/***************************************************************************** Copyright (c) 2016, Oracle and/or its affiliates. All Rights Reserved. Copyright (c) 2018, 2022, MariaDB Corporation. This program is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; version 2 of the License. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program; if not, write to the Free Software Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1335 USA *****************************************************************************/ /**************************************************//** @file gis/gis0rtree.cc InnoDB R-tree interfaces Created 2013/03/27 Allen Lai and Jimmy Yang ***********************************************************************/ #include "fsp0fsp.h" #include "page0page.h" #include "page0cur.h" #include "page0zip.h" #include "gis0rtree.h" #include "btr0cur.h" #include "btr0sea.h" #include "btr0pcur.h" #include "rem0cmp.h" #include "lock0lock.h" #include "ibuf0ibuf.h" #include "trx0undo.h" #include "srv0mon.h" #include "gis0geo.h" #include /*************************************************************//** Initial split nodes info for R-tree split. @return initialized split nodes array */ static rtr_split_node_t* rtr_page_split_initialize_nodes( /*============================*/ mem_heap_t* heap, /*!< in: pointer to memory heap, or NULL */ btr_cur_t* cursor, /*!< in: cursor at which to insert; when the function returns, the cursor is positioned on the predecessor of the inserted record */ rec_offs** offsets,/*!< in: offsets on inserted record */ const dtuple_t* tuple, /*!< in: tuple to insert */ double** buf_pos)/*!< in/out: current buffer position */ { rtr_split_node_t* split_node_array; double* buf; ulint n_recs; rtr_split_node_t* task; rtr_split_node_t* stop; rtr_split_node_t* cur; rec_t* rec; buf_block_t* block; page_t* page; ulint n_uniq; ulint len; const byte* source_cur; block = btr_cur_get_block(cursor); page = buf_block_get_frame(block); n_uniq = dict_index_get_n_unique_in_tree(cursor->index()); n_recs = ulint(page_get_n_recs(page)) + 1; /*We reserve 2 MBRs memory space for temp result of split algrithm. And plus the new mbr that need to insert, we need (n_recs + 3)*MBR size for storing all MBRs.*/ buf = static_cast(mem_heap_alloc( heap, DATA_MBR_LEN * (n_recs + 3) + sizeof(rtr_split_node_t) * (n_recs + 1))); split_node_array = (rtr_split_node_t*)(buf + SPDIMS * 2 * (n_recs + 3)); task = split_node_array; *buf_pos = buf; stop = task + n_recs; rec = page_rec_get_next(page_get_infimum_rec(page)); const ulint n_core = page_is_leaf(page) ? cursor->index()->n_core_fields : 0; *offsets = rec_get_offsets(rec, cursor->index(), *offsets, n_core, n_uniq, &heap); source_cur = rec_get_nth_field(rec, *offsets, 0, &len); for (cur = task; cur < stop - 1; ++cur) { cur->coords = reserve_coords(buf_pos, SPDIMS); cur->key = rec; memcpy(cur->coords, source_cur, DATA_MBR_LEN); rec = page_rec_get_next(rec); *offsets = rec_get_offsets(rec, cursor->index(), *offsets, n_core, n_uniq, &heap); source_cur = rec_get_nth_field(rec, *offsets, 0, &len); } /* Put the insert key to node list */ source_cur = static_cast(dfield_get_data( dtuple_get_nth_field(tuple, 0))); cur->coords = reserve_coords(buf_pos, SPDIMS); rec = (byte*) mem_heap_alloc( heap, rec_get_converted_size(cursor->index(), tuple, 0)); rec = rec_convert_dtuple_to_rec(rec, cursor->index(), tuple, 0); cur->key = rec; memcpy(cur->coords, source_cur, DATA_MBR_LEN); return split_node_array; } /**********************************************************************//** Builds a Rtree node pointer out of a physical record and a page number. Note: For Rtree, we just keep the mbr and page no field in non-leaf level page. It's different with Btree, Btree still keeps PK fields so far. @return own: node pointer */ dtuple_t* rtr_index_build_node_ptr( /*=====================*/ const dict_index_t* index, /*!< in: index */ const rtr_mbr_t* mbr, /*!< in: mbr of lower page */ const rec_t* rec, /*!< in: record for which to build node pointer */ ulint page_no,/*!< in: page number to put in node pointer */ mem_heap_t* heap) /*!< in: memory heap where pointer created */ { dtuple_t* tuple; dfield_t* field; byte* buf; ulint n_unique; ulint info_bits; ut_ad(dict_index_is_spatial(index)); n_unique = DICT_INDEX_SPATIAL_NODEPTR_SIZE; tuple = dtuple_create(heap, n_unique + 1); /* For rtree internal node, we need to compare page number fields. */ dtuple_set_n_fields_cmp(tuple, n_unique + 1); dict_index_copy_types(tuple, index, n_unique); /* Write page no field */ buf = static_cast(mem_heap_alloc(heap, 4)); mach_write_to_4(buf, page_no); field = dtuple_get_nth_field(tuple, n_unique); dfield_set_data(field, buf, 4); dtype_set(dfield_get_type(field), DATA_SYS_CHILD, DATA_NOT_NULL, 4); /* Set info bits. */ info_bits = rec_get_info_bits(rec, dict_table_is_comp(index->table)); dtuple_set_info_bits(tuple, info_bits | REC_STATUS_NODE_PTR); /* Set mbr as index entry data */ field = dtuple_get_nth_field(tuple, 0); buf = static_cast(mem_heap_alloc(heap, DATA_MBR_LEN)); rtr_write_mbr(buf, mbr); dfield_set_data(field, buf, DATA_MBR_LEN); ut_ad(dtuple_check_typed(tuple)); return(tuple); } /**************************************************************//** Update the mbr field of a spatial index row. */ void rtr_update_mbr_field( /*=================*/ btr_cur_t* cursor, /*!< in/out: cursor pointed to rec.*/ rec_offs* offsets, /*!< in/out: offsets on rec. */ btr_cur_t* cursor2, /*!< in/out: cursor pointed to rec that should be deleted. this cursor is for btr_compress to delete the merged page's father rec.*/ page_t* child_page, /*!< in: child page. */ rtr_mbr_t* mbr, /*!< in: the new mbr. */ rec_t* new_rec, /*!< in: rec to use */ mtr_t* mtr) /*!< in: mtr */ { dict_index_t* index = cursor->index(); mem_heap_t* heap; page_t* page; rec_t* rec; constexpr ulint flags = BTR_NO_UNDO_LOG_FLAG | BTR_NO_LOCKING_FLAG | BTR_KEEP_SYS_FLAG; dberr_t err; big_rec_t* dummy_big_rec; buf_block_t* block; rec_t* child_rec; ulint up_match = 0; ulint low_match = 0; ulint child; ulint rec_info; bool ins_suc = true; ulint cur2_pos = 0; ulint del_page_no = 0; rec_offs* offsets2; rec = btr_cur_get_rec(cursor); page = page_align(rec); rec_info = rec_get_info_bits(rec, rec_offs_comp(offsets)); heap = mem_heap_create(100); block = btr_cur_get_block(cursor); ut_ad(page == buf_block_get_frame(block)); child = btr_node_ptr_get_child_page_no(rec, offsets); const ulint n_core = page_is_leaf(block->page.frame) ? index->n_core_fields : 0; if (new_rec) { child_rec = new_rec; } else { child_rec = page_rec_get_next(page_get_infimum_rec(child_page)); } dtuple_t* node_ptr = rtr_index_build_node_ptr( index, mbr, child_rec, child, heap); /* We need to remember the child page no of cursor2, since page could be reorganized or insert a new rec before it. */ if (cursor2) { ut_ad(cursor2->index() == index); rec_t* del_rec = btr_cur_get_rec(cursor2); offsets2 = rec_get_offsets(btr_cur_get_rec(cursor2), index, NULL, 0, ULINT_UNDEFINED, &heap); del_page_no = btr_node_ptr_get_child_page_no(del_rec, offsets2); cur2_pos = page_rec_get_n_recs_before(btr_cur_get_rec(cursor2)); } ut_ad(rec_offs_validate(rec, index, offsets)); ut_ad(rec_offs_base(offsets)[0 + 1] == DATA_MBR_LEN); ut_ad(node_ptr->fields[0].len == DATA_MBR_LEN); if (rec_info & REC_INFO_MIN_REC_FLAG) { /* When the rec is minimal rec in this level, we do in-place update for avoiding it move to other place. */ page_zip_des_t* page_zip = buf_block_get_page_zip(block); if (UNIV_LIKELY_NULL(page_zip)) { /* Check if there's enough space for in-place update the zip page. */ if (!btr_cur_update_alloc_zip( page_zip, btr_cur_get_page_cur(cursor), offsets, rec_offs_size(offsets), false, mtr)) { /* If there's not enought space for inplace update zip page, we do delete insert. */ ins_suc = false; /* Since btr_cur_update_alloc_zip could reorganize the page, we need to repositon cursor2. */ if (cursor2) { cursor2->page_cur.rec = page_rec_get_nth(page, cur2_pos); } goto update_mbr; } /* Record could be repositioned */ rec = btr_cur_get_rec(cursor); #ifdef UNIV_DEBUG /* Make sure it is still the first record */ rec_info = rec_get_info_bits( rec, rec_offs_comp(offsets)); ut_ad(rec_info & REC_INFO_MIN_REC_FLAG); #endif /* UNIV_DEBUG */ memcpy(rec, node_ptr->fields[0].data, DATA_MBR_LEN); page_zip_write_rec(block, rec, index, offsets, 0, mtr); } else { mtr->memcpy(*block, rec, node_ptr->fields[0].data, DATA_MBR_LEN); } if (cursor2) { rec_offs* offsets2; if (UNIV_LIKELY_NULL(page_zip)) { cursor2->page_cur.rec = page_rec_get_nth(page, cur2_pos); } offsets2 = rec_get_offsets(btr_cur_get_rec(cursor2), index, NULL, 0, ULINT_UNDEFINED, &heap); ut_ad(del_page_no == btr_node_ptr_get_child_page_no( cursor2->page_cur.rec, offsets2)); page_cur_delete_rec(btr_cur_get_page_cur(cursor2), offsets2, mtr); } } else if (page_get_n_recs(page) == 1) { /* When there's only one rec in the page, we do insert/delete to avoid page merge. */ page_cur_t page_cur; rec_t* insert_rec; rec_offs* insert_offsets = NULL; ulint old_pos; rec_t* old_rec; ut_ad(cursor2 == NULL); /* Insert the new mbr rec. */ old_pos = page_rec_get_n_recs_before(rec); err = btr_cur_optimistic_insert( flags, cursor, &insert_offsets, &heap, node_ptr, &insert_rec, &dummy_big_rec, 0, NULL, mtr); ut_ad(err == DB_SUCCESS); btr_cur_position(index, insert_rec, block, cursor); /* Delete the old mbr rec. */ old_rec = page_rec_get_nth(page, old_pos); ut_ad(old_rec != insert_rec); page_cur_position(old_rec, block, &page_cur); page_cur.index = index; offsets2 = rec_get_offsets(old_rec, index, NULL, n_core, ULINT_UNDEFINED, &heap); page_cur_delete_rec(&page_cur, offsets2, mtr); } else { update_mbr: /* When there're not only 1 rec in the page, we do delete/insert to avoid page split. */ rec_t* insert_rec; rec_offs* insert_offsets = NULL; rec_t* next_rec; /* Delete the rec which cursor point to. */ next_rec = page_rec_get_next(rec); page_cur_delete_rec(&cursor->page_cur, offsets, mtr); if (!ins_suc) { ut_ad(rec_info & REC_INFO_MIN_REC_FLAG); btr_set_min_rec_mark(next_rec, *block, mtr); } /* If there's more than 1 rec left in the page, delete the rec which cursor2 point to. Otherwise, delete it later.*/ if (cursor2 && page_get_n_recs(page) > 1) { ulint cur2_rec_info; rec_t* cur2_rec; cur2_rec = cursor2->page_cur.rec; offsets2 = rec_get_offsets(cur2_rec, index, NULL, n_core, ULINT_UNDEFINED, &heap); cur2_rec_info = rec_get_info_bits(cur2_rec, rec_offs_comp(offsets2)); if (cur2_rec_info & REC_INFO_MIN_REC_FLAG) { /* If we delete the leftmost node pointer on a non-leaf level, we must mark the new leftmost node pointer as the predefined minimum record */ rec_t* next_rec = page_rec_get_next(cur2_rec); btr_set_min_rec_mark(next_rec, *block, mtr); } ut_ad(del_page_no == btr_node_ptr_get_child_page_no(cur2_rec, offsets2)); page_cur_delete_rec(btr_cur_get_page_cur(cursor2), offsets2, mtr); cursor2 = NULL; } /* Insert the new rec. */ if (page_cur_search_with_match(node_ptr, PAGE_CUR_LE, &up_match, &low_match, btr_cur_get_page_cur(cursor), NULL)) { goto err_exit; } err = btr_cur_optimistic_insert(flags, cursor, &insert_offsets, &heap, node_ptr, &insert_rec, &dummy_big_rec, 0, NULL, mtr); /* If optimistic insert fail, try reorganize the page and insert again. */ if (err == DB_SUCCESS) { ins_suc = true; } else if (ins_suc) { ut_ad(err == DB_FAIL); err = btr_page_reorganize(btr_cur_get_page_cur(cursor), mtr); if (err == DB_SUCCESS) { err = btr_cur_optimistic_insert( flags, cursor, &insert_offsets, &heap, node_ptr, &insert_rec, &dummy_big_rec, 0, NULL, mtr); } /* Will do pessimistic insert */ if (err != DB_SUCCESS) { ut_ad(err == DB_FAIL); ins_suc = false; } } /* Insert succeed, position cursor the inserted rec.*/ if (ins_suc) { btr_cur_position(index, insert_rec, block, cursor); offsets = rec_get_offsets(insert_rec, index, offsets, n_core, ULINT_UNDEFINED, &heap); } /* Delete the rec which cursor2 point to. */ if (cursor2) { ulint cur2_pno; rec_t* cur2_rec; cursor2->page_cur.rec = page_rec_get_nth(page, cur2_pos); cur2_rec = btr_cur_get_rec(cursor2); offsets2 = rec_get_offsets(cur2_rec, index, NULL, n_core, ULINT_UNDEFINED, &heap); /* If the cursor2 position is on a wrong rec, we need to reposition it. */ cur2_pno = btr_node_ptr_get_child_page_no(cur2_rec, offsets2); if ((del_page_no != cur2_pno) || (cur2_rec == insert_rec)) { cur2_rec = page_get_infimum_rec(page); while ((cur2_rec = page_rec_get_next(cur2_rec))) { if (page_rec_is_supremum(cur2_rec)) { break; } offsets2 = rec_get_offsets(cur2_rec, index, NULL, n_core, ULINT_UNDEFINED, &heap); cur2_pno = btr_node_ptr_get_child_page_no( cur2_rec, offsets2); if (cur2_pno == del_page_no) { if (insert_rec != cur2_rec) { cursor2->page_cur.rec = cur2_rec; break; } } } } rec_info = rec_get_info_bits(cur2_rec, rec_offs_comp(offsets2)); if (rec_info & REC_INFO_MIN_REC_FLAG) { /* If we delete the leftmost node pointer on a non-leaf level, we must mark the new leftmost node pointer as the predefined minimum record */ rec_t* next_rec = page_rec_get_next(cur2_rec); btr_set_min_rec_mark(next_rec, *block, mtr); } ut_ad(cur2_pno == del_page_no && cur2_rec != insert_rec); page_cur_delete_rec(btr_cur_get_page_cur(cursor2), offsets2, mtr); } if (!ins_suc) { mem_heap_t* new_heap = NULL; err = btr_cur_pessimistic_insert( flags, cursor, &insert_offsets, &new_heap, node_ptr, &insert_rec, &dummy_big_rec, 0, NULL, mtr); ut_ad(err == DB_SUCCESS); if (new_heap) { mem_heap_free(new_heap); } } if (cursor2) { btr_cur_compress_if_useful(cursor, FALSE, mtr); } } ut_ad(page_has_prev(page) || (REC_INFO_MIN_REC_FLAG & rec_get_info_bits( page_rec_get_next(page_get_infimum_rec(page)), page_is_comp(page)))); err_exit: mem_heap_free(heap); } MY_ATTRIBUTE((nonnull, warn_unused_result)) /**************************************************************//** Update parent page's MBR and Predicate lock information during a split */ static dberr_t rtr_adjust_upper_level( /*===================*/ btr_cur_t* sea_cur, /*!< in: search cursor */ ulint flags, /*!< in: undo logging and locking flags */ buf_block_t* block, /*!< in/out: page to be split */ buf_block_t* new_block, /*!< in/out: the new half page */ rtr_mbr_t* mbr, /*!< in: MBR on the old page */ rtr_mbr_t* new_mbr, /*!< in: MBR on the new page */ mtr_t* mtr) /*!< in: mtr */ { ulint page_no; ulint new_page_no; btr_cur_t cursor; rec_offs* offsets; mem_heap_t* heap; ulint level; dtuple_t* node_ptr_upper = nullptr; page_cur_t* page_cursor; lock_prdt_t prdt; lock_prdt_t new_prdt; big_rec_t* dummy_big_rec; rec_t* rec; /* Create a memory heap where the data tuple is stored */ heap = mem_heap_create(1024); cursor.thr = sea_cur->thr; cursor.page_cur.index = sea_cur->index(); cursor.page_cur.block = block; /* Get the level of the split pages */ level = btr_page_get_level(buf_block_get_frame(block)); ut_ad(level == btr_page_get_level(buf_block_get_frame(new_block))); page_no = block->page.id().page_no(); new_page_no = new_block->page.id().page_no(); /* Set new mbr for the old page on the upper level. */ /* Look up the index for the node pointer to page */ offsets = rtr_page_get_father_block(NULL, heap, mtr, sea_cur, &cursor); page_cursor = btr_cur_get_page_cur(&cursor); rtr_update_mbr_field(&cursor, offsets, nullptr, block->page.frame, mbr, nullptr, mtr); /* Already updated parent MBR, reset in our path */ if (sea_cur->rtr_info) { node_visit_t* node_visit = rtr_get_parent_node( sea_cur, level + 1, true); if (node_visit) { node_visit->mbr_inc = 0; } } dberr_t err; if (const rec_t* first = page_rec_get_next_const( page_get_infimum_rec(new_block->page.frame))) { /* Insert the node for the new page. */ node_ptr_upper = rtr_index_build_node_ptr( sea_cur->index(), new_mbr, first, new_page_no, heap); ulint up_match = 0, low_match = 0; err = page_cur_search_with_match(node_ptr_upper, PAGE_CUR_LE, &up_match, &low_match, btr_cur_get_page_cur(&cursor), NULL) ? DB_CORRUPTION : btr_cur_optimistic_insert(flags | BTR_NO_LOCKING_FLAG | BTR_KEEP_SYS_FLAG | BTR_NO_UNDO_LOG_FLAG, &cursor, &offsets, &heap, node_ptr_upper, &rec, &dummy_big_rec, 0, NULL, mtr); } else { err = DB_CORRUPTION; } if (err == DB_FAIL) { cursor.rtr_info = sea_cur->rtr_info; cursor.tree_height = sea_cur->tree_height; /* Recreate a memory heap as input parameter for btr_cur_pessimistic_insert(), because the heap may be emptied in btr_cur_pessimistic_insert(). */ mem_heap_t* new_heap = mem_heap_create(1024); err = btr_cur_pessimistic_insert(flags | BTR_NO_LOCKING_FLAG | BTR_KEEP_SYS_FLAG | BTR_NO_UNDO_LOG_FLAG, &cursor, &offsets, &new_heap, node_ptr_upper, &rec, &dummy_big_rec, 0, NULL, mtr); cursor.rtr_info = NULL; mem_heap_free(new_heap); } if (err == DB_SUCCESS) { prdt.data = static_cast(mbr); prdt.op = 0; new_prdt.data = static_cast(new_mbr); new_prdt.op = 0; lock_prdt_update_parent(block, new_block, &prdt, &new_prdt, page_cursor->block->page.id()); } mem_heap_free(heap); ut_ad(block->zip_size() == sea_cur->index()->table->space->zip_size()); if (err != DB_SUCCESS) { return err; } const uint32_t next_page_no = btr_page_get_next(block->page.frame); if (next_page_no == FIL_NULL) { } else if (buf_block_t* next_block = btr_block_get(*sea_cur->index(), next_page_no, RW_X_LATCH, false, mtr, &err)) { if (UNIV_UNLIKELY(memcmp_aligned<4>(next_block->page.frame + FIL_PAGE_PREV, block->page.frame + FIL_PAGE_OFFSET, 4))) { return DB_CORRUPTION; } btr_page_set_prev(next_block, new_page_no, mtr); } else { return err; } btr_page_set_next(block, new_page_no, mtr); btr_page_set_prev(new_block, page_no, mtr); btr_page_set_next(new_block, next_page_no, mtr); return DB_SUCCESS; } /*************************************************************//** Moves record list to another page for rtree splitting. IMPORTANT: The caller will have to update IBUF_BITMAP_FREE if new_block is a compressed leaf page in a secondary index. This has to be done either within the same mini-transaction, or by invoking ibuf_reset_free_bits() before mtr_commit(). @return error code @retval DB_FAIL on ROW_FORMAT=COMPRESSED compression failure */ static dberr_t rtr_split_page_move_rec_list( /*=========================*/ rtr_split_node_t* node_array, /*!< in: split node array. */ int first_rec_group,/*!< in: group number of the first rec. */ buf_block_t* new_block, /*!< in/out: index page where to move */ buf_block_t* block, /*!< in/out: page containing split_rec */ rec_t* first_rec, /*!< in: first record not to move */ dict_index_t* index, /*!< in: record descriptor */ mem_heap_t* heap, /*!< in: pointer to memory heap, or NULL */ mtr_t* mtr) /*!< in: mtr */ { rtr_split_node_t* cur_split_node; rtr_split_node_t* end_split_node; page_cur_t page_cursor; page_cur_t new_page_cursor; page_t* page; page_t* new_page; rec_offs offsets_[REC_OFFS_NORMAL_SIZE]; rec_offs* offsets = offsets_; page_zip_des_t* new_page_zip = buf_block_get_page_zip(new_block); rec_t* rec; ulint moved = 0; ulint max_to_move = 0; rtr_rec_move_t* rec_move = NULL; ut_ad(!dict_index_is_ibuf(index)); ut_ad(dict_index_is_spatial(index)); rec_offs_init(offsets_); page_cur_set_before_first(block, &page_cursor); page_cur_set_before_first(new_block, &new_page_cursor); page_cursor.index = new_page_cursor.index = index; page = buf_block_get_frame(block); new_page = buf_block_get_frame(new_block); end_split_node = node_array + page_get_n_recs(page); mtr_log_t log_mode = MTR_LOG_NONE; if (new_page_zip) { log_mode = mtr_set_log_mode(mtr, MTR_LOG_NONE); } max_to_move = page_get_n_recs(buf_block_get_frame(block)); rec_move = static_cast(mem_heap_alloc( heap, sizeof (*rec_move) * max_to_move)); const ulint n_core = page_is_leaf(page) ? index->n_core_fields : 0; /* Insert the recs in group 2 to new page. */ for (cur_split_node = node_array; cur_split_node < end_split_node; ++cur_split_node) { if (cur_split_node->n_node != first_rec_group) { lock_rec_store_on_page_infimum( block, cur_split_node->key); offsets = rec_get_offsets(cur_split_node->key, index, offsets, n_core, ULINT_UNDEFINED, &heap); ut_ad(!n_core || cur_split_node->key != first_rec); rec = page_cur_insert_rec_low( &new_page_cursor, cur_split_node->key, offsets, mtr); if (UNIV_UNLIKELY (!rec || !page_cur_move_to_next(&new_page_cursor))) { return DB_CORRUPTION; } lock_rec_restore_from_page_infimum( *new_block, rec, block->page.id()); rec_move[moved].new_rec = rec; rec_move[moved].old_rec = cur_split_node->key; rec_move[moved].moved = false; moved++; if (moved > max_to_move) { ut_ad(0); break; } } } /* Update PAGE_MAX_TRX_ID on the uncompressed page. Modifications will be redo logged and copied to the compressed page in page_zip_compress() or page_zip_reorganize() below. Multiple transactions cannot simultaneously operate on the same temp-table in parallel. max_trx_id is ignored for temp tables because it not required for MVCC. */ if (n_core && !index->table->is_temporary()) { page_update_max_trx_id(new_block, NULL, page_get_max_trx_id(page), mtr); } if (new_page_zip) { mtr_set_log_mode(mtr, log_mode); if (!page_zip_compress(new_block, index, page_zip_level, mtr)) { if (dberr_t err = page_zip_reorganize(new_block, index, page_zip_level, mtr)) { if (err == DB_FAIL) { ut_a(page_zip_decompress(new_page_zip, new_page, FALSE)); } return err; } } } /* Update the lock table */ lock_rtr_move_rec_list(new_block, block, rec_move, moved); /* Delete recs in second group from the old page. */ for (cur_split_node = node_array; cur_split_node < end_split_node; ++cur_split_node) { if (cur_split_node->n_node != first_rec_group) { page_cur_position(cur_split_node->key, block, &page_cursor); offsets = rec_get_offsets( page_cur_get_rec(&page_cursor), index, offsets, n_core, ULINT_UNDEFINED, &heap); page_cur_delete_rec(&page_cursor, offsets, mtr); } } return DB_SUCCESS; } /*************************************************************//** Splits an R-tree index page to halves and inserts the tuple. It is assumed that mtr holds an x-latch to the index tree. NOTE: the tree x-latch is released within this function! NOTE that the operation of this function must always succeed, we cannot reverse it: therefore enough free disk space (2 pages) must be guaranteed to be available before this function is called. @return inserted record */ rec_t* rtr_page_split_and_insert( /*======================*/ ulint flags, /*!< in: undo logging and locking flags */ btr_cur_t* cursor, /*!< in/out: cursor at which to insert; when the function returns, the cursor is positioned on the predecessor of the inserted record */ rec_offs** offsets,/*!< out: offsets on inserted record */ mem_heap_t** heap, /*!< in/out: pointer to memory heap, or NULL */ const dtuple_t* tuple, /*!< in: tuple to insert */ ulint n_ext, /*!< in: number of externally stored columns */ mtr_t* mtr, /*!< in: mtr */ dberr_t* err) /*!< out: error code */ { buf_block_t* block; page_t* page; page_t* new_page; buf_block_t* new_block; page_zip_des_t* page_zip; page_zip_des_t* new_page_zip; page_cur_t* page_cursor; rec_t* rec = 0; ulint n_recs; ulint total_data; ulint insert_size; rtr_split_node_t* rtr_split_node_array; rtr_split_node_t* cur_split_node; rtr_split_node_t* end_split_node; double* buf_pos; node_seq_t current_ssn; node_seq_t next_ssn; buf_block_t* root_block; rtr_mbr_t mbr; rtr_mbr_t new_mbr; lock_prdt_t prdt; lock_prdt_t new_prdt; rec_t* first_rec = NULL; int first_rec_group = 1; IF_DBUG(bool iterated = false,); if (!*heap) { *heap = mem_heap_create(1024); } func_start: mem_heap_empty(*heap); *offsets = NULL; ut_ad(mtr->memo_contains_flagged(&cursor->index()->lock, MTR_MEMO_X_LOCK | MTR_MEMO_SX_LOCK)); ut_ad(!dict_index_is_online_ddl(cursor->index())); ut_ad(cursor->index()->lock.have_u_or_x()); block = btr_cur_get_block(cursor); page = buf_block_get_frame(block); page_zip = buf_block_get_page_zip(block); current_ssn = page_get_ssn_id(page); ut_ad(mtr->memo_contains_flagged(block, MTR_MEMO_PAGE_X_FIX)); ut_ad(page_get_n_recs(page) >= 1); const page_id_t page_id(block->page.id()); if (!page_has_prev(page) && !page_is_leaf(page)) { first_rec = page_rec_get_next( page_get_infimum_rec(buf_block_get_frame(block))); if (UNIV_UNLIKELY(!first_rec)) { corrupted: *err = DB_CORRUPTION; return nullptr; } } /* Initial split nodes array. */ rtr_split_node_array = rtr_page_split_initialize_nodes( *heap, cursor, offsets, tuple, &buf_pos); /* Divide all mbrs to two groups. */ n_recs = ulint(page_get_n_recs(page)) + 1; end_split_node = rtr_split_node_array + n_recs; #ifdef UNIV_GIS_DEBUG fprintf(stderr, "Before split a page:\n"); for (cur_split_node = rtr_split_node_array; cur_split_node < end_split_node; ++cur_split_node) { for (int i = 0; i < SPDIMS * 2; i++) { fprintf(stderr, "%.2lf ", *(cur_split_node->coords + i)); } fprintf(stderr, "\n"); } #endif insert_size = rec_get_converted_size(cursor->index(), tuple, n_ext); total_data = page_get_data_size(page) + insert_size; first_rec_group = split_rtree_node(rtr_split_node_array, static_cast(n_recs), static_cast(total_data), static_cast(insert_size), 0, 2, 2, &buf_pos, SPDIMS, static_cast(first_rec)); /* Allocate a new page to the index */ const uint16_t page_level = btr_page_get_level(page); new_block = btr_page_alloc(cursor->index(), page_id.page_no() + 1, FSP_UP, page_level, mtr, mtr, err); if (UNIV_UNLIKELY(!new_block)) { return nullptr; } new_page_zip = buf_block_get_page_zip(new_block); if (page_level && UNIV_LIKELY_NULL(new_page_zip)) { /* ROW_FORMAT=COMPRESSED non-leaf pages are not expected to contain FIL_NULL in FIL_PAGE_PREV at this stage. */ memset_aligned<4>(new_block->page.frame + FIL_PAGE_PREV, 0, 4); } btr_page_create(new_block, new_page_zip, cursor->index(), page_level, mtr); new_page = buf_block_get_frame(new_block); ut_ad(page_get_ssn_id(new_page) == 0); /* Set new ssn to the new page and page. */ page_set_ssn_id(new_block, new_page_zip, current_ssn, mtr); next_ssn = rtr_get_new_ssn_id(cursor->index()); page_set_ssn_id(block, page_zip, next_ssn, mtr); /* Keep recs in first group to the old page, move recs in second groups to the new page. */ if (0 #ifdef UNIV_ZIP_COPY || page_zip #endif || (*err = rtr_split_page_move_rec_list(rtr_split_node_array, first_rec_group, new_block, block, first_rec, cursor->index(), *heap, mtr))) { if (*err != DB_FAIL) { return nullptr; } *err = DB_SUCCESS; ulint n = 0; rec_t* rec; ulint moved = 0; ulint max_to_move = 0; rtr_rec_move_t* rec_move = NULL; ulint pos; /* For some reason, compressing new_page failed, even though it should contain fewer records than the original page. Copy the page byte for byte and then delete the records from both pages as appropriate. Deleting will always succeed. */ ut_a(new_page_zip); page_zip_copy_recs(new_block, page_zip, page, cursor->index(), mtr); page_cursor = btr_cur_get_page_cur(cursor); /* Move locks on recs. */ max_to_move = page_get_n_recs(page); rec_move = static_cast(mem_heap_alloc( *heap, sizeof (*rec_move) * max_to_move)); /* Init the rec_move array for moving lock on recs. */ for (cur_split_node = rtr_split_node_array; cur_split_node < end_split_node - 1; ++cur_split_node) { if (cur_split_node->n_node != first_rec_group) { pos = page_rec_get_n_recs_before( cur_split_node->key); rec = page_rec_get_nth(new_page, pos); ut_a(rec); rec_move[moved].new_rec = rec; rec_move[moved].old_rec = cur_split_node->key; rec_move[moved].moved = false; moved++; if (moved > max_to_move) { ut_ad(0); break; } } } /* Update the lock table */ lock_rtr_move_rec_list(new_block, block, rec_move, moved); const ulint n_core = page_level ? 0 : cursor->index()->n_core_fields; /* Delete recs in first group from the new page. */ for (cur_split_node = rtr_split_node_array; cur_split_node < end_split_node - 1; ++cur_split_node) { if (cur_split_node->n_node == first_rec_group) { ulint pos; pos = page_rec_get_n_recs_before( cur_split_node->key); ut_a(pos > 0); rec_t* new_rec = page_rec_get_nth(new_page, pos - n); ut_a(new_rec && page_rec_is_user_rec(new_rec)); page_cur_position(new_rec, new_block, page_cursor); *offsets = rec_get_offsets( page_cur_get_rec(page_cursor), cursor->index(), *offsets, n_core, ULINT_UNDEFINED, heap); page_cur_delete_rec(page_cursor, *offsets, mtr); n++; } } /* Delete recs in second group from the old page. */ for (cur_split_node = rtr_split_node_array; cur_split_node < end_split_node - 1; ++cur_split_node) { if (cur_split_node->n_node != first_rec_group) { page_cur_position(cur_split_node->key, block, page_cursor); *offsets = rec_get_offsets( page_cur_get_rec(page_cursor), page_cursor->index, *offsets, n_core, ULINT_UNDEFINED, heap); page_cur_delete_rec(page_cursor, *offsets, mtr); } } #ifdef UNIV_GIS_DEBUG ut_ad(page_validate(new_page, cursor->index())); ut_ad(page_validate(page, cursor->index())); #endif } /* Insert the new rec to the proper page. */ cur_split_node = end_split_node - 1; /* Reposition the cursor for insert and try insertion */ page_cursor = btr_cur_get_page_cur(cursor); page_cursor->block = cur_split_node->n_node != first_rec_group ? new_block : block; ulint up_match = 0, low_match = 0; if (page_cur_search_with_match(tuple, PAGE_CUR_LE, &up_match, &low_match, page_cursor, nullptr)) { goto corrupted; } /* It's possible that the new record is too big to be inserted into the page, and it'll need the second round split in this case. We test this scenario here*/ DBUG_EXECUTE_IF("rtr_page_need_second_split", if (!iterated) { rec = NULL; goto after_insert; } ); rec = page_cur_tuple_insert(page_cursor, tuple, offsets, heap, n_ext, mtr); /* If insert did not fit, try page reorganization. For compressed pages, page_cur_tuple_insert() will have attempted this already. */ if (rec == NULL) { if (!is_page_cur_get_page_zip(page_cursor) && btr_page_reorganize(page_cursor, mtr)) { rec = page_cur_tuple_insert(page_cursor, tuple, offsets, heap, n_ext, mtr); } /* If insert fail, we will try to split the block again. */ } #ifdef UNIV_DEBUG after_insert: #endif /* Calculate the mbr on the upper half-page, and the mbr on original page. */ rtr_page_cal_mbr(cursor->index(), block, &mbr, *heap); rtr_page_cal_mbr(cursor->index(), new_block, &new_mbr, *heap); prdt.data = &mbr; new_prdt.data = &new_mbr; /* Check any predicate locks need to be moved/copied to the new page */ lock_prdt_update_split(new_block, &prdt, &new_prdt, page_id); /* Adjust the upper level. */ *err = rtr_adjust_upper_level(cursor, flags, block, new_block, &mbr, &new_mbr, mtr); if (UNIV_UNLIKELY(*err != DB_SUCCESS)) { return nullptr; } /* Save the new ssn to the root page, since we need to reinit the first ssn value from it after restart server. */ root_block = btr_root_block_get(cursor->index(), RW_SX_LATCH, mtr, err); if (UNIV_UNLIKELY(!root_block)) { return nullptr; } page_zip = buf_block_get_page_zip(root_block); page_set_ssn_id(root_block, page_zip, next_ssn, mtr); /* If the new res insert fail, we need to do another split again. */ if (!rec) { /* We play safe and reset the free bits for new_page */ if (!dict_index_is_clust(cursor->index()) && !cursor->index()->table->is_temporary()) { ibuf_reset_free_bits(new_block); ibuf_reset_free_bits(block); } /* We need to clean the parent path here and search father node later, otherwise, it's possible that find a wrong parent. */ rtr_clean_rtr_info(cursor->rtr_info, true); cursor->rtr_info = NULL; IF_DBUG(iterated=true,); rec_t* i_rec = page_rec_get_next(page_get_infimum_rec( buf_block_get_frame(block))); if (UNIV_UNLIKELY(!i_rec)) { goto corrupted; } btr_cur_position(cursor->index(), i_rec, block, cursor); goto func_start; } #ifdef UNIV_GIS_DEBUG ut_ad(page_validate(buf_block_get_frame(block), cursor->index())); ut_ad(page_validate(buf_block_get_frame(new_block), cursor->index())); ut_ad(!rec || rec_offs_validate(rec, cursor->index(), *offsets)); #endif return(rec); } /****************************************************************//** Following the right link to find the proper block for insert. @return the proper block.*/ dberr_t rtr_ins_enlarge_mbr( /*================*/ btr_cur_t* btr_cur, /*!< in: btr cursor */ mtr_t* mtr) /*!< in: mtr */ { dberr_t err = DB_SUCCESS; rtr_mbr_t new_mbr; buf_block_t* block; mem_heap_t* heap; page_cur_t* page_cursor; rec_offs* offsets; node_visit_t* node_visit; btr_cur_t cursor; page_t* page; ut_ad(btr_cur->index()->is_spatial()); /* If no rtr_info or rtree is one level tree, return. */ if (!btr_cur->rtr_info || btr_cur->tree_height == 1) { return(err); } /* Check path info is not empty. */ ut_ad(!btr_cur->rtr_info->parent_path->empty()); /* Create a memory heap. */ heap = mem_heap_create(1024); /* Leaf level page is stored in cursor */ page_cursor = btr_cur_get_page_cur(btr_cur); block = page_cur_get_block(page_cursor); for (ulint i = 1; i < btr_cur->tree_height; i++) { node_visit = rtr_get_parent_node(btr_cur, i, true); ut_ad(node_visit != NULL); /* If there's no mbr enlarge, return.*/ if (node_visit->mbr_inc == 0) { block = btr_pcur_get_block(node_visit->cursor); continue; } /* Calculate the mbr of the child page. */ rtr_page_cal_mbr(page_cursor->index, block, &new_mbr, heap); /* Get father block. */ cursor.page_cur.index = page_cursor->index; cursor.page_cur.block = block; offsets = rtr_page_get_father_block( NULL, heap, mtr, btr_cur, &cursor); page = buf_block_get_frame(block); /* Update the mbr field of the rec. */ rtr_update_mbr_field(&cursor, offsets, NULL, page, &new_mbr, NULL, mtr); block = btr_cur_get_block(&cursor); } mem_heap_free(heap); return(err); } /*************************************************************//** Copy recs from a page to new_block of rtree. @return error code */ dberr_t rtr_page_copy_rec_list_end_no_locks( /*================================*/ buf_block_t* new_block, /*!< in: index page to copy to */ buf_block_t* block, /*!< in: index page of rec */ rec_t* rec, /*!< in: record on page */ dict_index_t* index, /*!< in: record descriptor */ mem_heap_t* heap, /*!< in/out: heap memory */ rtr_rec_move_t* rec_move, /*!< in: recording records moved */ ulint max_move, /*!< in: num of rec to move */ ulint* num_moved, /*!< out: num of rec to move */ mtr_t* mtr) /*!< in: mtr */ { page_t* new_page = buf_block_get_frame(new_block); page_cur_t page_cur; page_cur_t cur1; rec_t* cur_rec; rec_offs offsets_1[REC_OFFS_NORMAL_SIZE]; rec_offs* offsets1 = offsets_1; rec_offs offsets_2[REC_OFFS_NORMAL_SIZE]; rec_offs* offsets2 = offsets_2; ulint moved = 0; const ulint n_core = page_is_leaf(new_page) ? index->n_core_fields : 0; rec_offs_init(offsets_1); rec_offs_init(offsets_2); page_cur_position(rec, block, &cur1); if (page_cur_is_before_first(&cur1) && !page_cur_move_to_next(&cur1)) { return DB_CORRUPTION; } ut_a(page_is_comp(new_page) == page_rec_is_comp(rec)); ut_a(mach_read_from_2(new_page + srv_page_size - 10) == (ulint) (page_is_comp(new_page) ? PAGE_NEW_INFIMUM : PAGE_OLD_INFIMUM)); cur_rec = page_rec_get_next( page_get_infimum_rec(buf_block_get_frame(new_block))); if (UNIV_UNLIKELY(!cur_rec)) { return DB_CORRUPTION; } page_cur_position(cur_rec, new_block, &page_cur); page_cur.index = index; /* Copy records from the original page to the new page */ while (!page_cur_is_after_last(&cur1)) { rec_t* cur1_rec = page_cur_get_rec(&cur1); rec_t* ins_rec; if (page_rec_is_infimum(cur_rec)) { cur_rec = page_rec_get_next(cur_rec); if (UNIV_UNLIKELY(!cur_rec)) { return DB_CORRUPTION; } } offsets1 = rec_get_offsets(cur1_rec, index, offsets1, n_core, ULINT_UNDEFINED, &heap); while (!page_rec_is_supremum(cur_rec)) { ulint cur_matched_fields = 0; int cmp; offsets2 = rec_get_offsets(cur_rec, index, offsets2, n_core, ULINT_UNDEFINED, &heap); cmp = cmp_rec_rec(cur1_rec, cur_rec, offsets1, offsets2, index, false, &cur_matched_fields); if (cmp < 0) { goto move_to_prev; } else if (cmp > 0) { /* Skip small recs. */ cur_rec = page_cur_move_to_next(&page_cur); } else if (n_core) { if (rec_get_deleted_flag(cur1_rec, dict_table_is_comp(index->table))) { goto next; } else { /* We have two identical leaf records, skip copying the undeleted one, and unmark deleted on the current page */ btr_rec_set_deleted( new_block, cur_rec, mtr); goto next; } } } /* If position is on suprenum rec, need to move to previous rec. */ if (page_rec_is_supremum(cur_rec)) { move_to_prev: cur_rec = page_cur_move_to_prev(&page_cur); } else { cur_rec = page_cur_get_rec(&page_cur); } if (UNIV_UNLIKELY(!cur_rec)) { return DB_CORRUPTION; } offsets1 = rec_get_offsets(cur1_rec, index, offsets1, n_core, ULINT_UNDEFINED, &heap); ins_rec = page_cur_insert_rec_low(&page_cur, cur1_rec, offsets1, mtr); if (UNIV_UNLIKELY(!ins_rec || moved >= max_move)) { return DB_CORRUPTION; } rec_move[moved].new_rec = ins_rec; rec_move[moved].old_rec = cur1_rec; rec_move[moved].moved = false; moved++; next: if (UNIV_UNLIKELY(!page_cur_move_to_next(&cur1))) { return DB_CORRUPTION; } } *num_moved = moved; return DB_SUCCESS; } /*************************************************************//** Copy recs till a specified rec from a page to new_block of rtree. @return error code */ dberr_t rtr_page_copy_rec_list_start_no_locks( /*==================================*/ buf_block_t* new_block, /*!< in: index page to copy to */ buf_block_t* block, /*!< in: index page of rec */ rec_t* rec, /*!< in: record on page */ dict_index_t* index, /*!< in: record descriptor */ mem_heap_t* heap, /*!< in/out: heap memory */ rtr_rec_move_t* rec_move, /*!< in: recording records moved */ ulint max_move, /*!< in: num of rec to move */ ulint* num_moved, /*!< out: num of rec to move */ mtr_t* mtr) /*!< in: mtr */ { page_cur_t cur1; rec_t* cur_rec; rec_offs offsets_1[REC_OFFS_NORMAL_SIZE]; rec_offs* offsets1 = offsets_1; rec_offs offsets_2[REC_OFFS_NORMAL_SIZE]; rec_offs* offsets2 = offsets_2; page_cur_t page_cur; ulint moved = 0; const ulint n_core = page_is_leaf(buf_block_get_frame(block)) ? index->n_core_fields : 0; rec_offs_init(offsets_1); rec_offs_init(offsets_2); page_cur_set_before_first(block, &cur1); if (UNIV_UNLIKELY(!page_cur_move_to_next(&cur1))) { return DB_CORRUPTION; } cur_rec = page_rec_get_next( page_get_infimum_rec(buf_block_get_frame(new_block))); if (UNIV_UNLIKELY(!cur_rec)) { return DB_CORRUPTION; } page_cur_position(cur_rec, new_block, &page_cur); page_cur.index = index; while (page_cur_get_rec(&cur1) != rec) { rec_t* cur1_rec = page_cur_get_rec(&cur1); rec_t* ins_rec; if (page_rec_is_infimum(cur_rec)) { cur_rec = page_rec_get_next(cur_rec); if (UNIV_UNLIKELY(!cur_rec)) { return DB_CORRUPTION; } } offsets1 = rec_get_offsets(cur1_rec, index, offsets1, n_core, ULINT_UNDEFINED, &heap); while (!page_rec_is_supremum(cur_rec)) { ulint cur_matched_fields = 0; offsets2 = rec_get_offsets(cur_rec, index, offsets2, n_core, ULINT_UNDEFINED, &heap); int cmp = cmp_rec_rec(cur1_rec, cur_rec, offsets1, offsets2, index, false, &cur_matched_fields); if (cmp < 0) { goto move_to_prev; } else if (cmp > 0) { /* Skip small recs. */ cur_rec = page_cur_move_to_next(&page_cur); } else if (n_core) { if (rec_get_deleted_flag( cur1_rec, dict_table_is_comp(index->table))) { goto next; } else { /* We have two identical leaf records, skip copying the undeleted one, and unmark deleted on the current page */ btr_rec_set_deleted( new_block, cur_rec, mtr); goto next; } } } /* If position is on suprenum rec, need to move to previous rec. */ if (page_rec_is_supremum(cur_rec)) { move_to_prev: cur_rec = page_cur_move_to_prev(&page_cur); } else { cur_rec = page_cur_get_rec(&page_cur); } if (UNIV_UNLIKELY(!cur_rec)) { return DB_CORRUPTION; } offsets1 = rec_get_offsets(cur1_rec, index, offsets1, n_core, ULINT_UNDEFINED, &heap); ins_rec = page_cur_insert_rec_low(&page_cur, cur1_rec, offsets1, mtr); if (UNIV_UNLIKELY(!ins_rec || moved >= max_move)) { return DB_CORRUPTION; } rec_move[moved].new_rec = ins_rec; rec_move[moved].old_rec = cur1_rec; rec_move[moved].moved = false; moved++; next: if (UNIV_UNLIKELY(!page_cur_move_to_next(&cur1))) { return DB_CORRUPTION; } } *num_moved = moved; return DB_SUCCESS; } /****************************************************************//** Check two MBRs are identical or need to be merged */ bool rtr_merge_mbr_changed( /*==================*/ btr_cur_t* cursor, /*!< in/out: cursor */ btr_cur_t* cursor2, /*!< in: the other cursor */ rec_offs* offsets, /*!< in: rec offsets */ rec_offs* offsets2, /*!< in: rec offsets */ rtr_mbr_t* new_mbr) /*!< out: MBR to update */ { double* mbr; double mbr1[SPDIMS * 2]; double mbr2[SPDIMS * 2]; rec_t* rec; ulint len; bool changed = false; ut_ad(cursor->index()->is_spatial()); rec = btr_cur_get_rec(cursor); rtr_read_mbr(rec_get_nth_field(rec, offsets, 0, &len), reinterpret_cast(mbr1)); rec = btr_cur_get_rec(cursor2); rtr_read_mbr(rec_get_nth_field(rec, offsets2, 0, &len), reinterpret_cast(mbr2)); mbr = reinterpret_cast(new_mbr); for (int i = 0; i < SPDIMS * 2; i += 2) { changed = (changed || mbr1[i] != mbr2[i]); *mbr = mbr1[i] < mbr2[i] ? mbr1[i] : mbr2[i]; mbr++; changed = (changed || mbr1[i + 1] != mbr2 [i + 1]); *mbr = mbr1[i + 1] > mbr2[i + 1] ? mbr1[i + 1] : mbr2[i + 1]; mbr++; } return(changed); } /****************************************************************//** Merge 2 mbrs and update the the mbr that cursor is on. */ void rtr_merge_and_update_mbr( /*=====================*/ btr_cur_t* cursor, /*!< in/out: cursor */ btr_cur_t* cursor2, /*!< in: the other cursor */ rec_offs* offsets, /*!< in: rec offsets */ rec_offs* offsets2, /*!< in: rec offsets */ page_t* child_page, /*!< in: the page. */ mtr_t* mtr) /*!< in: mtr */ { rtr_mbr_t new_mbr; if (rtr_merge_mbr_changed(cursor, cursor2, offsets, offsets2, &new_mbr)) { rtr_update_mbr_field(cursor, offsets, cursor2, child_page, &new_mbr, NULL, mtr); } else { rtr_node_ptr_delete(cursor2, mtr); } } /*************************************************************//** Deletes on the upper level the node pointer to a page. */ void rtr_node_ptr_delete( /*================*/ btr_cur_t* cursor, /*!< in: search cursor, contains information about parent nodes in search */ mtr_t* mtr) /*!< in: mtr */ { ibool compressed; dberr_t err; compressed = btr_cur_pessimistic_delete(&err, TRUE, cursor, BTR_CREATE_FLAG, false, mtr); ut_a(err == DB_SUCCESS); if (!compressed) { btr_cur_compress_if_useful(cursor, FALSE, mtr); } } /**************************************************************//** Check whether a Rtree page is child of a parent page @return true if there is child/parent relationship */ bool rtr_check_same_block( /*================*/ dict_index_t* index, /*!< in: index tree */ btr_cur_t* cursor, /*!< in/out: position at the parent entry pointing to the child if successful */ buf_block_t* parentb,/*!< in: parent page to check */ mem_heap_t* heap) /*!< in: memory heap */ { const uint32_t page_no = btr_cur_get_block(cursor)->page.id().page_no(); rec_offs* offsets; rec_t* rec = page_get_infimum_rec(parentb->page.frame); while ((rec = page_rec_get_next(rec)) && !page_rec_is_supremum(rec)) { offsets = rec_get_offsets( rec, index, NULL, 0, ULINT_UNDEFINED, &heap); if (btr_node_ptr_get_child_page_no(rec, offsets) == page_no) { btr_cur_position(index, rec, parentb, cursor); return(true); } } return(false); } /*************************************************************//** Calculates MBR_AREA(a+b) - MBR_AREA(a) Note: when 'a' and 'b' objects are far from each other, the area increase can be really big, so this function can return 'inf' as a result. Return the area increaed. */ static double rtree_area_increase( const uchar* a, /*!< in: original mbr. */ const uchar* b, /*!< in: new mbr. */ double* ab_area) /*!< out: increased area. */ { double a_area = 1.0; double loc_ab_area = 1.0; double amin, amax, bmin, bmax; double data_round = 1.0; static_assert(DATA_MBR_LEN == SPDIMS * 2 * sizeof(double), "compatibility"); for (auto i = SPDIMS; i--; ) { double area; amin = mach_double_read(a); bmin = mach_double_read(b); amax = mach_double_read(a + sizeof(double)); bmax = mach_double_read(b + sizeof(double)); a += 2 * sizeof(double); b += 2 * sizeof(double); area = amax - amin; if (area == 0) { a_area *= LINE_MBR_WEIGHTS; } else { a_area *= area; } area = (double)std::max(amax, bmax) - (double)std::min(amin, bmin); if (area == 0) { loc_ab_area *= LINE_MBR_WEIGHTS; } else { loc_ab_area *= area; } /* Value of amax or bmin can be so large that small difference are ignored. For example: 3.2884281489988079e+284 - 100 = 3.2884281489988079e+284. This results some area difference are not detected */ if (loc_ab_area == a_area) { if (bmin < amin || bmax > amax) { data_round *= ((double)std::max(amax, bmax) - amax + (amin - (double)std::min( amin, bmin))); } else { data_round *= area; } } } *ab_area = loc_ab_area; if (loc_ab_area == a_area && data_round != 1.0) { return(data_round); } return(loc_ab_area - a_area); } /** Calculates overlapping area @param[in] a mbr a @param[in] b mbr b @return overlapping area */ static double rtree_area_overlapping(const byte *a, const byte *b) { double area = 1.0; double amin; double amax; double bmin; double bmax; static_assert(DATA_MBR_LEN == SPDIMS * 2 * sizeof(double), "compatibility"); for (auto i = SPDIMS; i--; ) { amin = mach_double_read(a); bmin = mach_double_read(b); amax = mach_double_read(a + sizeof(double)); bmax = mach_double_read(b + sizeof(double)); a += 2 * sizeof(double); b += 2 * sizeof(double); amin = std::max(amin, bmin); amax = std::min(amax, bmax); if (amin > amax) { return(0); } else { area *= (amax - amin); } } return(area); } /****************************************************************//** Calculate the area increased for a new record @return area increased */ double rtr_rec_cal_increase( /*=================*/ const dtuple_t* dtuple, /*!< in: data tuple to insert, which cause area increase */ const rec_t* rec, /*!< in: physical record which differs from dtuple in some of the common fields, or which has an equal number or more fields than dtuple */ double* area) /*!< out: increased area */ { const dfield_t* dtuple_field; ut_ad(!page_rec_is_supremum(rec)); ut_ad(!page_rec_is_infimum(rec)); dtuple_field = dtuple_get_nth_field(dtuple, 0); ut_ad(dfield_get_len(dtuple_field) == DATA_MBR_LEN); return rtree_area_increase(rec, static_cast( dfield_get_data(dtuple_field)), area); } /** Estimates the number of rows in a given area. @param[in] index index @param[in] tuple range tuple containing mbr, may also be empty tuple @param[in] mode search mode @return estimated number of rows */ ha_rows rtr_estimate_n_rows_in_range( dict_index_t* index, const dtuple_t* tuple, page_cur_mode_t mode) { ut_ad(dict_index_is_spatial(index)); /* Check tuple & mode */ if (tuple->n_fields == 0) { return(HA_POS_ERROR); } switch (mode) { case PAGE_CUR_DISJOINT: case PAGE_CUR_CONTAIN: case PAGE_CUR_INTERSECT: case PAGE_CUR_WITHIN: case PAGE_CUR_MBR_EQUAL: break; default: return(HA_POS_ERROR); } DBUG_EXECUTE_IF("rtr_pcur_move_to_next_return", return(2); ); /* Read mbr from tuple. */ rtr_mbr_t range_mbr; double range_area; const dfield_t* dtuple_field = dtuple_get_nth_field(tuple, 0); ut_ad(dfield_get_len(dtuple_field) >= DATA_MBR_LEN); const byte* range_mbr_ptr = reinterpret_cast( dfield_get_data(dtuple_field)); rtr_read_mbr(range_mbr_ptr, &range_mbr); range_area = (range_mbr.xmax - range_mbr.xmin) * (range_mbr.ymax - range_mbr.ymin); /* Get index root page. */ mtr_t mtr; mtr.start(); index->set_modified(mtr); mtr_s_lock_index(index, &mtr); dberr_t err; buf_block_t* block = btr_root_block_get(index, RW_S_LATCH, &mtr, &err); if (!block) { err_exit: mtr.commit(); return HA_POS_ERROR; } const page_t* page = buf_block_get_frame(block); const unsigned n_recs = page_header_get_field(page, PAGE_N_RECS); if (n_recs == 0) { goto err_exit; } /* Scan records in root page and calculate area. */ double area = 0; for (const rec_t* rec = page_rec_get_next_const( page_get_infimum_rec(block->page.frame)); rec && !page_rec_is_supremum(rec); rec = page_rec_get_next_const(rec)) { rtr_mbr_t mbr; double rec_area; rtr_read_mbr(rec, &mbr); rec_area = (mbr.xmax - mbr.xmin) * (mbr.ymax - mbr.ymin); if (rec_area == 0) { switch (mode) { case PAGE_CUR_CONTAIN: case PAGE_CUR_INTERSECT: area += 1; break; case PAGE_CUR_DISJOINT: break; case PAGE_CUR_WITHIN: case PAGE_CUR_MBR_EQUAL: if (!rtree_key_cmp( PAGE_CUR_WITHIN, range_mbr_ptr, rec)) { area += 1; } break; default: ut_error; } } else { switch (mode) { case PAGE_CUR_CONTAIN: case PAGE_CUR_INTERSECT: area += rtree_area_overlapping( range_mbr_ptr, rec) / rec_area; break; case PAGE_CUR_DISJOINT: area += 1; area -= rtree_area_overlapping( range_mbr_ptr, rec) / rec_area; break; case PAGE_CUR_WITHIN: case PAGE_CUR_MBR_EQUAL: if (!rtree_key_cmp( PAGE_CUR_WITHIN, range_mbr_ptr, rec)) { area += range_area / rec_area; } break; default: ut_error; } } } mtr.commit(); if (!std::isfinite(area)) { return(HA_POS_ERROR); } area /= n_recs; return ha_rows(static_cast(dict_table_get_n_rows(index->table)) * area); }