/***************************************************************************** Copyright (c) 1996, 2017, Oracle and/or its affiliates. All Rights Reserved. Copyright (c) 2012, Facebook Inc. Copyright (c) 2013, 2023, MariaDB Corporation. This program is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; version 2 of the License. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program; if not, write to the Free Software Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1335 USA *****************************************************************************/ /**************************************************//** @file include/dict0mem.h Data dictionary memory object creation Created 1/8/1996 Heikki Tuuri *******************************************************/ #ifndef dict0mem_h #define dict0mem_h #include "dict0types.h" #include "data0type.h" #include "mem0mem.h" #include "row0types.h" #include "btr0types.h" #include "lock0types.h" #include "que0types.h" #include "sux_lock.h" #include "ut0mem.h" #include "ut0rnd.h" #include "ut0byte.h" #include "hash0hash.h" #include "trx0types.h" #include "fts0fts.h" #include "buf0buf.h" #include "mtr0mtr.h" #include "gis0type.h" #include "fil0fil.h" #include "fil0crypt.h" #include "mysql_com.h" #include #include #include #include #include #include /* Forward declaration. */ struct ib_rbt_t; /** Type flags of an index: OR'ing of the flags is allowed to define a combination of types */ /* @{ */ #define DICT_CLUSTERED 1 /*!< clustered index; for other than auto-generated clustered indexes, also DICT_UNIQUE will be set */ #define DICT_UNIQUE 2 /*!< unique index */ #define DICT_CORRUPT 16 /*!< bit to store the corrupted flag in SYS_INDEXES.TYPE */ #define DICT_FTS 32 /* FTS index; can't be combined with the other flags */ #define DICT_SPATIAL 64 /* SPATIAL index; can't be combined with the other flags */ #define DICT_VIRTUAL 128 /* Index on Virtual column */ #define DICT_IT_BITS 8 /*!< number of bits used for SYS_INDEXES.TYPE */ /* @} */ #if 0 /* not implemented, retained for history */ /** Types for a table object */ #define DICT_TABLE_ORDINARY 1 /*!< ordinary table */ #define DICT_TABLE_CLUSTER_MEMBER 2 #define DICT_TABLE_CLUSTER 3 /* this means that the table is really a cluster definition */ #endif /* Table and tablespace flags are generally not used for the Antelope file format except for the low order bit, which is used differently depending on where the flags are stored. ==================== Low order flags bit ========================= | REDUNDANT | COMPACT | COMPRESSED and DYNAMIC SYS_TABLES.TYPE | 1 | 1 | 1 dict_table_t::flags | 0 | 1 | 1 FSP_SPACE_FLAGS | 0 | 0 | 1 fil_space_t::flags | 0 | 0 | 1 Before the 5.1 plugin, SYS_TABLES.TYPE was always DICT_TABLE_ORDINARY (1) and the tablespace flags field was always 0. In the 5.1 plugin, these fields were repurposed to identify compressed and dynamic row formats. The following types and constants describe the flags found in dict_table_t and SYS_TABLES.TYPE. Similar flags found in fil_space_t and FSP_SPACE_FLAGS are described in fsp0fsp.h. */ /* @{ */ /** dict_table_t::flags bit 0 is equal to 0 if the row format = Redundant */ #define DICT_TF_REDUNDANT 0 /*!< Redundant row format. */ /** dict_table_t::flags bit 0 is equal to 1 if the row format = Compact */ #define DICT_TF_COMPACT 1U /*!< Compact row format. */ /** This bitmask is used in SYS_TABLES.N_COLS to set and test whether the Compact page format is used, i.e ROW_FORMAT != REDUNDANT */ constexpr uint32_t DICT_N_COLS_COMPACT= 1U << 31; /** Width of the COMPACT flag */ #define DICT_TF_WIDTH_COMPACT 1 /** Width of the ZIP_SSIZE flag */ #define DICT_TF_WIDTH_ZIP_SSIZE 4 /** Width of the ATOMIC_BLOBS flag. The ROW_FORMAT=REDUNDANT and ROW_FORMAT=COMPACT broke up BLOB and TEXT fields, storing the first 768 bytes in the clustered index. ROW_FORMAT=DYNAMIC and ROW_FORMAT=COMPRESSED store the whole blob or text field off-page atomically. Secondary indexes are created from this external data using row_ext_t to cache the BLOB prefixes. */ #define DICT_TF_WIDTH_ATOMIC_BLOBS 1 /** If a table is created with the MYSQL option DATA DIRECTORY and innodb-file-per-table, an older engine will not be able to find that table. This flag prevents older engines from attempting to open the table and allows InnoDB to update_create_info() accordingly. */ #define DICT_TF_WIDTH_DATA_DIR 1 /** Width of the page compression flag */ #define DICT_TF_WIDTH_PAGE_COMPRESSION 1 #define DICT_TF_WIDTH_PAGE_COMPRESSION_LEVEL 4 /** The NO_ROLLBACK flag (3=yes; the values 1,2 used stand for ATOMIC_WRITES=ON and ATOMIC_WRITES=OFF between MariaDB 10.1.0 and 10.2.3) */ #define DICT_TF_WIDTH_NO_ROLLBACK 2 /** Width of all the currently known table flags */ #define DICT_TF_BITS (DICT_TF_WIDTH_COMPACT \ + DICT_TF_WIDTH_ZIP_SSIZE \ + DICT_TF_WIDTH_ATOMIC_BLOBS \ + DICT_TF_WIDTH_DATA_DIR \ + DICT_TF_WIDTH_PAGE_COMPRESSION \ + DICT_TF_WIDTH_PAGE_COMPRESSION_LEVEL \ + DICT_TF_WIDTH_NO_ROLLBACK) /** Zero relative shift position of the COMPACT field */ #define DICT_TF_POS_COMPACT 0 /** Zero relative shift position of the ZIP_SSIZE field */ #define DICT_TF_POS_ZIP_SSIZE (DICT_TF_POS_COMPACT \ + DICT_TF_WIDTH_COMPACT) /** Zero relative shift position of the ATOMIC_BLOBS field */ #define DICT_TF_POS_ATOMIC_BLOBS (DICT_TF_POS_ZIP_SSIZE \ + DICT_TF_WIDTH_ZIP_SSIZE) /** Zero relative shift position of the DATA_DIR field */ #define DICT_TF_POS_DATA_DIR (DICT_TF_POS_ATOMIC_BLOBS \ + DICT_TF_WIDTH_ATOMIC_BLOBS) /** Zero relative shift position of the PAGE_COMPRESSION field */ #define DICT_TF_POS_PAGE_COMPRESSION (DICT_TF_POS_DATA_DIR \ + DICT_TF_WIDTH_DATA_DIR) /** Zero relative shift position of the PAGE_COMPRESSION_LEVEL field */ #define DICT_TF_POS_PAGE_COMPRESSION_LEVEL (DICT_TF_POS_PAGE_COMPRESSION \ + DICT_TF_WIDTH_PAGE_COMPRESSION) /** Zero relative shift position of the NO_ROLLBACK field */ #define DICT_TF_POS_NO_ROLLBACK (DICT_TF_POS_PAGE_COMPRESSION_LEVEL \ + DICT_TF_WIDTH_PAGE_COMPRESSION_LEVEL) #define DICT_TF_POS_UNUSED (DICT_TF_POS_NO_ROLLBACK \ + DICT_TF_WIDTH_NO_ROLLBACK) /** Bit mask of the COMPACT field */ #define DICT_TF_MASK_COMPACT \ ((~(~0U << DICT_TF_WIDTH_COMPACT)) \ << DICT_TF_POS_COMPACT) /** Bit mask of the ZIP_SSIZE field */ #define DICT_TF_MASK_ZIP_SSIZE \ ((~(~0U << DICT_TF_WIDTH_ZIP_SSIZE)) \ << DICT_TF_POS_ZIP_SSIZE) /** Bit mask of the ATOMIC_BLOBS field */ #define DICT_TF_MASK_ATOMIC_BLOBS \ ((~(~0U << DICT_TF_WIDTH_ATOMIC_BLOBS)) \ << DICT_TF_POS_ATOMIC_BLOBS) /** Bit mask of the DATA_DIR field */ #define DICT_TF_MASK_DATA_DIR \ ((~(~0U << DICT_TF_WIDTH_DATA_DIR)) \ << DICT_TF_POS_DATA_DIR) /** Bit mask of the PAGE_COMPRESSION field */ #define DICT_TF_MASK_PAGE_COMPRESSION \ ((~(~0U << DICT_TF_WIDTH_PAGE_COMPRESSION)) \ << DICT_TF_POS_PAGE_COMPRESSION) /** Bit mask of the PAGE_COMPRESSION_LEVEL field */ #define DICT_TF_MASK_PAGE_COMPRESSION_LEVEL \ ((~(~0U << DICT_TF_WIDTH_PAGE_COMPRESSION_LEVEL)) \ << DICT_TF_POS_PAGE_COMPRESSION_LEVEL) /** Bit mask of the NO_ROLLBACK field */ #define DICT_TF_MASK_NO_ROLLBACK \ ((~(~0U << DICT_TF_WIDTH_NO_ROLLBACK)) \ << DICT_TF_POS_NO_ROLLBACK) /** Return the value of the COMPACT field */ #define DICT_TF_GET_COMPACT(flags) \ ((flags & DICT_TF_MASK_COMPACT) \ >> DICT_TF_POS_COMPACT) /** Return the value of the ZIP_SSIZE field */ #define DICT_TF_GET_ZIP_SSIZE(flags) \ ((flags & DICT_TF_MASK_ZIP_SSIZE) \ >> DICT_TF_POS_ZIP_SSIZE) /** Return the value of the ATOMIC_BLOBS field */ #define DICT_TF_HAS_ATOMIC_BLOBS(flags) \ ((flags & DICT_TF_MASK_ATOMIC_BLOBS) \ >> DICT_TF_POS_ATOMIC_BLOBS) /** Return the value of the DATA_DIR field */ #define DICT_TF_HAS_DATA_DIR(flags) \ ((flags & DICT_TF_MASK_DATA_DIR) \ >> DICT_TF_POS_DATA_DIR) /** Return the value of the PAGE_COMPRESSION field */ #define DICT_TF_GET_PAGE_COMPRESSION(flags) \ ((flags & DICT_TF_MASK_PAGE_COMPRESSION) \ >> DICT_TF_POS_PAGE_COMPRESSION) /** Return the value of the PAGE_COMPRESSION_LEVEL field */ #define DICT_TF_GET_PAGE_COMPRESSION_LEVEL(flags) \ ((flags & DICT_TF_MASK_PAGE_COMPRESSION_LEVEL) \ >> DICT_TF_POS_PAGE_COMPRESSION_LEVEL) /* @} */ /** @brief Table Flags set number 2. These flags will be stored in SYS_TABLES.MIX_LEN. All unused flags will be written as 0. The column may contain garbage for tables created with old versions of InnoDB that only implemented ROW_FORMAT=REDUNDANT. InnoDB engines do not check these flags for unknown bits in order to protect backward incompatibility. */ /* @{ */ /** Total number of bits in table->flags2. */ #define DICT_TF2_BITS 7 #define DICT_TF2_UNUSED_BIT_MASK (~0U << DICT_TF2_BITS) #define DICT_TF2_BIT_MASK ~DICT_TF2_UNUSED_BIT_MASK /** TEMPORARY; TRUE for tables from CREATE TEMPORARY TABLE. */ #define DICT_TF2_TEMPORARY 1U /** The table has an internal defined DOC ID column */ #define DICT_TF2_FTS_HAS_DOC_ID 2U /** The table has an FTS index */ #define DICT_TF2_FTS 4U /** Need to add Doc ID column for FTS index build. This is a transient bit for index build */ #define DICT_TF2_FTS_ADD_DOC_ID 8U /** This bit is used during table creation to indicate that it will use its own tablespace instead of the system tablespace. */ #define DICT_TF2_USE_FILE_PER_TABLE 16U /** Set when we discard/detach the tablespace */ constexpr unsigned DICT_TF2_POS_DISCARDED= 5; constexpr unsigned DICT_TF2_DISCARDED= 1U << DICT_TF2_POS_DISCARDED; /** This bit is set if all aux table names (both common tables and index tables) of a FTS table are in HEX format. */ #define DICT_TF2_FTS_AUX_HEX_NAME 64U /* @} */ #define DICT_TF2_FLAG_SET(table, flag) \ (table->flags2 |= (flag)) #define DICT_TF2_FLAG_IS_SET(table, flag) \ (table->flags2 & (flag)) #define DICT_TF2_FLAG_UNSET(table, flag) \ (table->flags2 &= ~(flag) & ((1U << DICT_TF2_BITS) - 1)) /** Tables could be chained together with Foreign key constraint. When first load the parent table, we would load all of its descedents. This could result in rescursive calls and out of stack error eventually. DICT_FK_MAX_RECURSIVE_LOAD defines the maximum number of recursive loads, when exceeded, the child table will not be loaded. It will be loaded when the foreign constraint check needs to be run. */ #define DICT_FK_MAX_RECURSIVE_LOAD 20 /** Similarly, when tables are chained together with foreign key constraints with on cascading delete/update clause, delete from parent table could result in recursive cascading calls. This defines the maximum number of such cascading deletes/updates allowed. When exceeded, the delete from parent table will fail, and user has to drop excessive foreign constraint before proceeds. */ #define FK_MAX_CASCADE_DEL 15 /****************************************************************/ /** Free a table memory object. */ void dict_mem_table_free( /*================*/ dict_table_t* table); /*!< in: table */ /**********************************************************************//** Adds a column definition to a table. */ void dict_mem_table_add_col( /*===================*/ dict_table_t* table, /*!< in: table */ mem_heap_t* heap, /*!< in: temporary memory heap, or NULL */ const char* name, /*!< in: column name, or NULL */ ulint mtype, /*!< in: main datatype */ ulint prtype, /*!< in: precise type */ ulint len) /*!< in: precision */ MY_ATTRIBUTE((nonnull(1))); /** Adds a virtual column definition to a table. @param[in,out] table table @param[in] heap temporary memory heap, or NULL. It is used to store name when we have not finished adding all columns. When all columns are added, the whole name will copy to memory from table->heap @param[in] name column name @param[in] mtype main datatype @param[in] prtype precise type @param[in] len length @param[in] pos position in a table @param[in] num_base number of base columns @return the virtual column definition */ dict_v_col_t* dict_mem_table_add_v_col( dict_table_t* table, mem_heap_t* heap, const char* name, ulint mtype, ulint prtype, ulint len, ulint pos, ulint num_base); /** Adds a stored column definition to a table. @param[in] table table @param[in] num_base number of base columns. */ void dict_mem_table_add_s_col( dict_table_t* table, ulint num_base); /**********************************************************************//** Renames a column of a table in the data dictionary cache. */ void dict_mem_table_col_rename( /*======================*/ dict_table_t* table, /*!< in/out: table */ ulint nth_col,/*!< in: column index */ const char* from, /*!< in: old column name */ const char* to, /*!< in: new column name */ bool is_virtual); /*!< in: if this is a virtual column */ /**********************************************************************//** This function populates a dict_col_t memory structure with supplied information. */ void dict_mem_fill_column_struct( /*========================*/ dict_col_t* column, /*!< out: column struct to be filled */ ulint col_pos, /*!< in: column position */ ulint mtype, /*!< in: main data type */ ulint prtype, /*!< in: precise type */ ulint col_len); /*!< in: column length */ /**********************************************************************//** This function poplulates a dict_index_t index memory structure with supplied information. */ UNIV_INLINE void dict_mem_fill_index_struct( /*=======================*/ dict_index_t* index, /*!< out: index to be filled */ mem_heap_t* heap, /*!< in: memory heap */ const char* index_name, /*!< in: index name */ ulint type, /*!< in: DICT_UNIQUE, DICT_CLUSTERED, ... ORed */ ulint n_fields); /*!< in: number of fields */ /**********************************************************************//** Creates an index memory object. @return own: index object */ dict_index_t* dict_mem_index_create( /*==================*/ dict_table_t* table, /*!< in: table */ const char* index_name, /*!< in: index name */ ulint type, /*!< in: DICT_UNIQUE, DICT_CLUSTERED, ... ORed */ ulint n_fields); /*!< in: number of fields */ /**********************************************************************//** Frees an index memory object. */ void dict_mem_index_free( /*================*/ dict_index_t* index); /*!< in: index */ /**********************************************************************//** Creates and initializes a foreign constraint memory object. @return own: foreign constraint struct */ dict_foreign_t* dict_mem_foreign_create(void); /*=========================*/ /**********************************************************************//** Sets the foreign_table_name_lookup pointer based on the value of lower_case_table_names. If that is 0 or 1, foreign_table_name_lookup will point to foreign_table_name. If 2, then another string is allocated from the heap and set to lower case. */ void dict_mem_foreign_table_name_lookup_set( /*===================================*/ dict_foreign_t* foreign, /*!< in/out: foreign struct */ ibool do_alloc); /*!< in: is an alloc needed */ /**********************************************************************//** Sets the referenced_table_name_lookup pointer based on the value of lower_case_table_names. If that is 0 or 1, referenced_table_name_lookup will point to referenced_table_name. If 2, then another string is allocated from the heap and set to lower case. */ void dict_mem_referenced_table_name_lookup_set( /*======================================*/ dict_foreign_t* foreign, /*!< in/out: foreign struct */ ibool do_alloc); /*!< in: is an alloc needed */ /** Fills the dependent virtual columns in a set. Reason for being dependent are 1) FK can be present on base column of virtual columns 2) FK can be present on column which is a part of virtual index @param[in,out] foreign foreign key information. */ void dict_mem_foreign_fill_vcol_set( dict_foreign_t* foreign); /** Fill virtual columns set in each fk constraint present in the table. @param[in,out] table innodb table object. */ void dict_mem_table_fill_foreign_vcol_set( dict_table_t* table); /** Free the vcol_set from all foreign key constraint on the table. @param[in,out] table innodb table object. */ void dict_mem_table_free_foreign_vcol_set( dict_table_t* table); /** Create a temporary tablename like "#sql-ibNNN". @param[in] heap A memory heap @param[in] dbtab Table name in the form database/table name @param[in] id Table id @return A unique temporary tablename suitable for InnoDB use */ char* dict_mem_create_temporary_tablename( mem_heap_t* heap, const char* dbtab, table_id_t id); /** SQL identifier name wrapper for pretty-printing */ class id_name_t { public: /** Default constructor */ id_name_t() : m_name() {} /** Constructor @param[in] name identifier to assign */ explicit id_name_t( const char* name) : m_name(name) {} /** Assignment operator @param[in] name identifier to assign */ id_name_t& operator=( const char* name) { m_name = name; return(*this); } /** Implicit type conversion @return the name */ operator const char*() const { return(m_name); } /** Explicit type conversion @return the name */ const char* operator()() const { return(m_name); } private: /** The name in internal representation */ const char* m_name; }; /** Data structure for a column in a table */ struct dict_col_t{ /*----------------------*/ /** The following are copied from dtype_t, so that all bit-fields can be packed tightly. */ /* @{ */ unsigned prtype:32; /*!< precise type; MySQL data type, charset code, flags to indicate nullability, signedness, whether this is a binary string, whether this is a true VARCHAR where MySQL uses 2 bytes to store the length */ unsigned mtype:8; /*!< main data type */ /* the remaining fields do not affect alphabetical ordering: */ unsigned len:16; /*!< length; for MySQL data this is field->pack_length(), except that for a >= 5.0.3 type true VARCHAR this is the maximum byte length of the string data (in addition to the string, MySQL uses 1 or 2 bytes to store the string length) */ unsigned mbminlen:3; /*!< minimum length of a character, in bytes */ unsigned mbmaxlen:3; /*!< maximum length of a character, in bytes */ /*----------------------*/ /* End of definitions copied from dtype_t */ /* @} */ unsigned ind:10; /*!< table column position (starting from 0) */ unsigned ord_part:1; /*!< nonzero if this column appears in the ordering fields of an index */ unsigned max_prefix:12; /*!< maximum index prefix length on this column. Our current max limit is 3072 (REC_VERSION_56_MAX_INDEX_COL_LEN) bytes. */ private: /** Special value of ind for a dropped column */ static const unsigned DROPPED = 1023; public: /** Detach a virtual column from an index. @param index being-freed index */ inline void detach(const dict_index_t &index); /** Data for instantly added columns */ struct def_t { /** original default value of instantly added column */ const void *data; /** len of data, or UNIV_SQL_DEFAULT if unavailable */ ulint len; } def_val; /** Retrieve the column name. @param table the table of this column */ const char *name(const dict_table_t &table) const; /** @return whether this is a virtual column */ bool is_virtual() const { return prtype & DATA_VIRTUAL; } /** @return whether NULL is an allowed value for this column */ bool is_nullable() const { return !(prtype & DATA_NOT_NULL); } /** @return whether table of this system field is TRX_ID-based */ bool vers_native() const { ut_ad(vers_sys_start() || vers_sys_end()); ut_ad(mtype == DATA_INT || mtype == DATA_FIXBINARY); return mtype == DATA_INT; } /** @return whether this user column (not row_start, row_end) has System Versioning property */ bool is_versioned() const { return !(~prtype & DATA_VERSIONED); } /** @return whether this is the system version start */ bool vers_sys_start() const { return (prtype & DATA_VERSIONED) == DATA_VERS_START; } /** @return whether this is the system version end */ bool vers_sys_end() const { return (prtype & DATA_VERSIONED) == DATA_VERS_END; } /** @return whether this is an instantly-added column */ bool is_added() const { DBUG_ASSERT(def_val.len != UNIV_SQL_DEFAULT || !def_val.data); return def_val.len != UNIV_SQL_DEFAULT; } /** Flag the column instantly dropped */ void set_dropped() { ind = DROPPED; } /** Flag the column instantly dropped. @param not_null whether the column was NOT NULL @param len2 whether the length exceeds 255 bytes @param fixed_len the fixed length in bytes, or 0 */ void set_dropped(bool not_null, bool len2, unsigned fixed) { DBUG_ASSERT(!len2 || !fixed); prtype= not_null ? DATA_NOT_NULL | DATA_BINARY_TYPE : DATA_BINARY_TYPE; if (fixed) { mtype= DATA_FIXBINARY; len= static_cast(fixed); } else { mtype= DATA_BINARY; len= len2 ? 65535 : 255; } mbminlen= mbmaxlen= 0; ind= DROPPED; ord_part= 0; max_prefix= 0; } /** @return whether the column was instantly dropped */ bool is_dropped() const { return ind == DROPPED; } /** @return whether the column was instantly dropped @param index the clustered index */ inline bool is_dropped(const dict_index_t &index) const; /** Get the default value of an instantly-added column. @param[out] len value length (in bytes), or UNIV_SQL_NULL @return default value @retval NULL if the default value is SQL NULL (len=UNIV_SQL_NULL) */ const byte *instant_value(ulint *len) const { DBUG_ASSERT(is_added()); *len= def_val.len; return static_cast(def_val.data); } /** Remove the 'instant ADD' status of the column */ void clear_instant() { def_val.len= UNIV_SQL_DEFAULT; def_val.data= NULL; } /** @return whether two columns have compatible data type encoding */ bool same_type(const dict_col_t &other) const { if (mtype != other.mtype) { /* For latin1_swedish_ci, DATA_CHAR and DATA_VARCHAR will be used instead of DATA_MYSQL and DATA_VARMYSQL. As long as mtype,prtype are being written to InnoDB data dictionary tables, we cannot simplify this. */ switch (mtype) { default: return false; case DATA_VARCHAR: if (other.mtype != DATA_VARMYSQL) return false; goto check_encoding; case DATA_VARMYSQL: if (other.mtype != DATA_VARCHAR) return false; goto check_encoding; case DATA_CHAR: if (other.mtype != DATA_MYSQL) return false; goto check_encoding; case DATA_MYSQL: if (other.mtype != DATA_CHAR) return false; goto check_encoding; } } else if (dtype_is_string_type(mtype)) { check_encoding: const uint16_t cset= dtype_get_charset_coll(prtype); const uint16_t ocset= dtype_get_charset_coll(other.prtype); return cset == ocset || dict_col_t::same_encoding(cset, ocset); } return true; } /** @return whether two collations codes have the same character encoding */ static bool same_encoding(uint16_t a, uint16_t b); /** Determine if the columns have the same format except for is_nullable() and is_versioned(). @param other column to compare to @return whether the columns have the same format */ bool same_format(const dict_col_t &other) const { return same_type(other) && len >= other.len && mbminlen == other.mbminlen && mbmaxlen >= other.mbmaxlen && !((prtype ^ other.prtype) & ~(DATA_NOT_NULL | DATA_VERSIONED | CHAR_COLL_MASK << 16 | DATA_LONG_TRUE_VARCHAR)); } /** @return whether the column values are comparable by memcmp() */ bool is_binary() const { return prtype & DATA_BINARY_TYPE; } }; /** Index information put in a list of virtual column structure. Index id and virtual column position in the index will be logged. There can be multiple entries for a given index, with a different position. */ struct dict_v_idx_t { /** active index on the column */ dict_index_t* index; /** position in this index */ ulint nth_field; dict_v_idx_t(dict_index_t* index, ulint nth_field) : index(index), nth_field(nth_field) {} }; /** Data structure for a virtual column in a table */ struct dict_v_col_t{ /** column structure */ dict_col_t m_col; /** array of base column ptr */ dict_col_t** base_col; /** number of base column */ unsigned num_base:10; /** column pos in table */ unsigned v_pos:10; /** Virtual index list, and column position in the index */ std::forward_list > v_indexes; /** Detach the column from an index. @param index index to be detached from */ void detach(const dict_index_t &index) { if (v_indexes.empty()) return; auto i= v_indexes.before_begin(); do { auto prev = i++; if (i == v_indexes.end()) { return; } if (i->index == &index) { v_indexes.erase_after(prev); return; } } while (i != v_indexes.end()); } }; /** Data structure for newly added virtual column in a index. It is used only during rollback_inplace_alter_table() of addition of index depending on newly added virtual columns and uses index heap. Should be freed when index is being removed from cache. */ struct dict_add_v_col_info { ulint n_v_col; dict_v_col_t *v_col; /** Add the newly added virtual column while rollbacking the index which contains new virtual columns @param col virtual column to be duplicated @param offset offset where to duplicate virtual column */ dict_v_col_t* add_drop_v_col(mem_heap_t *heap, dict_v_col_t *col, ulint offset) { ut_ad(n_v_col); ut_ad(offset < n_v_col); if (!v_col) v_col= static_cast (mem_heap_alloc(heap, n_v_col * sizeof *v_col)); new (&v_col[offset]) dict_v_col_t(); v_col[offset].m_col= col->m_col; v_col[offset].v_pos= col->v_pos; return &v_col[offset]; } }; /** Data structure for newly added virtual column in a table */ struct dict_add_v_col_t{ /** number of new virtual column */ ulint n_v_col; /** column structures */ const dict_v_col_t* v_col; /** new col names */ const char** v_col_name; }; /** Data structure for a stored column in a table. */ struct dict_s_col_t { /** Stored column ptr */ dict_col_t* m_col; /** array of base col ptr */ dict_col_t** base_col; /** number of base columns */ ulint num_base; /** column pos in table */ ulint s_pos; }; /** list to put stored column for create_table_info_t */ typedef std::forward_list > dict_s_col_list; /** @brief DICT_ANTELOPE_MAX_INDEX_COL_LEN is measured in bytes and is the maximum indexed column length (or indexed prefix length) in ROW_FORMAT=REDUNDANT and ROW_FORMAT=COMPACT. Also, in any format, any fixed-length field that is longer than this will be encoded as a variable-length field. It is set to 3*256, so that one can create a column prefix index on 256 characters of a TEXT or VARCHAR column also in the UTF-8 charset. In that charset, a character may take at most 3 bytes. This constant MUST NOT BE CHANGED, or the compatibility of InnoDB data files would be at risk! */ #define DICT_ANTELOPE_MAX_INDEX_COL_LEN REC_ANTELOPE_MAX_INDEX_COL_LEN /** Find out maximum indexed column length by its table format. For ROW_FORMAT=REDUNDANT and ROW_FORMAT=COMPACT, the maximum field length is REC_ANTELOPE_MAX_INDEX_COL_LEN - 1 (767). For ROW_FORMAT=COMPRESSED and ROW_FORMAT=DYNAMIC, the length could be REC_VERSION_56_MAX_INDEX_COL_LEN (3072) bytes */ #define DICT_MAX_FIELD_LEN_BY_FORMAT(table) \ (dict_table_has_atomic_blobs(table) \ ? REC_VERSION_56_MAX_INDEX_COL_LEN \ : REC_ANTELOPE_MAX_INDEX_COL_LEN - 1) #define DICT_MAX_FIELD_LEN_BY_FORMAT_FLAG(flags) \ (DICT_TF_HAS_ATOMIC_BLOBS(flags) \ ? REC_VERSION_56_MAX_INDEX_COL_LEN \ : REC_ANTELOPE_MAX_INDEX_COL_LEN - 1) /** Defines the maximum fixed length column size */ #define DICT_MAX_FIXED_COL_LEN DICT_ANTELOPE_MAX_INDEX_COL_LEN #ifdef WITH_WSREP #define WSREP_MAX_SUPPORTED_KEY_LENGTH 3500 #endif /* WITH_WSREP */ /** Data structure for a field in an index */ struct dict_field_t{ dict_col_t* col; /*!< pointer to the table column */ id_name_t name; /*!< name of the column */ unsigned prefix_len:12; /*!< 0 or the length of the column prefix in bytes in a MySQL index of type, e.g., INDEX (textcol(25)); must be smaller than DICT_MAX_FIELD_LEN_BY_FORMAT; NOTE that in the UTF-8 charset, MySQL sets this to (mbmaxlen * the prefix len) in UTF-8 chars */ unsigned fixed_len:10; /*!< 0 or the fixed length of the column if smaller than DICT_ANTELOPE_MAX_INDEX_COL_LEN */ /** 1=DESC, 0=ASC */ unsigned descending:1; /** Zero-initialize all fields */ dict_field_t() { memset((void*) this, 0, sizeof *this); } /** Check whether two index fields are equivalent. @param[in] old the other index field @return whether the index fields are equivalent */ bool same(const dict_field_t& other) const { return(prefix_len == other.prefix_len && fixed_len == other.fixed_len); } }; /**********************************************************************//** PADDING HEURISTIC BASED ON LINEAR INCREASE OF PADDING TO AVOID COMPRESSION FAILURES (Note: this is relevant only for compressed indexes) GOAL: Avoid compression failures by maintaining information about the compressibility of data. If data is not very compressible then leave some extra space 'padding' in the uncompressed page making it more likely that compression of less than fully packed uncompressed page will succeed. This padding heuristic works by increasing the pad linearly until the desired failure rate is reached. A "round" is a fixed number of compression operations. After each round, the compression failure rate for that round is computed. If the failure rate is too high, then padding is incremented by a fixed value, otherwise it's left intact. If the compression failure is lower than the desired rate for a fixed number of consecutive rounds, then the padding is decreased by a fixed value. This is done to prevent overshooting the padding value, and to accommodate the possible change in data compressibility. */ /** Number of zip ops in one round. */ #define ZIP_PAD_ROUND_LEN (128) /** Number of successful rounds after which the padding is decreased */ #define ZIP_PAD_SUCCESSFUL_ROUND_LIMIT (5) /** Amount by which padding is increased. */ #define ZIP_PAD_INCR (128) /** Percentage of compression failures that are allowed in a single round */ extern ulong zip_failure_threshold_pct; /** Maximum percentage of a page that can be allowed as a pad to avoid compression failures */ extern ulong zip_pad_max; /** Data structure to hold information about about how much space in an uncompressed page should be left as padding to avoid compression failures. This estimate is based on a self-adapting heuristic. */ struct zip_pad_info_t { /** Dummy assignment operator for dict_index_t::clone() */ zip_pad_info_t &operator=(const zip_pad_info_t&) { return *this; } std::mutex mutex; /*!< mutex protecting the info */ Atomic_relaxed pad; /*!< number of bytes used as pad */ ulint success;/*!< successful compression ops during current round */ ulint failure;/*!< failed compression ops during current round */ ulint n_rounds;/*!< number of currently successful rounds */ }; /** "GEN_CLUST_INDEX" is the name reserved for InnoDB default system clustered index when there is no primary key. */ const char innobase_index_reserve_name[] = "GEN_CLUST_INDEX"; /** Data structure for an index. Most fields will be initialized to 0, NULL or FALSE in dict_mem_index_create(). */ struct dict_index_t { /** Columns whose character-set collation is being changed */ struct col_info { /** number of columns whose charset-collation is being changed */ unsigned n_cols; /** columns with changed charset-collation */ dict_col_t *cols; /** Add a column with changed collation. */ dict_col_t *add(mem_heap_t *heap, const dict_col_t &col, unsigned offset) { ut_ad(offset < n_cols); if (!cols) cols= static_cast (mem_heap_alloc(heap, n_cols * sizeof col)); new (&cols[offset]) dict_col_t(col); return &cols[offset]; } }; /** Maximum number of fields */ static constexpr unsigned MAX_N_FIELDS= (1U << 10) - 1; index_id_t id; /*!< id of the index */ mem_heap_t* heap; /*!< memory heap */ id_name_t name; /*!< index name */ dict_table_t* table; /*!< back pointer to table */ /** root page number, or FIL_NULL if the index has been detached from storage (DISCARD TABLESPACE or similar), or 1 if the index is in table->freed_indexes */ unsigned page:32; unsigned merge_threshold:6; /*!< In the pessimistic delete, if the page data size drops below this limit in percent, merging it to a neighbor is tried */ # define DICT_INDEX_MERGE_THRESHOLD_DEFAULT 50 unsigned type:DICT_IT_BITS; /*!< index type (DICT_CLUSTERED, DICT_UNIQUE, DICT_CORRUPT) */ #define MAX_KEY_LENGTH_BITS 12 unsigned trx_id_offset:MAX_KEY_LENGTH_BITS; /*!< position of the trx id column in a clustered index record, if the fields before it are known to be of a fixed size, 0 otherwise */ #if (1<lock. */ unsigned uncommitted:1; /*!< a flag that is set for secondary indexes that have not been committed to the data dictionary yet. Protected by MDL */ #ifdef UNIV_DEBUG /** whether this is a dummy index object */ bool is_dummy; /** whether btr_cur_instant_init() is in progress */ bool in_instant_init; uint32_t magic_n;/*!< magic number */ /** Value of dict_index_t::magic_n */ # define DICT_INDEX_MAGIC_N 76789786 #endif dict_field_t* fields; /*!< array of field descriptions */ st_mysql_ftparser* parser; /*!< fulltext parser plugin */ /** It just indicates whether newly added virtual column during alter. It stores column in case of alter failure. It should use heap from dict_index_t. It should be freed while removing the index from table. */ dict_add_v_col_info* new_vcol_info; /** During ALTER TABLE, columns that a being-added index depends on and whose encoding or collation is being changed to something that is compatible with the clustered index. Allocated from dict_index_t::heap. @see rollback_inplace_alter_table() @see ha_innobase_inplace_ctx::col_collations */ col_info* change_col_info; UT_LIST_NODE_T(dict_index_t) indexes;/*!< list of indexes of the table */ #ifdef BTR_CUR_ADAPT btr_search_t* search_info; /*!< info used in optimistic searches */ #endif /* BTR_CUR_ADAPT */ row_log_t* online_log; /*!< the log of modifications during online index creation; valid when online_status is ONLINE_INDEX_CREATION */ /*----------------------*/ /** Statistics for query optimization */ /* @{ */ ib_uint64_t* stat_n_diff_key_vals; /*!< approximate number of different key values for this index, for each n-column prefix where 1 <= n <= dict_get_n_unique(index) (the array is indexed from 0 to n_uniq-1); we periodically calculate new estimates */ ib_uint64_t* stat_n_sample_sizes; /*!< number of pages that were sampled to calculate each of stat_n_diff_key_vals[], e.g. stat_n_sample_sizes[3] pages were sampled to get the number stat_n_diff_key_vals[3]. */ ib_uint64_t* stat_n_non_null_key_vals; /* approximate number of non-null key values for this index, for each column where 1 <= n <= dict_get_n_unique(index) (the array is indexed from 0 to n_uniq-1); This is used when innodb_stats_method is "nulls_ignored". */ ulint stat_index_size; /*!< approximate index size in database pages */ ulint stat_n_leaf_pages; /*!< approximate number of leaf pages in the index tree */ bool stats_error_printed; /*!< has persistent statistics error printed for this index ? */ /* @} */ private: /** R-tree split sequence number */ Atomic_relaxed rtr_ssn; public: void set_ssn(node_seq_t ssn) { rtr_ssn= ssn; } node_seq_t assign_ssn() { return rtr_ssn.fetch_add(1) + 1; } node_seq_t ssn() const { return rtr_ssn; } rtr_info_track_t* rtr_track;/*!< tracking all R-Tree search cursors */ trx_id_t trx_id; /*!< id of the transaction that created this index, or 0 if the index existed when InnoDB was started up */ zip_pad_info_t zip_pad;/*!< Information about state of compression failures and successes */ /** lock protecting the non-leaf index pages */ mutable index_lock lock; /** Determine if the index has been committed to the data dictionary. @return whether the index definition has been committed */ bool is_committed() const { ut_ad(!uncommitted || !(type & DICT_CLUSTERED)); return(UNIV_LIKELY(!uncommitted)); } /** Flag an index committed or uncommitted. @param[in] committed whether the index is committed */ void set_committed(bool committed) { ut_ad(!to_be_dropped); ut_ad(committed || !(type & DICT_CLUSTERED)); ut_ad(!committed || !change_col_info); uncommitted = !committed; } /** Notify that the index pages are going to be modified. @param[in,out] mtr mini-transaction */ inline void set_modified(mtr_t& mtr) const; /** @return whether this index is readable @retval true normally @retval false if this is a single-table tablespace and the .ibd file is missing, or a page cannot be read or decrypted */ inline bool is_readable() const; /** @return whether instant ALTER TABLE is in effect */ inline bool is_instant() const; /** @return whether the index is the primary key index */ bool is_primary() const { return is_clust(); } /** @return whether this is a generated clustered index */ bool is_gen_clust() const { return type == DICT_CLUSTERED; } /** @return whether this is a clustered index */ bool is_clust() const { return type & DICT_CLUSTERED; } /** @return whether this is a unique index */ bool is_unique() const { return type & DICT_UNIQUE; } /** @return whether this is a spatial index */ bool is_spatial() const { return UNIV_UNLIKELY(type & DICT_SPATIAL); } /** @return whether this index requires locking */ static constexpr bool has_locking() { return true; } /** @return whether this is a normal B-tree index (not the change buffer, not SPATIAL or FULLTEXT) */ bool is_btree() const { return UNIV_LIKELY(!(type & (DICT_SPATIAL | DICT_FTS | DICT_CORRUPT))); } /** @return whether the index includes virtual columns */ bool has_virtual() const { return type & DICT_VIRTUAL; } /** @return the position of DB_TRX_ID */ uint16_t db_trx_id() const { DBUG_ASSERT(is_primary()); DBUG_ASSERT(n_uniq); DBUG_ASSERT(n_uniq <= MAX_REF_PARTS); return n_uniq; } /** @return the position of DB_ROLL_PTR */ uint16_t db_roll_ptr() const { return static_cast(db_trx_id() + 1); } /** @return the offset of the metadata BLOB field, or the first user field after the PRIMARY KEY,DB_TRX_ID,DB_ROLL_PTR */ uint16_t first_user_field() const { return static_cast(db_trx_id() + 2); } /** @return whether the index is corrupted */ inline bool is_corrupted() const; /** Detach the virtual columns from the index that is to be removed. */ void detach_columns() { if (!has_virtual() || !cached) return; for (unsigned i= 0; i < n_fields; i++) { dict_col_t* col= fields[i].col; if (!col || !col->is_virtual()) continue; col->detach(*this); } } /** Determine how many fields of a given prefix can be set NULL. @param[in] n_prefix number of fields in the prefix @return number of fields 0..n_prefix-1 that can be set NULL */ unsigned get_n_nullable(ulint n_prefix) const { DBUG_ASSERT(n_prefix > 0); DBUG_ASSERT(n_prefix <= n_fields); unsigned n = n_nullable; for (; n_prefix < n_fields; n_prefix++) { const dict_col_t* col = fields[n_prefix].col; DBUG_ASSERT(!col->is_virtual()); n -= col->is_nullable(); } DBUG_ASSERT(n < n_def); return n; } /** Get the default value of an instantly-added clustered index field. @param[in] n instantly added field position @param[out] len value length (in bytes), or UNIV_SQL_NULL @return default value @retval NULL if the default value is SQL NULL (len=UNIV_SQL_NULL) */ const byte* instant_field_value(ulint n, ulint* len) const { DBUG_ASSERT(is_instant() || id == DICT_INDEXES_ID); DBUG_ASSERT(n + (id == DICT_INDEXES_ID) >= n_core_fields); DBUG_ASSERT(n < n_fields); return fields[n].col->instant_value(len); } /** Adjust index metadata for instant ADD/DROP/reorder COLUMN. @param[in] clustered index definition after instant ALTER TABLE */ inline void instant_add_field(const dict_index_t& instant); /** Remove instant ADD COLUMN metadata. */ inline void clear_instant_add(); /** Remove instant ALTER TABLE metadata. */ inline void clear_instant_alter(); /** Construct the metadata record for instant ALTER TABLE. @param[in] row dummy or default values for existing columns @param[in,out] heap memory heap for allocations @return metadata record */ inline dtuple_t* instant_metadata(const dtuple_t& row, mem_heap_t* heap) const; /** Check if record in clustered index is historical row. @param[in] rec clustered row @param[in] offsets offsets @return true if row is historical */ bool vers_history_row(const rec_t* rec, const rec_offs* offsets); /** Check if record in secondary index is historical row. @param[in] rec record in a secondary index @param[out] history_row true if row is historical @return true on error */ bool vers_history_row(const rec_t* rec, bool &history_row); /** Assign the number of new column to be added as a part of the index @param n_vcol number of virtual columns to be added */ void assign_new_v_col(ulint n_vcol) { new_vcol_info= static_cast (mem_heap_zalloc(heap, sizeof *new_vcol_info)); new_vcol_info->n_v_col= n_vcol; } /* @return whether index has new virtual column */ bool has_new_v_col() const { return new_vcol_info; } /* @return number of newly added virtual column */ ulint get_new_n_vcol() const { return new_vcol_info ? new_vcol_info->n_v_col : 0; } /** Assign the number of collation change fields as a part of the index @param n_cols number of columns whose collation is changing */ void init_change_cols(unsigned n_cols) { ut_ad(n_fields > n_cols || type & DICT_FTS); change_col_info= static_cast (mem_heap_zalloc(heap, sizeof(col_info))); change_col_info->n_cols= n_cols; } /** Reconstruct the clustered index fields. @return whether metadata is incorrect */ inline bool reconstruct_fields(); /** Check if the index contains a column or a prefix of that column. @param[in] n column number @param[in] is_virtual whether it is a virtual col @return whether the index contains the column or its prefix */ bool contains_col_or_prefix(ulint n, bool is_virtual) const MY_ATTRIBUTE((warn_unused_result)); #ifdef BTR_CUR_HASH_ADAPT /** @return a clone of this */ dict_index_t* clone() const; /** Clone this index for lazy dropping of the adaptive hash index. @return this or a clone */ dict_index_t* clone_if_needed(); /** @return number of leaf pages pointed to by the adaptive hash index */ inline ulint n_ahi_pages() const; /** @return whether mark_freed() had been invoked */ bool freed() const { return UNIV_UNLIKELY(page == 1); } /** Note that the index is waiting for btr_search_lazy_free() */ void set_freed() { ut_ad(!freed()); page= 1; } #endif /* BTR_CUR_HASH_ADAPT */ /** @return whether it is forbidden to invoke clear_instant_add() */ bool must_avoid_clear_instant_add() const { if (is_instant()) for (auto i= this; (i= UT_LIST_GET_NEXT(indexes, i)) != nullptr; ) if (i->to_be_dropped /* || i->online_log*/) return true; return false; } /** This ad-hoc class is used by record_size_info only. */ class record_size_info_t { public: record_size_info_t() : max_leaf_size(0), shortest_size(0), too_big(false), first_overrun_field_index(SIZE_T_MAX), overrun_size(0) { } /** Mark row potentially too big for page and set up first overflow field index. */ void set_too_big(size_t field_index) { ut_ad(field_index != SIZE_T_MAX); too_big = true; if (first_overrun_field_index > field_index) { first_overrun_field_index = field_index; overrun_size = shortest_size; } } /** @return overrun field index or SIZE_T_MAX if nothing overflowed*/ size_t get_first_overrun_field_index() const { ut_ad(row_is_too_big()); ut_ad(first_overrun_field_index != SIZE_T_MAX); return first_overrun_field_index; } size_t get_overrun_size() const { ut_ad(row_is_too_big()); return overrun_size; } bool row_is_too_big() const { return too_big; } size_t max_leaf_size; /** Bigger row size this index can produce */ size_t shortest_size; /** shortest because it counts everything as in overflow pages */ private: bool too_big; /** This one is true when maximum row size this index can produce is bigger than maximum row size given page can hold. */ size_t first_overrun_field_index; /** After adding this field index row overflowed maximum allowed size. Useful for reporting back to user. */ size_t overrun_size; /** Just overrun row size */ }; /** Returns max possibly record size for that index, size of a shortest everything in overflow) size of the longest possible row and index of a field which made index records too big to fit on a page.*/ inline record_size_info_t record_size_info() const; /** Clear the index tree and reinitialize the root page, in the rollback of TRX_UNDO_EMPTY. The BTR_SEG_LEAF is freed and reinitialized. @param thr query thread @return error code */ dberr_t clear(que_thr_t *thr); /** Check whether the online log is dummy value to indicate whether table undergoes active DDL. @retval true if online log is dummy value */ bool online_log_is_dummy() const { return online_log == reinterpret_cast(this); } /** Assign clustered index online log to dummy value */ void online_log_make_dummy() { online_log= reinterpret_cast(this); } }; /** Detach a virtual column from an index. @param index being-freed index */ inline void dict_col_t::detach(const dict_index_t &index) { if (is_virtual()) reinterpret_cast(this)->detach(index); } /** Add a field definition to an index. @param index index @param name pointer to column name @param prefix_len column prefix length, or 0 @param descending whether to use descending order */ inline void dict_mem_index_add_field(dict_index_t *index, const char *name, ulint prefix_len, bool descending= false) { ut_ad(index->magic_n == DICT_INDEX_MAGIC_N); dict_field_t &field= index->fields[index->n_def++]; field.name= name; field.prefix_len= prefix_len & ((1U << 12) - 1); field.descending= descending; } /** The status of online index creation */ enum online_index_status { /** the index is complete and ready for access */ ONLINE_INDEX_COMPLETE = 0, /** the index is being created, online (allowing concurrent modifications) */ ONLINE_INDEX_CREATION, /** secondary index creation was aborted and the index should be dropped as soon as index->table->n_ref_count reaches 0, or online table rebuild was aborted and the clustered index of the original table should soon be restored to ONLINE_INDEX_COMPLETE */ ONLINE_INDEX_ABORTED, /** the online index creation was aborted, the index was dropped from the data dictionary and the tablespace, and it should be dropped from the data dictionary cache as soon as index->table->n_ref_count reaches 0. */ ONLINE_INDEX_ABORTED_DROPPED }; /** Set to store the virtual columns which are affected by Foreign key constraint. */ typedef std::set, ut_allocator > dict_vcol_set; /** Data structure for a foreign key constraint; an example: FOREIGN KEY (A, B) REFERENCES TABLE2 (C, D). Most fields will be initialized to 0, NULL or FALSE in dict_mem_foreign_create(). */ struct dict_foreign_t{ mem_heap_t* heap; /*!< this object is allocated from this memory heap */ char* id; /*!< id of the constraint as a null-terminated string */ unsigned n_fields:10; /*!< number of indexes' first fields for which the foreign key constraint is defined: we allow the indexes to contain more fields than mentioned in the constraint, as long as the first fields are as mentioned */ unsigned type:6; /*!< 0 or DICT_FOREIGN_ON_DELETE_CASCADE or DICT_FOREIGN_ON_DELETE_SET_NULL */ char* foreign_table_name;/*!< foreign table name */ char* foreign_table_name_lookup; /*!< foreign table name used for dict lookup */ dict_table_t* foreign_table; /*!< table where the foreign key is */ const char** foreign_col_names;/*!< names of the columns in the foreign key */ char* referenced_table_name;/*!< referenced table name */ char* referenced_table_name_lookup; /*!< referenced table name for dict lookup*/ dict_table_t* referenced_table;/*!< table where the referenced key is */ const char** referenced_col_names;/*!< names of the referenced columns in the referenced table */ dict_index_t* foreign_index; /*!< foreign index; we require that both tables contain explicitly defined indexes for the constraint: InnoDB does not generate new indexes implicitly */ dict_index_t* referenced_index;/*!< referenced index */ dict_vcol_set* v_cols; /*!< set of virtual columns affected by foreign key constraint. */ /** Check whether the fulltext index gets affected by foreign key constraint */ bool affects_fulltext() const; }; std::ostream& operator<< (std::ostream& out, const dict_foreign_t& foreign); struct dict_foreign_print { dict_foreign_print(std::ostream& out) : m_out(out) {} void operator()(const dict_foreign_t* foreign) { m_out << *foreign; } private: std::ostream& m_out; }; /** Compare two dict_foreign_t objects using their ids. Used in the ordering of dict_table_t::foreign_set and dict_table_t::referenced_set. It returns true if the first argument is considered to go before the second in the strict weak ordering it defines, and false otherwise. */ struct dict_foreign_compare { bool operator()( const dict_foreign_t* lhs, const dict_foreign_t* rhs) const { return strcmp(lhs->id, rhs->id) < 0; } }; /** A function object to find a foreign key with the given index as the referenced index. Return the foreign key with matching criteria or NULL */ struct dict_foreign_with_index { dict_foreign_with_index(const dict_index_t* index) : m_index(index) {} bool operator()(const dict_foreign_t* foreign) const { return(foreign->referenced_index == m_index); } const dict_index_t* m_index; }; /* A function object to check if the foreign constraint is between different tables. Returns true if foreign key constraint is between different tables, false otherwise. */ struct dict_foreign_different_tables { bool operator()(const dict_foreign_t* foreign) const { return(foreign->foreign_table != foreign->referenced_table); } }; /** A function object to check if the foreign key constraint has the same name as given. If the full name of the foreign key constraint doesn't match, then, check if removing the database name from the foreign key constraint matches. Return true if it matches, false otherwise. */ struct dict_foreign_matches_id { dict_foreign_matches_id(const char* id) : m_id(id) {} bool operator()(const dict_foreign_t* foreign) const { if (0 == innobase_strcasecmp(foreign->id, m_id)) { return(true); } if (const char* pos = strchr(foreign->id, '/')) { if (0 == innobase_strcasecmp(m_id, pos + 1)) { return(true); } } return(false); } const char* m_id; }; typedef std::set< dict_foreign_t*, dict_foreign_compare, ut_allocator > dict_foreign_set; std::ostream& operator<< (std::ostream& out, const dict_foreign_set& fk_set); /** Function object to check if a foreign key object is there in the given foreign key set or not. It returns true if the foreign key is not found, false otherwise */ struct dict_foreign_not_exists { dict_foreign_not_exists(const dict_foreign_set& obj_) : m_foreigns(obj_) {} /* Return true if the given foreign key is not found */ bool operator()(dict_foreign_t* const & foreign) const { return(m_foreigns.find(foreign) == m_foreigns.end()); } private: const dict_foreign_set& m_foreigns; }; /** Validate the search order in the foreign key set. @param[in] fk_set the foreign key set to be validated @return true if search order is fine in the set, false otherwise. */ bool dict_foreign_set_validate( const dict_foreign_set& fk_set); /** Validate the search order in the foreign key sets of the table (foreign_set and referenced_set). @param[in] table table whose foreign key sets are to be validated @return true if foreign key sets are fine, false otherwise. */ bool dict_foreign_set_validate( const dict_table_t& table); /*********************************************************************//** Frees a foreign key struct. */ inline void dict_foreign_free( /*==============*/ dict_foreign_t* foreign) /*!< in, own: foreign key struct */ { if (foreign->v_cols != NULL) { UT_DELETE(foreign->v_cols); } mem_heap_free(foreign->heap); } /** The destructor will free all the foreign key constraints in the set by calling dict_foreign_free() on each of the foreign key constraints. This is used to free the allocated memory when a local set goes out of scope. */ struct dict_foreign_set_free { dict_foreign_set_free(const dict_foreign_set& foreign_set) : m_foreign_set(foreign_set) {} ~dict_foreign_set_free() { std::for_each(m_foreign_set.begin(), m_foreign_set.end(), dict_foreign_free); } const dict_foreign_set& m_foreign_set; }; /** The flags for ON_UPDATE and ON_DELETE can be ORed; the default is that a foreign key constraint is enforced, therefore RESTRICT just means no flag */ /* @{ */ #define DICT_FOREIGN_ON_DELETE_CASCADE 1U /*!< ON DELETE CASCADE */ #define DICT_FOREIGN_ON_DELETE_SET_NULL 2U /*!< ON UPDATE SET NULL */ #define DICT_FOREIGN_ON_UPDATE_CASCADE 4U /*!< ON DELETE CASCADE */ #define DICT_FOREIGN_ON_UPDATE_SET_NULL 8U /*!< ON UPDATE SET NULL */ #define DICT_FOREIGN_ON_DELETE_NO_ACTION 16U /*!< ON DELETE NO ACTION */ #define DICT_FOREIGN_ON_UPDATE_NO_ACTION 32U /*!< ON UPDATE NO ACTION */ /* @} */ /** Display an identifier. @param[in,out] s output stream @param[in] id_name SQL identifier (other than table name) @return the output stream */ std::ostream& operator<<( std::ostream& s, const id_name_t& id_name); /** Display a table name. @param[in,out] s output stream @param[in] table_name table name @return the output stream */ std::ostream& operator<<( std::ostream& s, const table_name_t& table_name); /** List of locks that different transactions have acquired on a table. This list has a list node that is embedded in a nested union/structure. We have to generate a specific template for it. */ typedef ut_list_base lock_table_t::*> table_lock_list_t; /** mysql template structure defined in row0mysql.cc */ struct mysql_row_templ_t; /** Structure defines template related to virtual columns and their base columns */ struct dict_vcol_templ_t { /** number of regular columns */ ulint n_col; /** number of virtual columns */ ulint n_v_col; /** array of templates for virtual col and their base columns */ mysql_row_templ_t** vtempl; /** table's database name */ std::string db_name; /** table name */ std::string tb_name; /** MySQL record length */ ulint rec_len; /** default column value if any */ byte* default_rec; /** cached MySQL TABLE object */ TABLE* mysql_table; /** when mysql_table was cached */ uint64_t mysql_table_query_id; dict_vcol_templ_t() : vtempl(0), mysql_table_query_id(~0ULL) {} }; /** Metadata on clustered index fields starting from first_user_field() */ class field_map_element_t { /** Number of bits for representing a column number */ static constexpr uint16_t IND_BITS = 10; /** Set if the column of the field has been instantly dropped */ static constexpr uint16_t DROPPED = 1U << (IND_BITS + 5); /** Set if the column was dropped and originally declared NOT NULL */ static constexpr uint16_t NOT_NULL = 1U << (IND_BITS + 4); /** Column index (if !(data & DROPPED)): table->cols[data & IND], or field length (if (data & DROPPED)): (data & IND) = 0 if variable-length with max_len < 256 bytes; (data & IND) = 1 if variable-length with max_len > 255 bytes; (data & IND) = 1 + L otherwise, with L=fixed length of the column */ static constexpr uint16_t IND = (1U << IND_BITS) - 1; /** Field metadata */ uint16_t data; void clear_not_null() { data &= uint16_t(~NOT_NULL); } public: bool is_dropped() const { return data & DROPPED; } void set_dropped() { data |= DROPPED; } bool is_not_null() const { return data & NOT_NULL; } void set_not_null() { ut_ad(is_dropped()); data |= NOT_NULL; } uint16_t ind() const { return data & IND; } void set_ind(uint16_t i) { DBUG_ASSERT(i <= IND); DBUG_ASSERT(!ind()); data |= i; } field_map_element_t& operator= (uint16_t value) { data = value; return *this; } operator uint16_t() { return data; } }; static_assert(sizeof(field_map_element_t) == 2, "Size mismatch for a persistent data item!"); /** Instantly dropped or reordered columns */ struct dict_instant_t { /** Number of dropped columns */ unsigned n_dropped; /** Dropped columns */ dict_col_t* dropped; /** Map of clustered index non-PK fields[i - first_user_field()] to table columns */ field_map_element_t* field_map; }; /** These are used when MySQL FRM and InnoDB data dictionary are in inconsistent state. */ typedef enum { DICT_FRM_CONSISTENT = 0, /*!< Consistent state */ DICT_FRM_NO_PK = 1, /*!< MySQL has no primary key but InnoDB dictionary has non-generated one. */ DICT_NO_PK_FRM_HAS = 2, /*!< MySQL has primary key but InnoDB dictionary has not. */ DICT_FRM_INCONSISTENT_KEYS = 3 /*!< Key count mismatch */ } dict_frm_t; /** Data structure for a database table. Most fields will be zero-initialized in dict_table_t::create(). */ struct dict_table_t { /** Get reference count. @return current value of n_ref_count */ inline uint32_t get_ref_count() const { return n_ref_count; } /** Acquire the table handle. */ inline void acquire(); /** Release the table handle. @return whether the last handle was released */ inline bool release(); /** @return whether the table supports transactions */ bool no_rollback() const { return !(~unsigned(flags) & DICT_TF_MASK_NO_ROLLBACK); } /** @return whether this is a temporary table */ bool is_temporary() const { return flags2 & DICT_TF2_TEMPORARY; } /** @return whether the table is not in ROW_FORMAT=REDUNDANT */ bool not_redundant() const { return flags & DICT_TF_COMPACT; } /** @return whether this table is readable @retval true normally @retval false if this is a single-table tablespace and the .ibd file is missing, or a page cannot be read or decrypted */ bool is_readable() const { ut_ad(file_unreadable || space); return(UNIV_LIKELY(!file_unreadable)); } /** @return whether the table is accessible */ bool is_accessible() const { return UNIV_LIKELY(is_readable() && !corrupted && space) && !space->is_stopping(); } /** Check if a table name contains the string "/#sql" which denotes temporary or intermediate tables in MariaDB. */ static bool is_temporary_name(const char* name) { return strstr(name, "/#sql"); } /** @return whether instant ALTER TABLE is in effect */ bool is_instant() const { return(UT_LIST_GET_FIRST(indexes)->is_instant()); } /** @return whether the table supports instant ALTER TABLE */ bool supports_instant() const { return(!(flags & DICT_TF_MASK_ZIP_SSIZE)); } /** @return the number of instantly dropped columns */ unsigned n_dropped() const { return instant ? instant->n_dropped : 0; } /** Look up an old column. @param[in] cols the old columns of the table @param[in] col_map map from old table columns to altered ones @param[in] n_cols number of old columns @param[in] i the number of the new column @return old column @retval NULL if column i was added to the table */ static const dict_col_t* find(const dict_col_t* cols, const ulint* col_map, ulint n_cols, ulint i) { for (ulint o = n_cols; o--; ) { if (col_map[o] == i) { return &cols[o]; } } return NULL; } /** Serialise metadata of dropped or reordered columns. @param[in,out] heap memory heap for allocation @param[out] field data field with the metadata */ inline void serialise_columns(mem_heap_t* heap, dfield_t* field) const; /** Reconstruct dropped or reordered columns. @param[in] metadata data from serialise_columns() @param[in] len length of the metadata, in bytes @return whether parsing the metadata failed */ bool deserialise_columns(const byte* metadata, ulint len); /** Set is_instant() before instant_column(). @param[in] old previous table definition @param[in] col_map map from old.cols[] and old.v_cols[] to this @param[out] first_alter_pos 0, or 1 + first changed column position */ inline void prepare_instant(const dict_table_t& old, const ulint* col_map, unsigned& first_alter_pos); /** Adjust table metadata for instant ADD/DROP/reorder COLUMN. @param[in] table table on which prepare_instant() was invoked @param[in] col_map mapping from cols[] and v_cols[] to table @return whether the metadata record must be updated */ inline bool instant_column(const dict_table_t& table, const ulint* col_map); /** Roll back instant_column(). @param[in] old_n_cols original n_cols @param[in] old_cols original cols @param[in] old_col_names original col_names @param[in] old_instant original instant structure @param[in] old_fields original fields @param[in] old_n_fields original number of fields @param[in] old_n_core_fields original number of core fields @param[in] old_n_v_cols original n_v_cols @param[in] old_v_cols original v_cols @param[in] old_v_col_names original v_col_names @param[in] col_map column map */ inline void rollback_instant( unsigned old_n_cols, dict_col_t* old_cols, const char* old_col_names, dict_instant_t* old_instant, dict_field_t* old_fields, unsigned old_n_fields, unsigned old_n_core_fields, unsigned old_n_v_cols, dict_v_col_t* old_v_cols, const char* old_v_col_names, const ulint* col_map); /** Add the table definition to the data dictionary cache */ void add_to_cache(); /** @return whether the table is versioned. It is assumed that both vers_start and vers_end set to 0 iff table is not versioned. In any other case, these fields correspond to actual positions in cols[]. */ bool versioned() const { return vers_start || vers_end; } bool versioned_by_id() const { return versioned() && cols[vers_start].mtype == DATA_INT; } /** For overflow fields returns potential max length stored inline */ inline size_t get_overflow_field_local_len() const; /** Parse the table file name into table name and database name. @tparam dict_frozen whether the caller holds dict_sys.latch @param[in,out] db_name database name buffer @param[in,out] tbl_name table name buffer @param[out] db_name_len database name length @param[out] tbl_name_len table name length @return whether the table name is visible to SQL */ template bool parse_name(char (&db_name)[NAME_LEN + 1], char (&tbl_name)[NAME_LEN + 1], size_t *db_name_len, size_t *tbl_name_len) const; /** Clear the table when rolling back TRX_UNDO_EMPTY @return error code */ dberr_t clear(que_thr_t *thr); #ifdef UNIV_DEBUG /** @return whether the current thread holds the lock_mutex */ bool lock_mutex_is_owner() const { return lock_mutex_owner == pthread_self(); } /** @return whether the current thread holds the stats_mutex (lock_mutex) */ bool stats_mutex_is_owner() const { return lock_mutex_owner == pthread_self(); } #endif /* UNIV_DEBUG */ void lock_mutex_init() { lock_mutex.init(); } void lock_mutex_destroy() { lock_mutex.destroy(); } /** Acquire lock_mutex */ void lock_mutex_lock() { ut_ad(!lock_mutex_is_owner()); lock_mutex.wr_lock(); ut_ad(!lock_mutex_owner.exchange(pthread_self())); } /** Try to acquire lock_mutex */ bool lock_mutex_trylock() { ut_ad(!lock_mutex_is_owner()); bool acquired= lock_mutex.wr_lock_try(); ut_ad(!acquired || !lock_mutex_owner.exchange(pthread_self())); return acquired; } /** Release lock_mutex */ void lock_mutex_unlock() { ut_ad(lock_mutex_owner.exchange(0) == pthread_self()); lock_mutex.wr_unlock(); } #ifndef SUX_LOCK_GENERIC /** @return whether the lock mutex is held by some thread */ bool lock_mutex_is_locked() const noexcept { return lock_mutex.is_locked(); } #endif /* stats mutex lock currently defaults to lock_mutex but in the future, there could be a use-case to have separate mutex for stats. extra indirection (through inline so no performance hit) should help simplify code and increase long-term maintainability */ void stats_mutex_init() { lock_mutex_init(); } void stats_mutex_destroy() { lock_mutex_destroy(); } void stats_mutex_lock() { lock_mutex_lock(); } void stats_mutex_unlock() { lock_mutex_unlock(); } /** Rename the data file. @param new_name name of the table @param replace whether to replace the file with the new name (as part of rolling back TRUNCATE) */ dberr_t rename_tablespace(span new_name, bool replace) const; private: /** Initialize instant->field_map. @param[in] table table definition to copy from */ inline void init_instant(const dict_table_t& table); public: /** Id of the table. */ table_id_t id; /** dict_sys.id_hash chain node */ dict_table_t* id_hash; /** Table name in name_hash */ table_name_t name; /** dict_sys.name_hash chain node */ dict_table_t* name_hash; /** Memory heap */ mem_heap_t* heap; /** NULL or the directory path specified by DATA DIRECTORY. */ char* data_dir_path; /** The tablespace of the table */ fil_space_t* space; /** Tablespace ID */ uint32_t space_id; /** Stores information about: 1 row format (redundant or compact), 2 compressed page size (zip shift size), 3 whether using atomic blobs, 4 whether the table has been created with the option DATA DIRECTORY. Use DICT_TF_GET_COMPACT(), DICT_TF_GET_ZIP_SSIZE(), DICT_TF_HAS_ATOMIC_BLOBS() and DICT_TF_HAS_DATA_DIR() to parse this flag. */ unsigned flags:DICT_TF_BITS; /** Stores information about: 1 whether the table has been created using CREATE TEMPORARY TABLE, 2 whether the table has an internally defined DOC ID column, 3 whether the table has a FTS index, 4 whether DOC ID column need to be added to the FTS index, 5 whether the table is being created its own tablespace, 6 whether the table has been DISCARDed, 7 whether the aux FTS tables names are in hex. Use DICT_TF2_FLAG_IS_SET() to parse this flag. */ unsigned flags2:DICT_TF2_BITS; /** TRUE if the table is an intermediate table during copy alter operation or a partition/subpartition which is required for copying data and skip the undo log for insertion of row in the table. This variable will be set and unset during extra(), or during the process of altering partitions */ unsigned skip_alter_undo:1; /** whether this is in a single-table tablespace and the .ibd file is believed to be missing or page decryption failed and page is corrupted */ unsigned file_unreadable:1; /** TRUE if the table object has been added to the dictionary cache. */ unsigned cached:1; /** Number of non-virtual columns defined so far. */ unsigned n_def:10; /** Number of non-virtual columns. */ unsigned n_cols:10; /** Number of total columns (inlcude virtual and non-virtual) */ unsigned n_t_cols:10; /** Number of total columns defined so far. */ unsigned n_t_def:10; /** Number of virtual columns defined so far. */ unsigned n_v_def:10; /** Number of virtual columns. */ unsigned n_v_cols:10; /** 1 + the position of autoinc counter field in clustered index, or 0 if there is no persistent AUTO_INCREMENT column in the table. */ unsigned persistent_autoinc:10; /** TRUE if it's not an InnoDB system table or a table that has no FK relationships. */ unsigned can_be_evicted:1; /** TRUE if table is corrupted. */ unsigned corrupted:1; /** TRUE if some indexes should be dropped after ONLINE_INDEX_ABORTED or ONLINE_INDEX_ABORTED_DROPPED. */ unsigned drop_aborted:1; /** Array of column descriptions. */ dict_col_t* cols; /** Array of virtual column descriptions. */ dict_v_col_t* v_cols; /** List of stored column descriptions. It is used only for foreign key check during create table and copy alter operations. During copy alter, s_cols list is filled during create table operation and need to preserve till rename table operation. That is the reason s_cols is a part of dict_table_t */ dict_s_col_list* s_cols; /** Instantly dropped or reordered columns, or NULL if none */ dict_instant_t* instant; /** Column names packed in a character string "name1\0name2\0...nameN\0". Until the string contains n_cols, it will be allocated from a temporary heap. The final string will be allocated from table->heap. */ const char* col_names; /** Virtual column names */ const char* v_col_names; unsigned vers_start:10; /*!< System Versioning: row start col index */ unsigned vers_end:10; /*!< System Versioning: row end col index */ bool is_system_db; /*!< True if the table belongs to a system database (mysql, information_schema or performance_schema) */ dict_frm_t dict_frm_mismatch; /*!< !DICT_FRM_CONSISTENT==0 if data dictionary information and MySQL FRM information mismatch. */ /** The FTS_DOC_ID_INDEX, or NULL if no fulltext indexes exist */ dict_index_t* fts_doc_id_index; /** List of indexes of the table. */ UT_LIST_BASE_NODE_T(dict_index_t) indexes; #ifdef BTR_CUR_HASH_ADAPT /** List of detached indexes that are waiting to be freed along with the last adaptive hash index entry. Protected by autoinc_mutex (sic!) */ UT_LIST_BASE_NODE_T(dict_index_t) freed_indexes; #endif /* BTR_CUR_HASH_ADAPT */ /** List of foreign key constraints in the table. These refer to columns in other tables. */ UT_LIST_BASE_NODE_T(dict_foreign_t) foreign_list; /** List of foreign key constraints which refer to this table. */ UT_LIST_BASE_NODE_T(dict_foreign_t) referenced_list; /** Node of the LRU list of tables. */ UT_LIST_NODE_T(dict_table_t) table_LRU; /** Maximum recursive level we support when loading tables chained together with FK constraints. If exceeds this level, we will stop loading child table into memory along with its parent table. */ byte fk_max_recusive_level; /** DDL transaction that last touched the table definition, or 0 if no history is available. This includes possible changes in ha_innobase::prepare_inplace_alter_table() and ha_innobase::commit_inplace_alter_table(). */ trx_id_t def_trx_id; /** Last transaction that inserted into an empty table. Updated while holding exclusive table lock and an exclusive latch on the clustered index root page (which must also be an empty leaf page), and an ahi_latch (if btr_search_enabled). */ Atomic_relaxed bulk_trx_id; /** Original table name, for MDL acquisition in purge. Normally, this points to the same as name. When is_temporary_name(name.m_name) holds, this should be a copy of the original table name, allocated from heap. */ table_name_t mdl_name; /*!< set of foreign key constraints in the table; these refer to columns in other tables */ dict_foreign_set foreign_set; /*!< set of foreign key constraints which refer to this table */ dict_foreign_set referenced_set; /** Statistics for query optimization. Mostly protected by dict_sys.latch and stats_mutex_lock(). @{ */ /** TRUE if statistics have been calculated the first time after database startup or table creation. */ unsigned stat_initialized:1; /** Timestamp of last recalc of the stats. */ time_t stats_last_recalc; /** The two bits below are set in the 'stat_persistent' member. They have the following meaning: 1. _ON=0, _OFF=0, no explicit persistent stats setting for this table, the value of the global srv_stats_persistent is used to determine whether the table has persistent stats enabled or not 2. _ON=0, _OFF=1, persistent stats are explicitly disabled for this table, regardless of the value of the global srv_stats_persistent 3. _ON=1, _OFF=0, persistent stats are explicitly enabled for this table, regardless of the value of the global srv_stats_persistent 4. _ON=1, _OFF=1, not allowed, we assert if this ever happens. */ #define DICT_STATS_PERSISTENT_ON (1 << 1) #define DICT_STATS_PERSISTENT_OFF (1 << 2) /** Indicates whether the table uses persistent stats or not. See DICT_STATS_PERSISTENT_ON and DICT_STATS_PERSISTENT_OFF. */ ib_uint32_t stat_persistent; /** The two bits below are set in the 'stats_auto_recalc' member. They have the following meaning: 1. _ON=0, _OFF=0, no explicit auto recalc setting for this table, the value of the global srv_stats_persistent_auto_recalc is used to determine whether the table has auto recalc enabled or not 2. _ON=0, _OFF=1, auto recalc is explicitly disabled for this table, regardless of the value of the global srv_stats_persistent_auto_recalc 3. _ON=1, _OFF=0, auto recalc is explicitly enabled for this table, regardless of the value of the global srv_stats_persistent_auto_recalc 4. _ON=1, _OFF=1, not allowed, we assert if this ever happens. */ #define DICT_STATS_AUTO_RECALC_ON (1 << 1) #define DICT_STATS_AUTO_RECALC_OFF (1 << 2) /** Indicates whether the table uses automatic recalc for persistent stats or not. See DICT_STATS_AUTO_RECALC_ON and DICT_STATS_AUTO_RECALC_OFF. */ ib_uint32_t stats_auto_recalc; /** The number of pages to sample for this table during persistent stats estimation. If this is 0, then the value of the global srv_stats_persistent_sample_pages will be used instead. */ ulint stats_sample_pages; /** Approximate number of rows in the table. We periodically calculate new estimates. */ ib_uint64_t stat_n_rows; /** Approximate clustered index size in database pages. */ ulint stat_clustered_index_size; /** Approximate size of other indexes in database pages. */ ulint stat_sum_of_other_index_sizes; /** How many rows are modified since last stats recalc. When a row is inserted, updated, or deleted, we add 1 to this number; we calculate new estimates for the table and the indexes if the table has changed too much, see dict_stats_update_if_needed(). The counter is reset to zero at statistics calculation. This counter is not protected by any latch, because this is only used for heuristics. */ ib_uint64_t stat_modified_counter; bool stats_error_printed; /*!< Has persistent stats error beein already printed for this table ? */ /* @} */ /** AUTOINC related members. @{ */ /* The actual collection of tables locked during AUTOINC read/write is kept in trx_t. In order to quickly determine whether a transaction has locked the AUTOINC lock we keep a pointer to the transaction here in the 'autoinc_trx' member. This is to avoid acquiring the lock_sys.latch and scanning the vector in trx_t. When an AUTOINC lock has to wait, the corresponding lock instance is created on the trx lock heap rather than use the pre-allocated instance in autoinc_lock below. */ /** A buffer for an AUTOINC lock for this table. We allocate the memory here so that individual transactions can get it and release it without a need to allocate space from the lock heap of the trx: otherwise the lock heap would grow rapidly if we do a large insert from a select. */ lock_t* autoinc_lock; /** Mutex protecting autoinc and freed_indexes. */ srw_spin_mutex autoinc_mutex; private: /** Mutex protecting locks on this table. */ srw_spin_mutex lock_mutex; #ifdef UNIV_DEBUG /** The owner of lock_mutex (0 if none) */ Atomic_relaxed lock_mutex_owner{0}; #endif public: /** The next DB_ROW_ID value */ Atomic_counter row_id{0}; /** Autoinc counter value to give to the next inserted row. */ uint64_t autoinc; /** The transaction that currently holds the the AUTOINC lock on this table. Protected by lock_mutex. The thread that is executing autoinc_trx may read this field without holding a latch, in row_lock_table_autoinc_for_mysql(). Only the autoinc_trx thread may clear this field; it cannot be modified on the behalf of a transaction that is being handled by a different thread. */ Atomic_relaxed autoinc_trx; /** Number of granted or pending autoinc_lock on this table. This value is set after acquiring lock_sys.latch but in innodb_autoinc_lock_mode=1 (the default), ha_innobase::innobase_lock_autoinc() will perform a dirty read to determine whether other transactions have acquired the autoinc_lock. */ uint32_t n_waiting_or_granted_auto_inc_locks; /* @} */ /** Number of granted or pending LOCK_S or LOCK_X on the table. Protected by lock_sys.assert_locked(*this). */ uint32_t n_lock_x_or_s; /** FTS specific state variables. */ fts_t* fts; /** Quiescing states, protected by the dict_index_t::lock. ie. we can only change the state if we acquire all the latches (dict_index_t::lock) in X mode of this table's indexes. */ ib_quiesce_t quiesce; /** Count of the number of record locks on this table. We use this to determine whether we can evict the table from the dictionary cache. Modified when lock_sys.is_writer(), or lock_sys.assert_locked(page_id) and trx->mutex_is_owner() hold. @see trx_lock_t::trx_locks */ Atomic_counter n_rec_locks; private: /** Count of how many handles are opened to this table. Dropping of the table is NOT allowed until this count gets to zero. MySQL does NOT itself check the number of open handles at DROP. */ Atomic_counter n_ref_count; public: /** List of locks on the table. Protected by lock_sys.assert_locked(lock). */ table_lock_list_t locks; /** Timestamp of the last modification of this table. */ Atomic_relaxed update_time; /** Transactions whose view low limit is greater than this number are not allowed to access the MariaDB query cache. @see innobase_query_caching_table_check_low() @see trx_t::commit_tables() */ Atomic_relaxed query_cache_inv_trx_id; #ifdef UNIV_DEBUG /** Value of 'magic_n'. */ #define DICT_TABLE_MAGIC_N 76333786 /** Magic number. */ ulint magic_n; #endif /* UNIV_DEBUG */ /** mysql_row_templ_t for base columns used for compute the virtual columns */ dict_vcol_templ_t* vc_templ; /* @return whether the table has any other transcation lock other than the given transaction */ bool has_lock_other_than(const trx_t *trx) const { for (lock_t *lock= UT_LIST_GET_FIRST(locks); lock; lock= UT_LIST_GET_NEXT(un_member.tab_lock.locks, lock)) if (lock->trx != trx) return true; return false; } /** @return whether a DDL operation is in progress on this table */ bool is_active_ddl() const { return UT_LIST_GET_FIRST(indexes)->online_log; } /** @return whether the name is mysql.innodb_index_stats or mysql.innodb_table_stats */ bool is_stats_table() const; /** @return number of unique columns in FTS_DOC_ID index */ unsigned fts_n_uniq() const { return versioned() ? 2 : 1; } /** @return the index for that starts with a specific column */ dict_index_t *get_index(const dict_col_t &col) const; /** Create metadata. @param name table name @param space tablespace @param n_cols total number of columns (both virtual and non-virtual) @param n_v_cols number of virtual columns @param flags table flags @param flags2 table flags2 @return newly allocated table object */ static dict_table_t *create(const span &name, fil_space_t *space, ulint n_cols, ulint n_v_cols, ulint flags, ulint flags2); /** Check whether the table has any spatial indexes */ bool has_spatial_index() const { for (auto i= UT_LIST_GET_FIRST(indexes); (i= UT_LIST_GET_NEXT(indexes, i)) != nullptr; ) if (i->is_spatial()) return true; return false; } }; inline void dict_index_t::set_modified(mtr_t& mtr) const { mtr.set_named_space(table->space); } inline bool table_name_t::is_temporary() const { return dict_table_t::is_temporary_name(m_name); } inline bool dict_index_t::is_readable() const { return table->is_readable(); } inline bool dict_index_t::is_instant() const { ut_ad(n_core_fields > 0); ut_ad(n_core_fields <= n_fields || table->n_dropped()); ut_ad(n_core_fields == n_fields || (type & ~(DICT_UNIQUE | DICT_CORRUPT)) == DICT_CLUSTERED); ut_ad(n_core_fields == n_fields || table->supports_instant()); ut_ad(n_core_fields == n_fields || !table->is_temporary()); ut_ad(!table->instant || !table->is_temporary()); return n_core_fields != n_fields || (is_primary() && table->instant); } inline bool dict_index_t::is_corrupted() const { return UNIV_UNLIKELY(online_status >= ONLINE_INDEX_ABORTED || (type & DICT_CORRUPT) || (table && table->corrupted)); } inline void dict_index_t::clear_instant_add() { DBUG_ASSERT(is_primary()); DBUG_ASSERT(is_instant()); DBUG_ASSERT(!table->instant); for (unsigned i= n_core_fields; i < n_fields; i++) fields[i].col->clear_instant(); n_core_fields= n_fields; n_core_null_bytes= static_cast (UT_BITS_IN_BYTES(static_cast(n_nullable))); } inline void dict_index_t::clear_instant_alter() { DBUG_ASSERT(is_primary()); DBUG_ASSERT(n_fields == n_def); if (!table->instant) { if (is_instant()) { clear_instant_add(); } return; } #ifndef DBUG_OFF for (unsigned i = first_user_field(); i--; ) { DBUG_ASSERT(!fields[i].col->is_dropped()); DBUG_ASSERT(!fields[i].col->is_nullable()); } #endif const dict_col_t* ai_col = table->persistent_autoinc ? fields[table->persistent_autoinc - 1].col : NULL; dict_field_t* const begin = &fields[first_user_field()]; dict_field_t* end = &fields[n_fields]; for (dict_field_t* d = begin; d < end; ) { /* Move fields for dropped columns to the end. */ if (!d->col->is_dropped()) { d++; } else { if (d->col->is_nullable()) { n_nullable--; } std::swap(*d, *--end); } } DBUG_ASSERT(&fields[n_fields - table->n_dropped()] == end); n_core_fields = n_fields = n_def = static_cast(end - fields) & MAX_N_FIELDS; n_core_null_bytes = static_cast(UT_BITS_IN_BYTES(n_nullable)); std::sort(begin, end, [](const dict_field_t& a, const dict_field_t& b) { return a.col->ind < b.col->ind; }); table->instant = NULL; if (ai_col) { auto a = std::find_if(fields, end, [ai_col](const dict_field_t& f) { return f.col == ai_col; }); table->persistent_autoinc = (a == end) ? 0 : (1 + static_cast(a - fields)) & MAX_N_FIELDS; } } /** @return whether the column was instantly dropped @param[in] index the clustered index */ inline bool dict_col_t::is_dropped(const dict_index_t& index) const { DBUG_ASSERT(index.is_primary()); DBUG_ASSERT(!is_dropped() == !index.table->instant); DBUG_ASSERT(!is_dropped() || (this >= index.table->instant->dropped && this < index.table->instant->dropped + index.table->instant->n_dropped)); return is_dropped(); } /*******************************************************************//** Initialise the table lock list. */ void lock_table_lock_list_init( /*======================*/ table_lock_list_t* locks); /*!< List to initialise */ /** A function object to add the foreign key constraint to the referenced set of the referenced table, if it exists in the dictionary cache. */ struct dict_foreign_add_to_referenced_table { void operator()(dict_foreign_t* foreign) const { if (dict_table_t* table = foreign->referenced_table) { std::pair ret = table->referenced_set.insert(foreign); ut_a(ret.second); } } }; /** Check whether the col is used in spatial index or regular index. @param[in] col column to check @return spatial status */ inline spatial_status_t dict_col_get_spatial_status( const dict_col_t* col) { spatial_status_t spatial_status = SPATIAL_NONE; /* Column is not a part of any index. */ if (!col->ord_part) { return(spatial_status); } if (DATA_GEOMETRY_MTYPE(col->mtype)) { if (col->max_prefix == 0) { spatial_status = SPATIAL_ONLY; } else { /* Any regular index on a geometry column should have a prefix. */ spatial_status = SPATIAL_MIXED; } } return(spatial_status); } #include "dict0mem.inl" #endif /* dict0mem_h */