab_keyuse[i];
+ join_tab[i].checked_keys= restore_from->join_tab_checked_keys[i];
+ }
+
+ memcpy((uchar*) best_positions, (uchar*) restore_from->best_positions,
+ sizeof(POSITION) * (table_count + 1));
+ /* Restore SJM nests */
+ List_iterator<TABLE_LIST> it(select_lex->sj_nests);
+ TABLE_LIST *tlist;
+ SJ_MATERIALIZATION_INFO **p_info= restore_from->sj_mat_info;
+ while ((tlist= it++))
+ {
+ tlist->sj_mat_info= *(p_info++);
+ }
+}
+
+
+/**
+ Reoptimize a query plan taking into account an additional conjunct to the
+ WHERE clause.
+
+ @param added_where An extra conjunct to the WHERE clause to reoptimize with
+ @param join_tables The set of tables to reoptimize
+ @param save_to If != NULL, save here the state of the current query plan,
+ otherwise reuse the existing query plan structures.
+
+ @notes
+ Given a query plan that was already optimized taking into account some WHERE
+ clause 'C', reoptimize this plan with a new WHERE clause 'C AND added_where'.
+ The reoptimization works as follows:
+
+ 1. Call update_ref_and_keys *only* for the new conditions 'added_where'
+ that are about to be injected into the query.
+ 2. Expand if necessary the original KEYUSE array JOIN::keyuse to
+ accommodate the new REF accesses computed for the 'added_where' condition.
+ 3. Add the new KEYUSEs into JOIN::keyuse.
+ 4. Re-sort and re-filter the JOIN::keyuse array with the newly added
+ KEYUSE elements.
+
+ @retval REOPT_NEW_PLAN there is a new plan.
+ @retval REOPT_OLD_PLAN no new improved plan was produced, use the old one.
+ @retval REOPT_ERROR an irrecovarable error occurred during reoptimization.
+*/
+
+JOIN::enum_reopt_result
+JOIN::reoptimize(Item *added_where, table_map join_tables,
+ Join_plan_state *save_to)
+{
+ DYNAMIC_ARRAY added_keyuse;
+ SARGABLE_PARAM *sargables= 0; /* Used only as a dummy parameter. */
+ size_t org_keyuse_elements;
+
+ /* Re-run the REF optimizer to take into account the new conditions. */
+ if (update_ref_and_keys(thd, &added_keyuse, join_tab, table_count, added_where,
+ ~outer_join, select_lex, &sargables))
+ {
+ delete_dynamic(&added_keyuse);
+ return REOPT_ERROR;
+ }
+
+ if (!added_keyuse.elements)
+ {
+ delete_dynamic(&added_keyuse);
+ return REOPT_OLD_PLAN;
+ }
+
+ if (save_to)
+ save_query_plan(save_to);
+ else
+ reset_query_plan();
+
+ if (!keyuse.buffer &&
+ my_init_dynamic_array(thd->mem_root->psi_key, &keyuse, sizeof(KEYUSE),
+ 20, 64, MYF(MY_THREAD_SPECIFIC)))
+ {
+ delete_dynamic(&added_keyuse);
+ return REOPT_ERROR;
+ }
+
+ org_keyuse_elements= save_to ? save_to->keyuse.elements : keyuse.elements;
+ allocate_dynamic(&keyuse, org_keyuse_elements + added_keyuse.elements);
+
+ /* If needed, add the access methods from the original query plan. */
+ if (save_to)
+ {
+ DBUG_ASSERT(!keyuse.elements);
+ keyuse.elements= save_to->keyuse.elements;
+ if (size_t e= keyuse.elements)
+ memcpy(keyuse.buffer,
+ save_to->keyuse.buffer, e * keyuse.size_of_element);
+ }
+
+ /* Add the new access methods to the keyuse array. */
+ memcpy(keyuse.buffer + keyuse.elements * keyuse.size_of_element,
+ added_keyuse.buffer,
+ (size_t) added_keyuse.elements * added_keyuse.size_of_element);
+ keyuse.elements+= added_keyuse.elements;
+ /* added_keyuse contents is copied, and it is no longer needed. */
+ delete_dynamic(&added_keyuse);
+
+ if (sort_and_filter_keyuse(this, &keyuse, true))
+ return REOPT_ERROR;
+ optimize_keyuse(this, &keyuse);
+
+ if (optimize_semijoin_nests(this, join_tables))
+ return REOPT_ERROR;
+
+ /* Re-run the join optimizer to compute a new query plan. */
+ if (choose_plan(this, join_tables))
+ return REOPT_ERROR;
+
+ return REOPT_NEW_PLAN;
+}
+
+
+/**
+ Cache constant expressions in WHERE, HAVING, ON conditions.
+*/
+
+void JOIN::cache_const_exprs()
+{
+ uchar cache_flag= FALSE;
+ uchar *analyzer_arg= &cache_flag;
+
+ /* No need in cache if all tables are constant. */
+ if (const_tables == table_count)
+ return;
+
+ if (conds)
+ conds->top_level_compile(thd, &Item::cache_const_expr_analyzer, &analyzer_arg,
+ &Item::cache_const_expr_transformer, &cache_flag);
+ cache_flag= FALSE;
+ if (having)
+ having->top_level_compile(thd, &Item::cache_const_expr_analyzer,
+ &analyzer_arg, &Item::cache_const_expr_transformer, &cache_flag);
+
+ for (JOIN_TAB *tab= first_depth_first_tab(this); tab;
+ tab= next_depth_first_tab(this, tab))
+ {
+ if (*tab->on_expr_ref)
+ {
+ cache_flag= FALSE;
+ (*tab->on_expr_ref)->top_level_compile(thd, &Item::cache_const_expr_analyzer,
+ &analyzer_arg, &Item::cache_const_expr_transformer, &cache_flag);
+ }
+ }
+}
+
+
+/*
+ Get the cost of using index keynr to read #LIMIT matching rows
+
+ @detail
+ - If there is a quick select, we try to use it.
+ - if there is a ref(const) access, we try to use it, too.
+ - quick and ref(const) use different cost formulas, so if both are possible
+ we should make a cost-based choice.
+
+ rows_limit is the number of rows we would need to read when using a full
+ index scan. This is generally higher than the N from "LIMIT N" clause,
+ because there's a WHERE condition (a part of which is used to construct a
+ range access we are considering using here)
+
+ @param tab JOIN_TAB with table access (is NULL for single-table
+ UPDATE/DELETE)
+ @param rows_limit See explanation above
+ @param read_time OUT Cost of reading using quick or ref(const) access.
+
+
+ @return
+ true There was a possible quick or ref access, its cost is in the OUT
+ parameters.
+ false No quick or ref(const) possible (and so, the caller will attempt
+ to use a full index scan on this index).
+*/
+
+static bool get_range_limit_read_cost(const JOIN_TAB *tab,
+ const TABLE *table,
+ ha_rows table_records,
+ uint keynr,
+ ha_rows rows_limit,
+ double *read_time)
+{
+ bool res= false;
+ /*
+ We need to adjust the estimates if we had a quick select (or ref(const)) on
+ index keynr.
+ */
+ if (table->opt_range_keys.is_set(keynr))
+ {
+ /*
+ Start from quick select's rows and cost. These are always cheaper than
+ full index scan/cost.
+ */
+ double best_rows= (double) table->opt_range[keynr].rows;
+ double best_cost= (double) table->opt_range[keynr].cost;
+
+ /*
+ Check if ref(const) access was possible on this index.
+ */
+ if (tab)
+ {
+ key_part_map map= 1;
+ uint kp;
+ /* Find how many key parts would be used by ref(const) */
+ for (kp=0; kp < MAX_REF_PARTS; map=map << 1, kp++)
+ {
+ if (!(table->const_key_parts[keynr] & map))
+ break;
+ }
+
+ if (kp > 0)
+ {
+ ha_rows ref_rows;
+ /*
+ Two possible cases:
+ 1. ref(const) uses the same #key parts as range access.
+ 2. ref(const) uses fewer key parts, becasue there is a
+ range_cond(key_part+1).
+ */
+ if (kp == table->opt_range[keynr].key_parts)
+ ref_rows= table->opt_range[keynr].rows;
+ else
+ ref_rows= (ha_rows) table->key_info[keynr].actual_rec_per_key(kp-1);
+
+ if (ref_rows > 0)
+ {
+ double tmp= cost_for_index_read(tab->join->thd, table, keynr,
+ ref_rows,
+ (ha_rows) tab->worst_seeks);
+ if (tmp < best_cost)
+ {
+ best_cost= tmp;
+ best_rows= (double)ref_rows;
+ }
+ }
+ }
+ }
+
+ /*
+ Consider an example:
+
+ SELECT *
+ FROM t1
+ WHERE key1 BETWEEN 10 AND 20 AND col2='foo'
+ ORDER BY key1 LIMIT 10
+
+ If we were using a full index scan on key1, we would need to read this
+ many rows to get 10 matches:
+
+ 10 / selectivity(key1 BETWEEN 10 AND 20 AND col2='foo')
+
+ This is the number we get in rows_limit.
+ But we intend to use range access on key1. The rows returned by quick
+ select will satisfy the range part of the condition,
+ "key1 BETWEEN 10 and 20". We will still need to filter them with
+ the remainder condition, (col2='foo').
+
+ The selectivity of the range access is (best_rows/table_records). We need
+ to discount it from the rows_limit:
+ */
+ double rows_limit_for_quick= rows_limit * (best_rows / table_records);
+
+ if (best_rows > rows_limit_for_quick)
+ {
+ /*
+ LIMIT clause specifies that we will need to read fewer records than
+ quick select will return. Assume that quick select's cost is
+ proportional to the number of records we need to return (e.g. if we
+ only need 1/3rd of records, it will cost us 1/3rd of quick select's
+ read time)
+ */
+ best_cost *= rows_limit_for_quick / best_rows;
+ }
+ *read_time= best_cost;
+ res= true;
+ }
+ return res;
+}
+
+
+/**
+ Find a cheaper access key than a given @a key
+
+ @param tab NULL or JOIN_TAB of the accessed table
+ @param order Linked list of ORDER BY arguments
+ @param table Table if tab == NULL or tab->table
+ @param usable_keys Key map to find a cheaper key in
+ @param ref_key
+ 0 <= key < MAX_KEY - Key that is currently used for finding
+ row
+ MAX_KEY - means index_merge is used
+ -1 - means we're currently not using an
+ index to find rows.
+
+ @param select_limit LIMIT value
+ @param [out] new_key Key number if success, otherwise undefined
+ @param [out] new_key_direction Return -1 (reverse) or +1 if success,
+ otherwise undefined
+ @param [out] new_select_limit Return adjusted LIMIT
+ @param [out] new_used_key_parts NULL by default, otherwise return number
+ of new_key prefix columns if success
+ or undefined if the function fails
+ @param [out] saved_best_key_parts NULL by default, otherwise preserve the
+ value for further use in QUICK_SELECT_DESC
+
+ @note
+ This function takes into account table->opt_range_condition_rows statistic
+ (that is calculated by the make_join_statistics function).
+ However, single table procedures such as mysql_update() and mysql_delete()
+ never call make_join_statistics, so they have to update it manually
+ (@see get_index_for_order()).
+*/
+
+static bool
+test_if_cheaper_ordering(const JOIN_TAB *tab, ORDER *order, TABLE *table,
+ key_map usable_keys, int ref_key,
+ ha_rows select_limit_arg,
+ int *new_key, int *new_key_direction,
+ ha_rows *new_select_limit, uint *new_used_key_parts,
+ uint *saved_best_key_parts)
+{
+ DBUG_ENTER("test_if_cheaper_ordering");
+ /*
+ Check whether there is an index compatible with the given order
+ usage of which is cheaper than usage of the ref_key index (ref_key>=0)
+ or a table scan.
+ It may be the case if ORDER/GROUP BY is used with LIMIT.
+ */
+ ha_rows best_select_limit= HA_POS_ERROR;
+ JOIN *join= tab ? tab->join : NULL;
+ uint nr;
+ key_map keys;
+ uint best_key_parts= 0;
+ int best_key_direction= 0;
+ ha_rows best_records= 0;
+ double read_time;
+ int best_key= -1;
+ bool is_best_covering= FALSE;
+ double fanout= 1;
+ ha_rows table_records= table->stat_records();
+ bool group= join && join->group && order == join->group_list;
+ ha_rows refkey_rows_estimate= table->opt_range_condition_rows;
+ const bool has_limit= (select_limit_arg != HA_POS_ERROR);
+ THD* thd= join ? join->thd : table->in_use;
+
+ Json_writer_object trace_wrapper(thd);
+ Json_writer_object trace_cheaper_ordering(
+ thd, "reconsidering_access_paths_for_index_ordering");
+ trace_cheaper_ordering.add("clause", group ? "GROUP BY" : "ORDER BY");
+
+ /*
+ If not used with LIMIT, only use keys if the whole query can be
+ resolved with a key; This is because filesort() is usually faster than
+ retrieving all rows through an index.
+ */
+ if (select_limit_arg >= table_records)
+ {
+ keys= *table->file->keys_to_use_for_scanning();
+ keys.merge(table->covering_keys);
+
+ /*
+ We are adding here also the index specified in FORCE INDEX clause,
+ if any.
+ This is to allow users to use index in ORDER BY.
+ */
+ if (table->force_index)
+ keys.merge(group ? table->keys_in_use_for_group_by :
+ table->keys_in_use_for_order_by);
+ keys.intersect(usable_keys);
+ }
+ else
+ keys= usable_keys;
+
+ if (join)
+ {
+ uint tablenr= (uint)(tab - join->join_tab);
+ read_time= join->best_positions[tablenr].read_time;
+ for (uint i= tablenr+1; i < join->table_count; i++)
+ {
+ fanout*= join->best_positions[i].records_read; // fanout is always >= 1
+ // But selectivity is =< 1 :
+ fanout*= join->best_positions[i].cond_selectivity;
+ }
+ }
+ else
+ read_time= table->file->scan_time();
+
+ trace_cheaper_ordering.add("fanout", fanout);
+ /*
+ TODO: add cost of sorting here.
+ */
+ read_time += COST_EPS;
+ trace_cheaper_ordering.add("read_time", read_time);
+ /*
+ Calculate the selectivity of the ref_key for REF_ACCESS. For
+ RANGE_ACCESS we use table->opt_range_condition_rows.
+ */
+ if (ref_key >= 0 && ref_key != MAX_KEY && tab->type == JT_REF)
+ {
+ /*
+ If ref access uses keypart=const for all its key parts,
+ and quick select uses the same # of key parts, then they are equivalent.
+ Reuse #rows estimate from quick select as it is more precise.
+ */
+ if (tab->ref.const_ref_part_map ==
+ make_prev_keypart_map(tab->ref.key_parts) &&
+ table->opt_range_keys.is_set(ref_key) &&
+ table->opt_range[ref_key].key_parts == tab->ref.key_parts)
+ refkey_rows_estimate= table->opt_range[ref_key].rows;
+ else
+ {
+ const KEY *ref_keyinfo= table->key_info + ref_key;
+ refkey_rows_estimate= ref_keyinfo->rec_per_key[tab->ref.key_parts - 1];
+ }
+ set_if_bigger(refkey_rows_estimate, 1);
+ }
+
+ if (tab)
+ trace_cheaper_ordering.add_table_name(tab);
+ else
+ trace_cheaper_ordering.add_table_name(table);
+ trace_cheaper_ordering.add("rows_estimation", refkey_rows_estimate);
+
+ Json_writer_array possible_keys(thd,"possible_keys");
+ for (nr=0; nr < table->s->keys ; nr++)
+ {
+ int direction;
+ ha_rows select_limit= select_limit_arg;
+ uint used_key_parts= 0;
+ Json_writer_object possible_key(thd);
+ possible_key.add("index", table->key_info[nr].name);
+
+ if (keys.is_set(nr) &&
+ (direction= test_if_order_by_key(join, order, table, nr,
+ &used_key_parts)))
+ {
+ /*
+ At this point we are sure that ref_key is a non-ordering
+ key (where "ordering key" is a key that will return rows
+ in the order required by ORDER BY).
+ */
+ DBUG_ASSERT (ref_key != (int) nr);
+
+ possible_key.add("can_resolve_order", true);
+ possible_key.add("direction", direction);
+ bool is_covering= (table->covering_keys.is_set(nr) ||
+ (table->file->index_flags(nr, 0, 1) &
+ HA_CLUSTERED_INDEX));
+ /*
+ Don't use an index scan with ORDER BY without limit.
+ For GROUP BY without limit always use index scan
+ if there is a suitable index.
+ Why we hold to this asymmetry hardly can be explained
+ rationally. It's easy to demonstrate that using
+ temporary table + filesort could be cheaper for grouping
+ queries too.
+ */
+ if (is_covering ||
+ select_limit != HA_POS_ERROR ||
+ (ref_key < 0 && (group || table->force_index)))
+ {
+ double rec_per_key;
+ double index_scan_time;
+ KEY *keyinfo= table->key_info+nr;
+ if (select_limit == HA_POS_ERROR)
+ select_limit= table_records;
+ if (group)
+ {
+ /*
+ Used_key_parts can be larger than keyinfo->user_defined_key_parts
+ when using a secondary index clustered with a primary
+ key (e.g. as in Innodb).
+ See Bug #28591 for details.
+ */
+ uint used_index_parts= keyinfo->user_defined_key_parts;
+ uint used_pk_parts= 0;
+ if (used_key_parts > used_index_parts)
+ used_pk_parts= used_key_parts-used_index_parts;
+ rec_per_key= used_key_parts ?
+ keyinfo->actual_rec_per_key(used_key_parts-1) : 1;
+ /* Take into account the selectivity of the used pk prefix */
+ if (used_pk_parts)
+ {
+ KEY *pkinfo=tab->table->key_info+table->s->primary_key;
+ /*
+ If the values of of records per key for the prefixes
+ of the primary key are considered unknown we assume
+ they are equal to 1.
+ */
+ if (used_key_parts == pkinfo->user_defined_key_parts ||
+ pkinfo->rec_per_key[0] == 0)
+ rec_per_key= 1;
+ if (rec_per_key > 1)
+ {
+ rec_per_key*= pkinfo->actual_rec_per_key(used_pk_parts-1);
+ rec_per_key/= pkinfo->actual_rec_per_key(0);
+ /*
+ The value of rec_per_key for the extended key has
+ to be adjusted accordingly if some components of
+ the secondary key are included in the primary key.
+ */
+ for(uint i= 1; i < used_pk_parts; i++)
+ {
+ if (pkinfo->key_part[i].field->key_start.is_set(nr))
+ {
+ /*
+ We presume here that for any index rec_per_key[i] != 0
+ if rec_per_key[0] != 0.
+ */
+ DBUG_ASSERT(pkinfo->actual_rec_per_key(i));
+ rec_per_key*= pkinfo->actual_rec_per_key(i-1);
+ rec_per_key/= pkinfo->actual_rec_per_key(i);
+ }
+ }
+ }
+ }
+ set_if_bigger(rec_per_key, 1);
+ /*
+ With a grouping query each group containing on average
+ rec_per_key records produces only one row that will
+ be included into the result set.
+ */
+ if (select_limit > table_records/rec_per_key)
+ select_limit= table_records;
+ else
+ select_limit= (ha_rows) (select_limit*rec_per_key);
+ } /* group */
+
+ /*
+ If tab=tk is not the last joined table tn then to get first
+ L records from the result set we can expect to retrieve
+ only L/fanout(tk,tn) where fanout(tk,tn) says how many
+ rows in the record set on average will match each row tk.
+ Usually our estimates for fanouts are too pessimistic.
+ So the estimate for L/fanout(tk,tn) will be too optimistic
+ and as result we'll choose an index scan when using ref/range
+ access + filesort will be cheaper.
+ */
+ select_limit= (ha_rows) (select_limit < fanout ?
+ 1 : select_limit/fanout);
+
+ /*
+ refkey_rows_estimate is E(#rows) produced by the table access
+ strategy that was picked without regard to ORDER BY ... LIMIT.
+
+ It will be used as the source of selectivity data.
+ Use table->cond_selectivity as a better estimate which includes
+ condition selectivity too.
+ */
+ {
+ // we use MIN(...), because "Using LooseScan" queries have
+ // cond_selectivity=1 while refkey_rows_estimate has a better
+ // estimate.
+ refkey_rows_estimate= MY_MIN(refkey_rows_estimate,
+ ha_rows(table_records *
+ table->cond_selectivity));
+ }
+
+ /*
+ We assume that each of the tested indexes is not correlated
+ with ref_key. Thus, to select first N records we have to scan
+ N/selectivity(ref_key) index entries.
+ selectivity(ref_key) = #scanned_records/#table_records =
+ refkey_rows_estimate/table_records.
+ In any case we can't select more than #table_records.
+ N/(refkey_rows_estimate/table_records) > table_records
+ <=> N > refkey_rows_estimate.
+ */
+
+ if (select_limit > refkey_rows_estimate)
+ select_limit= table_records;
+ else
+ select_limit= (ha_rows) (select_limit *
+ (double) table_records /
+ refkey_rows_estimate);
+ possible_key.add("updated_limit", select_limit);
+ rec_per_key= keyinfo->actual_rec_per_key(keyinfo->user_defined_key_parts-1);
+ set_if_bigger(rec_per_key, 1);
+ /*
+ Here we take into account the fact that rows are
+ accessed in sequences rec_per_key records in each.
+ Rows in such a sequence are supposed to be ordered
+ by rowid/primary key. When reading the data
+ in a sequence we'll touch not more pages than the
+ table file contains.
+ TODO. Use the formula for a disk sweep sequential access
+ to calculate the cost of accessing data rows for one
+ index entry.
+ */
+ index_scan_time= select_limit/rec_per_key *
+ MY_MIN(rec_per_key, table->file->scan_time());
+ double range_scan_time;
+ if (get_range_limit_read_cost(tab, table, table_records, nr,
+ select_limit, &range_scan_time))
+ {
+ possible_key.add("range_scan_time", range_scan_time);
+ if (range_scan_time < index_scan_time)
+ index_scan_time= range_scan_time;
+ }
+ possible_key.add("index_scan_time", index_scan_time);
+
+ if ((ref_key < 0 && (group || table->force_index || is_covering)) ||
+ index_scan_time < read_time)
+ {
+ ha_rows quick_records= table_records;
+ ha_rows refkey_select_limit= (ref_key >= 0 &&
+ !is_hash_join_key_no(ref_key) &&
+ table->covering_keys.is_set(ref_key)) ?
+ refkey_rows_estimate :
+ HA_POS_ERROR;
+ if (is_best_covering && !is_covering)
+ {
+ possible_key.add("chosen", false);
+ possible_key.add("cause", "covering index already found");
+ continue;
+ }
+
+ if (is_covering && refkey_select_limit < select_limit)
+ {
+ possible_key.add("chosen", false);
+ possible_key.add("cause", "ref estimates better");
+ continue;
+ }
+ if (table->opt_range_keys.is_set(nr))
+ quick_records= table->opt_range[nr].rows;
+ possible_key.add("records", quick_records);
+ if (best_key < 0 ||
+ (select_limit <= MY_MIN(quick_records,best_records) ?
+ keyinfo->user_defined_key_parts < best_key_parts :
+ quick_records < best_records) ||
+ (!is_best_covering && is_covering))
+ {
+ possible_key.add("chosen", true);
+ best_key= nr;
+ best_key_parts= keyinfo->user_defined_key_parts;
+ if (saved_best_key_parts)
+ *saved_best_key_parts= used_key_parts;
+ best_records= quick_records;
+ is_best_covering= is_covering;
+ best_key_direction= direction;
+ best_select_limit= select_limit;
+ }
+ else
+ {
+ char const *cause;
+ possible_key.add("chosen", false);
+ if (is_covering)
+ cause= "covering index already found";
+ else
+ {
+ if (select_limit <= MY_MIN(quick_records,best_records))
+ cause= "keyparts greater than the current best keyparts";
+ else
+ cause= "rows estimation greater";
+ }
+ possible_key.add("cause", cause);
+ }
+ }
+ else
+ {
+ possible_key.add("usable", false);
+ possible_key.add("cause", "cost");
+ }
+ }
+ else
+ {
+ possible_key.add("usable", false);
+ if (!group && select_limit == HA_POS_ERROR)
+ possible_key.add("cause", "order by without limit");
+ }
+ }
+ else
+ {
+ if (keys.is_set(nr))
+ {
+ possible_key.add("can_resolve_order", false);
+ possible_key.add("cause", "order can not be resolved by key");
+ }
+ else
+ {
+ possible_key.add("can_resolve_order", false);
+ possible_key.add("cause", "not usable index for the query");
+ }
+ }
+ }
+
+ if (best_key < 0 || best_key == ref_key)
+ DBUG_RETURN(FALSE);
+
+ *new_key= best_key;
+ *new_key_direction= best_key_direction;
+ *new_select_limit= has_limit ? best_select_limit : table_records;
+ if (new_used_key_parts != NULL)
+ *new_used_key_parts= best_key_parts;
+ DBUG_RETURN(TRUE);
+}
+
+
+/**
+ Find a key to apply single table UPDATE/DELETE by a given ORDER
+
+ @param order Linked list of ORDER BY arguments
+ @param table Table to find a key
+ @param select Pointer to access/update select->quick (if any)
+ @param limit LIMIT clause parameter
+ @param [out] scanned_limit How many records we expect to scan
+ Valid if *need_sort=FALSE.
+ @param [out] need_sort TRUE if filesort needed
+ @param [out] reverse
+ TRUE if the key is reversed again given ORDER (undefined if key == MAX_KEY)
+
+ @return
+ - MAX_KEY if no key found (need_sort == TRUE)
+ - MAX_KEY if quick select result order is OK (need_sort == FALSE)
+ - key number (either index scan or quick select) (need_sort == FALSE)
+
+ @note
+ Side effects:
+ - may deallocate or deallocate and replace select->quick;
+ - may set table->opt_range_condition_rows and table->quick_rows[...]
+ to table->file->stats.records.
+*/
+
+uint get_index_for_order(ORDER *order, TABLE *table, SQL_SELECT *select,
+ ha_rows limit, ha_rows *scanned_limit,
+ bool *need_sort, bool *reverse)
+{
+ if (!order)
+ {
+ *need_sort= FALSE;
+ if (select && select->quick)
+ return select->quick->index; // index or MAX_KEY, use quick select as is
+ else
+ return table->file->key_used_on_scan; // MAX_KEY or index for some engines
+ }
+
+ if (!is_simple_order(order)) // just to cut further expensive checks
+ {
+ *need_sort= TRUE;
+ return MAX_KEY;
+ }
+
+ if (select && select->quick)
+ {
+ if (select->quick->index == MAX_KEY)
+ {
+ *need_sort= TRUE;
+ return MAX_KEY;
+ }
+
+ uint used_key_parts;
+ switch (test_if_order_by_key(NULL, order, table, select->quick->index,
+ &used_key_parts)) {
+ case 1: // desired order
+ *need_sort= FALSE;
+ *scanned_limit= MY_MIN(limit, select->quick->records);
+ return select->quick->index;
+ case 0: // unacceptable order
+ *need_sort= TRUE;
+ return MAX_KEY;
+ case -1: // desired order, but opposite direction
+ {
+ QUICK_SELECT_I *reverse_quick;
+ if ((reverse_quick=
+ select->quick->make_reverse(used_key_parts)))
+ {
+ select->set_quick(reverse_quick);
+ *need_sort= FALSE;
+ *scanned_limit= MY_MIN(limit, select->quick->records);
+ return select->quick->index;
+ }
+ else
+ {
+ *need_sort= TRUE;
+ return MAX_KEY;
+ }
+ }
+ }
+ DBUG_ASSERT(0);
+ }
+ else if (limit != HA_POS_ERROR)
+ { // check if some index scan & LIMIT is more efficient than filesort
+
+ /*
+ Update opt_range_condition_rows since single table UPDATE/DELETE
+ procedures don't call make_join_statistics() and leave this
+ variable uninitialized.
+ */
+ table->opt_range_condition_rows= table->stat_records();
+
+ int key, direction;
+ if (test_if_cheaper_ordering(NULL, order, table,
+ table->keys_in_use_for_order_by, -1,
+ limit,
+ &key, &direction, &limit) &&
+ !is_key_used(table, key, table->write_set))
+ {
+ *need_sort= FALSE;
+ *scanned_limit= limit;
+ *reverse= (direction < 0);
+ return key;
+ }
+ }
+ *need_sort= TRUE;
+ return MAX_KEY;
+}
+
+
+/*
+ Count how many times the specified conditions are true for first rows_to_read
+ rows of the table.
+
+ @param thd Thread handle
+ @param rows_to_read How many rows to sample
+ @param table Table to use
+ @conds conds INOUT List of conditions and counters for them
+
+ @return Number of we've checked. It can be equal or less than rows_to_read.
+ 0 is returned for error or when the table had no rows.
+*/
+
+ulong check_selectivity(THD *thd,
+ ulong rows_to_read,
+ TABLE *table,
+ List<COND_STATISTIC> *conds)
+{
+ ulong count= 0;
+ COND_STATISTIC *cond;
+ List_iterator_fast<COND_STATISTIC> it(*conds);
+ handler *file= table->file;
+ uchar *record= table->record[0];
+ int error= 0;
+ DBUG_ENTER("check_selectivity");
+
+ DBUG_ASSERT(rows_to_read > 0);
+ while ((cond= it++))
+ {
+ DBUG_ASSERT(cond->cond);
+ DBUG_ASSERT(cond->cond->used_tables() == table->map);
+ cond->positive= 0;
+ }
+ it.rewind();
+
+ if (unlikely(file->ha_rnd_init_with_error(1)))
+ DBUG_RETURN(0);
+ do
+ {
+ error= file->ha_rnd_next(record);
+
+ if (unlikely(thd->killed))
+ {
+ thd->send_kill_message();
+ count= 0;
+ goto err;
+ }
+ if (unlikely(error))
+ {
+ if (error == HA_ERR_END_OF_FILE)
+ break;
+ goto err;
+ }
+
+ count++;
+ while ((cond= it++))
+ {
+ if (cond->cond->val_bool())
+ cond->positive++;
+ }
+ it.rewind();
+
+ } while (count < rows_to_read);
+
+ file->ha_rnd_end();
+ DBUG_RETURN(count);
+
+err:
+ DBUG_PRINT("error", ("error %d", error));
+ file->ha_rnd_end();
+ DBUG_RETURN(0);
+}
+
+/****************************************************************************
+ AGGR_OP implementation
+****************************************************************************/
+
+/**
+ @brief Instantiate tmp table for aggregation and start index scan if needed
+ @todo Tmp table always would be created, even for empty result. Extend
+ executor to avoid tmp table creation when no rows were written
+ into tmp table.
+ @return
+ true error
+ false ok
+*/
+
+bool
+AGGR_OP::prepare_tmp_table()
+{
+ TABLE *table= join_tab->table;
+ JOIN *join= join_tab->join;
+ int rc= 0;
+
+ if (!join_tab->table->is_created())
+ {
+ if (instantiate_tmp_table(table, join_tab->tmp_table_param->keyinfo,
+ join_tab->tmp_table_param->start_recinfo,
+ &join_tab->tmp_table_param->recinfo,
+ join->select_options))
+ return true;
+ (void) table->file->extra(HA_EXTRA_WRITE_CACHE);
+ }
+ /* If it wasn't already, start index scan for grouping using table index. */
+ if (!table->file->inited && table->group &&
+ join_tab->tmp_table_param->sum_func_count && table->s->keys)
+ rc= table->file->ha_index_init(0, 0);
+ else
+ {
+ /* Start index scan in scanning mode */
+ rc= table->file->ha_rnd_init(true);
+ }
+ if (rc)
+ {
+ table->file->print_error(rc, MYF(0));
+ return true;
+ }
+ return false;
+}
+
+
+/**
+ @brief Prepare table if necessary and call write_func to save record
+
+ @param end_of_records the end_of_record signal to pass to the writer
+
+ @return return one of enum_nested_loop_state.
+*/
+
+enum_nested_loop_state
+AGGR_OP::put_record(bool end_of_records)
+{
+ // Lasy tmp table creation/initialization
+ if (!join_tab->table->file->inited)
+ if (prepare_tmp_table())
+ return NESTED_LOOP_ERROR;
+ enum_nested_loop_state rc= (*write_func)(join_tab->join, join_tab,
+ end_of_records);
+ return rc;
+}
+
+
+/**
+ @brief Finish rnd/index scan after accumulating records, switch ref_array,
+ and send accumulated records further.
+ @return return one of enum_nested_loop_state.
+*/
+
+enum_nested_loop_state
+AGGR_OP::end_send()
+{
+ enum_nested_loop_state rc= NESTED_LOOP_OK;
+ TABLE *table= join_tab->table;
+ JOIN *join= join_tab->join;
+
+ // All records were stored, send them further
+ int tmp, new_errno= 0;
+
+ if ((rc= put_record(true)) < NESTED_LOOP_OK)
+ return rc;
+
+ if ((tmp= table->file->extra(HA_EXTRA_NO_CACHE)))
+ {
+ DBUG_PRINT("error",("extra(HA_EXTRA_NO_CACHE) failed"));
+ new_errno= tmp;
+ }
+ if ((tmp= table->file->ha_index_or_rnd_end()))
+ {
+ DBUG_PRINT("error",("ha_index_or_rnd_end() failed"));
+ new_errno= tmp;
+ }
+ if (new_errno)
+ {
+ table->file->print_error(new_errno,MYF(0));
+ return NESTED_LOOP_ERROR;
+ }
+
+ // Update ref array
+ join_tab->join->set_items_ref_array(*join_tab->ref_array);
+ bool keep_last_filesort_result = join_tab->filesort ? false : true;
+ if (join_tab->window_funcs_step)
+ {
+ if (join_tab->window_funcs_step->exec(join, keep_last_filesort_result))
+ return NESTED_LOOP_ERROR;
+ }
+
+ table->reginfo.lock_type= TL_UNLOCK;
+
+ bool in_first_read= true;
+
+ /*
+ Reset the counter before copying rows from internal temporary table to
+ INSERT table.
+ */
+ join_tab->join->thd->get_stmt_da()->reset_current_row_for_warning(1);
+ while (rc == NESTED_LOOP_OK)
+ {
+ int error;
+ if (in_first_read)
+ {
+ in_first_read= false;
+ error= join_init_read_record(join_tab);
+ }
+ else
+ error= join_tab->read_record.read_record();
+
+ if (unlikely(error > 0 || (join->thd->is_error()))) // Fatal error
+ rc= NESTED_LOOP_ERROR;
+ else if (error < 0)
+ break;
+ else if (unlikely(join->thd->killed)) // Aborted by user
+ {
+ join->thd->send_kill_message();
+ rc= NESTED_LOOP_KILLED;
+ }
+ else
+ {
+ rc= evaluate_join_record(join, join_tab, 0);
+ }
+ }
+
+ if (keep_last_filesort_result)
+ {
+ delete join_tab->filesort_result;
+ join_tab->filesort_result= NULL;
+ }
+
+ // Finish rnd scn after sending records
+ if (join_tab->table->file->inited)
+ join_tab->table->file->ha_rnd_end();
+
+ return rc;
+}
+
+
+/**
+ @brief
+ Remove marked top conjuncts of a condition
+
+ @param thd The thread handle
+ @param cond The condition which subformulas are to be removed
+
+ @details
+ The function removes all top conjuncts marked with the flag
+ MARKER_FULL_EXTRACTION from the condition 'cond'. The resulting
+ formula is returned a the result of the function
+ If 'cond' s marked with such flag the function returns 0.
+ The function clear the extraction flags for the removed
+ formulas
+
+ @retval
+ condition without removed subformulas
+ 0 if the whole 'cond' is removed
+*/
+
+Item *remove_pushed_top_conjuncts(THD *thd, Item *cond)
+{
+ if (cond->get_extraction_flag() == MARKER_FULL_EXTRACTION)
+ {
+ cond->clear_extraction_flag();
+ return 0;
+ }
+ if (cond->type() == Item::COND_ITEM)
+ {
+ if (((Item_cond*) cond)->functype() == Item_func::COND_AND_FUNC)
+ {
+ List_iterator<Item> li(*((Item_cond*) cond)->argument_list());
+ Item *item;
+ while ((item= li++))
+ {
+ if (item->get_extraction_flag() == MARKER_FULL_EXTRACTION)
+ {
+ item->clear_extraction_flag();
+ li.remove();
+ }
+ }
+ switch (((Item_cond*) cond)->argument_list()->elements)
+ {
+ case 0:
+ return 0;
+ case 1:
+ return ((Item_cond*) cond)->argument_list()->head();
+ default:
+ return cond;
+ }
+ }
+ }
+ return cond;
+}
+
+
+/*
+ There are 5 cases in which we shortcut the join optimization process as we
+ conclude that the join would be a degenerate one
+ 1) IMPOSSIBLE WHERE
+ 2) MIN/MAX optimization (@see opt_sum_query)
+ 3) EMPTY CONST TABLE
+ If a window function is present in any of the above cases then to get the
+ result of the window function, we need to execute it. So we need to
+ create a temporary table for its execution. Here we need to take in mind
+ that aggregate functions and non-aggregate function need not be executed.
+
+*/
+
+void JOIN::handle_implicit_grouping_with_window_funcs()
+{
+ if (select_lex->have_window_funcs() && send_row_on_empty_set())
+ {
+ const_tables= top_join_tab_count= table_count= 0;
+ }
+}
+
+
+
+/*
+ @brief
+ Perform a partial cleanup for the JOIN_TAB structure
+
+ @note
+ this is used to cleanup resources for the re-execution of correlated
+ subqueries.
+*/
+void JOIN_TAB::partial_cleanup()
+{
+ if (!table)
+ return;
+
+ if (table->is_created())
+ {
+ table->file->ha_index_or_rnd_end();
+ DBUG_PRINT("info", ("close index: %s.%s alias: %s",
+ table->s->db.str,
+ table->s->table_name.str,
+ table->alias.c_ptr()));
+ if (aggr)
+ {
+ int tmp= 0;
+ if ((tmp= table->file->extra(HA_EXTRA_NO_CACHE)))
+ table->file->print_error(tmp, MYF(0));
+ }
+ }
+ delete filesort_result;
+ filesort_result= NULL;
+ free_cache(&read_record);
+}
+
+/**
+ @brief
+ Construct not null conditions for provingly not nullable fields
+
+ @details
+ For each non-constant joined table the function creates a conjunction
+ of IS NOT NULL predicates containing a predicate for each field used
+ in the WHERE clause or an OR expression such that
+ - is declared as nullable
+ - for which it can proved be that it is null-rejected
+ - is a part of some index.
+ This conjunction could be anded with either the WHERE condition or with
+ an ON expression and the modified join query would produce the same
+ result set as the original one.
+ If a conjunction of IS NOT NULL predicates is constructed for an inner
+ table of an outer join OJ that is not an inner table of embedded outer
+ joins then it is to be anded with the ON expression of OJ.
+ The constructed conjunctions of IS NOT NULL predicates are attached
+ to the corresponding tables. They used for range analysis complementary
+ to other sargable range conditions.
+
+ @note
+ Let f be a field of the joined table t. In the context of the upper
+ paragraph field f is called null-rejected if any the following holds:
+
+ - t is a table of a top inner join and a conjunctive formula that rejects
+ rows with null values for f can be extracted from the WHERE condition
+
+ - t is an outer table of a top outer join operation and a conjunctive
+ formula over the outer tables of the outer join that rejects rows with
+ null values for can be extracted from the WHERE condition
+
+ - t is an outer table of a non-top outer join operation and a conjunctive
+ formula over the outer tables of the outer join that rejects rows with
+ null values for f can be extracted from the ON expression of the
+ embedding outer join
+
+ - the joined table is an inner table of a outer join operation and
+ a conjunctive formula over inner tables of the outer join that rejects
+ rows with null values for f can be extracted from the ON expression of
+ the outer join operation.
+
+ It is assumed above that all inner join nests have been eliminated and
+ that all possible conversions of outer joins into inner joins have been
+ already done.
+*/
+
+void JOIN::make_notnull_conds_for_range_scans()
+{
+ DBUG_ENTER("JOIN::make_notnull_conds_for_range_scans");
+
+ if (impossible_where ||
+ !optimizer_flag(thd, OPTIMIZER_SWITCH_NOT_NULL_RANGE_SCAN))
+ {
+ /* Complementary range analysis is not needed */
+ DBUG_VOID_RETURN;
+ }
+
+ if (conds && build_notnull_conds_for_range_scans(this, conds,
+ conds->used_tables()))
+ {
+ /*
+ Found a IS NULL conjunctive predicate for a null-rejected field
+ in the WHERE clause
+ */
+ conds= (Item*) Item_false;
+ cond_equal= 0;
+ impossible_where= true;
+ DBUG_VOID_RETURN;
+ }
+
+ List_iterator<TABLE_LIST> li(*join_list);
+ TABLE_LIST *tbl;
+ while ((tbl= li++))
+ {
+ if (tbl->on_expr)
+ {
+ if (tbl->nested_join)
+ {
+ build_notnull_conds_for_inner_nest_of_outer_join(this, tbl);
+ }
+ else if (build_notnull_conds_for_range_scans(this, tbl->on_expr,
+ tbl->table->map))
+ {
+ /*
+ Found a IS NULL conjunctive predicate for a null-rejected field
+ of the inner table of an outer join with ON expression tbl->on_expr
+ */
+ tbl->on_expr= (Item*) Item_false;
+ }
+ }
+ }
+ DBUG_VOID_RETURN;
+}
+
+
+/**
+ @brief
+ Build not null conditions for range scans of given join tables
+
+ @param join the join for whose tables not null conditions are to be built
+ @param cond the condition from which not null predicates are to be inferred
+ @param allowed the bit map of join tables to be taken into account
+
+ @details
+ For each join table t from the 'allowed' set of tables the function finds
+ all fields whose null-rejectedness can be inferred from null-rejectedness
+ of the condition cond. For each found field f from table t such that it
+ participates at least in one index on table t a NOT NULL predicate is
+ constructed and a conjunction of all such predicates is attached to t.
+ If when looking for null-rejecting fields of t it is discovered one of its
+ fields has to be null-rejected and there is IS NULL conjunctive top level
+ predicate for this field then the function immediately returns true.
+ The function uses the bitmap TABLE::tmp_set to mark found null-rejected
+ fields of table t.
+
+ @note
+ Currently only top level conjuncts without disjunctive sub-formulas are
+ are taken into account when looking for null-rejected fields.
+
+ @retval
+ true if a contradiction is inferred
+ false otherwise
+*/
+
+static
+bool build_notnull_conds_for_range_scans(JOIN *join, Item *cond,
+ table_map allowed)
+{
+ THD *thd= join->thd;
+ DBUG_ENTER("build_notnull_conds_for_range_scans");
+
+ for (JOIN_TAB *s= join->join_tab;
+ s < join->join_tab + join->table_count ; s++)
+ {
+ /* Clear all needed bitmaps to mark found fields */
+ if ((allowed & s->table->map) &&
+ !(s->table->map & join->const_table_map))
+ bitmap_clear_all(&s->table->tmp_set);
+ }
+
+ /*
+ Find all null-rejected fields assuming that cond is null-rejected and
+ only formulas over tables from 'allowed' are to be taken into account
+ */
+ if (cond->find_not_null_fields(allowed))
+ DBUG_RETURN(true);
+
+ /*
+ For each table t from 'allowed' build a conjunction of NOT NULL predicates
+ constructed for all found fields if they are included in some indexes.
+ If the construction of the conjunction succeeds attach the formula to
+ t->table->notnull_cond. The condition will be used to look for
+ complementary range scans.
+ */
+ for (JOIN_TAB *s= join->join_tab ;
+ s < join->join_tab + join->table_count ; s++)
+ {
+ TABLE *tab= s->table;
+ List<Item> notnull_list;
+ Item *notnull_cond= 0;
+
+ if (!(allowed & tab->map) ||
+ (s->table->map && join->const_table_map))
+ continue;
+
+ for (Field** field_ptr= tab->field; *field_ptr; field_ptr++)
+ {
+ Field *field= *field_ptr;
+ if (field->part_of_key.is_clear_all())
+ continue;
+ if (!bitmap_is_set(&tab->tmp_set, field->field_index))
+ continue;
+ Item_field *field_item= new (thd->mem_root) Item_field(thd, field);
+ if (!field_item)
+ continue;
+ Item *isnotnull_item=
+ new (thd->mem_root) Item_func_isnotnull(thd, field_item);
+ if (!isnotnull_item)
+ continue;
+ if (notnull_list.push_back(isnotnull_item, thd->mem_root))
+ continue;
+ s->const_keys.merge(field->part_of_key);
+ }
+
+ switch (notnull_list.elements) {
+ case 0:
+ break;
+ case 1:
+ notnull_cond= notnull_list.head();
+ break;
+ default:
+ notnull_cond=
+ new (thd->mem_root) Item_cond_and(thd, notnull_list);
+ }
+ if (notnull_cond && !notnull_cond->fix_fields(thd, 0))
+ {
+ tab->notnull_cond= notnull_cond;
+ }
+ }
+ DBUG_RETURN(false);
+}
+
+
+/**
+ @brief
+ Build not null conditions for inner nest tables of an outer join
+
+ @param join the join for whose table nest not null conditions are to be built
+ @param nest_tbl the nest of the inner tables of an outer join
+
+ @details
+ The function assumes that nest_tbl is the nest of the inner tables of an
+ outer join and so an ON expression for this outer join is attached to
+ nest_tbl.
+ The function selects the tables of the nest_tbl that are not inner tables of
+ embedded outer joins and then it calls build_notnull_conds_for_range_scans()
+ for nest_tbl->on_expr and the bitmap for the selected tables. This call
+ finds all fields belonging to the selected tables whose null-rejectedness
+ can be inferred from the null-rejectedness of nest_tbl->on_expr. After this
+ the function recursively finds all null_rejected fields for the remaining
+ tables from the nest of nest_tbl.
+*/
+
+static
+void build_notnull_conds_for_inner_nest_of_outer_join(JOIN *join,
+ TABLE_LIST *nest_tbl)
+{
+ TABLE_LIST *tbl;
+ table_map used_tables= 0;
+ List_iterator<TABLE_LIST> li(nest_tbl->nested_join->join_list);
+
+ while ((tbl= li++))
+ {
+ if (!tbl->on_expr)
+ used_tables|= tbl->table->map;
+ }
+ if (used_tables &&
+ build_notnull_conds_for_range_scans(join, nest_tbl->on_expr, used_tables))
+ {
+ nest_tbl->on_expr= (Item*) Item_false;
+ }
+
+ li.rewind();
+ while ((tbl= li++))
+ {
+ if (tbl->on_expr)
+ {
+ if (tbl->nested_join)
+ {
+ build_notnull_conds_for_inner_nest_of_outer_join(join, tbl);
+ }
+ else if (build_notnull_conds_for_range_scans(join, tbl->on_expr,
+ tbl->table->map))
+ tbl->on_expr= (Item*) Item_false;
+ }
+ }
+}
+
+
+/*
+ @brief
+ Initialize join cache and enable keyread
+*/
+void JOIN::init_join_cache_and_keyread()
+{
+ JOIN_TAB *tab;
+ for (tab= first_linear_tab(this, WITH_BUSH_ROOTS, WITHOUT_CONST_TABLES);
+ tab;
+ tab= next_linear_tab(this, tab, WITH_BUSH_ROOTS))
+ {
+ TABLE *table= tab->table;
+ switch (tab->type) {
+ case JT_SYSTEM:
+ case JT_CONST:
+ case JT_FT:
+ case JT_UNKNOWN:
+ case JT_MAYBE_REF:
+ break;
+ case JT_EQ_REF:
+ case JT_REF_OR_NULL:
+ case JT_REF:
+ if (table->covering_keys.is_set(tab->ref.key) && !table->no_keyread)
+ table->file->ha_start_keyread(tab->ref.key);
+ break;
+ case JT_HASH:
+ case JT_ALL:
+ SQL_SELECT *select;
+ select= tab->select ? tab->select :
+ (tab->filesort ? tab->filesort->select : NULL);
+ if (select && select->quick && select->quick->index != MAX_KEY &&
+ table->covering_keys.is_set(select->quick->index) &&
+ !table->no_keyread)
+ table->file->ha_start_keyread(select->quick->index);
+ break;
+ case JT_HASH_NEXT:
+ case JT_NEXT:
+ if ((tab->read_first_record == join_read_first ||
+ tab->read_first_record == join_read_last) &&
+ table->covering_keys.is_set(tab->index) &&
+ !table->no_keyread)
+ {
+ DBUG_ASSERT(!tab->filesort);
+ table->file->ha_start_keyread(tab->index);
+ }
+ break;
+ default:
+ break;
+ /* purecov: end */
+ }
+
+ if (table->file->keyread_enabled())
+ {
+ /*
+ Here we set the read_set bitmap for all covering keys
+ except CLUSTERED indexes, with all the key-parts inside the key.
+ This is needed specifically for an index that contains virtual column.
+
+ Example:
+ Lets say we have this query
+ SELECT b FROM t1;
+
+ and the table definition is like
+ CREATE TABLE t1(
+ a varchar(10) DEFAULT NULL,
+ b varchar(255) GENERATED ALWAYS AS (a) VIRTUAL,
+ KEY key1 (b));
+
+ So we a virtual column b and an index key1 defined on the virtual
+ column. So if a query uses a vcol, base columns that it
+ depends on are automatically added to the read_set - because they're
+ needed to calculate the vcol.
+ But if we're doing keyread, vcol is taken
+ from the index, not calculated, and base columns do not need to be
+ in the read set. To ensure this we try to set the read_set to only
+ the key-parts of the indexes.
+
+ Another side effect of this is
+ Lets say you have a query
+ select a, b from t1
+ and there is an index key1 (a,b,c)
+ then as key1 is covering and we would have the keyread enable for
+ this key, so the below call will also set the read_set for column
+ c, which is not a problem as we read all the columns from the index
+ tuple.
+ */
+ if (!(table->file->index_flags(table->file->keyread, 0, 1) & HA_CLUSTERED_INDEX))
+ table->mark_index_columns(table->file->keyread, table->read_set);
+ }
+ if (tab->cache && tab->cache->init(select_options & SELECT_DESCRIBE))
+ revise_cache_usage(tab);
+ else
+ tab->remove_redundant_bnl_scan_conds();
+ }
+}
+
+
+/*
+ @brief
+ Unpack temp table fields to base table fields.
+*/
+
+void unpack_to_base_table_fields(TABLE *table)
+{
+ JOIN_TAB *tab= table->reginfo.join_tab;
+ for (Copy_field *cp= tab->read_record.copy_field;
+ cp != tab->read_record.copy_field_end; cp++)
+ (*cp->do_copy)(cp);
+}
+
+/*
+ Call item->fix_after_optimize for all items registered in
+ lex->fix_after_optimize
+
+ This is needed for items like ROWNUM(), which needs access to structures
+ created by the early optimizer pass, like JOIN
+*/
+
+static void fix_items_after_optimize(THD *thd, SELECT_LEX *select_lex)
+{
+ List_iterator<Item> li(select_lex->fix_after_optimize);
+
+ while (Item *item= li++)
+ item->fix_after_optimize(thd);
+}
+
+
+/*
+ Set a limit for the SELECT_LEX_UNIT based on ROWNUM usage.
+ The limit is shown in EXPLAIN
+*/
+
+static bool set_limit_for_unit(THD *thd, SELECT_LEX_UNIT *unit, ha_rows lim)
+{
+ SELECT_LEX *gpar= unit->global_parameters();
+ if (gpar->limit_params.select_limit != 0 &&
+ // limit can not be an expression but can be parameter
+ (!gpar->limit_params.select_limit->basic_const_item() ||
+ ((ha_rows)gpar->limit_params.select_limit->val_int()) < lim))
+ return false;
+
+ Query_arena *arena, backup;
+ arena= thd->activate_stmt_arena_if_needed(&backup);
+
+ gpar->limit_params.select_limit=
+ new (thd->mem_root) Item_int(thd, lim, MAX_BIGINT_WIDTH);
+ if (gpar->limit_params.select_limit == 0)
+ return true; // EOM
+
+ unit->set_limit(gpar);
+
+ gpar->limit_params.explicit_limit= true; // to show in EXPLAIN
+
+ if (arena)
+ thd->restore_active_arena(arena, &backup);
+
+ return false;
+}
+
+
+/**
+ Check possibility of LIMIT setting by rownum() of upper SELECT and do it
+
+ @note Ideal is to convert something like
+ SELECT ...
+ FROM (SELECT ...) table
+ WHERE rownum() < <CONSTANT>;
+ to
+ SELECT ...
+ FROM (SELECT ... LIMIT <CONSTANT>) table
+ WHERE rownum() < <CONSTANT>;
+
+ @retval true EOM
+ @retval false no errors
+*/
+
+bool JOIN::optimize_upper_rownum_func()
+{
+ DBUG_ASSERT(select_lex->master_unit()->derived);
+
+ if (select_lex->master_unit()->first_select() != select_lex)
+ return false; // first will set parameter
+
+ if (select_lex->master_unit()->global_parameters()->
+ limit_params.offset_limit != NULL)
+ return false; // offset is set, we cannot set limit
+
+ SELECT_LEX *outer_select= select_lex->master_unit()->outer_select();
+ /*
+ Check that it is safe to use rownum-limit from the outer query
+ (the one that has 'WHERE rownum()...')
+ */
+ if (outer_select == NULL ||
+ !outer_select->with_rownum ||
+ (outer_select->options & SELECT_DISTINCT) ||
+ outer_select->table_list.elements != 1 ||
+ outer_select->where == NULL ||
+ outer_select->where->type() != Item::FUNC_ITEM)
+ return false;
+
+ return process_direct_rownum_comparison(thd, unit, outer_select->where);
+}
+
+
+/**
+ Test if the predicate compares rownum() with a constant
+
+ @return 1 No or invalid rownum() compare
+ @return 0 rownum() is compared with a constant.
+ In this case *args contains the constant and
+ *inv_order constains 1 if the rownum() was the right
+ argument, like in 'WHERE 2 >= rownum()'.
+*/
+
+static bool check_rownum_usage(Item_func *func_item, longlong *limit,
+ bool *inv_order)
+{
+ Item *arg1, *arg2;
+ *inv_order= 0;
+ DBUG_ASSERT(func_item->argument_count() == 2);
+
+ /* 'rownum op const' or 'const op field' */
+ arg1= func_item->arguments()[0]->real_item();
+ if (arg1->type() == Item::FUNC_ITEM &&
+ ((Item_func*) arg1)->functype() == Item_func::ROWNUM_FUNC)
+ {
+ arg2= func_item->arguments()[1]->real_item();
+ if (arg2->can_eval_in_optimize())
+ {
+ *limit= arg2->val_int();
+ return *limit <= 0 || (ulonglong) *limit >= HA_POS_ERROR;
+ }
+ }
+ else if (arg1->can_eval_in_optimize())
+ {
+ arg2= func_item->arguments()[1]->real_item();
+ if (arg2->type() == Item::FUNC_ITEM &&
+ ((Item_func*) arg2)->functype() == Item_func::ROWNUM_FUNC)
+ {
+ *limit= arg1->val_int();
+ *inv_order= 1;
+ return *limit <= 0 || (ulonglong) *limit >= HA_POS_ERROR;
+ }
+ }
+ return 1;
+}
+
+
+/*
+ Limit optimization for ROWNUM()
+
+ Go through the WHERE clause and find out if there are any of the following
+ constructs on the top level:
+ rownum() <= integer_constant
+ rownum() < integer_constant
+ rownum() = 1
+
+ If yes, then threat the select as if 'LIMIT integer_constant' would
+ have been used
+*/
+
+static void optimize_rownum(THD *thd, SELECT_LEX_UNIT *unit,
+ Item *cond)
+{
+ DBUG_ENTER("optimize_rownum");
+
+ if (cond->type() == Item::COND_ITEM)
+ {
+ if (((Item_cond*) cond)->functype() == Item_func::COND_AND_FUNC)
+ {
+ List_iterator<Item> li(*((Item_cond*) cond)->argument_list());
+ Item *item;
+ while ((item= li++))
+ optimize_rownum(thd, unit, item);
+ }
+ DBUG_VOID_RETURN;
+ }
+
+ process_direct_rownum_comparison(thd, unit, cond);
+ DBUG_VOID_RETURN;
+}
+
+
+static bool process_direct_rownum_comparison(THD *thd, SELECT_LEX_UNIT *unit,
+ Item *cond)
+{
+ DBUG_ENTER("process_direct_rownum_comparison");
+ if (cond->real_type() == Item::FUNC_ITEM)
+ {
+ Item_func *pred= (Item_func*) cond;
+ longlong limit;
+ bool inv;
+
+ if (pred->argument_count() != 2)
+ DBUG_RETURN(false); // Not a compare functions
+ if (check_rownum_usage(pred, &limit, &inv))
+ DBUG_RETURN(false);
+
+ Item_func::Functype pred_type= pred->functype();
+
+ if (inv && pred_type != Item_func::EQ_FUNC)
+ {
+ if (pred_type == Item_func::GT_FUNC) // # > rownum()
+ pred_type= Item_func::LT_FUNC;
+ else if (pred_type == Item_func::GE_FUNC) // # >= rownum()
+ pred_type= Item_func::LE_FUNC;
+ else
+ DBUG_RETURN(false);
+ }
+ switch (pred_type) {
+ case Item_func::LT_FUNC: // rownum() < #
+ {
+ if (limit <= 0)
+ DBUG_RETURN(false);
+ DBUG_RETURN(set_limit_for_unit(thd, unit, limit - 1));
+ case Item_func::LE_FUNC:
+ DBUG_RETURN(set_limit_for_unit(thd, unit, limit));
+ case Item_func::EQ_FUNC:
+ if (limit == 1)
+ DBUG_RETURN(set_limit_for_unit(thd, unit, limit));
+ break;
+ default:
+ break;
+ }
+ }
+ }
+ DBUG_RETURN(false);
+}
+
+/**
+ @brief
+ Transform IN predicates having equal constant elements to equalities
+
+ @param thd The context of the statement
+
+ @details
+ If all elements in an IN predicate are constant and equal to each other
+ then clause
+ - "a IN (e1,..,en)" can be transformed to "a = e1"
+ - "a NOT IN (e1,..,en)" can be transformed to "a != e1".
+ This means an object of Item_func_in can be replaced with an object of
+ Item_func_eq for IN (e1,..,en) clause or Item_func_ne for
+ NOT IN (e1,...,en).
+ Such a replacement allows the optimizer to choose a better execution plan.
+
+ This methods applies such transformation for each IN predicate of the WHERE
+ condition and ON expressions of this join where possible
+
+ @retval
+ false success
+ true failure
+*/
+bool JOIN::transform_in_predicates_into_equalities(THD *thd)
+{
+ DBUG_ENTER("JOIN::transform_in_predicates_into_equalities");
+ DBUG_RETURN(transform_all_conds_and_on_exprs(
+ thd, &Item::in_predicate_to_equality_transformer));
+}
+
+
+/**
+ @brief
+ Transform all items in WHERE and ON expressions using a given transformer
+
+ @param thd The context of the statement
+ transformer Pointer to the transformation function
+
+ @details
+ For each item of the WHERE condition and ON expressions of the SELECT
+ for this join the method performs the intransformation using the given
+ transformation function
+
+ @retval
+ false success
+ true failure
+*/
+bool JOIN::transform_all_conds_and_on_exprs(THD *thd,
+ Item_transformer transformer)
+{
+ if (conds)
+ {
+ conds= conds->top_level_transform(thd, transformer, (uchar *) 0);
+ if (!conds)
+ return true;
+ }
+ if (join_list)
+ {
+ if (transform_all_conds_and_on_exprs_in_join_list(thd, join_list,
+ transformer))
+ return true;
+ }
+ return false;
+}
+
+
+bool JOIN::transform_all_conds_and_on_exprs_in_join_list(
+ THD *thd, List<TABLE_LIST> *join_list, Item_transformer transformer)
+{
+ TABLE_LIST *table;
+ List_iterator<TABLE_LIST> li(*join_list);
+
+ while ((table= li++))
+ {
+ if (table->nested_join)
+ {
+ if (transform_all_conds_and_on_exprs_in_join_list(
+ thd, &table->nested_join->join_list, transformer))
+ return true;
+ }
+ if (table->on_expr)
+ {
+ table->on_expr= table->on_expr->top_level_transform(thd, transformer, 0);
+ if (!table->on_expr)
+ return true;
+ }
+ }
+ return false;
+}
+
+
+/**
+ @} (end of group Query_Optimizer)
+*/