summaryrefslogtreecommitdiffstats
path: root/strings/decimal.c
diff options
context:
space:
mode:
Diffstat (limited to '')
-rw-r--r--strings/decimal.c3271
1 files changed, 3271 insertions, 0 deletions
diff --git a/strings/decimal.c b/strings/decimal.c
new file mode 100644
index 00000000..7d4e183e
--- /dev/null
+++ b/strings/decimal.c
@@ -0,0 +1,3271 @@
+/* Copyright (c) 2004, 2014, Oracle and/or its affiliates.
+ Copyright (c) 2009, 2014, Monty Program Ab.
+
+ This program is free software; you can redistribute it and/or modify
+ it under the terms of the GNU General Public License as published by
+ the Free Software Foundation; version 2 of the License.
+
+ This program is distributed in the hope that it will be useful,
+ but WITHOUT ANY WARRANTY; without even the implied warranty of
+ MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
+ GNU General Public License for more details.
+
+ You should have received a copy of the GNU General Public License
+ along with this program; if not, write to the Free Software
+ Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1335 USA */
+
+/*
+=======================================================================
+ NOTE: this library implements SQL standard "exact numeric" type
+ and is not at all generic, but rather intentinally crippled to
+ follow the standard :)
+=======================================================================
+ Quoting the standard
+ (SQL:2003, Part 2 Foundations, aka ISO/IEC 9075-2:2003)
+
+4.4.2 Characteristics of numbers, page 27:
+
+ An exact numeric type has a precision P and a scale S. P is a positive
+ integer that determines the number of significant digits in a
+ particular radix R, where R is either 2 or 10. S is a non-negative
+ integer. Every value of an exact numeric type of scale S is of the
+ form n*10^{-S}, where n is an integer such that -R^P <= n <= R^P.
+
+ [...]
+
+ If an assignment of some number would result in a loss of its most
+ significant digit, an exception condition is raised. If least
+ significant digits are lost, implementation-defined rounding or
+ truncating occurs, with no exception condition being raised.
+
+ [...]
+
+ Whenever an exact or approximate numeric value is assigned to an exact
+ numeric value site, an approximation of its value that preserves
+ leading significant digits after rounding or truncating is represented
+ in the declared type of the target. The value is converted to have the
+ precision and scale of the target. The choice of whether to truncate
+ or round is implementation-defined.
+
+ [...]
+
+ All numeric values between the smallest and the largest value,
+ inclusive, in a given exact numeric type have an approximation
+ obtained by rounding or truncation for that type; it is
+ implementation-defined which other numeric values have such
+ approximations.
+
+5.3 <literal>, page 143
+
+ <exact numeric literal> ::=
+ <unsigned integer> [ <period> [ <unsigned integer> ] ]
+ | <period> <unsigned integer>
+
+6.1 <data type>, page 165:
+
+ 19) The <scale> of an <exact numeric type> shall not be greater than
+ the <precision> of the <exact numeric type>.
+
+ 20) For the <exact numeric type>s DECIMAL and NUMERIC:
+
+ a) The maximum value of <precision> is implementation-defined.
+ <precision> shall not be greater than this value.
+ b) The maximum value of <scale> is implementation-defined. <scale>
+ shall not be greater than this maximum value.
+
+ 21) NUMERIC specifies the data type exact numeric, with the decimal
+ precision and scale specified by the <precision> and <scale>.
+
+ 22) DECIMAL specifies the data type exact numeric, with the decimal
+ scale specified by the <scale> and the implementation-defined
+ decimal precision equal to or greater than the value of the
+ specified <precision>.
+
+6.26 <numeric value expression>, page 241:
+
+ 1) If the declared type of both operands of a dyadic arithmetic
+ operator is exact numeric, then the declared type of the result is
+ an implementation-defined exact numeric type, with precision and
+ scale determined as follows:
+
+ a) Let S1 and S2 be the scale of the first and second operands
+ respectively.
+ b) The precision of the result of addition and subtraction is
+ implementation-defined, and the scale is the maximum of S1 and S2.
+ c) The precision of the result of multiplication is
+ implementation-defined, and the scale is S1 + S2.
+ d) The precision and scale of the result of division are
+ implementation-defined.
+*/
+
+#include "strings_def.h"
+#include <m_ctype.h>
+#include <myisampack.h>
+#include <my_sys.h> /* for my_alloca */
+#include <decimal.h>
+
+/*
+ Internally decimal numbers are stored base 10^9 (see DIG_BASE below)
+ So one variable of type decimal_digit_t is limited:
+
+ 0 < decimal_digit <= DIG_MAX < DIG_BASE
+
+ in the struct st_decimal_t:
+
+ intg is the number of *decimal* digits (NOT number of decimal_digit_t's !)
+ before the point
+ frac - number of decimal digits after the point
+ buf is an array of decimal_digit_t's
+ len is the length of buf (length of allocated space) in decimal_digit_t's,
+ not in bytes
+*/
+typedef decimal_digit_t dec1;
+typedef longlong dec2;
+
+#define DIG_PER_DEC1 9
+#define DIG_MASK 100000000
+#define DIG_BASE 1000000000
+#define DIG_MAX (DIG_BASE-1)
+#define DIG_BASE2 ((dec2)DIG_BASE * (dec2)DIG_BASE)
+static const dec1 powers10[DIG_PER_DEC1+1]={
+ 1, 10, 100, 1000, 10000, 100000, 1000000, 10000000, 100000000, 1000000000};
+static const int dig2bytes[DIG_PER_DEC1+1]={0, 1, 1, 2, 2, 3, 3, 4, 4, 4};
+static const dec1 frac_max[DIG_PER_DEC1-1]={
+ 900000000, 990000000, 999000000,
+ 999900000, 999990000, 999999000,
+ 999999900, 999999990 };
+
+static inline int ROUND_UP(int x)
+{
+ return (x + (x > 0 ? DIG_PER_DEC1 - 1 : 0)) / DIG_PER_DEC1;
+}
+
+#ifdef HAVE_valgrind
+#define sanity(d) DBUG_ASSERT((d)->len > 0)
+#else
+#define sanity(d) DBUG_ASSERT((d)->len >0 && ((d)->buf[0] | \
+ (d)->buf[(d)->len-1] | 1))
+#endif
+
+#define FIX_INTG_FRAC_ERROR(len, intg1, frac1, error) \
+ do \
+ { \
+ if (unlikely(intg1+frac1 > (len))) \
+ { \
+ if (unlikely(intg1 > (len))) \
+ { \
+ intg1=(len); \
+ frac1=0; \
+ error=E_DEC_OVERFLOW; \
+ } \
+ else \
+ { \
+ frac1=(len)-intg1; \
+ error=E_DEC_TRUNCATED; \
+ } \
+ } \
+ else \
+ error=E_DEC_OK; \
+ } while(0)
+
+#define ADD(to, from1, from2, carry) /* assume carry <= 1 */ \
+ do \
+ { \
+ dec1 a=(from1)+(from2)+(carry); \
+ DBUG_ASSERT((carry) <= 1); \
+ if (((carry)= a >= DIG_BASE)) /* no division here! */ \
+ a-=DIG_BASE; \
+ (to)=a; \
+ } while(0)
+
+#define ADD2(to, from1, from2, carry) \
+ do \
+ { \
+ dec2 a=((dec2)(from1))+(from2)+(carry); \
+ if (((carry)= a >= DIG_BASE)) \
+ a-=DIG_BASE; \
+ if (unlikely(a >= DIG_BASE)) \
+ { \
+ a-=DIG_BASE; \
+ carry++; \
+ } \
+ (to)=(dec1) a; \
+ } while(0)
+
+#define SUB(to, from1, from2, carry) /* to=from1-from2 */ \
+ do \
+ { \
+ dec1 a=(from1)-(from2)-(carry); \
+ if (((carry)= a < 0)) \
+ a+=DIG_BASE; \
+ (to)=a; \
+ } while(0)
+
+#define SUB2(to, from1, from2, carry) /* to=from1-from2 */ \
+ do \
+ { \
+ dec1 a=(from1)-(from2)-(carry); \
+ if (((carry)= a < 0)) \
+ a+=DIG_BASE; \
+ if (unlikely(a < 0)) \
+ { \
+ a+=DIG_BASE; \
+ carry++; \
+ } \
+ (to)=a; \
+ } while(0)
+
+/*
+ Get maximum value for given precision and scale
+
+ SYNOPSIS
+ max_decimal()
+ precision/scale - see decimal_bin_size() below
+ to - decimal where where the result will be stored
+ to->buf and to->len must be set.
+*/
+
+void max_decimal(decimal_digits_t precision, decimal_digits_t frac,
+ decimal_t *to)
+{
+ decimal_digits_t intpart;
+ dec1 *buf= to->buf;
+ DBUG_ASSERT(precision && precision >= frac);
+
+ to->sign= 0;
+ if ((intpart= to->intg= (precision - frac)))
+ {
+ int firstdigits= intpart % DIG_PER_DEC1;
+ if (firstdigits)
+ *buf++= powers10[firstdigits] - 1; /* get 9 99 999 ... */
+ for(intpart/= DIG_PER_DEC1; intpart; intpart--)
+ *buf++= DIG_MAX;
+ }
+
+ if ((to->frac= frac))
+ {
+ int lastdigits= frac % DIG_PER_DEC1;
+ for(frac/= DIG_PER_DEC1; frac; frac--)
+ *buf++= DIG_MAX;
+ if (lastdigits)
+ *buf= frac_max[lastdigits - 1];
+ }
+}
+
+
+static dec1 *remove_leading_zeroes(const decimal_t *from,
+ decimal_digits_t *intg_result)
+{
+ decimal_digits_t intg= from->intg, i;
+ dec1 *buf0= from->buf;
+ i= ((intg - 1) % DIG_PER_DEC1) + 1;
+ while (intg > 0 && *buf0 == 0)
+ {
+ intg-= i;
+ i= DIG_PER_DEC1;
+ buf0++;
+ }
+ if (intg > 0)
+ {
+ for (i= (intg - 1) % DIG_PER_DEC1; *buf0 < powers10[i--]; intg--) ;
+ DBUG_ASSERT(intg > 0);
+ }
+ else
+ intg=0;
+ *intg_result= intg;
+ return buf0;
+}
+
+
+/*
+ Count actual length of fraction part (without ending zeroes)
+
+ SYNOPSIS
+ decimal_actual_fraction()
+ from number for processing
+*/
+
+decimal_digits_t decimal_actual_fraction(const decimal_t *from)
+{
+ decimal_digits_t frac= from->frac, i;
+ dec1 *buf0= from->buf + ROUND_UP(from->intg) + ROUND_UP(frac) - 1;
+
+ if (frac == 0)
+ return 0;
+
+ i= ((frac - 1) % DIG_PER_DEC1 + 1);
+ while (frac > 0 && *buf0 == 0)
+ {
+ frac-= i;
+ i= DIG_PER_DEC1;
+ buf0--;
+ }
+ if (frac > 0)
+ {
+ for (i= DIG_PER_DEC1 - ((frac - 1) % DIG_PER_DEC1);
+ *buf0 % powers10[i++] == 0;
+ frac--) {}
+ }
+ return frac;
+}
+
+
+/*
+ Convert decimal to its printable string representation
+
+ SYNOPSIS
+ decimal2string()
+ from - value to convert
+ to - points to buffer where string representation
+ should be stored
+ *to_len - in: size of to buffer (incl. terminating '\0')
+ out: length of the actually written string (excl. '\0')
+ fixed_precision - 0 if representation can be variable length and
+ fixed_decimals will not be checked in this case.
+ Put number as with fixed point position with this
+ number of digits (sign counted and decimal point is
+ counted)
+ fixed_decimals - number digits after point.
+ filler - character to fill gaps in case of fixed_precision > 0
+
+ RETURN VALUE
+ E_DEC_OK/E_DEC_TRUNCATED/E_DEC_OVERFLOW
+*/
+
+int decimal2string(const decimal_t *from, char *to, int *to_len,
+ decimal_digits_t fixed_precision,
+ decimal_digits_t fixed_decimals,
+ char filler)
+{
+ /* {intg_len, frac_len} output widths; {intg, frac} places in input */
+ int len, frac= from->frac, i, intg_len, frac_len, fill, intg;
+ decimal_digits_t intg_tmp;
+ /* number digits before decimal point */
+ int fixed_intg= (fixed_precision ?
+ (fixed_precision - fixed_decimals) : 0);
+ int error=E_DEC_OK;
+ char *s=to;
+ dec1 *buf, *buf0=from->buf, tmp;
+
+ DBUG_ASSERT(*to_len >= 2+ (int) from->sign);
+
+ /* removing leading zeroes */
+ buf0= remove_leading_zeroes(from, &intg_tmp);
+ intg= (int) intg_tmp; /* intg can be negative later */
+ if (unlikely(intg+frac==0))
+ {
+ intg=1;
+ tmp=0;
+ buf0=&tmp;
+ }
+
+ if (!(intg_len= fixed_precision ? fixed_intg : intg))
+ intg_len= 1;
+ frac_len= fixed_precision ? fixed_decimals : frac;
+ len= from->sign + intg_len + MY_TEST(frac) + frac_len;
+ if (fixed_precision)
+ {
+ if (frac > fixed_decimals)
+ {
+ error= E_DEC_TRUNCATED;
+ frac= fixed_decimals;
+ }
+ if (intg > fixed_intg)
+ {
+ error= E_DEC_OVERFLOW;
+ intg= fixed_intg;
+ }
+ }
+ else if (unlikely(len > --*to_len)) /* reserve one byte for \0 */
+ {
+ int j= len-*to_len;
+ error= (frac && j <= frac + 1) ? E_DEC_TRUNCATED : E_DEC_OVERFLOW;
+ if (frac && j >= frac + 1) j--;
+ if (j > frac)
+ {
+ intg-= j-frac;
+ frac= 0;
+ }
+ else
+ frac-=j;
+ frac_len= frac;
+ len= from->sign + intg_len + MY_TEST(frac) + frac_len;
+ }
+ *to_len=len;
+ s[len]=0;
+
+ if (from->sign)
+ *s++='-';
+
+ if (frac)
+ {
+ char *s1= s + intg_len;
+ fill= frac_len - frac;
+ buf=buf0+ROUND_UP(intg);
+ *s1++='.';
+ for (; frac>0; frac-=DIG_PER_DEC1)
+ {
+ dec1 x=*buf++;
+ for (i=MY_MIN(frac, DIG_PER_DEC1); i; i--)
+ {
+ dec1 y=x/DIG_MASK;
+ *s1++='0'+(uchar)y;
+ x-=y*DIG_MASK;
+ x*=10;
+ }
+ }
+ for(; fill; fill--)
+ *s1++=filler;
+ }
+
+ fill= intg_len - intg;
+ if (intg == 0)
+ {
+ DBUG_ASSERT(fill > 0);
+ fill--; /* symbol 0 before digital point */
+ }
+ for(; fill; fill--)
+ *s++=filler;
+ if (intg)
+ {
+ s+=intg;
+ for (buf=buf0+ROUND_UP(intg); intg>0; intg-=DIG_PER_DEC1)
+ {
+ dec1 x=*--buf;
+ for (i=MY_MIN(intg, DIG_PER_DEC1); i; i--)
+ {
+ dec1 y=x/10;
+ *--s='0'+(uchar)(x-y*10);
+ x=y;
+ }
+ }
+ }
+ else
+ *s= '0';
+ return error;
+}
+
+
+/*
+ Return bounds of decimal digits in the number
+
+ SYNOPSIS
+ digits_bounds()
+ from - decimal number for processing
+ start_result - index (from 0 ) of first decimal digits will
+ be written by this address
+ end_result - index of position just after last decimal digit
+ be written by this address
+*/
+
+static void digits_bounds(decimal_t *from, int *start_result, int *end_result)
+{
+ int start, stop, i;
+ dec1 *buf_beg= from->buf;
+ dec1 *end= from->buf + ROUND_UP(from->intg) + ROUND_UP(from->frac);
+ dec1 *buf_end= end - 1;
+
+ /* find non-zero digit from number beginning */
+ while (buf_beg < end && *buf_beg == 0)
+ buf_beg++;
+
+ if (buf_beg >= end)
+ {
+ /* it is zero */
+ *start_result= *end_result= 0;
+ return;
+ }
+
+ /* find non-zero decimal digit from number beginning */
+ if (buf_beg == from->buf && from->intg)
+ {
+ start= DIG_PER_DEC1 - (i= ((from->intg-1) % DIG_PER_DEC1 + 1));
+ i--;
+ }
+ else
+ {
+ i= DIG_PER_DEC1 - 1;
+ start= (int) ((buf_beg - from->buf) * DIG_PER_DEC1);
+ }
+ if (buf_beg < end)
+ for (; *buf_beg < powers10[i--]; start++) ;
+ *start_result= start; /* index of first decimal digit (from 0) */
+
+ /* find non-zero digit at the end */
+ while (buf_end > buf_beg && *buf_end == 0)
+ buf_end--;
+ /* find non-zero decimal digit from the end */
+ if (buf_end == end - 1 && from->frac)
+ {
+ stop= (int) (((buf_end - from->buf) * DIG_PER_DEC1 +
+ (i= ((from->frac - 1) % DIG_PER_DEC1 + 1))));
+ i= DIG_PER_DEC1 - i + 1;
+ }
+ else
+ {
+ stop= (int) ((buf_end - from->buf + 1) * DIG_PER_DEC1);
+ i= 1;
+ }
+ for (; *buf_end % powers10[i++] == 0; stop--) {}
+ *end_result= stop; /* index of position after last decimal digit (from 0) */
+}
+
+
+/*
+ Left shift for alignment of data in buffer
+
+ SYNOPSIS
+ do_mini_left_shift()
+ dec pointer to decimal number which have to be shifted
+ shift number of decimal digits on which it should be shifted
+ beg/end bounds of decimal digits (see digits_bounds())
+
+ NOTE
+ Result fitting in the buffer should be garanted.
+ 'shift' have to be from 1 to DIG_PER_DEC1-1 (inclusive)
+*/
+
+void do_mini_left_shift(decimal_t *dec, int shift, int beg, int last)
+{
+ dec1 *from= dec->buf + ROUND_UP(beg + 1) - 1;
+ dec1 *end= dec->buf + ROUND_UP(last) - 1;
+ int c_shift= DIG_PER_DEC1 - shift;
+ DBUG_ASSERT(from >= dec->buf);
+ DBUG_ASSERT(end < dec->buf + dec->len);
+ if (beg % DIG_PER_DEC1 < shift)
+ *(from - 1)= (*from) / powers10[c_shift];
+ for(; from < end; from++)
+ *from= ((*from % powers10[c_shift]) * powers10[shift] +
+ (*(from + 1)) / powers10[c_shift]);
+ *from= (*from % powers10[c_shift]) * powers10[shift];
+}
+
+
+/*
+ Right shift for alignment of data in buffer
+
+ SYNOPSIS
+ do_mini_left_shift()
+ dec pointer to decimal number which have to be shifted
+ shift number of decimal digits on which it should be shifted
+ beg/end bounds of decimal digits (see digits_bounds())
+
+ NOTE
+ Result fitting in the buffer should be garanted.
+ 'shift' have to be from 1 to DIG_PER_DEC1-1 (inclusive)
+*/
+
+void do_mini_right_shift(decimal_t *dec, int shift, int beg, int last)
+{
+ dec1 *from= dec->buf + ROUND_UP(last) - 1;
+ dec1 *end= dec->buf + ROUND_UP(beg + 1) - 1;
+ int c_shift= DIG_PER_DEC1 - shift;
+ DBUG_ASSERT(from < dec->buf + dec->len);
+ DBUG_ASSERT(end >= dec->buf);
+ if (DIG_PER_DEC1 - ((last - 1) % DIG_PER_DEC1 + 1) < shift)
+ *(from + 1)= (*from % powers10[shift]) * powers10[c_shift];
+ for(; from > end; from--)
+ *from= (*from / powers10[shift] +
+ (*(from - 1) % powers10[shift]) * powers10[c_shift]);
+ *from= *from / powers10[shift];
+}
+
+
+/*
+ Shift of decimal digits in given number (with rounding if it need)
+
+ SYNOPSIS
+ decimal_shift()
+ dec number to be shifted
+ shift number of decimal positions
+ shift > 0 means shift to left shift
+ shift < 0 meand right shift
+ NOTE
+ In fact it is multipling on 10^shift.
+ RETURN
+ E_DEC_OK OK
+ E_DEC_OVERFLOW operation lead to overflow, number is untoched
+ E_DEC_TRUNCATED number was rounded to fit into buffer
+*/
+
+int decimal_shift(decimal_t *dec, int shift)
+{
+ /* index of first non zero digit (all indexes from 0) */
+ int beg;
+ /* index of position after last decimal digit */
+ int end;
+ /* index of digit position just after point */
+ int point= ROUND_UP(dec->intg) * DIG_PER_DEC1;
+ /* new point position */
+ int new_point= point + shift;
+ /* number of digits in result */
+ int digits_int, digits_frac;
+ /* length of result and new fraction in big digits*/
+ int new_len, new_frac_len;
+ /* return code */
+ int err= E_DEC_OK;
+ int new_front;
+
+ if (shift == 0)
+ return E_DEC_OK;
+
+ digits_bounds(dec, &beg, &end);
+
+ if (beg == end)
+ {
+ decimal_make_zero(dec);
+ return E_DEC_OK;
+ }
+
+ digits_int= new_point - beg;
+ set_if_bigger(digits_int, 0);
+ digits_frac= end - new_point;
+ set_if_bigger(digits_frac, 0);
+
+ if ((new_len= ROUND_UP(digits_int) + (new_frac_len= ROUND_UP(digits_frac))) >
+ dec->len)
+ {
+ int lack= new_len - dec->len;
+ int diff;
+
+ if (new_frac_len < lack)
+ return E_DEC_OVERFLOW; /* lack more then we have in fraction */
+
+ /* cat off fraction part to allow new number to fit in our buffer */
+ err= E_DEC_TRUNCATED;
+ new_frac_len-= lack;
+ diff= digits_frac - (new_frac_len * DIG_PER_DEC1);
+ /* Make rounding method as parameter? */
+ decimal_round(dec, dec, end - point - diff, HALF_UP);
+ end-= diff;
+ digits_frac= new_frac_len * DIG_PER_DEC1;
+
+ if (end <= beg)
+ {
+ /*
+ we lost all digits (they will be shifted out of buffer), so we can
+ just return 0
+ */
+ decimal_make_zero(dec);
+ return E_DEC_TRUNCATED;
+ }
+ }
+
+ if (shift % DIG_PER_DEC1)
+ {
+ int l_mini_shift, r_mini_shift, mini_shift;
+ int do_left;
+ /*
+ Calculate left/right shift to align decimal digits inside our bug
+ digits correctly
+ */
+ if (shift > 0)
+ {
+ l_mini_shift= shift % DIG_PER_DEC1;
+ r_mini_shift= DIG_PER_DEC1 - l_mini_shift;
+ /*
+ It is left shift so prefer left shift, but if we have not place from
+ left, we have to have it from right, because we checked length of
+ result
+ */
+ do_left= l_mini_shift <= beg;
+ DBUG_ASSERT(do_left || (dec->len * DIG_PER_DEC1 - end) >= r_mini_shift);
+ }
+ else
+ {
+ r_mini_shift= (-shift) % DIG_PER_DEC1;
+ l_mini_shift= DIG_PER_DEC1 - r_mini_shift;
+ /* see comment above */
+ do_left= !((dec->len * DIG_PER_DEC1 - end) >= r_mini_shift);
+ DBUG_ASSERT(!do_left || l_mini_shift <= beg);
+ }
+ if (do_left)
+ {
+ do_mini_left_shift(dec, l_mini_shift, beg, end);
+ mini_shift= -l_mini_shift;
+ }
+ else
+ {
+ do_mini_right_shift(dec, r_mini_shift, beg, end);
+ mini_shift= r_mini_shift;
+ }
+ new_point+= mini_shift;
+ /*
+ If number is shifted and correctly aligned in buffer we can
+ finish
+ */
+ if (!(shift+= mini_shift) && (new_point - digits_int) < DIG_PER_DEC1)
+ {
+ dec->intg= digits_int;
+ dec->frac= digits_frac;
+ return err; /* already shifted as it should be */
+ }
+ beg+= mini_shift;
+ end+= mini_shift;
+ }
+
+ /* if new 'decimal front' is in first digit, we do not need move digits */
+ if ((new_front= (new_point - digits_int)) >= DIG_PER_DEC1 ||
+ new_front < 0)
+ {
+ /* need to move digits */
+ int d_shift;
+ dec1 *to, *barier;
+ if (new_front > 0)
+ {
+ /* move left */
+ d_shift= new_front / DIG_PER_DEC1;
+ to= dec->buf + (ROUND_UP(beg + 1) - 1 - d_shift);
+ barier= dec->buf + (ROUND_UP(end) - 1 - d_shift);
+ DBUG_ASSERT(to >= dec->buf);
+ DBUG_ASSERT(barier + d_shift < dec->buf + dec->len);
+ for(; to <= barier; to++)
+ *to= *(to + d_shift);
+ for(barier+= d_shift; to <= barier; to++)
+ *to= 0;
+ d_shift= -d_shift;
+ }
+ else
+ {
+ /* move right */
+ d_shift= (1 - new_front) / DIG_PER_DEC1;
+ to= dec->buf + ROUND_UP(end) - 1 + d_shift;
+ barier= dec->buf + ROUND_UP(beg + 1) - 1 + d_shift;
+ DBUG_ASSERT(to < dec->buf + dec->len);
+ DBUG_ASSERT(barier - d_shift >= dec->buf);
+ for(; to >= barier; to--)
+ *to= *(to - d_shift);
+ for(barier-= d_shift; to >= barier; to--)
+ *to= 0;
+ }
+ d_shift*= DIG_PER_DEC1;
+ beg+= d_shift;
+ end+= d_shift;
+ new_point+= d_shift;
+ }
+
+ /*
+ If there are gaps then fill ren with 0.
+
+ Only one of following 'for' loops will work because beg <= end
+ */
+ beg= ROUND_UP(beg + 1) - 1;
+ end= ROUND_UP(end) - 1;
+ DBUG_ASSERT(new_point >= 0);
+
+ /* We don't want negative new_point below */
+ if (new_point != 0)
+ new_point= ROUND_UP(new_point) - 1;
+
+ if (new_point > end)
+ {
+ do
+ {
+ dec->buf[new_point]=0;
+ } while (--new_point > end);
+ }
+ else
+ {
+ for (; new_point < beg; new_point++)
+ dec->buf[new_point]= 0;
+ }
+ dec->intg= digits_int;
+ dec->frac= digits_frac;
+ return err;
+}
+
+
+/*
+ Convert string to decimal
+
+ SYNOPSIS
+ internal_str2decl()
+ from - value to convert. Doesn't have to be \0 terminated!
+ to - decimal where where the result will be stored
+ to->buf and to->len must be set.
+ end - Pointer to pointer to end of string. Will on return be
+ set to the char after the last used character
+ fixed - use to->intg, to->frac as limits for input number
+
+ NOTE
+ to->intg and to->frac can be modified even when fixed=1
+ (but only decreased, in this case)
+
+ RETURN VALUE
+ E_DEC_OK/E_DEC_TRUNCATED/E_DEC_OVERFLOW/E_DEC_BAD_NUM/E_DEC_OOM
+ In case of E_DEC_FATAL_ERROR *to is set to decimal zero
+ (to make error handling easier)
+*/
+
+int
+internal_str2dec(const char *from, decimal_t *to, char **end, my_bool fixed)
+{
+ const char *s= from, *s1, *endp, *end_of_string= *end;
+ int i, intg, frac, error, intg1, frac1;
+ dec1 x,*buf;
+ sanity(to);
+
+ error= E_DEC_BAD_NUM; /* In case of bad number */
+ while (s < end_of_string && my_isspace(&my_charset_latin1, *s))
+ s++;
+ if (s == end_of_string)
+ goto fatal_error;
+
+ if ((to->sign= (*s == '-')))
+ s++;
+ else if (*s == '+')
+ s++;
+
+ s1=s;
+ while (s < end_of_string && my_isdigit(&my_charset_latin1, *s))
+ s++;
+ intg= (int) (s-s1);
+ /*
+ If the integer part is long enough and it has multiple leading zeros,
+ let's trim them, so this expression can return 1 without overflowing:
+ CAST(CONCAT(REPEAT('0',90),'1') AS DECIMAL(10))
+ */
+ if (intg > DIG_PER_DEC1 && s1[0] == '0' && s1[1] == '0')
+ {
+ /*
+ Keep at least one digit, to avoid an empty string.
+ So we trim '0000' to '0' rather than to ''.
+ Otherwise the below code (converting digits to to->buf)
+ would fail on a fatal error.
+ */
+ const char *iend= s - 1;
+ for ( ; s1 < iend && *s1 == '0'; s1++)
+ { }
+ intg= (int) (s-s1);
+ }
+ if (s < end_of_string && *s=='.')
+ {
+ endp= s+1;
+ while (endp < end_of_string && my_isdigit(&my_charset_latin1, *endp))
+ endp++;
+ frac= (int) (endp - s - 1);
+ }
+ else
+ {
+ frac= 0;
+ endp= s;
+ }
+
+ *end= (char*) endp;
+
+ if (frac+intg == 0)
+ goto fatal_error;
+
+ error= 0;
+ if (fixed)
+ {
+ if (frac > to->frac)
+ {
+ error=E_DEC_TRUNCATED;
+ frac=to->frac;
+ }
+ if (intg > to->intg)
+ {
+ error=E_DEC_OVERFLOW;
+ intg=to->intg;
+ }
+ intg1=ROUND_UP(intg);
+ frac1=ROUND_UP(frac);
+ if (intg1+frac1 > to->len)
+ {
+ error= E_DEC_OOM;
+ goto fatal_error;
+ }
+ }
+ else
+ {
+ intg1=ROUND_UP(intg);
+ frac1=ROUND_UP(frac);
+ FIX_INTG_FRAC_ERROR(to->len, intg1, frac1, error);
+ if (unlikely(error))
+ {
+ frac=frac1*DIG_PER_DEC1;
+ if (error == E_DEC_OVERFLOW)
+ intg=intg1*DIG_PER_DEC1;
+ }
+ }
+ /* Error is guaranteed to be set here */
+ to->intg=intg;
+ to->frac=frac;
+
+ buf=to->buf+intg1;
+ s1=s;
+
+ for (x=0, i=0; intg; intg--)
+ {
+ x+= (*--s - '0')*powers10[i];
+
+ if (unlikely(++i == DIG_PER_DEC1))
+ {
+ *--buf=x;
+ x=0;
+ i=0;
+ }
+ }
+ if (i)
+ *--buf=x;
+
+ buf=to->buf+intg1;
+ for (x=0, i=0; frac; frac--)
+ {
+ x= (*++s1 - '0') + x*10;
+
+ if (unlikely(++i == DIG_PER_DEC1))
+ {
+ *buf++=x;
+ x=0;
+ i=0;
+ }
+ }
+ if (i)
+ *buf=x*powers10[DIG_PER_DEC1-i];
+
+ /* Handle exponent */
+ if (endp+1 < end_of_string && (*endp == 'e' || *endp == 'E'))
+ {
+ int str_error;
+ const char *end_of_exponent= end_of_string;
+ longlong exponent= my_strtoll10(endp+1, (char**) &end_of_exponent,
+ &str_error);
+
+ if (end_of_exponent != endp +1) /* If at least one digit */
+ {
+ *end= (char*) end_of_exponent;
+ if (str_error > 0)
+ {
+ if (str_error == MY_ERRNO_ERANGE)
+ {
+ /*
+ Exponent is:
+ - a huge positive number that does not fit into ulonglong
+ - a huge negative number that does not fit into longlong
+ Skip all remaining digits.
+ */
+ for ( ; end_of_exponent < end_of_string &&
+ my_isdigit(&my_charset_latin1, *end_of_exponent)
+ ; end_of_exponent++)
+ { }
+ *end= (char*) end_of_exponent;
+ if (exponent == ~0)
+ {
+ if (!decimal_is_zero(to))
+ {
+ /*
+ Non-zero mantissa and a huge positive exponent that
+ does not fit into ulonglong, e.g.:
+ 1e111111111111111111111
+ */
+ error= E_DEC_OVERFLOW;
+ }
+ else
+ {
+ /*
+ Zero mantissa and a huge positive exponent that
+ does not fit into ulonglong, e.g.:
+ 0e111111111111111111111
+ Return zero without warnings.
+ */
+ }
+ }
+ else
+ {
+ /*
+ Huge negative exponent that does not fit into longlong, e.g.
+ 1e-111111111111111111111
+ 0e-111111111111111111111
+ Return zero without warnings.
+ */
+ }
+ goto fatal_error;
+ }
+
+ /*
+ Some other error, e.g. MY_ERRNO_EDOM
+ */
+ error= E_DEC_BAD_NUM;
+ goto fatal_error;
+ }
+ if (exponent > INT_MAX/2 || (str_error == 0 && exponent < 0))
+ {
+ /*
+ The exponent fits into ulonglong, but it's still huge, e.g.
+ 1e1111111111
+ */
+ if (!decimal_is_zero(to))
+ error= E_DEC_OVERFLOW;
+ goto fatal_error;
+ }
+ if (exponent < INT_MIN/2 && error != E_DEC_OVERFLOW)
+ {
+ error= E_DEC_TRUNCATED;
+ goto fatal_error;
+ }
+ if (error != E_DEC_OVERFLOW)
+ error= decimal_shift(to, (int) exponent);
+ }
+ }
+ if (to->sign && decimal_is_zero(to))
+ to->sign= 0;
+ return error;
+
+fatal_error:
+ decimal_make_zero(to);
+ return error;
+}
+
+
+/*
+ Convert decimal to double
+
+ SYNOPSIS
+ decimal2double()
+ from - value to convert
+ to - result will be stored there
+
+ RETURN VALUE
+ E_DEC_OK/E_DEC_OVERFLOW/E_DEC_TRUNCATED
+*/
+
+int decimal2double(const decimal_t *from, double *to)
+{
+ char strbuf[FLOATING_POINT_BUFFER], *end;
+ int len= sizeof(strbuf);
+ int rc, error;
+
+ rc = decimal2string(from, strbuf, &len, 0, 0, 0);
+ end= strbuf + len;
+
+ DBUG_PRINT("info", ("interm.: %s", strbuf));
+
+ *to= my_strtod(strbuf, &end, &error);
+
+ DBUG_PRINT("info", ("result: %f", *to));
+
+ return (rc != E_DEC_OK) ? rc : (error ? E_DEC_OVERFLOW : E_DEC_OK);
+}
+
+/*
+ Convert double to decimal
+
+ SYNOPSIS
+ double2decimal()
+ from - value to convert
+ to - result will be stored there
+
+ RETURN VALUE
+ E_DEC_OK/E_DEC_OVERFLOW/E_DEC_TRUNCATED
+*/
+
+int double2decimal(double from, decimal_t *to)
+{
+ char buff[FLOATING_POINT_BUFFER], *end;
+ int res;
+ DBUG_ENTER("double2decimal");
+ end= buff + my_gcvt(from, MY_GCVT_ARG_DOUBLE, sizeof(buff) - 1, buff, NULL);
+ res= string2decimal(buff, to, &end);
+ DBUG_PRINT("exit", ("res: %d", res));
+ DBUG_RETURN(res);
+}
+
+
+static int ull2dec(ulonglong from, decimal_t *to)
+{
+ int intg1, error=E_DEC_OK;
+ ulonglong x=from;
+ dec1 *buf;
+
+ sanity(to);
+
+ if (!from)
+ {
+ decimal_make_zero(to);
+ return E_DEC_OK;
+ }
+
+ for (intg1=1; from >= DIG_BASE; intg1++, from/=DIG_BASE) {}
+ if (unlikely(intg1 > to->len))
+ {
+ intg1=to->len;
+ error=E_DEC_OVERFLOW;
+ }
+ to->frac=0;
+ for(to->intg= (intg1-1)*DIG_PER_DEC1; from; to->intg++, from/=10) {}
+
+ for (buf=to->buf+intg1; intg1; intg1--)
+ {
+ ulonglong y=x/DIG_BASE;
+ *--buf=(dec1)(x-y*DIG_BASE);
+ x=y;
+ }
+ return error;
+}
+
+int ulonglong2decimal(ulonglong from, decimal_t *to)
+{
+ to->sign=0;
+ return ull2dec(from, to);
+}
+
+int longlong2decimal(longlong from, decimal_t *to)
+{
+ if ((to->sign= from < 0))
+ {
+ if (from == LONGLONG_MIN) // avoid undefined behavior
+ return ull2dec((ulonglong)LONGLONG_MIN, to);
+ return ull2dec(-from, to);
+ }
+ return ull2dec(from, to);
+}
+
+int decimal2ulonglong(const decimal_t *from, ulonglong *to)
+{
+ dec1 *buf=from->buf;
+ ulonglong x=0;
+ int intg, frac;
+
+ if (from->sign)
+ {
+ *to= 0;
+ return E_DEC_OVERFLOW;
+ }
+
+ for (intg=from->intg; intg > 0; intg-=DIG_PER_DEC1)
+ {
+ /*
+ Check that the decimal is bigger than any possible integer.
+ Do it before we do the x*=DIB_BASE to avoid integer
+ overflow.
+ */
+ if (unlikely (
+ x >= ULONGLONG_MAX/DIG_BASE &&
+ (x > ULONGLONG_MAX/DIG_BASE ||
+ *buf > (dec1) (ULONGLONG_MAX%DIG_BASE))))
+ {
+ *to=ULONGLONG_MAX;
+ return E_DEC_OVERFLOW;
+ }
+
+ x=x*DIG_BASE + *buf++;
+ }
+ *to=x;
+ for (frac=from->frac; unlikely(frac > 0); frac-=DIG_PER_DEC1)
+ if (*buf++)
+ return E_DEC_TRUNCATED;
+ return E_DEC_OK;
+}
+
+int decimal2longlong(const decimal_t *from, longlong *to)
+{
+ dec1 *buf=from->buf;
+ longlong x=0;
+ int intg, frac;
+
+ for (intg=from->intg; intg > 0; intg-=DIG_PER_DEC1)
+ {
+ /*
+ Check that the decimal is less than any possible integer.
+ Do it before we do the x*=DIB_BASE to avoid integer
+ overflow.
+ Attention: trick!
+ we're calculating -|from| instead of |from| here
+ because |LONGLONG_MIN| > LONGLONG_MAX
+ so we can convert -9223372036854775808 correctly.
+ */
+ if (unlikely (
+ x <= LONGLONG_MIN/DIG_BASE &&
+ (x < LONGLONG_MIN/DIG_BASE ||
+ *buf > (dec1) (-(LONGLONG_MIN%DIG_BASE)))))
+ {
+ /*
+ the decimal is bigger than any possible integer
+ return border integer depending on the sign
+ */
+ *to= from->sign ? LONGLONG_MIN : LONGLONG_MAX;
+ return E_DEC_OVERFLOW;
+ }
+
+ x=x*DIG_BASE - *buf++;
+ }
+ /* boundary case: 9223372036854775808 */
+ if (unlikely(from->sign==0 && x == LONGLONG_MIN))
+ {
+ *to= LONGLONG_MAX;
+ return E_DEC_OVERFLOW;
+ }
+
+ *to=from->sign ? x : -x;
+ for (frac=from->frac; unlikely(frac > 0); frac-=DIG_PER_DEC1)
+ if (*buf++)
+ return E_DEC_TRUNCATED;
+ return E_DEC_OK;
+}
+
+/*
+ Convert decimal to its binary fixed-length representation
+ two representations of the same length can be compared with memcmp
+ with the correct -1/0/+1 result
+
+ SYNOPSIS
+ decimal2bin()
+ from - value to convert
+ to - points to buffer where string representation should be stored
+ precision/scale - see decimal_bin_size() below
+
+ NOTE
+ the buffer is assumed to be of the size decimal_bin_size(precision, scale)
+
+ RETURN VALUE
+ E_DEC_OK/E_DEC_TRUNCATED/E_DEC_OVERFLOW
+
+ DESCRIPTION
+ for storage decimal numbers are converted to the "binary" format.
+
+ This format has the following properties:
+ 1. length of the binary representation depends on the {precision, scale}
+ as provided by the caller and NOT on the intg/frac of the decimal to
+ convert.
+ 2. binary representations of the same {precision, scale} can be compared
+ with memcmp - with the same result as decimal_cmp() of the original
+ decimals (not taking into account possible precision loss during
+ conversion).
+
+ This binary format is as follows:
+ 1. First the number is converted to have a requested precision and scale.
+ 2. Every full DIG_PER_DEC1 digits of intg part are stored in 4 bytes
+ as is
+ 3. The first intg % DIG_PER_DEC1 digits are stored in the reduced
+ number of bytes (enough bytes to store this number of digits -
+ see dig2bytes)
+ 4. same for frac - full decimal_digit_t's are stored as is,
+ the last frac % DIG_PER_DEC1 digits - in the reduced number of bytes.
+ 5. If the number is negative - every byte is inversed.
+ 5. The very first bit of the resulting byte array is inverted (because
+ memcmp compares unsigned bytes, see property 2 above)
+
+ Example:
+
+ 1234567890.1234
+
+ internally is represented as 3 decimal_digit_t's
+
+ 1 234567890 123400000
+
+ (assuming we want a binary representation with precision=14, scale=4)
+ in hex it's
+
+ 00-00-00-01 0D-FB-38-D2 07-5A-EF-40
+
+ now, middle decimal_digit_t is full - it stores 9 decimal digits. It goes
+ into binary representation as is:
+
+
+ ........... 0D-FB-38-D2 ............
+
+ First decimal_digit_t has only one decimal digit. We can store one digit in
+ one byte, no need to waste four:
+
+ 01 0D-FB-38-D2 ............
+
+ now, last digit. It's 123400000. We can store 1234 in two bytes:
+
+ 01 0D-FB-38-D2 04-D2
+
+ So, we've packed 12 bytes number in 7 bytes.
+ And now we invert the highest bit to get the final result:
+
+ 81 0D FB 38 D2 04 D2
+
+ And for -1234567890.1234 it would be
+
+ 7E F2 04 C7 2D FB 2D
+*/
+int decimal2bin(const decimal_t *from, uchar *to, decimal_digits_t precision,
+ decimal_digits_t frac)
+{
+ dec1 mask=from->sign ? -1 : 0, *buf1=from->buf, *stop1;
+ int error=E_DEC_OK, intg=precision-frac,
+ isize1, intg1, intg1x,
+ intg0=intg/DIG_PER_DEC1,
+ frac0=frac/DIG_PER_DEC1,
+ intg0x=intg-intg0*DIG_PER_DEC1,
+ frac0x=frac-frac0*DIG_PER_DEC1,
+ frac1=from->frac/DIG_PER_DEC1,
+ frac1x=from->frac-frac1*DIG_PER_DEC1,
+ isize0=intg0*sizeof(dec1)+dig2bytes[intg0x],
+ fsize0=frac0*sizeof(dec1)+dig2bytes[frac0x],
+ fsize1=frac1*sizeof(dec1)+dig2bytes[frac1x];
+ decimal_digits_t from_intg;
+ const int orig_isize0= isize0;
+ const int orig_fsize0= fsize0;
+ uchar *orig_to= to;
+
+ buf1= remove_leading_zeroes(from, &from_intg);
+
+ if (unlikely(from_intg+fsize1==0))
+ {
+ mask=0; /* just in case */
+ intg=1;
+ buf1=&mask;
+ }
+
+ intg1=from_intg/DIG_PER_DEC1;
+ intg1x=from_intg-intg1*DIG_PER_DEC1;
+ isize1=intg1*sizeof(dec1)+dig2bytes[intg1x];
+
+ if (intg < from_intg)
+ {
+ buf1+=intg1-intg0+(intg1x>0)-(intg0x>0);
+ intg1=intg0; intg1x=intg0x;
+ error=E_DEC_OVERFLOW;
+ }
+ else if (isize0 > isize1)
+ {
+ while (isize0-- > isize1)
+ *to++= (char)mask;
+ }
+ if (fsize0 < fsize1)
+ {
+ frac1=frac0; frac1x=frac0x;
+ error=E_DEC_TRUNCATED;
+ }
+ else if (fsize0 > fsize1 && frac1x)
+ {
+ if (frac0 == frac1)
+ {
+ frac1x=frac0x;
+ fsize0= fsize1;
+ }
+ else
+ {
+ frac1++;
+ frac1x=0;
+ }
+ }
+
+ /* intg1x part */
+ if (intg1x)
+ {
+ int i=dig2bytes[intg1x];
+ dec1 x=(*buf1++ % powers10[intg1x]) ^ mask;
+ switch (i)
+ {
+ case 1: mi_int1store(to, x); break;
+ case 2: mi_int2store(to, x); break;
+ case 3: mi_int3store(to, x); break;
+ case 4: mi_int4store(to, x); break;
+ default: DBUG_ASSERT(0);
+ }
+ to+=i;
+ }
+
+ /* intg1+frac1 part */
+ for (stop1=buf1+intg1+frac1; buf1 < stop1; to+=sizeof(dec1))
+ {
+ dec1 x=*buf1++ ^ mask;
+ DBUG_ASSERT(sizeof(dec1) == 4);
+ mi_int4store(to, x);
+ }
+
+ /* frac1x part */
+ if (frac1x)
+ {
+ dec1 x;
+ int i=dig2bytes[frac1x],
+ lim=(frac1 < frac0 ? DIG_PER_DEC1 : frac0x);
+ while (frac1x < lim && dig2bytes[frac1x] == i)
+ frac1x++;
+ x=(*buf1 / powers10[DIG_PER_DEC1 - frac1x]) ^ mask;
+ switch (i)
+ {
+ case 1: mi_int1store(to, x); break;
+ case 2: mi_int2store(to, x); break;
+ case 3: mi_int3store(to, x); break;
+ case 4: mi_int4store(to, x); break;
+ default: DBUG_ASSERT(0);
+ }
+ to+=i;
+ }
+ if (fsize0 > fsize1)
+ {
+ uchar *to_end= orig_to + orig_fsize0 + orig_isize0;
+
+ while (fsize0-- > fsize1 && to < to_end)
+ *to++= (uchar)mask;
+ }
+ orig_to[0]^= 0x80;
+
+ /* Check that we have written the whole decimal and nothing more */
+ DBUG_ASSERT(to == orig_to + orig_fsize0 + orig_isize0);
+ return error;
+}
+
+/*
+ Restores decimal from its binary fixed-length representation
+
+ SYNOPSIS
+ bin2decimal()
+ from - value to convert
+ to - result
+ precision/scale - see decimal_bin_size() below
+
+ NOTE
+ see decimal2bin()
+ the buffer is assumed to be of the size decimal_bin_size(precision, scale)
+
+ RETURN VALUE
+ E_DEC_OK/E_DEC_TRUNCATED/E_DEC_OVERFLOW
+*/
+
+int bin2decimal(const uchar *from, decimal_t *to, decimal_digits_t precision,
+ decimal_digits_t scale)
+{
+ int error=E_DEC_OK, intg=precision-scale,
+ intg0=intg/DIG_PER_DEC1, frac0=scale/DIG_PER_DEC1,
+ intg0x=intg-intg0*DIG_PER_DEC1, frac0x=scale-frac0*DIG_PER_DEC1,
+ intg1=intg0+(intg0x>0), frac1=frac0+(frac0x>0);
+ dec1 *buf=to->buf, mask=(*from & 0x80) ? 0 : -1;
+ const uchar *stop;
+ uchar *d_copy;
+ int bin_size= decimal_bin_size(precision, scale);
+
+ sanity(to);
+ d_copy= (uchar*) my_alloca(bin_size);
+ memcpy(d_copy, from, bin_size);
+ d_copy[0]^= 0x80;
+ from= d_copy;
+
+ FIX_INTG_FRAC_ERROR(to->len, intg1, frac1, error);
+ if (unlikely(error))
+ {
+ if (intg1 < intg0+(intg0x>0))
+ {
+ from+=dig2bytes[intg0x]+sizeof(dec1)*(intg0-intg1);
+ frac0=frac0x=intg0x=0;
+ intg0=intg1;
+ }
+ else
+ {
+ frac0x=0;
+ frac0=frac1;
+ }
+ }
+
+ to->sign=(mask != 0);
+ to->intg=intg0*DIG_PER_DEC1+intg0x;
+ to->frac=frac0*DIG_PER_DEC1+frac0x;
+
+ if (intg0x)
+ {
+ int i=dig2bytes[intg0x];
+ dec1 UNINIT_VAR(x);
+ switch (i)
+ {
+ case 1: x=mi_sint1korr(from); break;
+ case 2: x=mi_sint2korr(from); break;
+ case 3: x=mi_sint3korr(from); break;
+ case 4: x=mi_sint4korr(from); break;
+ default: abort();
+ }
+ from+=i;
+ *buf=x ^ mask;
+ if (((ulonglong)*buf) >= (ulonglong) powers10[intg0x+1])
+ goto err;
+ if (buf > to->buf || *buf != 0)
+ buf++;
+ else
+ to->intg-=intg0x;
+ }
+ for (stop=from+intg0*sizeof(dec1); from < stop; from+=sizeof(dec1))
+ {
+ DBUG_ASSERT(sizeof(dec1) == 4);
+ *buf=mi_sint4korr(from) ^ mask;
+ if (((uint32)*buf) > DIG_MAX)
+ goto err;
+ if (buf > to->buf || *buf != 0)
+ buf++;
+ else
+ to->intg-=DIG_PER_DEC1;
+ }
+ DBUG_ASSERT(to->intg >=0);
+ for (stop=from+frac0*sizeof(dec1); from < stop; from+=sizeof(dec1))
+ {
+ DBUG_ASSERT(sizeof(dec1) == 4);
+ *buf=mi_sint4korr(from) ^ mask;
+ if (((uint32)*buf) > DIG_MAX)
+ goto err;
+ buf++;
+ }
+ if (frac0x)
+ {
+ int i=dig2bytes[frac0x];
+ dec1 UNINIT_VAR(x);
+ switch (i)
+ {
+ case 1: x=mi_sint1korr(from); break;
+ case 2: x=mi_sint2korr(from); break;
+ case 3: x=mi_sint3korr(from); break;
+ case 4: x=mi_sint4korr(from); break;
+ default: abort();
+ }
+ *buf=(x ^ mask) * powers10[DIG_PER_DEC1 - frac0x];
+ if (((uint32)*buf) > DIG_MAX)
+ goto err;
+ buf++;
+ }
+ my_afree(d_copy);
+
+ /*
+ No digits? We have read the number zero, of unspecified precision.
+ Make it a proper zero, with non-zero precision.
+ */
+ if (to->intg == 0 && to->frac == 0)
+ decimal_make_zero(to);
+ return error;
+
+err:
+ my_afree(d_copy);
+ decimal_make_zero(to);
+ return(E_DEC_BAD_NUM);
+}
+
+/*
+ Returns the size of array to hold a decimal with given precision and scale
+
+ RETURN VALUE
+ size in dec1
+ (multiply by sizeof(dec1) to get the size if bytes)
+*/
+
+uint decimal_size(decimal_digits_t precision, decimal_digits_t scale)
+{
+ DBUG_ASSERT(precision > 0 && scale <= precision);
+ return ROUND_UP(precision-scale)+ROUND_UP(scale);
+}
+
+/*
+ Returns the size of array to hold a binary representation of a decimal
+
+ RETURN VALUE
+ size in bytes
+*/
+
+uint decimal_bin_size(decimal_digits_t precision, decimal_digits_t scale)
+{
+ int intg=precision-scale,
+ intg0=intg/DIG_PER_DEC1, frac0=scale/DIG_PER_DEC1,
+ intg0x=intg-intg0*DIG_PER_DEC1, frac0x=scale-frac0*DIG_PER_DEC1;
+
+ DBUG_ASSERT(precision > 0);
+ DBUG_ASSERT(scale <= precision);
+ return intg0*sizeof(dec1)+dig2bytes[intg0x]+
+ frac0*sizeof(dec1)+dig2bytes[frac0x];
+}
+
+/*
+ Rounds the decimal to "scale" digits
+
+ SYNOPSIS
+ decimal_round()
+ from - decimal to round,
+ to - result buffer. from==to is allowed
+ scale - to what position to round. can be negative!
+ mode - round to nearest even or truncate
+
+ NOTES
+ scale can be negative !
+ one TRUNCATED error (line XXX below) isn't treated very logical :(
+
+ RETURN VALUE
+ E_DEC_OK/E_DEC_TRUNCATED
+*/
+
+int
+decimal_round(const decimal_t *from, decimal_t *to, int scale,
+ decimal_round_mode mode)
+{
+ int frac0=scale>0 ? ROUND_UP(scale) : scale/DIG_PER_DEC1,
+ frac1=ROUND_UP(from->frac), UNINIT_VAR(round_digit),
+ intg0=ROUND_UP(from->intg), error=E_DEC_OK, len=to->len;
+
+ dec1 *buf0=from->buf, *buf1=to->buf, x, y, carry=0;
+ int first_dig;
+
+ sanity(to);
+
+ switch (mode) {
+ case HALF_UP:
+ case HALF_EVEN: round_digit=5; break;
+ case CEILING: round_digit= from->sign ? 10 : 0; break;
+ case FLOOR: round_digit= from->sign ? 0 : 10; break;
+ case TRUNCATE: round_digit=10; break;
+ default: DBUG_ASSERT(0);
+ }
+
+ /*
+ For my_decimal we always use len == DECIMAL_BUFF_LENGTH == 9
+ For internal testing here (ifdef MAIN) we always use len == 100/4
+ */
+ DBUG_ASSERT(from->len == to->len);
+
+ if (unlikely(frac0+intg0 > len))
+ {
+ frac0=len-intg0;
+ scale=frac0*DIG_PER_DEC1;
+ error=E_DEC_TRUNCATED;
+ }
+
+ if (scale+from->intg < 0)
+ {
+ decimal_make_zero(to);
+ return E_DEC_OK;
+ }
+
+ if (to != from)
+ {
+ dec1 *p0= buf0+intg0+MY_MAX(frac1, frac0);
+ dec1 *p1= buf1+intg0+MY_MAX(frac1, frac0);
+
+ DBUG_ASSERT(p0 - buf0 <= len);
+ DBUG_ASSERT(p1 - buf1 <= len);
+
+ while (buf0 < p0)
+ *(--p1) = *(--p0);
+
+ buf0=to->buf;
+ buf1=to->buf;
+ to->sign=from->sign;
+ to->intg=MY_MIN(intg0, len)*DIG_PER_DEC1;
+ }
+
+ if (frac0 > frac1)
+ {
+ buf1+=intg0+frac1;
+ while (frac0-- > frac1)
+ *buf1++=0;
+ goto done;
+ }
+
+ if (scale >= from->frac)
+ goto done; /* nothing to do */
+
+ buf0+=intg0+frac0-1;
+ buf1+=intg0+frac0-1;
+ if (scale == frac0*DIG_PER_DEC1)
+ {
+ int do_inc= FALSE;
+ DBUG_ASSERT(frac0+intg0 >= 0);
+ switch (round_digit) {
+ case 0:
+ {
+ dec1 *p0= buf0 + (frac1-frac0);
+ for (; p0 > buf0; p0--)
+ {
+ if (*p0)
+ {
+ do_inc= TRUE;
+ break;
+ }
+ }
+ break;
+ }
+ case 5:
+ {
+ x= buf0[1]/DIG_MASK;
+ do_inc= (x>5) || ((x == 5) &&
+ (mode == HALF_UP || (frac0+intg0 > 0 && *buf0 & 1)));
+ break;
+ }
+ default:
+ break;
+ }
+ if (do_inc)
+ {
+ if (frac0+intg0>0)
+ (*buf1)++;
+ else
+ *(++buf1)=DIG_BASE;
+ }
+ else if (frac0+intg0==0)
+ {
+ decimal_make_zero(to);
+ return E_DEC_OK;
+ }
+ }
+ else
+ {
+ /* TODO - fix this code as it won't work for CEILING mode */
+ int pos=frac0*DIG_PER_DEC1-scale-1;
+ DBUG_ASSERT(frac0+intg0 > 0);
+ x=*buf1 / powers10[pos];
+ y=x % 10;
+ if (y > round_digit ||
+ (round_digit == 5 && y == 5 && (mode == HALF_UP || (x/10) & 1)))
+ x+=10;
+ *buf1=powers10[pos]*(x-y);
+ }
+ if (*buf1 >= DIG_BASE)
+ {
+ carry=1;
+ *buf1-=DIG_BASE;
+ while (carry && --buf1 >= to->buf)
+ ADD(*buf1, *buf1, 0, carry);
+ if (unlikely(carry))
+ {
+ /* shifting the number to create space for new digit */
+ if (frac0+intg0 >= len)
+ {
+ frac0--;
+ scale=frac0*DIG_PER_DEC1;
+ error=E_DEC_TRUNCATED; /* XXX */
+ }
+ for (buf1=to->buf+intg0+MY_MAX(frac0,0); buf1 > to->buf; buf1--)
+ {
+ buf1[0]=buf1[-1];
+ }
+ *buf1=1;
+ to->intg++;
+ intg0++;
+ }
+ }
+ else
+ {
+ for (;;)
+ {
+ if (likely(*buf1))
+ break;
+ if (buf1-- == to->buf)
+ {
+ /* making 'zero' with the proper scale */
+ dec1 *p0= to->buf + frac0 + 1;
+ to->intg=1;
+ to->frac= MY_MAX(scale, 0);
+ to->sign= 0;
+ for (buf1= to->buf; buf1<p0; buf1++)
+ *buf1= 0;
+ return E_DEC_OK;
+ }
+ }
+ }
+ /*
+ In case we're rounding e.g. 1.5e9 to 2.0e9, the decimal_digit_t's inside
+ the buffer are as follows.
+
+ Before <1, 5e8>
+ After <2, 5e8>
+
+ Hence we need to set the 2nd field to 0.
+ The same holds if we round 1.5e-9 to 2e-9.
+ */
+ if (frac0 < frac1)
+ {
+ dec1 *buf= to->buf + ((scale == 0 && intg0 == 0) ? 1 : intg0 + frac0);
+ dec1 *end= to->buf + len;
+
+ while (buf < end)
+ *buf++=0;
+ }
+
+ /* Here we check 999.9 -> 1000 case when we need to increase intg */
+ first_dig= to->intg % DIG_PER_DEC1;
+ if (first_dig && (*buf1 >= powers10[first_dig]))
+ to->intg++;
+
+ if (scale<0)
+ scale=0;
+
+done:
+ to->frac=scale;
+ return error;
+}
+
+/*
+ Returns the size of the result of the operation
+
+ SYNOPSIS
+ decimal_result_size()
+ from1 - operand of the unary operation or first operand of the
+ binary operation
+ from2 - second operand of the binary operation
+ op - operation. one char '+', '-', '*', '/' are allowed
+ others may be added later
+ param - extra param to the operation. unused for '+', '-', '*'
+ scale increment for '/'
+
+ NOTE
+ returned valued may be larger than the actual buffer required
+ in the operation, as decimal_result_size, by design, operates on
+ precision/scale values only and not on the actual decimal number
+
+ RETURN VALUE
+ size of to->buf array in dec1 elements. to get size in bytes
+ multiply by sizeof(dec1)
+*/
+
+uint decimal_result_size(decimal_t *from1, decimal_t *from2, char op, int param)
+{
+ switch (op) {
+ case '-':
+ return ROUND_UP(MY_MAX(from1->intg, from2->intg)) +
+ ROUND_UP(MY_MAX(from1->frac, from2->frac));
+ case '+':
+ return ROUND_UP(MY_MAX(from1->intg, from2->intg)+1) +
+ ROUND_UP(MY_MAX(from1->frac, from2->frac));
+ case '*':
+ return ROUND_UP(from1->intg+from2->intg)+
+ ROUND_UP(from1->frac)+ROUND_UP(from2->frac);
+ case '/':
+ return ROUND_UP(from1->intg+from2->intg+1+from1->frac+from2->frac+param);
+ default: DBUG_ASSERT(0);
+ }
+ return 0; /* shut up the warning */
+}
+
+static int do_add(const decimal_t *from1, const decimal_t *from2, decimal_t *to)
+{
+ int intg1=ROUND_UP(from1->intg), intg2=ROUND_UP(from2->intg),
+ frac1=ROUND_UP(from1->frac), frac2=ROUND_UP(from2->frac),
+ frac0=MY_MAX(frac1, frac2), intg0=MY_MAX(intg1, intg2), error;
+ dec1 *buf1, *buf2, *buf0, *stop, *stop2, x, carry;
+
+ sanity(to);
+
+ /* is there a need for extra word because of carry ? */
+ x=intg1 > intg2 ? from1->buf[0] :
+ intg2 > intg1 ? from2->buf[0] :
+ from1->buf[0] + from2->buf[0] ;
+ if (unlikely(x > DIG_MAX-1)) /* yes, there is */
+ {
+ intg0++;
+ to->buf[0]=0; /* safety */
+ }
+
+ FIX_INTG_FRAC_ERROR(to->len, intg0, frac0, error);
+ if (unlikely(error == E_DEC_OVERFLOW))
+ {
+ max_decimal(to->len * DIG_PER_DEC1, 0, to);
+ return error;
+ }
+
+ buf0=to->buf+intg0+frac0;
+
+ to->sign=from1->sign;
+ to->frac=MY_MAX(from1->frac, from2->frac);
+ to->intg=intg0*DIG_PER_DEC1;
+ if (unlikely(error))
+ {
+ set_if_smaller(to->frac, frac0*DIG_PER_DEC1);
+ set_if_smaller(frac1, frac0);
+ set_if_smaller(frac2, frac0);
+ set_if_smaller(intg1, intg0);
+ set_if_smaller(intg2, intg0);
+ }
+
+ /* part 1 - MY_MAX(frac) ... min (frac) */
+ if (frac1 > frac2)
+ {
+ buf1=from1->buf+intg1+frac1;
+ stop=from1->buf+intg1+frac2;
+ buf2=from2->buf+intg2+frac2;
+ stop2=from1->buf+(intg1 > intg2 ? intg1-intg2 : 0);
+ }
+ else
+ {
+ buf1=from2->buf+intg2+frac2;
+ stop=from2->buf+intg2+frac1;
+ buf2=from1->buf+intg1+frac1;
+ stop2=from2->buf+(intg2 > intg1 ? intg2-intg1 : 0);
+ }
+ while (buf1 > stop)
+ *--buf0=*--buf1;
+
+ /* part 2 - MY_MIN(frac) ... MY_MIN(intg) */
+ carry=0;
+ while (buf1 > stop2)
+ {
+ ADD(*--buf0, *--buf1, *--buf2, carry);
+ }
+
+ /* part 3 - MY_MIN(intg) ... MY_MAX(intg) */
+ buf1= intg1 > intg2 ? ((stop=from1->buf)+intg1-intg2) :
+ ((stop=from2->buf)+intg2-intg1) ;
+ while (buf1 > stop)
+ {
+ ADD(*--buf0, *--buf1, 0, carry);
+ }
+
+ if (unlikely(carry))
+ *--buf0=1;
+ DBUG_ASSERT(buf0 == to->buf || buf0 == to->buf+1);
+
+ return error;
+}
+
+/* to=from1-from2.
+ if to==0, return -1/0/+1 - the result of the comparison */
+static int do_sub(const decimal_t *from1, const decimal_t *from2, decimal_t *to)
+{
+ int intg1=ROUND_UP(from1->intg), intg2=ROUND_UP(from2->intg),
+ frac1=ROUND_UP(from1->frac), frac2=ROUND_UP(from2->frac);
+ int frac0=MY_MAX(frac1, frac2), error;
+ dec1 *buf1, *buf2, *buf0, *stop1, *stop2, *start1, *start2;
+ my_bool carry=0;
+
+ /* let carry:=1 if from2 > from1 */
+ start1=buf1=from1->buf; stop1=buf1+intg1;
+ start2=buf2=from2->buf; stop2=buf2+intg2;
+ if (unlikely(*buf1 == 0))
+ {
+ while (buf1 < stop1 && *buf1 == 0)
+ buf1++;
+ start1=buf1;
+ intg1= (int) (stop1-buf1);
+ }
+ if (unlikely(*buf2 == 0))
+ {
+ while (buf2 < stop2 && *buf2 == 0)
+ buf2++;
+ start2=buf2;
+ intg2= (int) (stop2-buf2);
+ }
+ if (intg2 > intg1)
+ carry=1;
+ else if (intg2 == intg1)
+ {
+ dec1 *end1= stop1 + (frac1 - 1);
+ dec1 *end2= stop2 + (frac2 - 1);
+ while (unlikely((buf1 <= end1) && (*end1 == 0)))
+ end1--;
+ while (unlikely((buf2 <= end2) && (*end2 == 0)))
+ end2--;
+ frac1= (int) (end1 - stop1) + 1;
+ frac2= (int) (end2 - stop2) + 1;
+ while (buf1 <=end1 && buf2 <= end2 && *buf1 == *buf2)
+ buf1++, buf2++;
+ if (buf1 <= end1)
+ {
+ if (buf2 <= end2)
+ carry= *buf2 > *buf1;
+ else
+ carry= 0;
+ }
+ else
+ {
+ if (buf2 <= end2)
+ carry=1;
+ else /* short-circuit everything: from1 == from2 */
+ {
+ if (to == 0) /* decimal_cmp() */
+ return 0;
+ decimal_make_zero(to);
+ return E_DEC_OK;
+ }
+ }
+ }
+
+ if (to == 0) /* decimal_cmp() */
+ return carry == from1->sign ? 1 : -1;
+
+ sanity(to);
+
+ to->sign=from1->sign;
+
+ /* ensure that always from1 > from2 (and intg1 >= intg2) */
+ if (carry)
+ {
+ swap_variables(const decimal_t *, from1, from2);
+ swap_variables(dec1 *,start1, start2);
+ swap_variables(int,intg1,intg2);
+ swap_variables(int,frac1,frac2);
+ to->sign= !to->sign;
+ }
+
+ FIX_INTG_FRAC_ERROR(to->len, intg1, frac0, error);
+ buf0=to->buf+intg1+frac0;
+
+ to->frac=MY_MAX(from1->frac, from2->frac);
+ to->intg=intg1*DIG_PER_DEC1;
+ if (unlikely(error))
+ {
+ set_if_smaller(to->frac, frac0*DIG_PER_DEC1);
+ set_if_smaller(frac1, frac0);
+ set_if_smaller(frac2, frac0);
+ set_if_smaller(intg2, intg1);
+ }
+ carry=0;
+
+ /* part 1 - MY_MAX(frac) ... min (frac) */
+ if (frac1 > frac2)
+ {
+ buf1=start1+intg1+frac1;
+ stop1=start1+intg1+frac2;
+ buf2=start2+intg2+frac2;
+ while (frac0-- > frac1)
+ *--buf0=0;
+ while (buf1 > stop1)
+ *--buf0=*--buf1;
+ }
+ else
+ {
+ buf1=start1+intg1+frac1;
+ buf2=start2+intg2+frac2;
+ stop2=start2+intg2+frac1;
+ while (frac0-- > frac2)
+ *--buf0=0;
+ while (buf2 > stop2)
+ {
+ SUB(*--buf0, 0, *--buf2, carry);
+ }
+ }
+
+ /* part 2 - MY_MIN(frac) ... intg2 */
+ while (buf2 > start2)
+ {
+ SUB(*--buf0, *--buf1, *--buf2, carry);
+ }
+
+ /* part 3 - intg2 ... intg1 */
+ while (carry && buf1 > start1)
+ {
+ SUB(*--buf0, *--buf1, 0, carry);
+ }
+
+ while (buf1 > start1)
+ *--buf0=*--buf1;
+
+ while (buf0 > to->buf)
+ *--buf0=0;
+
+ return error;
+}
+
+decimal_digits_t decimal_intg(const decimal_t *from)
+{
+ decimal_digits_t res;
+ remove_leading_zeroes(from, &res);
+ return res;
+}
+
+int decimal_add(const decimal_t *from1, const decimal_t *from2, decimal_t *to)
+{
+ if (likely(from1->sign == from2->sign))
+ return do_add(from1, from2, to);
+ return do_sub(from1, from2, to);
+}
+
+int decimal_sub(const decimal_t *from1, const decimal_t *from2, decimal_t *to)
+{
+ if (likely(from1->sign == from2->sign))
+ return do_sub(from1, from2, to);
+ return do_add(from1, from2, to);
+}
+
+int decimal_cmp(const decimal_t *from1, const decimal_t *from2)
+{
+ if (likely(from1->sign == from2->sign))
+ return do_sub(from1, from2, 0);
+ return from1->sign > from2->sign ? -1 : 1;
+}
+
+int decimal_is_zero(const decimal_t *from)
+{
+ dec1 *buf1=from->buf,
+ *end=buf1+ROUND_UP(from->intg)+ROUND_UP(from->frac);
+ while (buf1 < end)
+ if (*buf1++)
+ return 0;
+ return 1;
+}
+
+/*
+ multiply two decimals
+
+ SYNOPSIS
+ decimal_mul()
+ from1, from2 - factors
+ to - product
+
+ RETURN VALUE
+ E_DEC_OK/E_DEC_TRUNCATED/E_DEC_OVERFLOW;
+
+ NOTES
+ in this implementation, with sizeof(dec1)=4 we have DIG_PER_DEC1=9,
+ and 63-digit number will take only 7 dec1 words (basically a 7-digit
+ "base 999999999" number). Thus there's no need in fast multiplication
+ algorithms, 7-digit numbers can be multiplied with a naive O(n*n)
+ method.
+
+ XXX if this library is to be used with huge numbers of thousands of
+ digits, fast multiplication must be implemented.
+*/
+int decimal_mul(const decimal_t *from1, const decimal_t *from2, decimal_t *to)
+{
+ int intg1=ROUND_UP(from1->intg), intg2=ROUND_UP(from2->intg),
+ frac1=ROUND_UP(from1->frac), frac2=ROUND_UP(from2->frac),
+ intg0=ROUND_UP(from1->intg+from2->intg),
+ frac0=frac1+frac2, error, i, j, d_to_move;
+ dec1 *buf1=from1->buf+intg1, *buf2=from2->buf+intg2, *buf0,
+ *start2, *stop2, *stop1, *start0, carry;
+
+ sanity(to);
+
+ i=intg0; /* save 'ideal' values */
+ j=frac0;
+ FIX_INTG_FRAC_ERROR(to->len, intg0, frac0, error); /* bound size */
+ to->sign=from1->sign != from2->sign;
+ to->frac=from1->frac+from2->frac; /* store size in digits */
+ to->intg=intg0*DIG_PER_DEC1;
+
+ if (unlikely(error))
+ {
+ set_if_smaller(to->frac, frac0*DIG_PER_DEC1);
+ set_if_smaller(to->intg, intg0*DIG_PER_DEC1);
+ if (unlikely(i > intg0)) /* bounded integer-part */
+ {
+ i-=intg0;
+ j=i >> 1;
+ intg1-= j;
+ intg2-=i-j;
+ frac1=frac2=0; /* frac0 is already 0 here */
+ }
+ else /* bounded fract part */
+ {
+ j-=frac0;
+ i=j >> 1;
+ if (frac1 <= frac2)
+ {
+ frac1-= i;
+ frac2-=j-i;
+ }
+ else
+ {
+ frac2-= i;
+ frac1-=j-i;
+ }
+ }
+ }
+ start0=to->buf+intg0+frac0-1;
+ start2=buf2+frac2-1;
+ stop1=buf1-intg1;
+ stop2=buf2-intg2;
+
+ bzero(to->buf, (intg0+frac0)*sizeof(dec1));
+
+ for (buf1+=frac1-1; buf1 >= stop1; buf1--, start0--)
+ {
+ carry=0;
+ for (buf0=start0, buf2=start2; buf2 >= stop2; buf2--, buf0--)
+ {
+ dec1 hi, lo;
+ dec2 p= ((dec2)*buf1) * ((dec2)*buf2);
+ hi=(dec1)(p/DIG_BASE);
+ lo=(dec1)(p-((dec2)hi)*DIG_BASE);
+ ADD2(*buf0, *buf0, lo, carry);
+ carry+=hi;
+ }
+ if (carry)
+ {
+ if (buf0 < to->buf)
+ return E_DEC_OVERFLOW;
+ ADD2(*buf0, *buf0, 0, carry);
+ }
+ for (buf0--; carry; buf0--)
+ {
+ if (buf0 < to->buf)
+ return E_DEC_OVERFLOW;
+ ADD(*buf0, *buf0, 0, carry);
+ }
+ }
+
+ /* Remove trailing zero words in frac part */
+ frac0= ROUND_UP(to->frac);
+
+ if (frac0 > 0 && to->buf[intg0 + frac0 - 1] == 0)
+ {
+ do
+ {
+ frac0--;
+ } while (frac0 > 0 && to->buf[intg0 + frac0 - 1] == 0);
+ to->frac= DIG_PER_DEC1 * frac0;
+ }
+
+ /* Remove heading zero words in intg part */
+ buf1= to->buf;
+ d_to_move= intg0 + frac0;
+ while (!*buf1 && (to->intg > DIG_PER_DEC1))
+ {
+ buf1++;
+ to->intg-= DIG_PER_DEC1;
+ d_to_move--;
+ }
+ if (to->buf < buf1)
+ {
+ dec1 *cur_d= to->buf;
+ for (; d_to_move--; cur_d++, buf1++)
+ *cur_d= *buf1;
+ }
+
+ /* Now we have to check for -0.000 case */
+ if (to->sign && to->frac == 0 && to->buf[0] == 0)
+ {
+ DBUG_ASSERT(to->intg <= DIG_PER_DEC1);
+ /* We got decimal zero */
+ decimal_make_zero(to);
+ }
+ return error;
+}
+
+/*
+ naive division algorithm (Knuth's Algorithm D in 4.3.1) -
+ it's ok for short numbers
+ also we're using alloca() to allocate a temporary buffer
+
+ XXX if this library is to be used with huge numbers of thousands of
+ digits, fast division must be implemented and alloca should be
+ changed to malloc (or at least fallback to malloc if alloca() fails)
+ but then, decimal_mul() should be rewritten too :(
+*/
+static int do_div_mod(const decimal_t *from1, const decimal_t *from2,
+ decimal_t *to, decimal_t *mod, int scale_incr)
+{
+ int frac1=ROUND_UP(from1->frac)*DIG_PER_DEC1, prec1=from1->intg+frac1,
+ frac2=ROUND_UP(from2->frac)*DIG_PER_DEC1, prec2=from2->intg+frac2,
+ UNINIT_VAR(error), i, intg0, frac0, len1, len2, dintg, div_mod=(!mod);
+ dec1 *buf0, *buf1=from1->buf, *buf2=from2->buf, *tmp1,
+ *start2, *stop2, *stop1, *stop0, norm2, carry, *start1, dcarry;
+ dec2 norm_factor, x, guess, y;
+
+ if (mod)
+ to=mod;
+
+ sanity(to);
+
+ /* removing all the leading zeroes */
+ i= ((prec2 - 1) % DIG_PER_DEC1) + 1;
+ while (prec2 > 0 && *buf2 == 0)
+ {
+ prec2-= i;
+ i= DIG_PER_DEC1;
+ buf2++;
+ }
+ if (prec2 <= 0) /* short-circuit everything: from2 == 0 */
+ return E_DEC_DIV_ZERO;
+ for (i= (prec2 - 1) % DIG_PER_DEC1; *buf2 < powers10[i--]; prec2--) ;
+ DBUG_ASSERT(prec2 > 0);
+
+ i=((prec1-1) % DIG_PER_DEC1)+1;
+ while (prec1 > 0 && *buf1 == 0)
+ {
+ prec1-=i;
+ i=DIG_PER_DEC1;
+ buf1++;
+ }
+ if (prec1 <= 0)
+ { /* short-circuit everything: from1 == 0 */
+ decimal_make_zero(to);
+ return E_DEC_OK;
+ }
+ for (i=(prec1-1) % DIG_PER_DEC1; *buf1 < powers10[i--]; prec1--) ;
+ DBUG_ASSERT(prec1 > 0);
+
+ /* let's fix scale_incr, taking into account frac1,frac2 increase */
+ if ((scale_incr-= frac1 - from1->frac + frac2 - from2->frac) < 0)
+ scale_incr=0;
+
+ dintg=(prec1-frac1)-(prec2-frac2)+(*buf1 >= *buf2);
+ if (dintg < 0)
+ {
+ dintg/=DIG_PER_DEC1;
+ intg0=0;
+ }
+ else
+ intg0=ROUND_UP(dintg);
+ if (mod)
+ {
+ /* we're calculating N1 % N2.
+ The result will have
+ frac=MY_MAX(frac1, frac2), as for subtraction
+ intg=intg2
+ */
+ to->sign=from1->sign;
+ to->frac=MY_MAX(from1->frac, from2->frac);
+ frac0=0;
+ }
+ else
+ {
+ /*
+ we're calculating N1/N2. N1 is in the buf1, has prec1 digits
+ N2 is in the buf2, has prec2 digits. Scales are frac1 and
+ frac2 accordingly.
+ Thus, the result will have
+ frac = ROUND_UP(frac1+frac2+scale_incr)
+ and
+ intg = (prec1-frac1) - (prec2-frac2) + 1
+ prec = intg+frac
+ */
+ frac0=ROUND_UP(frac1+frac2+scale_incr);
+ FIX_INTG_FRAC_ERROR(to->len, intg0, frac0, error);
+ to->sign=from1->sign != from2->sign;
+ to->intg=intg0*DIG_PER_DEC1;
+ to->frac=frac0*DIG_PER_DEC1;
+ }
+ buf0=to->buf;
+ stop0=buf0+intg0+frac0;
+ if (likely(div_mod))
+ while (dintg++ < 0 && buf0 < &to->buf[to->len])
+ {
+ *buf0++=0;
+ }
+
+ len1=(i=ROUND_UP(prec1))+ROUND_UP(2*frac2+scale_incr+1) + 1;
+ set_if_bigger(len1, 3);
+ if (!(tmp1=(dec1 *)my_alloca(len1*sizeof(dec1))))
+ return E_DEC_OOM;
+ memcpy(tmp1, buf1, i*sizeof(dec1));
+ bzero(tmp1+i, (len1-i)*sizeof(dec1));
+
+ start1=tmp1;
+ stop1=start1+len1;
+ start2=buf2;
+ stop2=buf2+ROUND_UP(prec2)-1;
+
+ /* removing end zeroes */
+ while (*stop2 == 0 && stop2 >= start2)
+ stop2--;
+ len2= (int) (stop2++ - start2);
+
+ /*
+ calculating norm2 (normalized *start2) - we need *start2 to be large
+ (at least > DIG_BASE/2), but unlike Knuth's Alg. D we don't want to
+ normalize input numbers (as we don't make a copy of the divisor).
+ Thus we normalize first dec1 of buf2 only, and we'll normalize *start1
+ on the fly for the purpose of guesstimation only.
+ It's also faster, as we're saving on normalization of buf2
+ */
+ norm_factor=DIG_BASE/(*start2+1);
+ norm2=(dec1)(norm_factor*start2[0]);
+ if (unlikely(len2>0))
+ norm2+=(dec1)(norm_factor*start2[1]/DIG_BASE);
+
+ if (*start1 < *start2)
+ dcarry=*start1++;
+ else
+ dcarry=0;
+
+ /* main loop */
+ for (; buf0 < stop0; buf0++)
+ {
+ /* short-circuit, if possible */
+ if (unlikely(dcarry == 0 && *start1 < *start2))
+ guess=0;
+ else
+ {
+ /* D3: make a guess */
+ x=start1[0]+((dec2)dcarry)*DIG_BASE;
+ y=start1[1];
+ guess=(norm_factor*x+norm_factor*y/DIG_BASE)/norm2;
+ if (unlikely(guess >= DIG_BASE))
+ guess=DIG_BASE-1;
+ if (unlikely(len2>0))
+ {
+ /* hmm, this is a suspicious trick - I removed normalization here */
+ if (start2[1]*guess > (x-guess*start2[0])*DIG_BASE+y)
+ guess--;
+ if (unlikely(start2[1]*guess > (x-guess*start2[0])*DIG_BASE+y))
+ guess--;
+ DBUG_ASSERT(start2[1]*guess <= (x-guess*start2[0])*DIG_BASE+y);
+ }
+
+ /* D4: multiply and subtract */
+ buf2=stop2;
+ buf1=start1+len2;
+ DBUG_ASSERT(buf1 < stop1);
+ for (carry=0; buf2 > start2; buf1--)
+ {
+ dec1 hi, lo;
+ x=guess * (*--buf2);
+ hi=(dec1)(x/DIG_BASE);
+ lo=(dec1)(x-((dec2)hi)*DIG_BASE);
+ SUB2(*buf1, *buf1, lo, carry);
+ carry+=hi;
+ }
+ carry= dcarry < carry;
+
+ /* D5: check the remainder */
+ if (unlikely(carry))
+ {
+ /* D6: correct the guess */
+ guess--;
+ buf2=stop2;
+ buf1=start1+len2;
+ for (carry=0; buf2 > start2; buf1--)
+ {
+ ADD(*buf1, *buf1, *--buf2, carry);
+ }
+ }
+ }
+ if (likely(div_mod))
+ {
+ DBUG_ASSERT(buf0 < to->buf + to->len);
+ *buf0=(dec1)guess;
+ }
+#ifdef WORKAROUND_GCC_4_3_2_BUG
+ dcarry= *(volatile dec1 *)start1;
+#else
+ dcarry= *start1;
+#endif
+ start1++;
+ }
+ if (mod)
+ {
+ /*
+ now the result is in tmp1, it has
+ intg=prec1-frac1
+ frac=MY_MAX(frac1, frac2)=to->frac
+ */
+ if (dcarry)
+ *--start1=dcarry;
+ buf0=to->buf;
+ intg0=(int) (ROUND_UP(prec1-frac1)-(start1-tmp1));
+ frac0=ROUND_UP(to->frac);
+ error=E_DEC_OK;
+ if (unlikely(frac0==0 && intg0==0))
+ {
+ decimal_make_zero(to);
+ goto done;
+ }
+ if (intg0<=0)
+ {
+ if (unlikely(-intg0 >= to->len))
+ {
+ decimal_make_zero(to);
+ error=E_DEC_TRUNCATED;
+ goto done;
+ }
+ stop1= start1 + frac0 + intg0;
+ frac0+=intg0;
+ to->intg=0;
+ while (intg0++ < 0)
+ *buf0++=0;
+ }
+ else
+ {
+ if (unlikely(intg0 > to->len))
+ {
+ frac0=0;
+ intg0=to->len;
+ error=E_DEC_OVERFLOW;
+ goto done;
+ }
+ DBUG_ASSERT(intg0 <= ROUND_UP(from2->intg));
+ stop1=start1+frac0+intg0;
+ to->intg=MY_MIN(intg0*DIG_PER_DEC1, from2->intg);
+ }
+ if (unlikely(intg0+frac0 > to->len))
+ {
+ stop1-=frac0+intg0-to->len;
+ frac0=to->len-intg0;
+ to->frac=frac0*DIG_PER_DEC1;
+ error=E_DEC_TRUNCATED;
+ }
+ DBUG_ASSERT(buf0 + (stop1 - start1) <= to->buf + to->len);
+ while (start1 < stop1)
+ *buf0++=*start1++;
+ }
+done:
+ my_afree(tmp1);
+ return error;
+}
+
+/*
+ division of two decimals
+
+ SYNOPSIS
+ decimal_div()
+ from1 - dividend
+ from2 - divisor
+ to - quotient
+
+ RETURN VALUE
+ E_DEC_OK/E_DEC_TRUNCATED/E_DEC_OVERFLOW/E_DEC_DIV_ZERO;
+
+ NOTES
+ see do_div_mod()
+*/
+
+int
+decimal_div(const decimal_t *from1, const decimal_t *from2, decimal_t *to,
+ int scale_incr)
+{
+ return do_div_mod(from1, from2, to, 0, scale_incr);
+}
+
+/*
+ modulus
+
+ SYNOPSIS
+ decimal_mod()
+ from1 - dividend
+ from2 - divisor
+ to - modulus
+
+ RETURN VALUE
+ E_DEC_OK/E_DEC_TRUNCATED/E_DEC_OVERFLOW/E_DEC_DIV_ZERO;
+
+ NOTES
+ see do_div_mod()
+
+ DESCRIPTION
+ the modulus R in R = M mod N
+
+ is defined as
+
+ 0 <= |R| < |M|
+ sign R == sign M
+ R = M - k*N, where k is integer
+
+ thus, there's no requirement for M or N to be integers
+*/
+
+int decimal_mod(const decimal_t *from1, const decimal_t *from2, decimal_t *to)
+{
+ return do_div_mod(from1, from2, 0, to, 0);
+}
+
+#ifdef MAIN
+
+int full= 0;
+decimal_t a, b, c;
+char buf1[100], buf2[100], buf3[100];
+
+void dump_decimal(decimal_t *d)
+{
+ int i;
+ printf("/* intg=%d, frac=%d, sign=%d, buf[]={", d->intg, d->frac, d->sign);
+ for (i=0; i < ROUND_UP(d->frac)+ROUND_UP(d->intg)-1; i++)
+ printf("%09d, ", d->buf[i]);
+ printf("%09d} */ ", d->buf[i]);
+}
+
+
+void check_result_code(int actual, int want)
+{
+ if (actual != want)
+ {
+ printf("\n^^^^^^^^^^^^^ must return %d\n", want);
+ exit(1);
+ }
+}
+
+
+void print_decimal(decimal_t *d, const char *orig, int actual, int want)
+{
+ char s[100];
+ int slen=sizeof(s);
+
+ if (full) dump_decimal(d);
+ decimal2string(d, s, &slen, 0, 0, 0);
+ printf("'%s'", s);
+ check_result_code(actual, want);
+ if (orig && strcmp(orig, s))
+ {
+ printf("\n^^^^^^^^^^^^^ must've been '%s'\n", orig);
+ exit(1);
+ }
+}
+
+void test_d2s()
+{
+ char s[100];
+ int slen, res;
+
+ /***********************************/
+ printf("==== decimal2string ====\n");
+ a.buf[0]=12345; a.intg=5; a.frac=0; a.sign=0;
+ slen=sizeof(s);
+ res=decimal2string(&a, s, &slen, 0, 0, 0);
+ dump_decimal(&a); printf(" --> res=%d str='%s' len=%d\n", res, s, slen);
+
+ a.buf[1]=987000000; a.frac=3;
+ slen=sizeof(s);
+ res=decimal2string(&a, s, &slen, 0, 0, 0);
+ dump_decimal(&a); printf(" --> res=%d str='%s' len=%d\n", res, s, slen);
+
+ a.sign=1;
+ slen=sizeof(s);
+ res=decimal2string(&a, s, &slen, 0, 0, 0);
+ dump_decimal(&a); printf(" --> res=%d str='%s' len=%d\n", res, s, slen);
+
+ slen=8;
+ res=decimal2string(&a, s, &slen, 0, 0, 0);
+ dump_decimal(&a); printf(" --> res=%d str='%s' len=%d\n", res, s, slen);
+
+ slen=5;
+ res=decimal2string(&a, s, &slen, 0, 0, 0);
+ dump_decimal(&a); printf(" --> res=%d str='%s' len=%d\n", res, s, slen);
+
+ a.buf[0]=987000000; a.frac=3; a.intg=0;
+ slen=sizeof(s);
+ res=decimal2string(&a, s, &slen, 0, 0, 0);
+ dump_decimal(&a); printf(" --> res=%d str='%s' len=%d\n", res, s, slen);
+}
+
+void test_s2d(const char *s, const char *orig, int ex)
+{
+ char s1[100], *end;
+ int res;
+ sprintf(s1, "'%s'", s);
+ end= strend(s);
+ printf("len=%2d %-30s => res=%d ", a.len, s1,
+ (res= string2decimal(s, &a, &end)));
+ print_decimal(&a, orig, res, ex);
+ printf("\n");
+}
+
+void test_d2f(const char *s, int ex)
+{
+ char s1[100], *end;
+ double x;
+ int res;
+
+ sprintf(s1, "'%s'", s);
+ end= strend(s);
+ string2decimal(s, &a, &end);
+ res=decimal2double(&a, &x);
+ if (full) dump_decimal(&a);
+ printf("%-40s => res=%d %.*g\n", s1, res, a.intg+a.frac, x);
+ check_result_code(res, ex);
+}
+
+void test_d2b2d(const char *str, int p, int s, const char *orig, int ex)
+{
+ char s1[100], *end;
+ uchar buf[100];
+ int res, i, size=decimal_bin_size(p, s);
+
+ sprintf(s1, "'%s'", str);
+ end= strend(str);
+ string2decimal(str, &a, &end);
+ res=decimal2bin(&a, buf, p, s);
+ printf("%-31s {%2d, %2d} => res=%d size=%-2d ", s1, p, s, res, size);
+ if (full)
+ {
+ printf("0x");
+ for (i=0; i < size; i++)
+ printf("%02x", ((uchar *)buf)[i]);
+ }
+ res=bin2decimal(buf, &a, p, s);
+ printf(" => res=%d ", res);
+ print_decimal(&a, orig, res, ex);
+ printf("\n");
+}
+
+void test_f2d(double from, int ex)
+{
+ int res;
+
+ res=double2decimal(from, &a);
+ printf("%-40.*f => res=%d ", DBL_DIG-2, from, res);
+ print_decimal(&a, 0, res, ex);
+ printf("\n");
+}
+
+void test_ull2d(ulonglong from, const char *orig, int ex)
+{
+ char s[100];
+ int res;
+
+ res=ulonglong2decimal(from, &a);
+ longlong10_to_str(from,s,10);
+ printf("%-40s => res=%d ", s, res);
+ print_decimal(&a, orig, res, ex);
+ printf("\n");
+}
+
+void test_ll2d(longlong from, const char *orig, int ex)
+{
+ char s[100];
+ int res;
+
+ res=longlong2decimal(from, &a);
+ longlong10_to_str(from,s,-10);
+ printf("%-40s => res=%d ", s, res);
+ print_decimal(&a, orig, res, ex);
+ printf("\n");
+}
+
+void test_d2ull(const char *s, const char *orig, int ex)
+{
+ char s1[100], *end;
+ ulonglong x;
+ int res;
+
+ end= strend(s);
+ string2decimal(s, &a, &end);
+ res=decimal2ulonglong(&a, &x);
+ if (full) dump_decimal(&a);
+ longlong10_to_str(x,s1,10);
+ printf("%-40s => res=%d %s\n", s, res, s1);
+ check_result_code(res, ex);
+ if (orig && strcmp(orig, s1))
+ {
+ printf("\n^^^^^^^^^^^^^ must've been '%s'\n", orig);
+ exit(1);
+ }
+}
+
+void test_d2ll(const char *s, const char *orig, int ex)
+{
+ char s1[100], *end;
+ longlong x;
+ int res;
+
+ end= strend(s);
+ string2decimal(s, &a, &end);
+ res=decimal2longlong(&a, &x);
+ if (full) dump_decimal(&a);
+ longlong10_to_str(x,s1,-10);
+ printf("%-40s => res=%d %s\n", s, res, s1);
+ check_result_code(res, ex);
+ if (orig && strcmp(orig, s1))
+ {
+ printf("\n^^^^^^^^^^^^^ must've been '%s'\n", orig);
+ exit(1);
+ }
+}
+
+void test_da(const char *s1, const char *s2, const char *orig, int ex)
+{
+ char s[100], *end;
+ int res;
+ sprintf(s, "'%s' + '%s'", s1, s2);
+ end= strend(s1);
+ string2decimal(s1, &a, &end);
+ end= strend(s2);
+ string2decimal(s2, &b, &end);
+ res=decimal_add(&a, &b, &c);
+ printf("%-40s => res=%d ", s, res);
+ print_decimal(&c, orig, res, ex);
+ printf("\n");
+}
+
+void test_ds(const char *s1, const char *s2, const char *orig, int ex)
+{
+ char s[100], *end;
+ int res;
+ sprintf(s, "'%s' - '%s'", s1, s2);
+ end= strend(s1);
+ string2decimal(s1, &a, &end);
+ end= strend(s2);
+ string2decimal(s2, &b, &end);
+ res=decimal_sub(&a, &b, &c);
+ printf("%-40s => res=%d ", s, res);
+ print_decimal(&c, orig, res, ex);
+ printf("\n");
+}
+
+void test_dc(const char *s1, const char *s2, int orig)
+{
+ char s[100], *end;
+ int res;
+ sprintf(s, "'%s' <=> '%s'", s1, s2);
+ end= strend(s1);
+ string2decimal(s1, &a, &end);
+ end= strend(s2);
+ string2decimal(s2, &b, &end);
+ res=decimal_cmp(&a, &b);
+ printf("%-40s => res=%d\n", s, res);
+ if (orig != res)
+ {
+ printf("\n^^^^^^^^^^^^^ must've been %d\n", orig);
+ exit(1);
+ }
+}
+
+void test_dm(const char *s1, const char *s2, const char *orig, int ex)
+{
+ char s[100], *end;
+ int res;
+ sprintf(s, "'%s' * '%s'", s1, s2);
+ end= strend(s1);
+ string2decimal(s1, &a, &end);
+ end= strend(s2);
+ string2decimal(s2, &b, &end);
+ res=decimal_mul(&a, &b, &c);
+ printf("%-40s => res=%d ", s, res);
+ print_decimal(&c, orig, res, ex);
+ printf("\n");
+}
+
+void test_dv(const char *s1, const char *s2, const char *orig, int ex)
+{
+ char s[100], *end;
+ int res;
+ sprintf(s, "'%s' / '%s'", s1, s2);
+ end= strend(s1);
+ string2decimal(s1, &a, &end);
+ end= strend(s2);
+ string2decimal(s2, &b, &end);
+ res=decimal_div(&a, &b, &c, 5);
+ printf("%-40s => res=%d ", s, res);
+ check_result_code(res, ex);
+ if (res == E_DEC_DIV_ZERO)
+ printf("E_DEC_DIV_ZERO");
+ else
+ print_decimal(&c, orig, res, ex);
+ printf("\n");
+}
+
+void test_md(const char *s1, const char *s2, const char *orig, int ex)
+{
+ char s[100], *end;
+ int res;
+ sprintf(s, "'%s' %% '%s'", s1, s2);
+ end= strend(s1);
+ string2decimal(s1, &a, &end);
+ end= strend(s2);
+ string2decimal(s2, &b, &end);
+ res=decimal_mod(&a, &b, &c);
+ printf("%-40s => res=%d ", s, res);
+ check_result_code(res, ex);
+ if (res == E_DEC_DIV_ZERO)
+ printf("E_DEC_DIV_ZERO");
+ else
+ print_decimal(&c, orig, res, ex);
+ printf("\n");
+}
+
+const char *round_mode[]=
+{"TRUNCATE", "HALF_EVEN", "HALF_UP", "CEILING", "FLOOR"};
+
+void test_ro(const char *s1, int n, decimal_round_mode mode, const char *orig,
+ int ex)
+{
+ char s[100], *end;
+ int res;
+ sprintf(s, "'%s', %d, %s", s1, n, round_mode[mode]);
+ end= strend(s1);
+ string2decimal(s1, &a, &end);
+ res=decimal_round(&a, &b, n, mode);
+ printf("%-40s => res=%d ", s, res);
+ print_decimal(&b, orig, res, ex);
+ printf("\n");
+}
+
+
+void test_mx(int precision, int frac, const char *orig)
+{
+ char s[100];
+ sprintf(s, "%d, %d", precision, frac);
+ max_decimal(precision, frac, &a);
+ printf("%-40s => ", s);
+ print_decimal(&a, orig, 0, 0);
+ printf("\n");
+}
+
+
+void test_pr(const char *s1, int prec, int dec, char filler, const char *orig,
+ int ex)
+{
+ char s[100], *end;
+ char s2[100];
+ int slen= sizeof(s2);
+ int res;
+
+ sprintf(s, filler ? "'%s', %d, %d, '%c'" : "'%s', %d, %d, '\\0'",
+ s1, prec, dec, filler);
+ end= strend(s1);
+ string2decimal(s1, &a, &end);
+ res= decimal2string(&a, s2, &slen, prec, dec, filler);
+ printf("%-40s => res=%d '%s'", s, res, s2);
+ check_result_code(res, ex);
+ if (orig && strcmp(orig, s2))
+ {
+ printf("\n^^^^^^^^^^^^^ must've been '%s'\n", orig);
+ exit(1);
+ }
+ printf("\n");
+}
+
+
+void test_sh(const char *s1, int shift, const char *orig, int ex)
+{
+ char s[100], *end;
+ int res;
+ sprintf(s, "'%s' %s %d", s1, ((shift < 0) ? ">>" : "<<"), abs(shift));
+ end= strend(s1);
+ string2decimal(s1, &a, &end);
+ res= decimal_shift(&a, shift);
+ printf("%-40s => res=%d ", s, res);
+ print_decimal(&a, orig, res, ex);
+ printf("\n");
+}
+
+
+void test_fr(const char *s1, const char *orig)
+{
+ char s[100], *end;
+ sprintf(s, "'%s'", s1);
+ printf("%-40s => ", s);
+ end= strend(s1);
+ string2decimal(s1, &a, &end);
+ a.frac= decimal_actual_fraction(&a);
+ print_decimal(&a, orig, 0, 0);
+ printf("\n");
+}
+
+
+int main()
+{
+ a.buf=(void*)buf1;
+ a.len=sizeof(buf1)/sizeof(dec1);
+ b.buf=(void*)buf2;
+ b.len=sizeof(buf2)/sizeof(dec1);
+ c.buf=(void*)buf3;
+ c.len=sizeof(buf3)/sizeof(dec1);
+
+ if (full)
+ test_d2s();
+
+ printf("==== string2decimal ====\n");
+ test_s2d("12345", "12345", 0);
+ test_s2d("12345.", "12345", 0);
+ test_s2d("123.45", "123.45", 0);
+ test_s2d("-123.45", "-123.45", 0);
+ test_s2d(".00012345000098765", "0.00012345000098765", 0);
+ test_s2d(".12345000098765", "0.12345000098765", 0);
+ test_s2d("-.000000012345000098765", "-0.000000012345000098765", 0);
+ test_s2d("1234500009876.5", "1234500009876.5", 0);
+ a.len=1;
+ test_s2d("123450000098765", "98765", 2);
+ test_s2d("123450.000098765", "123450", 1);
+ a.len=sizeof(buf1)/sizeof(dec1);
+ test_s2d("123E5", "12300000", 0);
+ test_s2d("123E-2", "1.23", 0);
+
+ printf("==== decimal2double ====\n");
+ test_d2f("12345", 0);
+ test_d2f("123.45", 0);
+ test_d2f("-123.45", 0);
+ test_d2f("0.00012345000098765", 0);
+ test_d2f("1234500009876.5", 0);
+
+ printf("==== double2decimal ====\n");
+ test_f2d(12345, 0);
+ test_f2d(1.0/3, 0);
+ test_f2d(-123.45, 0);
+ test_f2d(0.00012345000098765, 0);
+ test_f2d(1234500009876.5, 0);
+
+ printf("==== ulonglong2decimal ====\n");
+ test_ull2d(12345ULL, "12345", 0);
+ test_ull2d(0ULL, "0", 0);
+ test_ull2d(18446744073709551615ULL, "18446744073709551615", 0);
+
+ printf("==== decimal2ulonglong ====\n");
+ test_d2ull("12345", "12345", 0);
+ test_d2ull("0", "0", 0);
+ test_d2ull("18446744073709551615", "18446744073709551615", 0);
+ test_d2ull("18446744073709551616", "18446744073709551615", 2);
+ test_d2ull("-1", "0", 2);
+ test_d2ull("1.23", "1", 1);
+ test_d2ull("9999999999999999999999999.000", "18446744073709551615", 2);
+
+ printf("==== longlong2decimal ====\n");
+ test_ll2d(-12345LL, "-12345", 0);
+ test_ll2d(-1LL, "-1", 0);
+ test_ll2d(-9223372036854775807LL, "-9223372036854775807", 0);
+ test_ll2d(9223372036854775808ULL, "-9223372036854775808", 0);
+
+ printf("==== decimal2longlong ====\n");
+ test_d2ll("18446744073709551615", "9223372036854775807", 2);
+ test_d2ll("-1", "-1", 0);
+ test_d2ll("-1.23", "-1", 1);
+ test_d2ll("-9223372036854775807", "-9223372036854775807", 0);
+ test_d2ll("-9223372036854775808", "-9223372036854775808", 0);
+ test_d2ll("9223372036854775808", "9223372036854775807", 2);
+
+ printf("==== do_add ====\n");
+ test_da(".00012345000098765" ,"123.45", "123.45012345000098765", 0);
+ test_da(".1" ,".45", "0.55", 0);
+ test_da("1234500009876.5" ,".00012345000098765", "1234500009876.50012345000098765", 0);
+ test_da("9999909999999.5" ,".555", "9999910000000.055", 0);
+ test_da("99999999" ,"1", "100000000", 0);
+ test_da("989999999" ,"1", "990000000", 0);
+ test_da("999999999" ,"1", "1000000000", 0);
+ test_da("12345" ,"123.45", "12468.45", 0);
+ test_da("-12345" ,"-123.45", "-12468.45", 0);
+ test_ds("-12345" ,"123.45", "-12468.45", 0);
+ test_ds("12345" ,"-123.45", "12468.45", 0);
+
+ printf("==== do_sub ====\n");
+ test_ds(".00012345000098765", "123.45","-123.44987654999901235", 0);
+ test_ds("1234500009876.5", ".00012345000098765","1234500009876.49987654999901235", 0);
+ test_ds("9999900000000.5", ".555","9999899999999.945", 0);
+ test_ds("1111.5551", "1111.555","0.0001", 0);
+ test_ds(".555", ".555","0", 0);
+ test_ds("10000000", "1","9999999", 0);
+ test_ds("1000001000", ".1","1000000999.9", 0);
+ test_ds("1000000000", ".1","999999999.9", 0);
+ test_ds("12345", "123.45","12221.55", 0);
+ test_ds("-12345", "-123.45","-12221.55", 0);
+ test_da("-12345", "123.45","-12221.55", 0);
+ test_da("12345", "-123.45","12221.55", 0);
+ test_ds("123.45", "12345","-12221.55", 0);
+ test_ds("-123.45", "-12345","12221.55", 0);
+ test_da("123.45", "-12345","-12221.55", 0);
+ test_da("-123.45", "12345","12221.55", 0);
+ test_da("5", "-6.0","-1.0", 0);
+
+ printf("==== decimal_mul ====\n");
+ test_dm("12", "10","120", 0);
+ test_dm("-123.456", "98765.4321","-12193185.1853376", 0);
+ test_dm("-123456000000", "98765432100000","-12193185185337600000000000", 0);
+ test_dm("123456", "987654321","121931851853376", 0);
+ test_dm("123456", "9876543210","1219318518533760", 0);
+ test_dm("123", "0.01","1.23", 0);
+ test_dm("123", "0","0", 0);
+
+ printf("==== decimal_div ====\n");
+ test_dv("120", "10","12.000000000", 0);
+ test_dv("123", "0.01","12300.000000000", 0);
+ test_dv("120", "100000000000.00000","0.000000001200000000", 0);
+ test_dv("123", "0","", 4);
+ test_dv("0", "0", "", 4);
+ test_dv("-12193185.1853376", "98765.4321","-123.456000000000000000", 0);
+ test_dv("121931851853376", "987654321","123456.000000000", 0);
+ test_dv("0", "987","0", 0);
+ test_dv("1", "3","0.333333333", 0);
+ test_dv("1.000000000000", "3","0.333333333333333333", 0);
+ test_dv("1", "1","1.000000000", 0);
+ test_dv("0.0123456789012345678912345", "9999999999","0.000000000001234567890246913578148141", 0);
+ test_dv("10.333000000", "12.34500","0.837019036046982584042122316", 0);
+ test_dv("10.000000000060", "2","5.000000000030000000", 0);
+
+ printf("==== decimal_mod ====\n");
+ test_md("234","10","4", 0);
+ test_md("234.567","10.555","2.357", 0);
+ test_md("-234.567","10.555","-2.357", 0);
+ test_md("234.567","-10.555","2.357", 0);
+ c.buf[1]=0x3ABECA;
+ test_md("99999999999999999999999999999999999999","3","0", 0);
+ if (c.buf[1] != 0x3ABECA)
+ {
+ printf("%X - overflow\n", c.buf[1]);
+ exit(1);
+ }
+
+ printf("==== decimal2bin/bin2decimal ====\n");
+ test_d2b2d("-10.55", 4, 2,"-10.55", 0);
+ test_d2b2d("0.0123456789012345678912345", 30, 25,"0.0123456789012345678912345", 0);
+ test_d2b2d("12345", 5, 0,"12345", 0);
+ test_d2b2d("12345", 10, 3,"12345.000", 0);
+ test_d2b2d("123.45", 10, 3,"123.450", 0);
+ test_d2b2d("-123.45", 20, 10,"-123.4500000000", 0);
+ test_d2b2d(".00012345000098765", 15, 14,"0.00012345000098", 0);
+ test_d2b2d(".00012345000098765", 22, 20,"0.00012345000098765000", 0);
+ test_d2b2d(".12345000098765", 30, 20,"0.12345000098765000000", 0);
+ test_d2b2d("-.000000012345000098765", 30, 20,"-0.00000001234500009876", 0);
+ test_d2b2d("1234500009876.5", 30, 5,"1234500009876.50000", 0);
+ test_d2b2d("111111111.11", 10, 2,"11111111.11", 0);
+ test_d2b2d("000000000.01", 7, 3,"0.010", 0);
+ test_d2b2d("123.4", 10, 2, "123.40", 0);
+
+
+ printf("==== decimal_cmp ====\n");
+ test_dc("12","13",-1);
+ test_dc("13","12",1);
+ test_dc("-10","10",-1);
+ test_dc("10","-10",1);
+ test_dc("-12","-13",1);
+ test_dc("0","12",-1);
+ test_dc("-10","0",-1);
+ test_dc("4","4",0);
+
+ printf("==== decimal_round ====\n");
+ test_ro("5678.123451",-4,TRUNCATE,"0", 0);
+ test_ro("5678.123451",-3,TRUNCATE,"5000", 0);
+ test_ro("5678.123451",-2,TRUNCATE,"5600", 0);
+ test_ro("5678.123451",-1,TRUNCATE,"5670", 0);
+ test_ro("5678.123451",0,TRUNCATE,"5678", 0);
+ test_ro("5678.123451",1,TRUNCATE,"5678.1", 0);
+ test_ro("5678.123451",2,TRUNCATE,"5678.12", 0);
+ test_ro("5678.123451",3,TRUNCATE,"5678.123", 0);
+ test_ro("5678.123451",4,TRUNCATE,"5678.1234", 0);
+ test_ro("5678.123451",5,TRUNCATE,"5678.12345", 0);
+ test_ro("5678.123451",6,TRUNCATE,"5678.123451", 0);
+ test_ro("-5678.123451",-4,TRUNCATE,"0", 0);
+ memset(buf2, 33, sizeof(buf2));
+ test_ro("99999999999999999999999999999999999999",-31,TRUNCATE,"99999990000000000000000000000000000000", 0);
+ test_ro("15.1",0,HALF_UP,"15", 0);
+ test_ro("15.5",0,HALF_UP,"16", 0);
+ test_ro("15.9",0,HALF_UP,"16", 0);
+ test_ro("-15.1",0,HALF_UP,"-15", 0);
+ test_ro("-15.5",0,HALF_UP,"-16", 0);
+ test_ro("-15.9",0,HALF_UP,"-16", 0);
+ test_ro("15.1",1,HALF_UP,"15.1", 0);
+ test_ro("-15.1",1,HALF_UP,"-15.1", 0);
+ test_ro("15.17",1,HALF_UP,"15.2", 0);
+ test_ro("15.4",-1,HALF_UP,"20", 0);
+ test_ro("-15.4",-1,HALF_UP,"-20", 0);
+ test_ro("5.4",-1,HALF_UP,"10", 0);
+ test_ro(".999", 0, HALF_UP, "1", 0);
+ memset(buf2, 33, sizeof(buf2));
+ test_ro("999999999", -9, HALF_UP, "1000000000", 0);
+ test_ro("15.1",0,HALF_EVEN,"15", 0);
+ test_ro("15.5",0,HALF_EVEN,"16", 0);
+ test_ro("14.5",0,HALF_EVEN,"14", 0);
+ test_ro("15.9",0,HALF_EVEN,"16", 0);
+ test_ro("15.1",0,CEILING,"16", 0);
+ test_ro("-15.1",0,CEILING,"-15", 0);
+ test_ro("15.1",0,FLOOR,"15", 0);
+ test_ro("-15.1",0,FLOOR,"-16", 0);
+ test_ro("999999999999999999999.999", 0, CEILING,"1000000000000000000000", 0);
+ test_ro("-999999999999999999999.999", 0, FLOOR,"-1000000000000000000000", 0);
+
+ b.buf[0]=DIG_BASE+1;
+ b.buf++;
+ test_ro(".3", 0, HALF_UP, "0", 0);
+ b.buf--;
+ if (b.buf[0] != DIG_BASE+1)
+ {
+ printf("%d - underflow\n", b.buf[0]);
+ exit(1);
+ }
+
+ printf("==== max_decimal ====\n");
+ test_mx(1,1,"0.9");
+ test_mx(1,0,"9");
+ test_mx(2,1,"9.9");
+ test_mx(4,2,"99.99");
+ test_mx(6,3,"999.999");
+ test_mx(8,4,"9999.9999");
+ test_mx(10,5,"99999.99999");
+ test_mx(12,6,"999999.999999");
+ test_mx(14,7,"9999999.9999999");
+ test_mx(16,8,"99999999.99999999");
+ test_mx(18,9,"999999999.999999999");
+ test_mx(20,10,"9999999999.9999999999");
+ test_mx(20,20,"0.99999999999999999999");
+ test_mx(20,0,"99999999999999999999");
+ test_mx(40,20,"99999999999999999999.99999999999999999999");
+
+ printf("==== decimal2string ====\n");
+ test_pr("123.123", 0, 0, 0, "123.123", 0);
+ test_pr("123.123", 7, 3, '0', "0123.123", 0);
+ test_pr("123.123", 9, 3, '0', "000123.123", 0);
+ test_pr("123.123", 9, 4, '0', "00123.1230", 0);
+ test_pr("123.123", 9, 5, '0', "0123.12300", 0);
+ test_pr("123.123", 9, 2, '0', "0000123.12", 1);
+ test_pr("123.123", 8, 6, '0', "23.123000", 2);
+
+ printf("==== decimal_shift ====\n");
+ test_sh("123.123", 1, "1231.23", 0);
+ test_sh("123457189.123123456789000", 1, "1234571891.23123456789", 0);
+ test_sh("123457189.123123456789000", 4, "1234571891231.23456789", 0);
+ test_sh("123457189.123123456789000", 8, "12345718912312345.6789", 0);
+ test_sh("123457189.123123456789000", 9, "123457189123123456.789", 0);
+ test_sh("123457189.123123456789000", 10, "1234571891231234567.89", 0);
+ test_sh("123457189.123123456789000", 17, "12345718912312345678900000", 0);
+ test_sh("123457189.123123456789000", 18, "123457189123123456789000000", 0);
+ test_sh("123457189.123123456789000", 19, "1234571891231234567890000000", 0);
+ test_sh("123457189.123123456789000", 26, "12345718912312345678900000000000000", 0);
+ test_sh("123457189.123123456789000", 27, "123457189123123456789000000000000000", 0);
+ test_sh("123457189.123123456789000", 28, "1234571891231234567890000000000000000", 0);
+ test_sh("000000000000000000000000123457189.123123456789000", 26, "12345718912312345678900000000000000", 0);
+ test_sh("00000000123457189.123123456789000", 27, "123457189123123456789000000000000000", 0);
+ test_sh("00000000000000000123457189.123123456789000", 28, "1234571891231234567890000000000000000", 0);
+ test_sh("123", 1, "1230", 0);
+ test_sh("123", 10, "1230000000000", 0);
+ test_sh(".123", 1, "1.23", 0);
+ test_sh(".123", 10, "1230000000", 0);
+ test_sh(".123", 14, "12300000000000", 0);
+ test_sh("000.000", 1000, "0", 0);
+ test_sh("000.", 1000, "0", 0);
+ test_sh(".000", 1000, "0", 0);
+ test_sh("1", 1000, "1", 2);
+ test_sh("123.123", -1, "12.3123", 0);
+ test_sh("123987654321.123456789000", -1, "12398765432.1123456789", 0);
+ test_sh("123987654321.123456789000", -2, "1239876543.21123456789", 0);
+ test_sh("123987654321.123456789000", -3, "123987654.321123456789", 0);
+ test_sh("123987654321.123456789000", -8, "1239.87654321123456789", 0);
+ test_sh("123987654321.123456789000", -9, "123.987654321123456789", 0);
+ test_sh("123987654321.123456789000", -10, "12.3987654321123456789", 0);
+ test_sh("123987654321.123456789000", -11, "1.23987654321123456789", 0);
+ test_sh("123987654321.123456789000", -12, "0.123987654321123456789", 0);
+ test_sh("123987654321.123456789000", -13, "0.0123987654321123456789", 0);
+ test_sh("123987654321.123456789000", -14, "0.00123987654321123456789", 0);
+ test_sh("00000087654321.123456789000", -14, "0.00000087654321123456789", 0);
+ a.len= 2;
+ test_sh("123.123", -2, "1.23123", 0);
+ test_sh("123.123", -3, "0.123123", 0);
+ test_sh("123.123", -6, "0.000123123", 0);
+ test_sh("123.123", -7, "0.0000123123", 0);
+ test_sh("123.123", -15, "0.000000000000123123", 0);
+ test_sh("123.123", -16, "0.000000000000012312", 1);
+ test_sh("123.123", -17, "0.000000000000001231", 1);
+ test_sh("123.123", -18, "0.000000000000000123", 1);
+ test_sh("123.123", -19, "0.000000000000000012", 1);
+ test_sh("123.123", -20, "0.000000000000000001", 1);
+ test_sh("123.123", -21, "0", 1);
+ test_sh(".000000000123", -1, "0.0000000000123", 0);
+ test_sh(".000000000123", -6, "0.000000000000000123", 0);
+ test_sh(".000000000123", -7, "0.000000000000000012", 1);
+ test_sh(".000000000123", -8, "0.000000000000000001", 1);
+ test_sh(".000000000123", -9, "0", 1);
+ test_sh(".000000000123", 1, "0.00000000123", 0);
+ test_sh(".000000000123", 8, "0.0123", 0);
+ test_sh(".000000000123", 9, "0.123", 0);
+ test_sh(".000000000123", 10, "1.23", 0);
+ test_sh(".000000000123", 17, "12300000", 0);
+ test_sh(".000000000123", 18, "123000000", 0);
+ test_sh(".000000000123", 19, "1230000000", 0);
+ test_sh(".000000000123", 20, "12300000000", 0);
+ test_sh(".000000000123", 21, "123000000000", 0);
+ test_sh(".000000000123", 22, "1230000000000", 0);
+ test_sh(".000000000123", 23, "12300000000000", 0);
+ test_sh(".000000000123", 24, "123000000000000", 0);
+ test_sh(".000000000123", 25, "1230000000000000", 0);
+ test_sh(".000000000123", 26, "12300000000000000", 0);
+ test_sh(".000000000123", 27, "123000000000000000", 0);
+ test_sh(".000000000123", 28, "0.000000000123", 2);
+ test_sh("123456789.987654321", -1, "12345678.998765432", 1);
+ test_sh("123456789.987654321", -2, "1234567.899876543", 1);
+ test_sh("123456789.987654321", -8, "1.234567900", 1);
+ test_sh("123456789.987654321", -9, "0.123456789987654321", 0);
+ test_sh("123456789.987654321", -10, "0.012345678998765432", 1);
+ test_sh("123456789.987654321", -17, "0.000000001234567900", 1);
+ test_sh("123456789.987654321", -18, "0.000000000123456790", 1);
+ test_sh("123456789.987654321", -19, "0.000000000012345679", 1);
+ test_sh("123456789.987654321", -26, "0.000000000000000001", 1);
+ test_sh("123456789.987654321", -27, "0", 1);
+ test_sh("123456789.987654321", 1, "1234567900", 1);
+ test_sh("123456789.987654321", 2, "12345678999", 1);
+ test_sh("123456789.987654321", 4, "1234567899877", 1);
+ test_sh("123456789.987654321", 8, "12345678998765432", 1);
+ test_sh("123456789.987654321", 9, "123456789987654321", 0);
+ test_sh("123456789.987654321", 10, "123456789.987654321", 2);
+ test_sh("123456789.987654321", 0, "123456789.987654321", 0);
+ a.len= sizeof(buf1)/sizeof(dec1);
+
+ printf("==== decimal_actual_fraction ====\n");
+ test_fr("1.123456789000000000", "1.123456789");
+ test_fr("1.12345678000000000", "1.12345678");
+ test_fr("1.1234567000000000", "1.1234567");
+ test_fr("1.123456000000000", "1.123456");
+ test_fr("1.12345000000000", "1.12345");
+ test_fr("1.1234000000000", "1.1234");
+ test_fr("1.123000000000", "1.123");
+ test_fr("1.12000000000", "1.12");
+ test_fr("1.1000000000", "1.1");
+ test_fr("1.000000000", "1");
+ test_fr("1.0", "1");
+ test_fr("10000000000000000000.0", "10000000000000000000");
+
+ return 0;
+}
+#endif